
Efficient outer join data skew handling in parallel DBMS

Yu Xu
Teradata

San Diego, CA, USA

yu.xu@teradata.com

Pekka Kostamaa
Teradata

El Segundo, CA, USA

pekka.kostamaa@teradata.com

ABSTRACT
Large enterprises have been relying on parallel database
management systems (PDBMS) to process their ever-increasing
data volume and complex queries. The scalability and per-
formance of a PDBMS comes from load balancing on all
nodes in the system. Skewed processing will significantly
slow down query response time and degrade the overall sys-
tem performance. Business intelligence tools used by en-
terprises frequently generate a large number of outer joins
and require high performance from the underlying database
systems. Although extensive research has been done on han-
dling skewed processing for inner joins in PDBMS, there is
no known research on data skew handling for parallel outer
joins. We propose a simple and efficient outer join algorithm
called OJSO (Outer Join Skew Optimization) to improve
the performance and scalability of parallel outer joins. Our
experimental results show that the OJSO algorithm signifi-
cantly speeds up query elapsed time in the presence of data
skew.

Categories and Subject Descriptors
H.2.4 [Information Systems]: DATABASE MANAGE-
MENT—Systems

General Terms
Algorithms

Keywords
data skew, outer join, parallel DBMS

1. INTRODUCTION
Parallel processing continues to be important in large data

warehouses as data warehouse demand continues to expand
to higher volumes, greater numbers of users, and more ap-
plications.

In a shared nothing parallel architecture [20], multiple
nodes communicate via high-speed interconnect network and

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

each node has exclusive access to its main memory and
disk(s). In modern systems, there are usually multiple vir-
tual processors (collections of software processes) running on
each node to take advantage of the multiple CPUs and disks
available on each node for further parallelism. These virtual
processors, responsible for doing the scans, joins, locking,
transaction management, and other data management work,
are called Parallel Units (PUs) in this paper.

A PDBMS can easily scale up “horizontally” by adding
more nodes to the system. Load balancing is critical in
achieving high performance and scalability in PDBMS. Re-
search has shown that a shared-nothing PDBMS has near
linear speed-up under evenly balanced conditions [7]. On
the other hand, a query processing skewed data not only
drastically slows down its response time, but generates hot
nodes, which become a bottleneck throttling the overall sys-
tem performance. Extensive research has been done on han-
dling skewed processing for inner joins in PDBMS [21, 8, 1,
23, 22, 24, 10, 14, 13, 6, 19, 15, 12, 26, 2, 25]. However,
there is no known research on data skew handling for paral-
lel outer joins. Modern data warehouses receive most queries
from business intelligence tools, which frequently generate a
large number of outer joins. For example, it is not unusual
to see that a significant percentage of the queries issued by
CRM tools against large data warehouses contain thirty or
more outer joins in a single query. Unique to the nature
of outer joins, severe skewed processing can happen in mul-
tiple outer joins on a parallel database system even when
all base tables have no skewed data. From our experience
with various industries, we have seen that outer joins result
in serious skewed processing and can cause transactions to
abort often after hours of running in large data warehouses,
while inner joins on the same data sets perform efficiently
without skewed processing. We propose a simple and effi-
cient outer join algorithm called OJSO (Outer Join Skew
Optimization) to improve the performance and scalability
of parallel outer joins in the presence of data skew. Our ex-
perience shows that eliminating system bottlenecks caused
by data skew improves the throughput of the whole system
which is important in parallel data warehouses that often
run high concurrency workloads.

We make the following contributions in the paper:

• We propose a practical and efficient algorithm (OJSO)
to handle data skew in parallel outer joins motivated
by real business problems.

• The OJSO algorithm does not require major changes
to the current implementation of a shared-nothing ar-
chitecture and is easy to implement.

R2 S2 T2

47

54

61

ax

47

54

61

ax

6

5

4

c

1110

107

04

by

6

5

4

c

1110

107

04

by

57

44

61

dz

57

44

61

dz

PU2

R3 S3 T3

78

85

92

ax

78

85

92

ax

3

2

1

c

811

18

92

by

3

2

1

c

811

18

92

by

88

75

92

dz

88

75

92

dz

PU3

R1 S1 T1

26

33

10

ax

26

33

10

ax

3

2

1

c

06

103

143

by

3

2

1

c

06

103

143

by

26

13

30

dz

26

13

30

dz

PU1

Figure 1: Three relations R, S and T are hash par-
titioned on a three parallel-unit system. The par-
titioning columns are R.x, S.y and T.z respectively.
The hash function, h(i) = i mod 3 + 1, places a tuple
with value i in the partitioning column on the h(i)-th
PU.

• Our scalability and performance experiments show the
efficiency of the proposed OJSO algorithm.

The rest of the paper is organized as follows. In Section 2
we discuss the outer join data skew problem studied in this
paper. Section 3 presents the OJSO algorithm. Section 4
shows the experimental results. Section 5 discusses related
work. Section 6 concludes the paper.

2. PROBLEM DESCRIPTION

2.1 Conventional outer join algorithm
Consider the following two left outer joins

R
o
1L

R.a=S.b
S

o
1L

S.c=T.d
T

from the following query.

select x, y, z, a, c

from R left outer join S on R.a=S.b

left outer join T on S.c=T.d (Query 1)

Relations on a shared-nothing PDBMS are usually hori-
zontally partitioned across all PUs which allows the system
to exploit the I/O bandwidth of multiple disks by reading
and writing them in parallel. Hash partitioning is commonly
used to partition relations across all PUs. Tuples of a re-
lation are assigned to a PU by applying a hash function to
their Partitioning Column. This Partitioning Column is one
or more attributes from the relation, specified by the user
or automatically chosen by the system (often the first few
columns) if none is designated by the user.

As an example, Figure 1 shows the partitioning of the
three relations R(x, a), S(y, b, c) and T (z, d) in Query 1 on
a three-PU system, assuming that the partitioning columns
are R.x, S.y and T.z for R, S and T respectively, and that
the hash function h is h(i) = i mod 3+1. The hash function
h places any tuple with the value i in the partitioning column
on the h(i)-th PU. For example, a tuple (x = 0, a = 1) of
R is placed on the first PU since h(0) = 1. The fragment
of R, S and T on the i-th PU is denoted as Ri , Si and T i

respectively.
Assume that the optimizer chooses to left outer join R and

S, then left outer join T . The two outer joins in Query 1 are
typically evaluated by the following three-step conventional
algorithm.

Assume there are n PUs in the system. The following
three steps are performed in parallel on all PUs.

• Step 1

– 1) Rows of R are redistributed based on the hash
values of its join attribute R.a and are stored in
a temporary table Rredis.

– 2) Rows of S are redistributed based on the hash
values of its join attribute S.b and are stored in a
temporary table Sredis.

The redistribution in Step 1.1 and Step 1.2 is often
simply called hash redistribution. Step 1 sends match-
ing rows of R and S to the same PUs in preparation for
the actual joins. Notice that rows in Ri

redis (1 ≤ i ≤ n)
have potential matching rows only from Si

redis on the
same PU and have no matching rows from any other
S

j

redis where i 6= j. Figure 2 shows the result of Step
1 on the example data in Figure 1.

• Step 2

– 1) Rows of Rredis and Sredis are left outer joined
and the results are stored in a temporary table J .
Figure 3 shows the results of the left outer join.
Rows from the results of the left outer join (J)
are hash redistributed on the join attribute J.c1

and the results are stored in a temporary table
Jredis.

– 2) Rows of T are redistributed based on the hash
values of its join attribute T.d and are stored in
a temporary table Tredis.

Figure 4 shows the result of hash redistributing J and
T on J.c and T.d respectively, assuming that the sys-
tem hash redistributes nulls to the first PU (i.e., h(null) =
1).

• Step 3

Rows of Jredis and Tredis are left outer joined and the
results are stored in a temporary table F . The final
results of the two outer joins are shown in Figure 5.

All sub-steps in each step can run in parallel and they
usually do. For example, the sub-steps 1.1 and 1.2 in the
first step can run in parallel, and so can the sub-steps 2.1
and 2.2 in the second step.

2.2 Data skew in Outer joins
Notice that the three tables R, S and T in Figure 1 are

all evenly partitioned across three PUs. Figure 2 shows that
the redistribution in Step 1 is also evenly balanced. Figure 3
shows that the first left outer join produces the same number
of rows on each PU, causing even processing on all three
PUs. However, skewed processing happens in Step 2.1, as
Figure 4 shows that the number of rows the first PU receives
from the results of the first left outer join is 7 times that
of any other PU, which creates skewed processing in the
system. The skewed processing happens because all dangling

1In practice, each row from the join result is immediately
hash redistributed after it is computed (though the under-
lying messaging system may choose to buffer a few rows and
send them in bulk).

Rredis
2 Sredis

2

78

47

10

ax

78

47

10

ax

2

5

2

c

103

107

18

by

2

5

2

c

103

107

18

by

PU2

Rredis
1 Sredis

1

92

61

33

ax

92

61

33

ax

1

4

3

c

92

04

06

by

1

4

3

c

92

04

06

by

PU1

Rredis
3 Sredis

3

85

54

26

ax

85

54

26

ax

1

6

3

c

143

1110

811

by

1

6

3

c

143

1110

811

by

PU3

Figure 2: The result of hash redistributing R and S

on their join attributes (R.a and S.b) to two tempo-
rary tables Rredis and Sredis.

J2

8

7

0

x

2

c

7

4

81

ya

8

7

0

x

2

c

7

4

81

ya

PU2

⊥ ⊥

⊥ ⊥

J3

5

4

6

x

3

c

118

5

2

ya

5

4

6

x

3

c

118

5

2

ya

PU3

⊥ ⊥

⊥ ⊥

J1

2

1

3

x

1

c

29

6

3

ya

2

1

3

x

1

c

29

6

3

ya

PU1

⊥ ⊥

⊥ ⊥

Figure 3: The results of left outer joining Rredis and
Sredis (Rredis and Sredis are shown in Figure 2) are
stored in a temporary table J.

rows of R 2 padded with nulls from the first outer join are
hash redistributed to the first PU (which is called a hot PU).

In our experience with various industrial applications, it
is not uncommon that more than half of the rows in a large
table R have no matching rows in S, causing severe skewed
processing in later joins.

Adding more nodes to the system will not solve the skew
problem because all dangling rows from the results of the
first outer join will still be sent to a single PU. In fact,
adding more nodes (for the same data sets) will make each
non-hot PU colder (having fewer rows) and make the hot
PU comparatively even hotter.

In contrast, if we change the outer joins to inner joins
in Query 1 as shown in Query 2, then there is no skewed

processing in evaluating R
R.a=S.b

1 S
S.c=T.d

1 T .

select x, y, z, a, c

from R inner join S on R.a=S.b

inner join T on S.c=T.d (Query 2)

The three-step algorithm described in Section 2.1 is slightly

modified to evaluate R
R.a=S.b

1 S
S.c=T.d

1 T . The only changes
are that we change the join method from outer join to inner
join in Step 2.1 and Step 3. Figure 2 shows the result of Step
1. Figure 6 shows the result of Step 2.1 (inner joining R and
S). Figure 7 shows the result of Step 2 (hash redistributing
the results of the first inner join and T). For completeness,
Figure 8 shows the final result of the two inner joins (Step
3). Figures 2, 6, 7 and 8 show that every step has even
processing on all three PUs for Query 2.

2Dangling rows of R are rows of R having no matching rows
in S.

Jredis
2

1292

x cya

1292

x cya

PU2

75

44

13

dz

75

44

13

dz

Tredis
2Jredis

1

47

78

33

61

54

26

5

x

3

c

118

ya

47

78

33

61

54

26

5

x

3

c

118

ya

PU1

92

61

30

dz

92

61

30

dz

Tredis
1

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

Jredis
3

2810

x cya

2810

x cya

PU3

88

57

26

dz

88

57

26

dz

Tredis
3

Figure 4: The result of hash redistributing J (shown
in Figure 3) and T (shown in Figure 1) on their
join attributes (J.c and T.d) to two temporary tables
Jredis and Tredis.

F2

3

z

1292

x cya

3

z

1292

x cya

PU2

F1

0

z

47

78

33

61

54

26

5

x

3

c

118

ya

0

z

47

78

33

61

54

26

5

x

3

c

118

ya

PU1

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

F3

6

z

2810

x cya

6

z

2810

x cya

PU3

⊥

⊥

⊥

⊥

⊥

⊥

Figure 5: The final results of the two outer joins in
Query 1 are stored in a temporary table F .

J2

0

x

2

c

81

ya

0

x

2

c

81

ya

PU2

J3

5

x

3

c

118

ya

5

x

3

c

118

ya

PU3

J1

2

x

1

c

29

ya

2

x

1

c

29

ya

PU1

Figure 6: The results of the first inner join

(Rredis

Rredis.a=Sredis.b
1 Sredis, Rredis and Sredis are

shown in Figure 2) are stored in a temporary ta-
ble J.

Jredis
2

1292

x cya

1292

x cya

PU2

75

44

13

dz

75

44

13

dz

Tredis
2Jredis

1

5

x

3

c

118

ya

5

x

3

c

118

ya

PU1

92

61

30

dz

92

61

30

dz

Tredis
1 Jredis

3

2810

x cya

2810

x cya

PU3

88

57

26

dz

88

57

26

dz

Tredis
3

Figure 7: The result of hash redistributing J (shown
in Figure 6) and T (shown in Figure 1) on their
join attributes (J.c and T.d) to two temporary tables
Jredis and Tredis.

F2

3

z

1292

x cya

3

z

1292

x cya

PU2

F1

0

z

5

x

3

c

118

ya

0

z

5

x

3

c

118

ya

PU1

F3

6

z

2810

x cya

6

z

2810

x cya

PU3

Figure 8: The final results of the two inner joins
in Query 2 are stored in a temporary table F . F i

denotes the fragment of F on the i-th PU.

3. ALGORITHM
We now present our algorithm called OJSO (Outer Join

Skew Optimization) to handle the data skew problem in
outer joins described in Section 2. The basic idea is to treat
dangling rows of R and non-dangling rows of R differently
in the second step in evaluating the first outer join: we
keep dangling rows of R locally on every PU instead of hash
redistributing them to a single PU, and hash redistribute
the rest of the results of the first outer join.

Assume there are n PUs in the system. The following
steps are executed in parallel on every PU for Query 1 ac-
cording to the OJSO algorithm.

• Step 1

– 1) Rows of R are redistributed based on the hash
values of its join attribute R.a and are stored in
a temporary table Rredis.

– 2) Rows of S are redistributed based on the hash
values of its join attribute S.b and are stored in a
temporary table Sredis.

Figure 2 shows the result of Step 1 on the example data
in Figure 1. This step is the same as the first step in
the conventional algorithm presented in Section 2.

• Step 2

– 1) Rows of Rredis and Sredis are left outer joined
and the results are split into two temporary tables
J2redis and Jlocal. J2redis contains rows created
from matching rows from Rredis and Sredis while
Jlocal contains rows created from dangling rows
of Rredis padded with nulls. Figure 9 shows the
result of splitting the results of the first left outer
join on every PU.

J2redis are hash redistributed on the column J2redis.c

and the results are stored in a temporary table
Jredis. Notice that in practice the temporary ta-
ble J2redis is only logical (not materialized) since
every row in J2redis is hash redistributed on the
fly after it is computed.

Rows in Jlocal are kept locally and padded with
nulls for the projected attribute(s) of T . The re-
sults are stored in a temporary table Jlocpadding.

– 2) Rows of T are redistributed based on the hash
values of its join attribute T.d and are stored in
a temporary table Tredis.

Figure 10 shows the result of Step 2.

J2redis
2

2810

x Cya

2810

x Cya

PU2

J2redis
1

2

x

1

c

29

ya

2

x

1

c

29

ya

PU1

J2redis
3

31185

x cya

31185

x cya

PU3

8

7

x c

7

4

ya

8

7

x c

7

4

ya

⊥ ⊥

⊥ ⊥

4

6

x c

5

2

ya

4

6

x c

5

2

ya

⊥ ⊥

⊥ ⊥

1

3

x c

6

3

ya

1

3

x c

6

3

ya

⊥ ⊥

⊥ ⊥

Jlocal
1 Jlocal

2 Jlocal
3

Figure 9: The results of left outer joining Rredis and
Sredis are split into two temporary tables J2redis and
Jlocal.

• Step 3

Rows of Jredis and Tredis are left outer joined and the
results are stored in a temporary table Fredis.

• Step 4

The final results of the two outer joins are the union
of Fredis and Jlocpadding

3, as shown in Figure 11.

A visual description of the steps in the OJSO algorithm
is shown in Figure 12.

As shown from Figures 1, 2, 9, 10 and 11, no skewed
processing occurs in the query processing. Notice that the
OJSO algorithm works in the same way if the join attributes
S.c and T.d are multiple columns or are the same attribute(s).
The correctness of the algorithm comes from the fact that
dangling rows in the results of the first outer join will have
no matching rows in the second outer join. Thus dangling
rows in the results of the first outer join can be correctly
and efficiently kept locally and padded with nulls as part of
the final results.

Although the example query (Query 1) shows only two
sequential left outer joins, the OJSO algorithm applies to
both right outer joins and full outer joins and is repeatedly
applied to process more than two outer joins. In imple-
mentation the OJSO algorithm handles a single outer join
at a time. After join order planning is done, the optimizer
goes through all outer joins in a query, analyzes what join
columns whose values could be set to NULLs and are used
in later outer joins, and then repeatedly calls the OJSO al-
gorithm to execute each outer join with the instruction of
whether the results of an outer join should be split based
on its previous analysis on join columns. Since the OJSO
algorithm handles a single outer join at a time and is repeat-
edly called by the optimizer, the OJSO algorithm applies to
arbitrary join graphs not just to a “chain” of outer joins as
shown in the example in Query 1.

4. EXPERIMENTAL EVALUATION
In this section, we compare the scalability and perfor-

mance of the OJSO algorithm described in Section 3 and
the conventional algorithm described in Section 2.1.

The test system we use for the experiments has 8 nodes.
Each node has 4 Pentium IV 3.6 GHz CPUs, 4 GB memory,

3The two relations have no rows in common. Thus the union
is only logical, requires no expensive duplicate removal.

Jredis
2

1292

x cya

1292

x cya

PU2

75

44

13

dz

75

44

13

dz

Tredis
2Jredis

1

5

x

3

c

118

ya

5

x

3

c

118

ya

PU1

92

61

30

dz

92

61

30

dz

Tredis
1 Jredis

3

2810

x cya

2810

x cya

PU3

88

57

26

dz

88

57

26

dz

Tredis
3

z

8

7

x c

7

4

ya z

8

7

x c

7

4

ya

⊥ ⊥

⊥ ⊥

z

4

6

x c

5

2

ya z

4

6

x c

5

2

ya

⊥ ⊥

⊥ ⊥

z

1

3

x c

6

3

ya z

1

3

x c

6

3

ya

⊥ ⊥

⊥ ⊥

Jlocpadding
1 Jlocpadding

2 Jlocpadding
3

⊥

⊥

⊥

⊥

⊥

⊥

Figure 10: The result of hash redistributing J2redis

(shown in Figure 9) and T (shown in Figure 1) on
their join attributes to two temporary tables Jredis

and Tredis. Jlocpadding is created from Jlocal (shown in
Figure 9) with padded nulls.

Fredis
2

3

z

1292

x cya

3

z

1292

x cya

PU2

Fredis
1

0

z

5

x

3

c

118

ya

0

z

5

x

3

c

118

ya

PU1

Fredis
3

6

z

2810

x cya

6

z

2810

x cya

PU3

z

8

7

x c

7

4

ya z

8

7

x c

7

4

ya

⊥ ⊥

z

4

6

x c

5

2

ya z

4

6

x c

5

2

ya

⊥ ⊥

⊥ ⊥

z

1

3

x c

6

3

ya z

1

3

x c

6

3

ya

⊥ ⊥

⊥ ⊥

Jlocalpadding
1

Jlocpadding
2 Jlocpadding

3

⊥ ⊥

⊥

⊥ ⊥

⊥

⊥

⊥

Figure 11: The results of the second outer join in
Query 1 are stored in a temporary table F . The final
result for Query 1 is the union of F and Jlocpadding.

R

Hash redistribute

on R.a

Rredis

S

Hash redistribute

on S.b

Sredis

T

Hash redistribute

on T.d

Tredis

Left outer join

Rredis and Sredis

On a=b

Split

Jlocal

Left outer join

Jredis and Tredis

On c=d

Hash redistribute

on c

J2redis

Jredis

Step 1

Step 2

Step 3

union

Step 4

Null-padding

Jlocpadding

Figure 12: Visual presentation of the OJSO algo-
rithm.

0

10

20

30

0% 10% 20% 30% 40% 50% 60% 70% 80%

Percentage of dangling rows in the results of

the first outer join

T
im

e
 (

S
e
c

o
n

d
s
)

Conventional algorithm OJSO

Figure 13: Query execution time on 8 nodes (16
Parallel Units) system. Each table (R, S and T) has
10 million rows.

and 2 dedicated 146 GB hard drives. Each node is config-
ured to run 2 PUs to take advantage of the two hard drives.
In the first experiment, we generate 10 million rows for each
table (R, S and T) and run Query 1 (in Section 2.1). We
vary the percentage of dangling rows in the results of the
first outer join from 0% to 70% by controlling the values
in R.a while keeping the sizes of R, S and T at 10 mil-
lion rows each. Figure 13 shows the execution times of the
OJSO algorithm and the conventional algorithm. When the
percentage of dangling rows in the results of the first outer
join increases, the execution time of the conventional algo-
rithm grows almost linearly because all null values are hash
redistributed to one PU and that PU becomes the system
bottleneck while the execution time of the OJSO algorithm
essentially stays the same.

In the second experiment, we generate 50 million rows for
each table and execute Query 1 as in the first experiment.
The query execution times of the OJSO algorithm and the
conventional algorithm are shown in Figure 14. Again, the
execution time of the conventional algorithm grows almost
linearly as the percentage of dangling rows in the results of
the first outer join increases while the execution time of the
OJSO algorithm decreases slightly. The OJSO algorithm is
faster on more “skewed data” because it keeps more data
locally in Step 2 (Section 3) and reduces the redistribution
cost in preparation for the second outer join.

In the rest of our experiments, we repeat the second ex-
periment on two smaller configurations of the same test sys-
tem: 2 nodes (total 4 PUs) configuration and 4 nodes (total
8 PUs) configuration. The results are shown in Figures 15
and 16 respectively. We see the same performance relation-
ship between the percentage of dangling rows in the results
of the first outer join and the execution times of the two
algorithms.

5. RELATED WORK
Extensive research has been done on handling data skew

in parallel inner joins. [21] categorizes four types of skew:
tuple placement skew , selectivity skew , redistribution skew ,
and join product skew . Tuple placement skew happens when
initial distribution of tuples of a table varies significantly
between partitions, which can be avoided with a good hash
function and proper choices of partitioning columns. In in-
dustrial deployment, partitioning columns are carefully cho-
sen by DBAs so that tuples of large relations are most likely
evenly partitioned on all PUs (parallel units). Thus, tuple

0

50

100

150

200

250

0% 10% 20% 30% 40% 50% 60% 70% 80%

Percentage of dangling rows in the results of the

first outer join

T
im

e
 (

S
e
c
o

n
d

s
)

Conventional algorithm OJSO

Figure 14: Query execution time on 8 nodes system
(16 Parallel Units). Each table (R, S and T) has 50
million rows.

0

200

400

600

800

0% 10% 20% 30% 40% 50% 60% 70% 80%

Percentage of dangling rows in the results of the

first outer join

T
im

e
 (

S
e
c
o

n
d

s
)

Conventional algorithm OJSO

Figure 15: Query execution time on 2 nodes system
(4 Parallel Units). Each table (R, S and T) has 50
million rows.

0

100

200

300

400

500

0% 10% 20% 30% 40% 50% 60% 70% 80%

Percentage of dangling rows in the results of the

first outer join

T
im

e
 (

S
e
c
o

n
d

s
)

Conventional algorithm OJSO

Figure 16: Query execution time on 4 nodes system
(8 Parallel Units). Each table (R, S and T) has 50
million rows.

placement skew is not an issue in practice and nearly no
work focuses on it. Selectivity skew is caused by different
selectivity of selection predicates. Selectivity skew becomes
a problem only when it causes redistribution skew or join
product skew. Most prior work does not consider selectivity
skew either. Redistribution skew occurs when PUs receive
different number of tuples when they are redistributed in
preparation for joins. Join product skew occurs when the
join selectivity at each node differs, causing imbalance in
the number of tuples produced at each PU. Redistribution
skew and join product skew are closely related problems and
have been extensively studied.

Prior algorithms handling redistribution skew and join
product skew can be roughly classified into the following
two categories. The algorithms in the first category are
static in the sense that they need to detect the presence
of data skew before they are applied [8, 15, 13, 23, 22, 24, 1,
6, 25]. The algorithms in the second category handle data
skew dynamically. The basic idea is that work load at each
PU is monitored at run time. If a PU is doing much more
work than others, some work load from this hot PU will be
migrated to other PUs [19, 12, 26, 15, 13, 2].

The outer join data skew problem studied in this paper
can be categorized as redistribution skew according to [21].
However, prior algorithms in the first category cannot be
adapted to handle the outer join skew problem presented
in Section 2 due to the nature of pipelined execution of the
steps described in Section 2 and the static nature of the first
category of algorithms. Notice that the first outer join in
Query 1 (Section 2) does not create join product skew since
every PU produces the same number of rows (Figure 3),
making it difficult to detect data skew at each PU locally.
In principle, prior algorithms in the second category can be
adapted to handle the outer join skew problem because they
can handle skewed processing dynamically. However, to our
best knowledge, no effective dynamic skew handling mech-
anism has been implemented by any major parallel DBMS
vendors, either because of their high implementation com-
plexity or communication cost, or the significant changes
required to the current shared-nothing architecture. The
OJSO algorithm proposed in this paper is efficient in han-
dling the outer join data skew problem by being tuned for
outer joins.

Research has also been done on other aspects of optimiz-
ing outer joins including outer join elimination [9, 5, 4, 3]
and view matching for outer join views [16, 17, 18, 11]. How-
ever, none of the above work handles data skew in outer
joins.

6. CONCLUSIONS
One of the important challenges in PDBMS is to evenly

balance workload among all nodes in the system. Based on
our observations of PDBMS deployment at various indus-
tries, we notice that outer joins pose unique challenges and
opportunities in skewed processing. Motivated by the outer
join skew problem that arises in many business applications,
we propose a simple and efficient algorithm called OJSO
(Outer Join Skew Optimization) to prevent skewed process-
ing in outer joins. One big advantage of the OJSO algorithm
is that it is easy to implement and does not require major
changes to the implementation of the shared-nothing archi-
tecture, since it does not require any new type of central co-
ordination or communication among parallel units. Our ex-

periments in scalability and performance have demonstrated
the effectiveness of the OJSO algorithm in improving query
execution time.

7. REFERENCES
[1] K. Alsabti and S. Ranka. Skew-insensitive parallel

algorithms for relational join. In HIPC, page 367,
1998.

[2] M. Bamha and G. Hains. Frequency-adaptive join for
shared nothing machines. Progress in computer
research, pages 227–241, 2001.

[3] G. Bhargava, P. Goel, and B. R. Iyer. Simplification of
outer joins. In CASCON ’95: Proceedings of the 1995
conference of the Centre for Advanced Studies on
Collaborative research, page 7. IBM Press, 1995.

[4] G. Bhargava, P. Goel, and B. R. Iyer. Efficient
processing of outer joins and aggregate functions. In
ICDE, pages 441–449, 1996.

[5] A. L. P. Chen. Outerjoin optimization in
multidatabase systems. In DPDS ’90: Proceedings of
the second international symposium on Databases in
parallel and distributed systems, pages 211–218, New
York, NY, USA, 1990. ACM.

[6] H. M. Dewan, M. A. Hernández, K. W. Mok, and S. J.
Stolfo. Predictive dynamic load balancing of parallel
hash-joins over heterogeneous processors in the
presence of data skew. In PDIS, pages 40–49, 1994.

[7] D. DeWitt and J. Gray. Parallel database systems:
the future of high performance database systems.
Commun. ACM, 35(6):85–98, 1992.

[8] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and
S. Seshadri. Practical skew handling in parallel joins.
In VLDB, 1992.

[9] A. Ghazal, A. Crolotte, and R. Bhashyam. Outer join
elimination in the teradata rdbms. In DEXA, pages
730–740, 2004.

[10] R. L. Graham. Bounds on multiprocessing timing
anomalies. SIAM Journal on Applied Mathematics,
17(2):416–429, 1969.

[11] A. Gupta, H. V. Jagadish, and I. S. Mumick.
Maintenance and self maintenance of outer-join views.
In NGITS, pages 0–, 1997.

[12] L. Harada and M. Kitsuregawa. Dynamic join product
skew handling for hash-joins in shared-nothing
database systems. In DASFAA, pages 246–255, 1995.

[13] K. A. Hua and C. Lee. Handling data skew in
multiprocessor database computers using partition
tuning. In VLDB, pages 525–535, 1991.

[14] E. G. C. Jr., M. R. Garey, and D. S. Johnson. An
application of bin-packing to multiprocessor
scheduling. SIAM J. Comput., 7(1):1–17, 1978.

[15] M. Kitsuregawa and Y. Ogawa. Bucket spreading
parallel hash: A new, robust, parallel hash join
method for data skew in the super database computer
(sdc). In VLDB, pages 210–221, 1990.

[16] P.-Å. Larson and J. Zhou. View matching for
outer-join views. In VLDB, pages 445–456, 2005.

[17] P.-Å. Larson and J. Zhou. Efficient maintenance of
materialized outer-join views. In ICDE, pages 56–65,
2007.

[18] P.-Å. Larson and J. Zhou. View matching for

outer-join views. VLDB J., 16(1):29–53, 2007.

[19] A. Shatdal and J. F. Naughton. Using shared virtual
memory for parallel join processing. In SIGMOD
Conference, pages 119–128, 1993.

[20] M. Stonebraker. The case for shared nothing. IEEE
Database Eng. Bull., 9(1):4–9, 1986.

[21] C. B. Walton, A. G. Dale, and R. M. Jenevein. A
taxonomy and performance model of data skew effects
in parallel joins. In VLDB, pages 537–548, 1991.

[22] J. L. Wolf, D. M. Dias, and P. S. Yu. A parallel sort
merge join algorithm for managing data skew. IEEE
Trans. Parallel Distrib. Syst., 4(1):70–86, 1993.

[23] J. L. Wolf, D. M. Dias, P. S. Yu, and J. Turek. An
effective algorithm for parallelizing hash joins in the
presence of data skew. In ICDE, pages 200–209, 1991.

[24] J. L. Wolf, D. M. Dias, P. S. Yu, and J. Turek. New
algorithms for parallelizing relational database joins in
the presence of data skew. IEEE Trans. Knowl. Data
Eng., 6(6):990–997, 1994.

[25] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen. Handling
data skew in parallel joins in shared-nothing systems.
In SIGMOD Conference, pages 1043–1052, 2008.

[26] X. Zhou and M. E. Orlowska. Handling data skew in
parallel hash join computation using two-phase
scheduling. In IEEE 1st International Conference on
Algorithm and Architecture for Parallel Processing,
pages 527–536 vol.2, 1995.

