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ABSTRACT Therefore, efficient execution of complex subqueries is essential

This paper describes enhanced subquery optimizations in Oracle
relational database system. It discusses several techniques —
subquery coalescing, subquery removal using window functions,
and view elimination for group-by queries. These techniques
recognize and remove redundancies in query structures and
convert queries into potentially more optimal forms. The paper
also discusses novel parallel execution techniques, which have
general applicability and are used to improve the scalability of
queries that have undergone some of these transformations. It
describes a new variant of antijoin for optimizing subqueries
involved in the universal quantifier with columns that may have
nulls. It then presents performance results of these optimizations,
which show significant execution time improvements.

1. INTRODUCTION

Current relational database systems process complex SQL queries
involving nested subqueries with aggregation functions,
union/union-all, distinct, and group-by views, etc. Such queries
are becoming increasingly important in Decision-Support Systems
(DSS) and On-Line Analytical Processing (OLAP). Query
transformation has been proposed as a common technique to
optimize such queries.

Subqueries are a powerful component of SQL, extending its
declarative and expressive capabilities. The SQL standard allows
subqueries to be used in SELECT, FROM, WHERE, and HAVING
clauses. Decision support benchmarks such as TPC-H [14] and
TPC-DS [15] extensively use subqueries. Almost half of the 22
queries in the TPC-H benchmark contain subqueries. Most
subqueries are correlated and many contain aggregate functions.
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for database systems.

1.1 Query Transformation in Oracle

Oracle performs a multitude of query transformations — subquery
unnesting, group-by and distinct view merging, common sub-
expression elimination, join predicate pushdown, join
factorization, conversion of set operators intersect and minus into
[anti-] join, OR expansion, star transformation, group-by and
distinct placement etc. Query transformation in Oracle can be
heuristic or cost based. In cost-based transformation, logical
transformation and physical optimization are combined to
generate an optimal execution plan.

In Oracle 10g, a general framework [8] for cost-based query
transformation and several state space search strategies were
introduced. During cost-based transformation, a query is copied,
transformed and its cost is calculated using existing cost-based
physical optimizer. This process is repeated multiple times
applying a new set of transformations; and at the end, one or more
transformations are selected and applied to the original query, if it
results in an optimal cost. The cost-based transformation
framework provides a mechanism for the exploration of the state
space generated by applying one or more transformations thus
enabling Oracle to select the optimal transformation in an
efficient manner. The cost-based transformation framework can
handle the complexity produced by the presence of multiple query
blocks in a user query and by the interdependence of
transformations. The availability of the general framework for
cost-based transformation has made it possible for other
innovative transformations to be added to the vast repertoire of
Oracle's query transformation techniques. This paper introduces
new transformation techniques — subquery coalescing, subquery
removal, and filtering join elimination.

1.2 Subquery Unnesting

Subquery unnesting [1][2][8][9] is an important query
transformation commonly performed by database systems. When
a correlated subquery is not unnested, it is evaluated multiple
times using tuple iteration semantics. This is akin to nested-loop



join, and thus efficient access paths, join methods and join orders
cannot be considered.

Oracle performs unnesting of almost all types of subqueries.
There are two broad categories of unnesting — one that generates
derived tables (inline views), and the other that merges a subquery
into the body of its outer query. In Oracle, the former is applied in
a cost-based manner, while the latter is done in a heuristic
fashion.

Unnesting of non-scalar subqueries often results in semijoin or
antijoin. Oracle can use index lookup, hash, and sort-merge semi
or anti join. Oracle execution engine caches the results of anti or
semi joins for the tuples from the left table so that multiple
evaluations of the subquery can be avoided when there are a large
number of duplicates in the joining columns of the left table.
Oracle unnests subqueries appearing in existentially or universally
quantified non-equality comparison (e.g., > ANY, <ALL, etc.) by
using sort-merge join on non-equality predicate in the absence of
relevant indexes.

Subqueries with nullable columns in the universally quantified
comparison (e.g., <> ALL) cannot be unnested using regular
antijoin. Oracle uses a variant of antijoin, called null-aware
antijoin, to unnest such subqueries.

1.3 Window Functions

SQL 2003 [11] extends SQL with window functions1 that are not
only easy and elegant to express, but also can lead to efficient
query optimization and execution by avoiding numerous self-joins
and multiple query blocks. Window functions are used widely by
a number of analytic applications. Oracle has provided support for
window functions since the version Oracle 8i. The syntax of
window functions looks like the following:

Window_Function ([arguments]) OVER (
[ PARTITION BY pkq [, pka, ...] 1
[ ORDER BY ok; [, 0ky, ...] [WINDOW clause] ] )

Window functions are evaluated within partitions defined by the
PARTITION BY (PBY) keys pk;, pky, etc. with data ordered within
each partition on ORDER BY (OBY) keys okj, ok, etc. The
WINDOW clause defines the window (begin and end points) for
ecach row. SQL aggregate functions (sum, min, count, etc.),
ranking functions (rank, row_number, etc.), or reference functions
(lag, lead, first value, etc.) can be used as window functions.
ANSI SQL standard [10] [11] contains the details of the syntax
and semantics of window functions.

Window functions in a query block are evaluated after WHERE,
GROUP-BY, and HAVING clauses. Oracle computes a window
function by sorting data on PBY and OBY keys and making passes
over the ordered data as needed. We call this window sort
execution. Obviously, sorting is not required when window
function has no PBY and OBY keys. Oracle buffers data in this
case to compute the window function and this is called window
buffer execution.

Oracle’s cost-based optimizer eliminates sort for window
computation when it chooses a plan that produces data in the
order of PBY and OBY keys. In this case, window buffer execution
is used wherein Oracle just buffers the data and makes multiple
passes over it to compute the window function. However,

! Referred to as ‘analytic functions’ in Oracle documentation

buffering can well be avoided for window functions like rank,
row_number, cumulative window aggregates when data comes in
order. By keeping some context information (window function
value and PBY key values), these functions can be computed
while the input data is being processed.

1.3.1 Reporting Window Functions

Subquery optimizations presented in this paper make use of a
class of window functions called reporting window functions.
These are window functions that, by virtue of their specification,
report for each row the aggregated value of all rows in the
corresponding partition (as defined by PBY keys). When a
window function has no OBY and WINDOW clauses, or when the
window for each row includes all the rows of the partition it
belongs to, then it is a reporting window function. We sometimes
refer these functions as reporting aggregates in this paper.

Reporting window functions are useful in comparative analysis
wherein one can compare the value of a row at a certain level with
that of one at higher level. For example, to compute for a stock
ticker, the ratio of each day’s volume to the overall volume, each
row (at day level) needs to have the aggregated SUM across all
days. The window function to get the aggregated SUM reported
for all rows and the output would be like:

Q1
SELECT ticker, day, volume,
SUM (volume) OVER (PARTITION BY ticker)
AS “Reporting SUM”
FROM stocks;

Table 1. Reporting Window SUM Example

Ticker Day Volume | Reporting SUM
GOOG 02-Feb-09 5 18
GOOG 03-Feb-09 6 18
GOOG 04-Feb-09 7 18
YHOO 02-Feb-09 21 62
YHOO 03-Feb-09 19 62
YHOO 04-Feb-09 22 62

When a reporting aggregate has no PBY keys, then the value it
reports is the grand total across all rows, as there is only one
implicit partition. We call such reporting aggregates grand-total
(GT) functions. Our subquery transformations in some cases
introduce GT functions into the query.

2. SUBQUERY COALESCING

Subquery coalescing is a technique where two subqueries can be
coalesced into a single subquery under certain conditions, thereby
reducing multiple table accesses and multiple join evaluations to a
single table access and a single join evaluation. Although
subquery coalescing is defined as a binary operation, it can be
successively applied to any number of subqueries. Subquery
coalescing is possible, because a subquery acts like a filter
predicate on the tables in the outer query.

Two query blocks are said to be semantically equivalent, if they
produce the same multi-set results. The structural or syntactic
identity of two query blocks can also establish their equivalence.



A query block X is said to contain another query block Y, if the
result of Y is a (not necessarily proper) subset of the result of X. X
is called container query block and Y is called contained query
block. In other words, X and Y satisfy the containment property, if
Y contains some conjunctive filter predicates P, and X and Y
become equivalent when P is not taken into account in
establishing their equivalence.

Containment is an important property that allows us to
incorporate the behavior of both subqueries into the coalesced
subquery. When two conjunctive subqueries violate the
containment property, their filter predicates cannot be combined
as a conjunction in a single subquery, since the subquery will then
produce only the intersecting set of rows.

Currently, Oracle performs various types of subquery coalescing
where two [NOT] EXISTS subqueries appear in a conjunction or in
a disjunction. Since ANY and ALL subqueries can be converted
into EXISTS and NOT EXISTS subqueries respectively, we do not
discuss the coalescing of ANY/ALL subqueries here. In the trivial
case of two subqueries that are equivalent and are of same type
(i.e., either EXISTS or NOT EXISTS), subquery coalescing results
in the removal of one of the two subqueries. When equivalent
subqueries are of different types, coalescing removes both the
subqueries and replaces them with a FALSE/TRUE predicate
depending on whether the subqueries participate in conjunction or
disjunction.

2.1 Coalescing Subqueries of the Same Type
When two conjunctive EXISTS subqueries or disjunctive NOT
EXISTS satisfy the containment property, they can be coalesced
into a single subquery by retaining the contained subquery and
removing the container subquery. For the case of disjunctive
EXISTS subqueries, or conjunctive NOT EXISTS subqueries,
coalescing can be done by retaining the container subquery and
removing the contained subquery.

Subqueries not satisfying containment property can also be
coalesced when they are equivalent except for some conjunctive
filter and correlation predicates. For example, two disjunctive
EXISTS subqueries differing in conjunctive filter predicates and
correlation predicates, but otherwise equivalent, can be coalesced
into a single EXISTS subquery with a disjunction of additional (or
differing) predicates originating from the two subqueries. Two
conjunctive NOT EXISTS subqueries can be coalesced in a similar
fashion.

Consider query Q2 with two disjunctive EXISTS subqueries; the
subqueries have same correlation predicate but differ in
conjunctive filter predicate.

Q2
SELECT o orderpriority, COUNT (*)
FROM orders
WHERE o orderdate >= '1993-07-01"' AND
EXISTS (SELECT *
FROM lineitem
WHERE 1 orderkey = o orderkey AND
1 returnflag = ‘R’) OR
EXISTS (SELECT *
FROM lineitem
WHERE 1 orderkey = o orderkey AND
1 receiptdate >1 commitdate)
GROUP BY o orderpriority;

Our subquery coalescing combines the two EXISTS subqueries
into a single EXISTS subquery with a disjunction of filter
predicates yielding query Q3.

Q3
SELECT o orderpriority, COUNT (*)
FROM orders
WHERE o orderdate >= '1993-07-01' AND
EXISTS (SELECT *
FROM lineitem
WHERE 1 orderkey = o orderkey AND
(1 _returnflag = ‘R’ OR
1 receiptdate > 1 commitdate))
GROUP BY o orderpriority;

2.2 Coalescing Subqueries of Different Types
Coalescing of two conjunctive subqueries that satisfy the
containment property and are of different types requires a
different technique. Consider query Q4, which is a somewhat
simplified version of TPC-H query 21.

04
SELECT s name
FROM supplier, lineitem L1
WHERE s suppkey = 1 suppkey AND
EXISTS (SELECT *
FROM lineitem L2
WHERE 1 orderkey =L1.1 orderkey
AND 1 suppkey <> L1.1 suppkey)
AND NOT EXISTS
(SELECT *
FROM lineitem L3
WHERE 1 orderkey = L1.1 orderkey AND
1 suppkey <> L1.1 suppkey AND
1 receiptdate>1 commitdate);

The two subqueries in Q4 are different only in their types and in
the fact that the NOT EXISTS subquery has an additional filter
predicate, |_receiptdate > |_commitdate. Subquery coalescing
yields query Q5 with a single EXISTS subquery, thereby
eliminating one instance of the lineitem table.

Q5
SELECT s_name
FROM supplier, lineitem L1
WHERE s suppkey = 1 suppkey AND
EXISTS (SELECT 1
FROM lineitem L2
WHERE 1 orderkey =
L1.1 orderkey AND
1 suppkey <>L1.1 suppkey
HAVING SUM (CASE WHEN
1 receiptdate >
1 commitdate
THEN 1 ELSE O END) = 0);

The aggregate function in the HAVING clause returns the total
number of rows that satisfy the subquery predicate. The HAVING
clause introduced in the coalesced subquery has a new filter
predicate that checks if any rows satisfy the subquery predicate,
thereby simulating the behavior of the removed NOT EXISTS
subquery.



For each set of correlation values, the subqueries in Q4 can be in
one of the following three states:

e  When the EXISTS subquery produces no rows (i.e., it
evaluates to FALSE), the conjunctive result of the two
subqueries is FALSE. In Q5, the HAVING clause applies on
an empty set and the coalesced EXISTS subquery also
evaluates to FALSE.

e  When the EXISTS subquery returns some rows (i.e., it
evaluates to TRUE) and the NOT EXISTS subquery also
returns some rows (i.e., it evaluates to FALSE), the
conjunctive result of the two subqueries is FALSE. In Q5, the
HAVING clause gets applied on a non-empty set of rows that
have |_receiptdate > |_commitdate, and therefore it evaluates
to FALSE; thus, the coalesced subquery evaluates to FALSE.

e  When the EXISTS subquery produces some rows and the
NOT EXISTS subquery produces no rows because of the
additional filter predicates, the conjunctive result of the two
subqueries is TRUE. In QS5, the HAVING clause gets applied
on a non-empty set of rows that do not have |_receiptdate >
|_commitdate, and therefore it evaluates to TRUE; thus, the
coalesced subquery evaluates to TRUE.

The above discussion establishes that Q4 and Q5 are equivalent.
In the case where the NOT EXISTS subquery is the container query
and the conjunctive EXISTS subquery is the contained query,
coalescing involves removing both subqueries and replacing them
with a FALSE predicate. The conditions under which the EXISTS
subquery produces some rows (i.e., it evaluates to TRUE)
guarantees that the NOT EXISTS subquery also produces some
rows (i.e., it evaluates to FALSE). In the case where the NOT
EXISTS subquery produces no rows, the EXISTS subquery also
returns no rows. Hence, the conjunctive result of the two
subqueries is always FALSE.

Similar arguments can be made and coalescing can be done when
the EXISTS and NOT EXISTS subqueries appear in a disjunction
and satisfy the containment property.

2.3 Coalescing and Other Transformations

In [8], we discussed how various transformations interact with
one another and how our cost-based transformation framework
handles the possible interactions. Subquery coalescing is no
exception, as the coalesced subquery may be subject to other
transformations. The subquery in Q5 can undergo unnesting and
yield query Q6, which contains an inline view (derived table) V.

06
SELECT s name
FROM supplier, lineitem L1,
(SELECT LX.rowid xrowid
FROM lineitem L2, lineitem LX
WHERE L1.1 suppkey <> LX.1l suppkey AND
L1.1 orderkey = LX.1 orderkey
GROUP BY LX.rowid
HAVING SUM (CASE WHEN
L2.1 receiptdate >
L2.1 commitdate
THEN 1 ELSE 0 END) = 0) V
WHERE s suppkey = L1.1 suppkey AND
Ll.rowid = V.xrowid;

After view merging, Q6 yields query Q7, which renders the table
LX redundant, since in the merged query block LX and LI are
joined on the unique rowid column. Therefore, LX is removed,
and all references to it are replaced with that of L1.

Q7
SELECT s_name
FROM supplier, lineitem L1, lineitem L2
WHERE s suppkey = L1.1 suppkey AND
L1.1 orderkey = L2.1 orderkey
GROUP BY Ll.rowid, S.rowid, S.s name
HAVING SUM(CASE WHEN L2.1 receiptdate >
L2.1 commitdate
THEN 1 ELSE 0 END) = 0);

Here we have at least four alternative queries. In most cases, it
will not be clear which one of the four alternatives provides the
optimal choice. The Oracle cost-based transformation framework
discussed in Section 1.1 can be used to make this decision.

2.4 Query Execution Enhancements

The HAVING clause predicate of query Q7 filters out groups that
have at least one record with receipt date greater than commit
date. This predicate and other predicates such as
MIN(I_receiptdate) > '18-Feb-2001", COUNT(*) <= 10,
SUM(amount_sold) < 2000%, etc., when not satisfied, immediately
make a group unacceptable (i.e., not a candidate in the result set)
and can be pushed into group-by to short circuit aggregate
processing for that group. This results in efficient execution. For
example in Q7, an input record with I_receiptdate > |_commitdate
makes the SUM aggregate’s value 1 for that group, thus making
the group a non-candidate. Similarly, when the predicate is
SUM(amount_sold) < 2000 and there is a database rely constraint
that specifies that amount_sold is positive, a group becomes a
non-candidate as soon as SUM for that group exceeds 2000.
Group-by skips processing of aggregates for non-candidate
groups.

Parallel group-by execution also benefits when such predicates
are used to reduce data traffic. Oracle employs cost-based parallel
group-by pushdown (GPD) technique where in group-by
evaluation is pushed to the processes producing the input
(producer slaves) so as to reduce communication costs and to
improve the scalability of group-by. The producer slaves
distribute locally aggregated data to another set of processes
(consumer slaves) by hash/range on the group-by keys. The
consumer slaves then finish group-by processing and produce
results. The parallel query plan with GPD for Q7 is shown in
Figure 1. Reduction in data traffic is achieved when producer
slaves P, Py filter out groups based on the HAVING predicate
during group-by processing.

Similarly, predicates that immediately make groups result-set
candidates as soon as they are satisfied can be pushed into group-
by processing as well. Processing of aggregates that are not part
of the result set can be skipped once a group is found to be a
candidate. Examples for such predicates are MIN(I_receiptdate) <
'18-Feb-2001", COUNT(*) > 10, SUM(amount_sold) > 2000, when
amount_sold is known to be positive.

2 When amount_sold is known to be positive; for example, in the
presence of a database rely constraint.
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Figure 1. Parallel Group-By Pushdown

3. GROUP-BY VIEW ELIMINATION

In this section, we discuss a technique called filtering table
elimination, which is based on the idea of filtering joins. A
filtering join is either a semijoin or an equi-inner join that takes
place on a unique column of one of the two tables involved in the
join.

Here we denote a unique column by underlining it and represent
equi-semijoin in a non-standard notation, 0=. R is a table and T1
and T2 are two instances of the same base or derived table T. T1
and T2 either have identical set of filters predicates, if any, or the
filter predicates of T1 are more restrictive than that of T2. In the
following cases, T2 and the filtering join can be eliminated.

RX=Tl.YandRX=T2Y = RX=TLY
RX=Tl.YandRX0=T2.Y = RX=TLY
RX0=TL.Yand RX0=T2.Y = RX0=TLY

Assume that the non-filtering join, if any, takes place first. The
filtering join then retains all the resulting rows of R, since a
filtering join can only filter out rows of R in contrast with inner
join that can duplicate as well as filter out rows. The filtering join
renders table T2 redundant and therefore T2 can be removed.
Although, this technique bears a close resemblance to that of
coalescing of conjunctive EXISTS subqueries, in the following we
present a different application of this technique.

3.1 View Elimination
Consider Q8, which is a simplified version of TPC-H query 18.

08
SELECT o_orderkey,c custkey, SUM(1l quantity)
FROM orders, lineitem L1, customers
WHERE o orderkey = 1 orderkey AND
c_custkey = o _custkey AND
o_orderkey IN
(SELECT 1 orderkey
FROM lineitem L2
GROUP BY 1 orderkey
HAVING SUM(l guantity) > 30)
GROUP BY o orderkey, o totalprice;

The subquery in Q8 undergoes unnesting yielding Q9. The inline
view (derived table) V2 generated by unnesting in Q9 need not be
semi-joined, since it is an equi-join and the joining column of V2
is unique as a result of being the only grouping column of V2.

09
SELECT o orderkey,c custkey, SUM(l quantity)

FROM orders, lineitem L1, customers,
(SELECT 1 orderkey
FROM lineitem L2
GROUP BY 1 orderkey
HAVING SUM(1l quantity) > 30) V2
WHERE o orderkey = V2.1 orderkey AND
o orderkey = L1.1 orderkey AND
c custkey = o custkey
GROUP BY o orderkey, c custkey;

Using group-by and join permutation (i.e., group-by placement)
[51[6][8], another view V1, which contains table L1, can be
generated, as shown QI10; SUM(I_quantity) is added to V2’s
SELECT list without changing the semantics of Q9.

Q10
SELECT o orderkey, c_custkey, SUM(V1.qgty)
FROM orders, customers,
(SELECT 1 orderkey, SUM(l quantity) gty
FROM lineitem L2
GROUP BY 1 orderkey
HAVING SUM(1l quantity) > 30) V2,
(SELECT 1 orderkey, SUM(l quantity) gty
FROM lineitem L1
GROUP BY 1 orderkey) V1
WHERE o orderkey = V1.1 orderkey AND
o _orderkey = V2.1 orderkey AND
c custkey = o custkey
GROUP BY o orderkey, c custkey;

As can be seen, V1 and V2 are different instances of the same
view, except that the filter predicates in V2 are more restrictive
than that of V1, because of the presence of a HAVING clause in
V2. Furthermore, the equi-joins of V1 and V2 with orders are on
the unique column o_orderkey, since it is the only grouping
column in the views; thus, these two joins are filtering joins.
Therefore V1 can be eliminated and references to V1 can be
replaced with that of V2. Elimination of the filtering view in Q10
results in Q11.

Q11
SELECT o orderkey, c_custkey, SUM(V2.qty)
FROM orders, customers,
(SELECT o_orderkey, SUM(l quantity)
FROM lineitem
GROUP BY 1 orderkey
HAVING SUM(liquantity) > 30) Vv2,
WHERE o orderkey = V2.1 orderkey AND
c custkey = o custkey
GROUP BY o orderkey, c_custkey;

If the view V2 in query Q9 was merged, a different line of
argument using filtering join can be proffered with the same result
of eliminating the table lineitem from the outer query.

4. SUBQUERY REMOVAL USING
WINDOW FUNCTIONS

This technique replaces subqueries with window functions [11]
thereby reducing the number of table accesses and join
evaluations and improving the query performance. Some of the
techniques of subquery removal discussed here were introduced in
Oracle 9i and some were published in literature [13]. In its
simpler form subsumed aggregation subqueries are removed using
window functions.



An outer query block is said to subsume a subquery when it
contains all the tables and predicates appearing in the subquery.
The outer query block may have additional tables and predicates.
Clearly, the property of subsumption is different from that of
containment discussed in Section 2. In addition, this technique
uses lossless join property and algebraic aggregates (e.g., SUM,
MIN, MAX, COUNT, AVG etc.).

Q12 represents a form of a query with subsumed aggregation
subquery for which subquery removal is applicable. T1 and T2
are base or derived tables or they may represent join of multiple
tables. The aggregate AGG in the subquery participates in a
relational comparison (relop) with a column T2.z from the outer
query and the correlation is on column T1.y.

012
SELECT T1.x
FROM T1, T2
WHERE Tl.y = T2.y and
T2.z relop (SELECT AGG(T2.w)
FROM T2
WHERE T2.y = Tl.y);

Assuming that the join T1 and T2 is a lossless join where T2.y is
the foreign key that refers to the primary key T1.y, the subquery
can be removed by introducing a window function that has the
correlation column as the partition-by key. This is shown in Q13.

013
SELECT V.x
FROM (SELECT Tl.x, T2.z,
AGG (T2.w) OVER (PARTITION BY T2.y)
AS win agg

FROM T1, T2

WHERE Tl.y = T2.y) V
WHERE V.z relop win agg;
The join between T1 and T2 is not required to be lossless to be
able to do subquery removal using window functions. However,
lossless join leads to a transformation that allows more join
permutations to be considered by the optimizer.

Variations to the above form Q12 where subquery is uncorrelated,
or has additional tables and predicates, or doesn’t have
aggregates, or when the subquery and outer query have group-by
can be transformed using subquery removal technique. We will
give examples for these in subsequent sections.

4.1 Correlated Subsumed Subquery

Consider query Q14, which is a simplified version of TPC-H
query 2. The outer query has an additional table PARTS and a
filter predicate on that table. The subquery is correlated to the
PARTS table and is subsumed by the outer query.

014
SELECT s name, n name, p partkey
FROM parts P, supplier, partsupp,
nation, region
WHERE p partkey = ps partkey AND
S _suppkey = ps suppkey AND
s nationkey = n nationkey AND
n regionkey = r regionkey AND
p_size = 36 AND
r name = 'ASIA' AND
ps_supplycost IN

(SELECT MIN (ps_ supplycost)
FROM partsupp, supplier, nation,
region
WHERE P.p partkey = ps partkey AND
S _suppkey = ps suppkey AND
s nationkey = n nationkey AND
n regionkey = r regionkey AND
r name = 'ASIA');

Subquery removal technique transforms the query Q14 into Q15:

Q15
SELECT s name, n name, p partkey
FROM (SELECT ps_supplycost,
MIN (ps_supplycost) OVER
(PARTITION BY ps partkey)
AS min ps,
S _name, n name, p partkey
FROM parts, supplier, partsupp,
nation, region
WHERE p partkey = ps partkey AND
s suppkey = ps suppkey AND
s nationkey = n nationkey AND
n regionkey = r regionkey AND
p _size = 36 AND
r name = 'ASIA') V
WHERE V.ps supplycost = V.min ps;

Duplicate rows, if any, generated by the join of PARTSUPP and
PARTS tables in Q15 are not relevant as the aggregate function is
MIN. If the aggregate function were not MIN/MAX, or if the join
with the additional table (PARTS in this case) was not lossless,
then the window function computation must be done within a
view, which then is joined with the additional table. This is the
case for TPC-H query 17, for which subquery removal
transformation yields Q16:

Q16
SELECT SUM(V.avg extprice)/7 AS avg yearly
FROM parts,
(SELECT (CASE WHEN 1 quantity < (1.2 *
AVG (1 quantity) OVER
(PARTITION BY 1 partkey))
THEN 1 extprice ELSE NULL
END) avg extprice,
1 partkey
FROM lineitem) V
WHERE p partkey = V.1 partkey AND
V.avg extprice IS NOT NULL AND
P brand = 'Brand#23' AND
p_container = 'MED BOX';

4.2 Uncorrelated Subsumed Subquery

Consider query Q17, which is a simplified version of TPC-H query
15. Q17 has an uncorrelated aggregation subquery with the outer
query and the subquery referring to an identical group-by view
(derived table) V.

Q17
WITH V AS (SELECT 1 suppkey,
SUM (1 extprice) revenue
FROM lineitem
WHERE 1 shipdate >= '1996-01-01'



GROUP BY 1 suppkey)
SELECT s_suppkey, s name, V.revenue
FROM supplier, V
WHERE s suppkey = V.s suppkey AND
V.revenue = (SELECT MAX (V.revenue)
FROM V) ;
The above query can be transformed as Q18, where a window
function has been introduced and the subquery has been
eliminated.

Q18
SELECT s suppkey, s name, V.revenue
FROM supplier,
(SELECT 1 suppkey,
SUM (1 extprice) revenue
MAX (SUM (1 extprice)) OVER() gt rev
FROM lineitem
WHERE 1 shipdate >= '1996-01-01"
GROUP BY 1 suppkey) V
WHERE s suppkey = V.1 suppkey AND
V.revenue = V.gt rev;
In this case a grand-total window function MAX (specified using
empty OVER ( ) clause) on the aggregate SUM(l extprice) is
introduced to remove the subquery. There was no need to have
PBY for the window function as the subquery in Q17 is
uncorrelated and needs to be applied on the entire set of rows. We
employ a novel parallelization technique for grand-total window
functions, as described in Section 5, so that the transformed query
Q18 can perform efficiently and in scalable fashion.

4.3 Subsumed Subquery in Having Clause
Subquery removal technique can also be employed when the outer
query has group-by. For example consider Q19, a simplified
version of TPC-H query 11. The subquery in Q19 is uncorrelated
and is subsumed by the outer query. In fact, the subquery and the
outer query have an identical set of tables and predicates.

Q19
SELECT ps_ partkey,
SUM (ps_supplycost * ps availqgty) AS value
FROM partsupp, supplier, nation
WHERE ps suppkey = s suppkey AND
s nationkey = n nationkey AND
n name = 'FRANCE'
GROUP BY ps partkey
HAVING SUM(ps_supplycost * ps availqgty) >
(SELECT SUM(ps_supplycost *
ps_availgty) * 0.0001
FROM partsupp, supplier, nation
WHERE ps suppkey = s suppkey AND
s nationkey = n nationkey AND
n name = 'FRANCE');

Q19 can be transformed into Q20. As with Q17, the window
function introduced was a grand-total without PBY keys as the
subquery in Q19 is uncorrelated.

020
SELECT V.ps partkey, V.gb sum
FROM (SELECT ps partkey,
SUM (ps_supplycost*ps availqgty) value,
SUM (SUM (ps_supplycost*ps _availqgty))
OVER () gt value

FROM partsupp, supplier, nation
WHERE ps suppkey = s suppkey AND
s nationkey = n nationkey AND
n name = 'FRANCE'
GROUP BY ps partkey) V
WHERE V.value > V.gt value * 0.0001;

4.4 Subquery Producing a Multi-Set

Subquery need not necessarily have an aggregate and produce a
singleton set to be able to perform subquery removal using
window functions. Consider the query Q21 in which the subquery
produces a multiset and participates in an “ALL” subquery
predicate.

Q21
SELECT ps partkey, s name,
SUM (ps_supplycost * ps availqgty) as VALUE
FROM partsupp, supplier, nation
WHERE ps_ suppkey = s suppkey AND
s nationkey = n nationkey AND
n _name = ‘GERMANY’
GROUP BY s name, ps partkey
HAVING
SUM (ps_supplycost * ps availqty) > ALL
(SELECT
ps_supplycost*ps availgty * 0.01
FROM partsupp, supplier, nation
WHERE n name = ‘GERMANY’ AND
ps_suppkey = s suppkey AND
s _nationkey = n nationkey);
We transform this query into Q22:

Q22
SELECT ps partkey, s name, VALUE
FROM (SELECT ps partkey, s name, VALUE,
SUM (ps_supplycost * ps availgty)
as VALUE,
MAX (MAX (ps_supplycost*ps availqty))
OVER ( ) VAL pkey
FROM partsupp, supplier, nation
WHERE n_ name = ‘GERMANY’ AND
ps_suppkey = s suppkey AND
s nationkey = n nationkey
GROUP BY s name, ps partkey) V
WHERE V.VALUE > V.VAL_pkey * 0.01;
If the subquery predicate instead was “> ANY”, then the window
function would be MIN (MIN (ps_supplycost * ps_availqty)) OVER
(). Using multiple window functions, “= ALL” and ‘“= ANY”
predicates can be handled as well.

5. SCALABLE PARALLEL EXECUTION

Oracle parallelization of window functions has been enhanced for
more scalable query execution. Normally, window functions are
parallelized in Oracle by distributing the data, either by hash or
range, to multiple processes based on the partition-by (PBY) keys.
Similar parallelization is used for SQL model clause [7]. Each
process works independently of other processes to compute the
window function on the partitions it receives. For example,
window function introduced in Q16 by the subquery removal
technique is parallelized this way. Parallel query plan for Q16
would look like:
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Figure 2. Typical Parallelization of Window Function

Producer slave processes P, through Py distribute, by hash on
| _partkey, the result of the join between parts and lineitem tables
to the consumer slave processes C; through Cy performing the
window sort. Each consumer slave would compute the AVG
window function on the partitions (defined by the PBY key
| _partkey) it receives. Observe that the scalability of this regular
parallelization of window functions is governed by the cardinality
of the PBY keys. For window functions with low-cardinality PBY
keys (e.g., region, gender) and ones with no PBY keys, scalability
is either limited or nonexistent. Scalability of such window
functions became critical for the subquery removal with window
function transformation of Section 4 to pay high dividends. To
that end, we came up with a novel parallelization technique,
which we outline now.

Consider the transformed query Q20 of Section 4.3 that has a
window function without PBY keys SUM(SUM(ps_supplycost *
ps_availgty)) OVER(). This is a grand-total (GT) reporting window
function as it operates on the entire dataset and reports the grand
total for each row. GT functions are not intrinsically parallelizable
as there are no PBY keys on which the work can be split among
slave processes. If this GT function is not parallelized, it reduces
the overall benefit of the subquery removal transformation.
Normal parallel query plan for GT window functions is given in

Figure 3.
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Figure 3. Not-So-Parallel Plan for GT Functions

Obviously, the parallel plan of Figure 3 will not scale well as the
GT window function computation is done by the Query
Coordinator (QC) process. Slaves C; through Cy send the result of
the group-by operation to the QC, which alone computes the GT
function using the “window buffer” execution. As mentioned in
Section 1.3, Oracle picks “window buffer” in this case since it just
has to buffer the rows to compute the GT window function. The
window aggregate will be incrementally computed as rows are
being buffered. When the input is exhausted i.e., when all input
rows are buffered, we would have computed the grand-total
window function value. The buffered rows are then output with
the grand-total value.

In our new scheme to parallelize GT window function, a major
portion of the GT window computation is pushed into slave
processes rather than being done by the QC. It has a small
coordination step between the slaves and the QC to finish the GT
computation. With this model, GT evaluation becomes highly
scalable. The new parallelization plan for GT window functions is
shown in Figure 4.

QC sends
grand-total | Query
_-~"| Coordinator
P 4

-
-
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1
Hash Group-By
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Joins & Group-By
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Figure 4. Parallelization of GT Functions

Window buffer processing is now pushed into slave processes C,
through Cy. Each of these slaves computes a local total and
communicates it to the query coordinator process. The QC
consolidates the results it receives from all slaves and sends the
grand-total value back to the slaves. The slaves then output their
buffered rows with the grand-total values. With this parallel plan,
the slaves perform the majority of row processing concurrently.
Serialization (or QC consolidation) will be unnoticeable since the
number of values QC processes would be small (at a maximum of
1000) as dictated by the degree of parallelism (number of
processes concurrently working on a task).

This window pushdown parallelization technique can be extended
to non-GT reporting window functions as well. Specifically, it can
be used to improve the scalability of window functions with low
cardinality PBY keys. Though the concept is the same, more
information needs to be exchanged between slaves and QC, and
more processing is needed on both sides.



The slave processes C; through Cy compute locally the reporting
window aggregates for each partition and communicate to the QC,
an array of local window aggregates and the corresponding PBY
key values. The QC finishes the computation of reporting
aggregates for each partition and communicates results (final
window aggregates and PBY key values) back to the slaves. To
produce results, window execution inside slaves does a join of the
local data with the data sent by the QC. As slave local data as well
as the data sent by QC are ordered by PBY keys, this join is like a
sort-merge join. We present results of our experiments to
showcase window function scalability in Section 7.

6. NULL-AWARE ANTI JOIN (NAAJ)

In this section, we discuss a variant of antijoin, called null-aware
antijoin (NAAJ), introduced in Oracle 11g. Most applications
issue <>ALL (i.e., NOT IN) subqueries quite commonly as
application developers find the <>ALL syntax more intuitive than
its near equivalent NOT EXISTS. Subqueries with NOT EXISTS are
unnested into antijoin. The semantics of antijoin is exactly the
opposite of inner join since a row from the left table is returned
only if it does not join with any row from the right table. We call
this regular antijoin. In general, commercial databases can
employ regular antijoin to unnest <>ALL subqueries only when all
the columns in the quantified comparison are guaranteed to have
non-null values. Another strategy used in [9] involves introducing
a duplicate table and an additional antijoin to deal with NULLs.

In SQL, the <> ALL operator can be treated as a conjunction of
inequalities. The operators < ALL, <= ALL, > ALL and >= ALL can
be similarly expressed. The SQL Standard supports ternary logic
and hence any relational comparison with null values always
evaluates to UNKNOWN. For example, the predicates 7 = NULL, 7
<> NULL, NULL = NULL, NULL <> NULL, evaluate to UNKNOWN,
which is different from FALSE in that its negation is also
UNKNOWN. If the final result of the WHERE clause is either
FALSE or UNKNOWN, the row is filtered out. Consider query,
Q23 which has a <> ALL subquery.

023
SELECT Tl.c
FROM T1
WHERE Tl.x <> ALL (SELECT T2.y
FROM T2
WHERE T2.z > 10);

Suppose the subquery returns the following set of values {7, 11,
NULL} and T1.x has the following set of values: {NULL, 5, 11}.
The <> ALL operation can be expressed as T1.x <> 7 AND T1.x <>
11 AND T1.x <> NULL. This evaluates to UNKNOWN, since T1.x
<> NULL always evaluates to UNKNOWN irrespective of the value
of T1.x. Thus, for this set of values, Q23 will return no rows.
Regular antijoin, if used in this case, will incorrectly return
{NULL, 5}.

6.1 Null-Aware Antijoin Algorithm

The subquery in Q23 can be unnested using NAAJ as shown in the
query Q24. We use the following non-standard notation to
represent NAAJ: T1.x NA= T2.y, where T1 and T2 respectively are
tables on the left and right of the null-aware antijoin.

024

SELECT Tl.c

FROM T1, T2

WHERE Tl.x NA= T2.y and T2.z > 10;

We explain the semantics of NAAJ using Q24 as an example.
NAAIJ is performed after the evaluation of all filter predicates on
the right table. So, when we say T2 in the following explanation,
it implies the dataset obtained by applying the predicate T2.z >
10 on the original table T2.

1. If T2 contains no rows, then return all the rows of T1 and
terminate.

2. If any row of T2 contains null values in all the columns
involved in the NAAJ condition, then return no rows and
terminate.

3. If a row of Tl contains null values in all the columns
involved in the NAAJ condition, then do not return the row.

4.  For each row of T1, if the NAAJ condition evaluates to TRUE
or UNKNOWN using any row of T2, then do not return the T1
row; else return the T1 row.

Step 1 is identical to that of regular antijoin; that is, if the right
side is empty, then all of the rows of the left side, including those
having null values in the antijoin condition, are returned. Observe
that steps 2 and 3 are subsumed by the step 4, but they provide
efficient execution when all the join columns on the left or right
row contain nulls. Step 4 essentially distinguishes NAAJ from
regular antijoin. While in regular antijoin, a row on the left is
returned if the antijoin condition evaluates to UNKNOWN, in
NAAIJ it is not. Next we present execution strategies for NAAJ.
The strategies are complex for antijoin involving multiple
columns and we illustrate them using this query:

Q25

SELECT cl, c2, c3

FROM L

WHERE (cl, c2, c3) <> ALL (SELECT cl, c2, c3
FROM R) ;

6.2 Execution Strategies for NAAJ

In NAAJ semantics, a row from the left side can join with or
match several different rows on the right side. For example, a row
from the left that has a null value in one of the join columns will
match rows from the right that have any value in that particular
key column. In this case the NAAJ condition evaluates to
UNKNOWN and hence the row is not returned. Consider row
(null, 3, null) from left table L in Q25. Assume that right table R
has two rows R={(1, 3, 1), (2, 3, 2)}. Although there is no (null,
3, null) row in R, the row in L matches both rows of R because
the non-null key column c2 has value 3, and consequently (null,
3, null) is not returned.

The regular sort-merge and hash antijoin methods are extended
wherein they gather information about which join columns
contain NULL values as the data structure (sort or hash table) is
being built.

Following that we perform steps 1 and 2 given in Section 6.1 for
early termination of the join by either returning all rows or no
rows. Otherwise, for each row from the left side, we do the
following to find a matching row from the right unless step 3
given in Section 6.1 eliminates the row. If a match is found using



any of the following three steps, then the left side row is discarded
as in a regular antijoin:

1. Search the sort or hash access structure on the right for an
exact match.

2. Using the gathered information about nulls, search for other
possible matches. For example, suppose there are three join
columns cl, ¢2, and c3 but only cland ¢2 have null values on
the right side. If the incoming row from the left has values
(1, 2, 3), then we search for (1, null, 3), (null, 2, 3), and (null,
null, 3) in the access structure on the right.

3. If the row from the left has a null value in one or more of the
key columns, then we build a secondary access structure, if it
has not already been built, on the non-null key columns. For
example, suppose the row from the left has values (null, 2,
3). We build a secondary sort or hash table using columns c2
and c3 on the right side, and then we search for (x, 2, 3), (x,
2, null), (x, null, 3), and (x, null, null) in the new access
structure.

Further optimizations are possible if we keep track of all the
possible patterns of nulls on the right side. Using the example
given in step 3 above, suppose we know that there is a row on the
right side that has null values in both ¢2 and ¢3. This row will
match any row on the left side where cl is null. In this case, the
row (null, 2, 3) from the left side can be eliminated immediately,
and there is no need to build the extra access structure. This
information can also be used to eliminate some of the accesses
done in step 2.

Single-Key Column Optimization: If there is only one column
involved in the NAAJ condition (e.g., Q24), the execution strategy
is much simpler. Rows from the left side that have a null value in
the join column can be skipped or returned depending on whether
the right side has any rows or not, without actually looking for
matches.

7. PERFORMANCE STUDY

We conducted performance experiments on a 30G TPC-H schema.
We used a Linux machine with 8 dual-core 400MHz processors
and 32GB of main memory. The machine was connected to a
shared storage managed by the Oracle Automated Storage
Manager. The I/O bandwidth to the shared storage was somewhat
limited compared to the power of CPUs and it showed in our
parallelization experiments. All queries unless otherwise noted
use parallelism provided by all CPUs.

7.1 Subquery Coalescing

Consider our Q4 that is a simplified version of TPC-H query 21.
Compared to Q4, the original TPC-H query 21 has two additional
tables orders and nation and a selection predicate that restricts
data to a given nation. There are 25 nations in the schema and
their data is uniformly distributed. Subquery coalescing of Section
2.2 transforms Q4 into Q5. Figure 5 shows the elapsed times for
the transformed (Q5) and untransformed (Q4) versions as a
function of the number of nations. On an average, the
performance improvement was 27%.
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Figure 5. TPC-H q21, Subquery Coalescing

7.2 Group-By View Elimination

For this experiment, we used QS8, a simplified version of TPC-H
query 18. Our Group-By view elimination technique of Section
3.1 eliminated the Group-By view, avoided unnecessary
references to the lineitem table and resulted in Q11. We varied
the HAVING clause predicate from 30 to 300 so that the subquery
returns about 2,000 to 34,000,000 rows (as depicted on X-axis).
Figure 6 shows the result of this experiment.
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Figure 6. TPC-H 18, View Elimination

The transformation into Q11 can be challenging for the optimizer
as the subquery HAVING clause predicate is on an aggregate and
it is difficult for the optimizer to estimate the cardinality. If it is
under-estimated, the optimizer may choose nested loops rather
than hash join, degrading the performance.

7.3 Subquery Removal with Window

Function

To illustrate this optimization we executed TPC-H queries 2, 11,
15 and 17. Figure 7 shows the elapsed time for optimized (marked
with “opf”) and non-optimized queries. The transformed queries
Q15 and Q16 of TPC-H queries 2 and 17, showed pronounced
improvement. For TPC-H query 2, the elapsed time got reduced by
24 times, the reason being that multiple table accesses and join
evaluations have been eliminated by window transformation.
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Figure 7. Subquery Removal Using Window Functions

Figure 8 shows the benefit of removing the uncorrelated subquery
with a window transformation for the TPC-H query 15 as a
function of the number of months scanned from the lineitem table.
The optimization is explained in Section 4.2 as a transition from
Q17 (original query) to QI8 (transformed query). The average
benefit in Figure 8 is reduction of execution time by 8.4 times.
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Figure 8. TPC-H q15, Removing Uncorrelated Subquery

It is noted that subquery removal using window function is very
effective for the TPC-H queries. The average gain for TPC-H
queries g2, q11, q15, and q17 is over 10 times.

7.4 Scalable Execution of Window Functions
To illustrate the benefit of parallelizing window functions without
PBY clause, we used the following query on lineitem table.

SELECT SUM(1 extprice)) OVER() W

FROM lineitem;

The query is executed with and without the parallelization
enhancement of Section 5, varying the degree of parallelism (i.e.,
DOP) from 2 to 16. Figure 9 shows the result of this experiment.
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Figure 9. Parallelization of Window Function without PBY

Note that even when the window function is not parallelized, scan
of the table still happens in parallel. The scanning slaves send
their data to the query coordinator, which then computes the
window function. Hence for degree of parallelism 2, the
improvement is slightly less than 2. Figure 9 also shows that our
system did not scale linearly with DOP for DOP > 8 due to limited
bandwidth of our shared disk system.

7.5 Null-Aware Anti Join

We have conducted two sets of experiments to demonstrate the
improvements provided by null-aware antijoin. The first uses
query Q26 to find suppliers, from a given supplier list, that had no
orders in a given month (January 1996). In this scheme,
L_SUPPKEY may have null values, but S_SUPPKEY may not.

026
SELECT s_name FROM supplier
WHERE s suppkey in (<supplier 1list>) AND
s_suppkey <> ALL
(SELECT 1 suppkey FROM lineitem
WHERE 1 shipdate >= '1996-01-01"' AND
1 shipdate < '1996-02-01")

Without NAAJ, the subquery in Q26 cannot be unnested and this
results in a correlated execution where for each row from supplier
table, we have to execute the subquery. The performance is
agonizingly slow since no index probe for the correlated predicate
can be used. This is because Oracle converts the ALL subquery
into a NOT EXISTS subquery and uses a correlation predicate that
is equivalent to (I_suppkey IS NULL OR I_suppkey = s_suppkey).
The only saving grace for non-NAAJ execution is the partitioning
of lineitem table by |_shipdate that allows us to prune the scan to
one partition. Figure 10 illustrates the performance gain for up to
40 suppliers. When unnested, the query is executed using hash
null-aware antijoin between supplier and lineitem tables.

The second experiment is on a real workload — 241,000 queries
issued by Oracle Applications, whose schema consists of about
14,000 tables representing Supply Chain, Human Resources,
Financial, Order Entry, CRM, and many others. Most of the
applications have highly normalized schemas. The number of
tables in a query varies between 1 and 159, with an average of 8
tables per query.
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There were 72 distinct queries with <> ALL subqueries, which
were eligible for NAAJ execution. 68 of the queries benefited
from NAAJ by an average of 736730 times measured in CPU
time! One query reported 350 seconds without NAAJ and 0.001
with NAAJ. The 4 queries that degraded did that with an average
of 100 times, the worst degradation was from 0.000001 to 0.016
in CPU time.

8. RELATED WORK

The unnesting of various types of subqueries has been studied
extensively before [1][2][3][4][9]. Our system supports almost all
of these forms of unnesting techniques employing heuristic- as
well as cost-based strategies. An early work on query
transformations [2] proposes a technique for pulling up aggregates
and group-by before join in the operator tree. Early versions (8.1
and 9i) of Oracle applied a similar algorithm. The transformation
was triggered by heuristics during the query transformation phase.
In Oracle 11g, the cost-based framework [8] is used to place
distinct and group-by operators and commutates them with joins
[5][6]. Some techniques for removing subquery using window
functions have been published in [13]. Informal citations [12]
suggest that a group-by subquery elimination technique has been
discussed elsewhere. We show how a similar technique can be
incorporated in the Oracle optimizer. Any work related to
subquery coalescing, null-aware antijoin, and scalable window
function computation has not been discussed in the literature.

9. CONCLUSION

Subqueries are a powerful component of the SQL and SQL-like
query languages enhancing their expressive and declarative
capabilities. This paper outlined enhanced subquery optimizations
in Oracle relational database, which benefit from Oracle’s cost-
based transformation framework. This paper makes important
contributions® by describing a number of techniques — subquery
coalescing, subquery removal using window functions, view
elimination for group-by queries, null-aware antijoin and parallel
execution techniques. Our performance study shows that these
optimizations provide significant execution time improvements
for complex queries.
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