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ABSTRACT

A user-defined function (UDF) is a powerful database fea-
ture that allows users to customize database functional-
ity. Though useful, present UDFs have numerous limita-
tions, including install-time specification of input and out-
put schema and poor ability to parallelize execution. We
present a new approach to implementing a UDF, which we
call SQL/MapReduce (SQL/MR), that overcomes many of
these limitations. We leverage ideas from the MapReduce
programming paradigm to provide users with a straightfor-
ward API through which they can implement a UDF in
the language of their choice. Moreover, our approach al-
lows maximum flexibility as the output schema of the UDF
is specified by the function itself at query plan-time. This
means that a SQL/MR function is polymorphic. It can pro-
cess arbitrary input because its behavior as well as output
schema are dynamically determined by information avail-
able at query plan-time, such as the function’s input schema
and arbitrary user-provided parameters. This also increases
reusability as the same SQL/MR function can be used on
inputs with many different schemas or with different user-
specified parameters.

In this paper we describe the motivation for this new ap-
proach to UDFs as well as the implementation within Aster
Data Systems’ nCluster database. We demonstrate that in
the context of massively parallel, shared-nothing database
systems, this model of computation facilitates highly scal-
able computation within the database. We also include ex-
amples of new applications that take advantage of this novel
UDF framework.

1. INTRODUCTION
The analysis of increasingly large amounts of data is cen-

tral to many enterprises’ day-to-day operations and revenue
generation. Today, even small enterprises are collecting ter-
abytes of data. Analyzing that data in an effective, efficient
manner can be key to their success.

Relational databases present SQL as a declarative inter-
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face to manipulate data. Relational query processing within
relational databases often falls short of this task. Analysts
feel that SQL is too limiting for the types of queries they
want to write that would extract value from the data, while
others who are less familiar with declarative SQL want to
query the data using procedural languages that they are
more proficient in. Finally, relational database implementa-
tions have imperfect query optimizers that sometimes make
poor choices and do not encapsulate domain-specific opti-
mization choices. On big data, these imperfect choices are
often very costly, causing queries to fail (e.g., run out of
temporary space) or to continue to run for long periods of
time, consuming valuable resources.

To address these issues, many relational databases sup-
port User-Defined Functions (UDFs) in which a developer
can implement tasks using a procedural language. Unfor-
tunately, the traditional UDF framework has been designed
for a single database instance, with parallelism added as
an afterthought, if at all. This represents an increasingly
significant shortcoming, since growing data sizes demand a
parallel approach to data processing and management across
hundreds of database servers.

In this paper, we introduce SQL/MapReduce (SQL/MR)
as a new UDF framework that is inherently parallel, de-
signed to facilitate parallel computation of procedural func-
tions across hundreds of servers working together as a single
relational database. We present an efficient implementation
of the SQL/MR framework in a massively-parallel relational
database based on our experience of providing SQL/MR as
part of the Aster Data Systems nCluster shared-nothing re-
lational database. We present examples of applications that
have been made possible by SQL/MR, and we include ex-
perimental results that demonstrate the efficiency gains from
SQL/MR over pure SQL.

The MapReduce programming framework by Dean and
Ghemawat [7] enables parallel procedural computation across
hundreds of servers. The framework is designed to work on
commodity hardware and emphasizes fault tolerance, allow-
ing tasks to be computed even if certain function invocations
have failed. The framework assumes a distributed file sys-
tem in which data is managed in files, and the framework
manages parallelization of computation on that data.

The power of a MapReduce programming framework is
amplified within the context of a massively-parallel SQL
database. The SQL/MR combination is extremely powerful—
it leverages SQL to perform relational operations efficiently,
leaving non-relational tasks and domain-specific optimiza-
tions to procedural functions; it ensures consistency of com-



putations by guaranteeing that functions see a consistent
state of data; it enables a cost-based query optimizer to
make execution decisions that rely on data statistics instead
of “create-time” intuition; and it enables non-developers to
assemble their own queries using higher-level BI tools.

We designed the SQL/MR framework to be a next genera-
tion UDF framework in which functions are (1) self-describing
and dynamically polymorphic – this means that SQL/MR
function input schemas are determined implicitly at query
time and output schemas are determined programmatically
by the function itself at query time, (2) inherently parallel-
izable – whether across multi-core machines or massively-
parallel clusters, (3) composable because we define their in-
put and output behavior to be equivalent to a SQL sub-
query (and hence a relation), and (4) equivalent to sub-
queries, ensuring that the system can apply normal, rela-
tional cost-based static optimization and dynamic reopti-
mization techniques.

Our implementation of SQL/MR enables functions to (1)
manage their own memory and file structures, and (2) eas-
ily include third-party libraries that can be used to reduce
implementation effort, while ensuring that (3) function pro-
cesses are contained within a sandbox, significantly reducing
the likelihood that a run-away function can damage the sys-
tem. Our model is compatible with a host of programing
languages, including managed languages (Java, C#), na-
tive languages (C, C++), and scripting languages (Python,
Ruby).

Because of the above features, SQL/MR functions can
be implemented as true library functions that operate on
arbitrary input where their specific behavior is determined
at query time based on the context in which they are used.
This allows rich functions to be developed by experts and
then reused by others on diverse workflows without changing
any code. This framework and implementation make Aster
nCluster an application-friendly database.

The rest of the paper is organized as follows. We present
related work in Section 2. The specifics of SQL/MR syn-
tax and implementation is presented in Sections 3 and 4.
In Section 5, we demonstrate some examples of SQL/MR
functions. Experimental results demonstrating the scalabil-
ity and performance of SQL/MR functions are presented in
Section 6. We conclude in Section 7.

1.1 SQL/MapReduce
SQL/MR allows the user to write custom-defined func-

tions in any programming language and insert them into
queries that otherwise leverage traditional SQL functional-
ity. A SQL/MR function is defined in a manner similar to
MapReduce’s map and reduce functions that enable parallel
data processing across a cluster, but in the case of SQL/MR,
the functions operate in the context of a database.

In many key ways, SQL/MR offers benefits beyond those
offered by UDFs. Most importantly, SQL/MR functions
are parallel by default. As we will discuss in Section 3, the
execution model for SQL/MR functions (enabled by their
MapReduce-influenced API) is inherently parallel. Queries
are executed in parallel across large clusters, ensuring the
system’s capability scales linearly with increasing data size.
We will demonstrate this in Section 6. SQL/MR functions
are also dynamically polymorphic and self-describing. In
practice, this means that SQL/MR function input schemas
are determined implicitly at query time and output schemas

Figure 1: A schematic of the nCluster database.
System and query coordination are performed by
queen nodes. Data is stored on worker nodes where
query processing also occurs in parallel. Data load-
ing can be accelerated with optional loader nodes.

are determined programmatically by the function itself at
query time. Additionally, custom argument clauses may be
included in the query-time invocation of the SQL/MR func-
tion, allowing further dynamic control of function behavior
and schema. Because of these features, SQL/MR functions
can be implemented as true library functions that operate on
arbitrary input where their specific behavior is determined
at query time based on the context in which they are used.
This allows sophisticated analytics code to be developed by
experts and then reused by others on diverse workflows with-
out changing any code. The specifics of SQL/MR syntax
and implementation are presented in Sections 3 and 4.

We will demonstrate some of the advantages of SQL/MR
with the example of clickstream sessionization. More exam-
ples can be found in Sections 5 and 6.

1.2 Clickstream Sessionization
When analyzing user clicks on a website, a common ana-

lytic task is to divide a user’s clicks into sessions. A session
is a period of user activity on the website. A session is
defined to include all of a user’s clicks that occur within
a specified range of time of one another, as defined by a
timeout threshold. Figure 2 demonstrates sessionization on
a table of clicks. This simple click table contains only the
timestamp of the click and the userid associated with the
click. In the resulting table (Fig. 2b), which is shown par-
titioned by userid for clarity, each pair of clicks for which
the elapsed time between the clicks is less than 60 seconds
are considered to be part of the same session.

Sessionization can be accomplished using SQL, but SQL/MR
makes it easier to express and improves its performance. A
SQL/MR function for sessionization, requires only one pass
over the clicks table, whereas a SQL query will require an



time- userid
stamp
10:00:00 238909
00:58:24 7656
10:00:24 238909
02:30:33 7656
10:01:23 238909
10:02:40 238909

time- userid session
stamp
10:00:00 238909 0
10:00:24 238909 0
10:01:23 238909 0
10:02:40 238909 1

00:58:24 7656 0
02:30:33 7656 1

(a) Raw click data (b) Click data with
session information

Figure 2: An example of sessionization: table (a)
contains raw clicks, and (b) contains clicks grouped
by userid and augmented with session number based
on a session timeout of 60 seconds.

SELECT ts, userid, session

FROM sessionize (

ON clicks

PARTITION BY userid

ORDER BY ts

TIMECOLUMN (’ts’)

TIMEOUT (60)

);

Figure 3: Using SQL/MR sessionize in a query.

expensive self-join. Furthermore, the SQL/MR function’s
dynamic polymorphism allows it to be reused to compute
session information over tables of any schema. In this way,
a sessionization SQL/MR function becomes a reusable li-
brary routine that any analyst can use.

We first show the use of the sessionize SQL/MR function
in a query over the clicks table of Figure 2 and then describe
the implementation of the function itself.

Figure 3 shows the use of SQL/MR sessionize in a query
over the clicks table. We partition by the userid in or-
der to group each user’s clicks. Each partition is then or-
dered by the timestamp. There are two custom argument
clauses, TIMECOLUMN and TIMEOUT. During initialization the
TIMECOLUMN argument clause specifies which input attribute
will be examined to determine membership in a session. The
value of the TIMEOUT argument is also stored so that it can
be used during execution to determine if a session boundary
has been found. During SQL/MR initialization, the session-
ize function also specifies its output to be the input schema
with the addition of a session attribute of type integer.
This behavior allows the sessionize SQL/MR function to be
used with any input schema. For even greater flexibility,
one could add an optional third custom argument clause,
OUTPUTALIAS. At query time, a user could then specify the
name of the new column for session information.

The implementation of the sessionize SQL/MR function
is straightforward. It is implemented as a partition-function
such that, when invoked, the input is partitioned by the at-
tribute that identifies whose sessions we wish to identify, e.g.
userid. Within each partition, the input must also be or-
dered by the attribute that determines session boundaries,
e.g. ts. For each partition processed, a session counter is ini-
tialized to 0. In a single pass over each partition, SQL/MR
sessionize compares the TIMECOLUMN of subsequent tuples to

see if they are within the TIMEOUT of each other. If so, then
both tuples’ session number is set to the current session
count, otherwise the session counter is incremented and the
newest tuple’s session number is assigned the new count. We
show source code implementing the function when we de-
scribe the SQL/MR programming interface in Section 3.3.

2. RELATED WORK
User-defined functions and procedures are longstanding

database features that enable database extensibility. Just
as user-defined types (udt) allow customization of what a
database stores (e.g., [19]), user-defined functions allow cus-
tomization of how a database processes data [18, 11, 6, 20,
21, 22, 4, 12]. There has been significant research related
to efficiently using UDFs within database queries both in
terms of optimization and execution, e.g., [6, 11, 10]. But
most of this work has examined the context of a single data-
base instance rather than parallel execution of UDFs over a
shared-nothing parallel database.

There has been some work related to parallel processing
of user-defined aggregates, scalar functions [14], and table
operators [15]. Traditional user-defined aggregates can be
executed in parallel by having the user specify local and
global finalize functions [14]. In this way, partial aggregates
are computed in parallel and then finalized globally. Parallel
scalar functions that have no state are trivially parallelized.
Another class of scalar functions, such as moving averages,
require the maintenance of some state, but if the user ex-
plicitly specifies a type of partitioning, then the system can
partition the data and perform the computation in paral-
lel [14]. Going a step further, [15] proposes user-defined
table operators that use relations as both input and output,
which is similar to the input and output to SQL/MR func-
tions. The user-defined table operators require the user to
statically pick a partitioning strategy to enable parallelism
as well as inform the system how the operator may be used.
Our proposed SQL/MR functions do not require explicit or
static choices about partitioning or use cases – that informa-
tion is determined at query plan-time based on the context
in which the SQL/MR function is used.

The idea of a table function is present in SQL as well, and
support for user-defined table functions is present in most
commercial databases (e.g., [12], [18], [16]). Oracle and SQL
Server additionally support table-valued parameters. The
default programming model in these systems is non-parallel,
so functions are written assuming they will receive all of the
input data. Some implementations allow the function to be
marked for explicit parallelization. For instance, Oracle ta-
ble functions have an optional PARALLEL ENABLE clause at
create-time that indicates that parallelization is permissible
and also how input rows should be partitioned among con-
current threads. By contrast, the programming model for
SQL/MR functions implies execution is parallel by default.
Further, the PARTITION BY clause in SQL/MRthat specifies
how input rows should be grouped is a semantic part of
the query—rather than a function create-time option—so a
function does not need to be re-created (by a DBA or end-
user) simply to group input data in a different manner.

Some systems provide support for polymorphic (context-
dependent) function output schemas. This is more flexible
than the typical approaches to UDFs that specify the func-
tion input and output schema statically at create time. For
instance, Oracle has a generic data type called ANYDATASET



that can be used at function creation time to defer a decision
on a particular data type; at query plan-time, the function
will be asked to describe the type. This idea appears also
in Microsoft’s SCOPE data processing system [5], in partic-
ular to support extraction of structured data from flat files.
SQL/MR functions fully embrace and extend this approach:
they avoid the need for create-time configuration of a func-
tion, allow polymorphism of the input schema, and also en-
able the optional use of custom argument clauses (more on
these in Section 3) to provide additional query plan-time pa-
rameters to the function. These query-time customization
features allow SQL/MR functions to operate over a wide
range of inputs and behave more like general purpose library
functions than conventional UDFs.

Recently, interest in distributed parallel data processing
frameworks has increased. Examples include Google’s Map-
Reduce [7], Microsoft’s Dryad [13], and the open source
Hadoop project [1]. These frameworks are powerful tools
for parallel data processing because users need only to im-
plement well-defined procedural methods. The framework
then handles the parallel execution of those methods on data
distributed over a large cluster of servers. A key advantage
of these systems is that developers write simple procedu-
ral methods that are then applied in parallel using a well-
defined data partitioning and aggregation procedure. A dis-
advantage of these frameworks is that developers must often
write code to accomplish tasks that could easily have been
expressed in SQL or another query language. In particu-
lar, code reuse for ad hoc queries is limited as there is no
higher-level language than the procedural code.

Higher level systems for MapReduce-like infrastructures
have been proposed, including Pig [17], Hive [2], and SCOPE
[5]. Both combine the high-level declarative nature of SQL
while also exposing the lower level procedural, parallel capa-
bilities of a MapReduce framework. While Hive and SCOPE
seek for SQL compatibility or at least familiarity, to inte-
grate with MapReduce code, these systems introduce signif-
icant new syntax to normal SQL; for instance, in addition
to the usual SELECT, SCOPE adds PROCESS, REDUCE, and
COMBINE. By contrast, SQL/MR introduces a small amount
of new syntax and semantics by representing parallel func-
tions as a table. Overall, these languages represent good im-
provements to MapReduce, by introducing a form of declar-
ative query language. We have taken the complementary
approach of enhancing a massively-parallel, SQL-compliant
database with a MapReduce-like programming model. This
approach enables SQL/MR functions to leverage the struc-
ture of data that is inherent in relational databases via
schemas, and enables optimization by cost-based query op-
timizers that leverage relational algebra and statistics for
query-rewriting.

3. SYNTAX AND FUNCTIONALITY
In this section we present the syntax of invoking our

SQL/MR functions from within a standard SQL query (Sec-
tion 3.1), the execution model provided by SQL/MR func-
tions (Section 3.2), and the API provided for implementing
SQL/MR functions (Section 3.3). We also discuss the in-
stallation of SQL/MR functions (Section 3.4) and the use of
other files during SQL/MR execution (Section 3.5).

3.1 Query Syntax
The syntax for using a SQL/MR function is shown in Fig-

SELECT ...

FROM functionname(

ON table-or-query

[PARTITION BY expr, ...]

[ORDER BY expr, ...]

[clausename(arg, ...) ...]

)

...

Figure 4: SQL/MR function query syntax.

ure 4. The SQL/MR function invocation appears in the SQL
FROM clause and consists of the function name followed by a
parenthetically enclosed set of clauses. The first, and only
strictly required clause, is the ON clause, which specifies the
input to this invocation of the SQL/MR function. The ON

clause must contain a valid query. A table reference is also
valid, but can really be thought of as syntactic sugar for
a query that selects all columns from the specified table.
When a query is used, it must be contained within paren-
theses just as a subquery appearing in the FROM clause must
be parenthesized. It is important to note that the input
schema to the SQL/MR function is specified implicitly at
query plan-time in the form of the output schema for the
query used in the ON clause.

3.1.1 Partitioning

The next clause in the SQL/MR invocation is PARTITION

BY, which specifies a comma-separated list of expressions
used to partition the input to the SQL/MR function. These
expressions may reference any attributes in the schema of
the query or table reference specified by the ON clause. Sec-
tion 3.3 will describe the role of the PARTITION BY clause in
greater detail.

3.1.2 Sorting

The ORDER BY clause follows the PARTITION BY clause and
specifies a sort order for the input to the SQL/MR function.
The ORDER BY clause is only valid if a PARTITION BY clause
has also been used. The ORDER BY clause may reference any
attributes in the schema of the query or table reference con-
tained in the ON clause and accepts a comma-separated list
of any expressions that are valid in a standard SQL ORDER

BY clause. The data within each unique partition specified
by the PARTITION BY clause will be sorted independently
using the sort order specified in the ORDER BY clause.

3.1.3 Custom Argument Clauses

Following the ORDER BY clause, the user may add any num-
ber of custom argument clauses. The form of a custom argu-
ment clause is the clause name followed by a parenthesized
list of comma-separated literal arguments. The SQL/MR
function will receive a key-value map of these clause names
and arguments when it is initialized. The use of custom ar-
gument clauses allows query-time customization of SQL/MR
functionality and is one way in which SQL/MR enables dy-
namic polymorphism.

3.1.4 Usage as a Relation

The result of a SQL/MR function is a relation; therefore,
that result may participate in a query in exactly the same
way as any other valid table reference or subquery that can



SELECT ...

FROM sqlmr1(

ON sqlmr2(

ON some_table

PARTITION BY ...

)

PARTITION BY ...

ORDER BY ...

);

Figure 5: Nesting of SQL/MR functions.

also appear in the FROM clause of a query. A SQL/MR func-
tion need not be the only expression in the FROM clause.
For instance, the results of two SQL/MR functions may be
joined to each other or to a table or subquery. Further-
more, because a SQL/MR function results is a table and a
SQL/MR function takes a table as input, SQL/MR func-
tions may be nested directly as shown in Figure 5.

3.2 Execution Model
The execution model provided by SQL/MR functions is a

generalization of MapReduce [7]. To use terms from Map-
Reduce, a SQL/MR function can be either a mapper or a
reducer, which we call a row function or partition function,
respectively. SQL/MR functions may implement both inter-
faces if both modes of operation make sense for the function.
Because of the integration of SQL/MR with SQL, it is triv-
ial to chain any combination of map and reduce SQL/MR
functions together as shown in Figure 5. To compare with
MapReduce, SQL/MR allows an arbitrary number and or-
dering of map and reduce functions interspersed within a
SQL query, whereas MapReduce allows only one map fol-
lowed by one reduce.

The SQL/MR execution model is designed for a massively
parallel database and therefore strives to be parallel by de-
fault. Instances of the SQL/MR function will execute in
parallel on each node in the parallel database, just as map
and reduce tasks execute in parallel across a cluster in the
MapReduce framework. The number of instances of the
SQL/MR function per worker node is not fixed. Each in-
stance sees a unique set of input rows, that is, each row is
processed by only one instance of the SQL/MR function.
The definitions of row and partition functions ensure that
they can be executed in parallel in a scalable manner. Even
in a single node database, the SQL/MR framework is still
useful because it provides dynamically polymorphic and self-
describing UDFs that may be parallelized across multiple
processor cores.

We now describe row and partition functions and show
how their execution models enable parallelism:

• Row Function Each row from the input table or
query will be operated on by exactly one instance of
the SQL/MR function. Semantically, each row is pro-
cessed independently, allowing the execution engine to
control parallelism, as described in Section 4. For each
input row, the row function may emit zero or more
rows. Row functions are similar to map functions in
the MapReduce framework; key uses of row functions
are to perform row-level transformations and process-
ing.

• Partition Function Each group of rows as defined
by the PARTITION BY clause will be operated on by ex-
actly one instance of the SQL/MR function, and that
function instance will receive the entire group of rows
together. If the ORDER BY clause is also provided, the
rows within each partition are provided to the function
instance in the specified sort order. Semantically, each
partition is processed independently, allowing paral-
lelization by the execution engine at the level of a par-
tition. For each input partition, the SQL/MR parti-
tion function may output zero or more rows. Partition
functions is similar to a reduce function in MapRe-
duce; we call it a partition function to emphasize its
use for group-wise processing, as important uses do
not actually reduce the size of the data set.

3.3 Programming Interface
In this section we will describe the programming inter-

face. Using our running example of sessionization, Figure 6
shows the Java class that implements the SQL/MR session-
ize function.

3.3.1 Runtime Contract

We chose the metaphor of a contract to facilitate a SQL/MR
function’s self-description. At plan-time, the nCluster query
planner fills in certain fields of a runtime contract object,
such as the names and types of the input columns and the
names and values of the argument clauses. This incomplete
contract is then passed to the SQL/MR function’s initial-
ization routine at plan-time.

The constructor must complete the contract by filling in
additional fields, such as the output schema, and then call-
ing the complete() method. All instances of the SQL/MR
function are required to abide by this contract, so the con-
tract’s completion should only involve deterministic inputs.

With a traditional UDF, there is a kind of contract as
well: when a function is installed, the types of its input ar-
guments and return value must be explicitly declared (in the
CREATE FUNCTION statement). This is done by the end-user
or database administrator. By contrast, with a SQL/MR
function, not only is the function self-describing (requiring
no configuration during installation) but the plan-time nego-
tiation of the contract allows the function to alter its schema
dynamically, adding significant flexibility to create reusable
functions. We provide more examples of this in Section 5.

Help information. Because contract negotiation, and there-
fore output schema definition, occurs at query plan-time, it
is useful to provide the writer of a query a means to dis-
cover the output schema of a particular SQL/MR invoca-
tion. We accomplish this by leveraging the self-describing
nature of SQL/MR functions as well as the deterministic
property of contract negotiation described above. Further,
just as many command line tools have a “help” option, de-
velopers of SQL/MR functions provide help information via
a help API. This includes information such as required or op-
tional argument clauses as well as the output schema given
a particular input schema and set of argument clauses.

Argument clause validation. SQL/MR automatically en-
sures that the query specifies argument clauses for the func-
tion that are compatible with its implementation: if an ar-
gument clause is provided but unused, or if the function



attempts to access an argument clause that has not been
provided, an error message is directed to the user. For ex-
ample, both of the argument clauses specified in the query
shown in Figure 3 are used by the the Sessionize construc-
tor in Figure 6. To enable optional argument clauses, a
SQL/MR function’s constructor can test for the presence of
a specific argument clause.

3.3.2 Functions for Processing Data

The most basic aspects of the API are the OperateOnSome-
Rows and OperateOnPartition methods, which are part of
the row and partition function interfaces, respectively. These
methods are the mechanism of invocation for a SQL/MR
function. The function is given an iterator to rows over
which it is being invoked, along with an emitter object for
returning rows back into the database. The OperateOn-

Partition method also includes a PartitionDefinition

object, which provides the values of the PARTITION BY ex-
pressions. This is useful as the columns used to compute
these values might not be in the function’s input.

Figure 6 shows the implementation of the OperateOn-

Partition function for the sessionization SQL/MR func-
tion. Each output row is constructed from the entire input
row plus the current session ID. Note that the output at-
tributes are added to the output emitter in left to right
order.

3.3.3 Combiner Functions

One of the optimizations in Google’s MapReduce imple-
mentation [7] is support for combiner functions. Combiner
functions decrease the amount of data that needs to be
moved across the network by applying a function to com-
bine rows in local partitions. Use of a combiner is a pure
optimization; it does not affect the outcome of the final com-
putation.

SQL/MR supports combining as an option in implement-
ing a partition function. In some cases, network transfer is
required to form input partitions for a partition function.
If a partition function implements the optional interface for
combining, the query planner may choose to invoke the com-
biner functionality prior to the network transfer, reducing
the number of rows that need to be sent.

We consciously chose to make the combiner feature a de-
tail of the partition function—rather than a separate kind
of function—for usability reasons. From the perspective of
the user writing a query with a partition function, there is
no semantic difference if combining is performed. For this
reason, we leave combining as an implementation detail that
is considered by the SQL/MR function developer, but that
is transparent to the user of the function.

3.3.4 Running Aggregates

SQL/MR defines a mechanism for computing a running
SQL aggregate on data in a SQL/MR function. This al-
lows a function to offer to its users a full set of familiar
SQL aggregates with minimal effort. A function can request
a new running aggregate by name and type (for example,
avg(numeric)) and update the aggregate with new values,
query the current result of the aggregate, or reset the ag-
gregate. Aggregates over any data type may be requested
dynamically, which is useful for polymorphic functions that
may not be developed with particular data types in mind.
Further, these aggregates match SQL semantics, which for

Figure 7: Diagram of the implementation of
SQL/MR within the nCluster database.

some data types are subtle.

3.4 Installing a SQL/MR function
To use a SQL/MR function, it must be installed. We

leverage the general ability to install files (described in Sec-
tion 3.5) to load and manage the file containing executable
code. Once installed, the system examines the file to deter-
mine that it is a function. Since functions are self-describing,
no configuration or CREATE FUNCTION statement is required,
and the SQL/MR function is immediately available for use
in a query. Examining the file at install-time also reveals
other static properties of the function, such as whether it is
a row function or a partition function, the help information
associated with the function, whether it supports combining
partitions, and so on.

Function files may actually be a .zip archive containing
a function file along with other, third-party libraries. These
third-party libraries are made available to the function; for
instance, in the case of Java, they are automatically included
in the function’s classpath. This has been useful for a vari-
ety of purposes: a linear algebra package for solving linear
equations, a natural language processing library, and so on.

3.5 Installed Files and Temporary Directories
In order to facilitate the distribution of configuration files

and other auxiliary file data, the system allows users to in-
stall arbitrary files in addition to function files. Installing a
file replicates it at all the workers, making it available for
reading by SQL/MR functions. Each function is also pro-
vided with a temporary directory, which is cleaned up after
the function is finished and whose space usage is monitored
during function execution.

We have found these capabilities useful in the distribu-
tion of configuration files, static data files for things like
dictionaries, as well as the installation of binaries that a
SQL/MR function can then execute. This last use case, in
particular, demonstrates the focus on usability: it has en-
abled us in some cases to quickly push existing C binaries
into the parallel execution environment without expending
large amounts of time in turning these binaries into callable
libraries with well-defined APIs.

4. SYSTEM ARCHITECTURE
In this section we first briefly present the system architec-

ture of nCluster (Section 4.1), a massively-parallel relational
database system. We then describe how SQL/MR integrates
into nCluster (Section 4.2).



pub l i c c l a s s S e s s i o n i z e implements Par t i t i onFunct ion
{

// Constructor ( called at in i t i a l i za t i on )
pub l i c S e s s i o n i z e ( RuntimeContract cont rac t )
{

Input In fo input In fo = cont rac t . ge t Input In fo ( ) ;

// Determine time column
St r ing timeColumnName =

cont rac t . useArgumentClause ( ”timecolumn ” ) . ge tS ing l eVa lue ( ) ;
timeColumnIndex = input In fo . getColumnIndex ( timeColumnName ) ;

// Determine timeout
St r ing timeoutValue =

cont rac t . useArgumentClause ( ” t imeout ” ) . ge tS ing l eVa lue ( ) ;
t imeout = In t eg e r . par se In t ( t imeoutValue ) ;

// Define output columns
List<ColumnDefinit ion> outputColumns =

new ArrayList<ColumnDefinit ion > ( ) ;
outputColumns . addAll ( input In fo . getColumns ( ) ) ;
outputColumns . add (new ColumnDefinit ion ( ” s e s s i o n i d ” , SqlType . i n t e g e r ( ) ) ) ;

// Complete the contract
cont rac t . setOutputIn fo ( new OutputInfo ( outputColumns) ) ;
con t rac t . complete ( ) ;

}

// Operate method ( called at runtime , for each partition )
pub l i c void operateOnPart i t ion (

Pa r t i t i o nD e f i n i t i o n pa r t i t i on ,
RowIterator i npu t I t e r a t o r , // Iterates over a l l rows in the partition
RowEmitter outputEmitter // Used to emit output rows
)

{
i n t cu r r en tS e s s i on Id = 0 ;
i n t lastTime = In t ege r .MIN VALUE;

// Advance through each row in partition
whi le ( i n p u t I t e r a t o r . advanceToNextRow( ) )
{

// Determine i f time of this cl ick i s more than timeout after the last
i n t currentTime = in pu t I t e r a t o r . get IntAt ( timeColumnIndex ) ;
i f ( currentTime > lastTime + timeout )

++cu r r en tS e s s i on Id ;
// Emit ouput row with a l l input columns , plus current session id
outputEmitter . addFromRow ( i n pu t I t e r a t o r ) ;
outputEmitter . addInt ( cu r r en tS e s s i on Id ) ;
outputEmitter . emitRow ( ) ;
lastTime = currentTime ;

}
}

// State saved at in i t ia l i zat ion , used during runtime
p r i v a t e i n t timeColumnIndex ;
p r i v a t e i n t t imeout ;

} ;

Figure 6: Implementation of the reusable sessionize function using the SQL/MR Java API.



4.1 nCluster Overview
nCluster [3] is a shared-nothing parallel database [8], opti-

mized for data warehousing and analytic workloads. nCluster
manages a cluster of commodity server nodes, and is de-
signed to scale out to hundreds of nodes and scale up to
hundreds of terabytes of active data.

Query processing is managed by one or more Queen nodes.
These nodes analyze client requests and distribute partial
processing among the Worker nodes. Each relation in nCluster
is hash-partitioned across the Worker nodes to enable intra-
query parallelism.

In addition to database query processing, automated man-
ageability functionality in nCluster ensures adding new ma-
chines and redistributing data is a one-click operation, and
the system performs automatic fail-over, retry of queries,
and restoration of replication levels after a node failure.
These features are essential in a large cluster of machines,
where failures of various kinds occur regularly.

4.2 SQL/MR in nCluster
The implementation of the SQL/MR framework in Aster

nCluster requires us to define the interactions of the SQL/MR
function with the query planning and query execution frame-
works of the relational database.

4.2.1 Query planning

SQL/MR functions are dynamically polymorphic, mean-
ing that their input and output schemas depend upon the
context in which they are invoked. We resolve the input and
output schemas during the planning stages of the query—a
task that is designated to the query planner at the Queen
node.

The query planner receives a parse tree of the query. It
resolves the input and output schemas of the SQL/MR func-
tions in a bottom-up traversal of the parse tree. When a
SQL/MR function is encountered in this traversal, the plan-
ner uses the already-defined schema of the input relations—
along with the parsed argument clauses specified in the query
for the function—to initialize the function by invoking the
function’s initializer routine. The initializer routine must
decide the function’s output columns that will be produced
by the function’s runtime routine during query execution.
(In our Java API, the initializer routine corresponds to the
constructor of a class implementing one of the row or par-
tition function interfaces, while the runtime routine is the
method defined by the interface.)

As described in Section 3.3.1, the metaphor for the func-
tion is one of a contract: the query planner provides some
guarantees about the input and the function provides guar-
antees about its output, and both are promising to meet
these guarantees during query execution. This negotiation
allows the function to have a different schema in different us-
age scenarios—what we call dynamic polymorphism—while
maintaining the property that the schema of a SQL query
is well-defined prior to execution.

In addition to enabling dynamic polymorphism, this no-
tion of a contract enables a rich integration with query plan-
ning. The developer of a function may be aware of certain
properties of its execution. For instance, a function might
emit rows in a certain order, pass through certain columns
from the input to the output, be aware of statistical in-
formation about the output, and so on. The contract is a
natural conduit for the function to provide this information

to the query optimizer. The function can provide such in-
formation to the query planner during the invocation of its
initializer routine during planning. Importantly from a us-
ability perspective, SQL/MR does not require the end-user
or database administrator to specify a variety of complicated
CREATE FUNCTION clauses during function installation to in-
form the planner of such function properties. Instead, this
information can be encoded by the function’s developer and
be encapsulated inside the function, which describes itself
during query planning.

4.2.2 Query execution

SQL/MR functions are treated as an execution operator in
the local Worker database: the rows of input to the function
is provided from an iterator over the ON clause while their
output rows are in turn provided into the next execution
node up the execution tree. In the case of partitioned input,
the rows are divided into groups; this may be done either by
sorting or hashing the rows according to the values of the
PARTITION BY expressions.

SQL/MR functions are executed in parallel across all nodes
in nCluster, as well as in parallel across several threads at
each node. Since the MapReduce-based programming model
is agnostic to the degree of parallelism, the system can con-
trol the level of parallelism transparently to utilize the avail-
able hardware. The SQL/MR framework simply instantiates
several instances of the function, one on each thread. Input
rows are distributed among the threads, and output rows
are collected from all threads.

For a variety of reasons, we execute the threads of a
SQL/MR function in a separate process from the local data-
base process. Executing in a separate process allows the
externally-developed SQL/MR function code to be effec-
tively sand-boxed and controlled using typical operating sys-
tem mechanisms—for fault isolation, scheduling, resource
limitation, forced termination, security, and so on—without
relying on any particular programming language runtime en-
vironment to provide such functionality. For instance, if an
end-user or database administrator decides to cancel a query
that is executing a function, we simply kill the process run-
ning it. This model has been key in effectively maintaining
overall system health in the presence of user code. Isolating
a function in a separate process allows us to both limit the
damage it can do to the system, as well as manage schedul-
ing and resource allocation, using existing operating system
primitives.

Figure 7 shows a diagram of how SQL/MR is implemented
within nCluster. Within the worker database is a compo-
nent we call the “bridge” which manages the communica-
tion of data and other messages between the database and
the out-of-process SQL/MR function. In a separate process,
the counterpart to bridge, the “runner” manages communi-
cation with the worker database for the SQL/MR function.
An API is built on top of the runner with which users im-
plement SQL/MR functions. This modularization makes it
relatively easy to add support for additional programming
languages to the SQL/MR framework.

5. APPLICATIONS
In this section we present examples of applications that

can be implemented using the SQL/MR framework. We
start with a simple example that compares and contrasts
SQL/MR directly with MapReduce presented in [7].



5.1 Word Count
Since the publication of [7], performing a word count has

become a canonical example of MapReduce, which we use
here to illustrate the power of SQL/MR. In contrast to the
MapReduce example, SQL/MR allows the user to focus on
the computationally interesting aspect of the problem – to-
kenizing the input – while leveraging the available SQL in-
frastructure of perform the more pedestrian grouping and
counting of unique words.

We have written a general purpose SQL/MR row func-
tion called tokenizer that accepts a custom argument clause
to specify the delimiters to use. The output of tokenizer
is simply the tokens.1 The query containing the SQL/MR
invocation groups its results by the token values and com-
putes a COUNT(*) aggregate. The result of mixing SQL and
SQL/MR is a more succinct word count function that lever-
ages existing database query processing infrastructure:

SELECT token, COUNT(*)

FROM tokenizer(

ON input-table

DELIMITER(’ ’)

)

GROUP BY token;

Not only is this simpler than a pure MapReduce imple-
mentation, but it allows the query optimizer to leverage ex-
isting parallel query execution optimizations for computing
an aggregate in a distributed manner.

5.2 Analysis of Unstructured Data
SQL is generally ill-suited to dealing with unstructured

data. However, SQL/MR enables a user to push procedural
code into the database for transforming unstructured data
into a structured relation more amenable for analysis. While
such transformation is possible with traditional UDFs, the
dynamic polymorphism of SQL/MR functions allows such a
transformation to be significantly more flexible and usable.

Consider the parse documents function shown below. It
is designed to encapsulate a collection of metrics to be com-
puted about a document. A user can specify particular met-
rics of interest via the METRICS argument clause, and the
function will compute these metrics. Additionally, the out-
put schema of the function will reflect the requested metrics.
Note that these metrics can be computed with a single pass
through the data, but the framework allows the flexibility
to specify the metrics of interest in an ad-hoc way. This is
a useful and usable way to wrap a library of text analytics
code for reuse by an analyst in a variety of scenarios.

SELECT word_count, letter_count, ...

FROM parse_documents(

ON (SELECT document FROM documents)

METRICS(

’word_count’,

’letter_count’,

’most_common_word’,

...)

);

1As implemented, the tokenizer creates tokens from all
columns with character data in the input using the speci-
fied delimiter. Non-character columns are returned as whole
tokens. One could easily extend the SQL/MR tokenizer to
take an additional custom argument clause that specifies the
input columns to tokenize.

5.3 Parallel Load and Transformation
SQL/MR functions can also be used to provide support for

both reading from external sources. Consider the use case
of hundreds of retail locations that send daily sales data in
comma separated files back to the home office to be loaded
into nCluster. The common solution is to use an external
process to load the data. In nCluster, one can perform trans-
formations inside the cluster using a SQL/MR function that
takes as input a set of urls that identify the external files to
load and an argument clause that defines the expected input
schema and desired output schema. After being fetched and
transformed by the SQL/MR function, the data is immedi-
ately available to participate in other query processing such
as immediate filtering or aggregation. If the goal is to load
the external table into nCluster, using a SQL/MR function
for transformation is beneficial because it now runs in par-
allel within nCluster, leveraging the parallel computational
power of all of the worker nodes and improving performance
as the loading process now runs in the same location where
the data will ultimately be stored. Because of the flexibility
of SQL/MR functions, arbitrary source formats can be sup-
ported simply by writing the appropriate SQL/MR function
that can then be used as a library function for all subsequent
reading or loading of data from an external source.

5.4 Approximate Percentile
Computing exact percentiles over a large data set can be

expensive, so we leveraged the SQL/MR framework to im-
plement an approximate percentile algorithm. This allows
parallel computation of percentiles if some amount of error is
acceptable. This implementation also leverages SQL/MR’s
dynamic polymorphism to enable computation of approxi-
mate percentiles over a wide range of numeric types.

We implemented the distributed approximate percentile
algorithm described in [9] as a pair of SQL/MR functions.
To apply this technique, one specifies the percentile values
desired and the maximum relative error e. The relative er-
ror is defined as follows: for each value v that the algorithm
estimates as being in the n-th percentile, the real percentile
of v is between n−e and n+e. At a high level, the algorithm
works by computing summaries of the data on each particu-
lar node, and then merging these summaries on a single node
to compute the approximate percentiles. We implemented
this algorithm with an approximate percentile summary

function that is invoked over all the relevant data on a partic-
ular node, outputting a summary. The summaries are then
brought together at a single node by using a PARTITION BY

1 construct,2where they are merged into a final output by
the approximate percentile merge function. The output
schema of approximate percentile merge consists of the
input schema with a percentile column prepended.

6. EXPERIMENTAL RESULTS
The SQL/MR framework brings a lot of expressive power

to relational databases. We showed in Section 5 that queries

2SQL/MR functions are designed to be parallel by default.
However, there exist situations in which processing data se-
rially is required. To accommodate these cases we allow a
constant to appear in the PARTITION BY clause. This causes
all input data to be collected on one worker node and then
processed serially by the specified SQL/MR function. The
user is warned that the SQL/MR function will not execute
in parallel.



SELECT percentile, ...

FROM approximate_percentile_merge(

ON approximate_percentile_summary(

ON source_data

RELATIVE_ERROR(0.5)

DATA_COLUMN(’values’)

)

PARTITION BY 1

PERCENTILES(25, 50, 75)

);

Figure 8: Approximate percentile using SQL/MR.

that are difficult or impossible to express in traditional SQL
(e.g., approximate medians) can be easily expressed in the
SQL/MR framework using SQL/MR functions. In this sec-
tion, we extend the argument that SQL/MR queries can re-
sult in faster implementations than a pure SQL query. Our
experimental results show the following results:

• The SQL/MR queries exhibit linear scaling as the de-
gree of parallelism is increased proportional to the size
of data being queried.

• The ability of SQL/MR functions to manipulate their
own data structures allows them to finish tasks in one
pass over data that would have required multiple joins
in a pure SQL query

We ran all experiments on an nClusterof x86 servers with
two dual-core 2.33 Ghz Intel Xeon processors, 4GB of RAM,
and eight 72GB SAS drives configured with RAID 0.

6.1 Clickstream Analysis
Web administrators often use clickstream logs to under-

stand the behavior of their consumers so that they can make
changes to their website structure to improve engagement
metrics. For example, web advertisers often wish to know
the average number of clicks between a user starting from
the homepage of a particular publisher and then clicking on
an advertisement. Web retailers are interested in knowing
the average number of clicks between a user entering the site
and purchasing an item. Web publishers are interested in
knowing the average number of articles a person reads if she
starts in the Politics section of the website before entering
the Entertainment section of the website.

Given a relation Clicks(user id int, page id int,

category id int, ts timestamp) that stores information
about a user, the page the user clicked and the time at which
the user clicked that page, what is the average number of
pages a user visits between visiting a page in category X
and a page in category Y? We refer to the click in category
X as the starting click and the click in category Y as the
ending click. We generated a synthetic data set of clicks
with a SQL/MR function which maps over a table of users,
expanding each row into a set of clicks for that particular
user. We generated 1000 clicks for each user with random
values for the ts, category id, and page id columns (all
chosen from a uniform distribution). There were fifty million
rows per node.

To answer this question, we first wrote a pure SQL query,
which is shown in Figure 9. The query works by first joining
every click in category X with every click in category Y from

SELECT

avg(pageview_count)

FROM

(

SELECT

c.user_id, matching_paths.ts1,

count(*) - 2 as pageview_count

FROM

clicks c,

(

SELECT

user_id, max(ts1) as ts1, ts2

FROM

(

SELECT DISTINCT ON (c1.user_id, ts1)

c1.user_id,

c1.ts as ts1,

c2.ts as ts2

FROM

clicks c1,clicks c2

WHERE

c1.user_id = c2.user_id AND

c1.ts < c2.ts AND

pagetype(c1.page_id) = ’X’ AND

pagetype(c2.page_id) = ’Y’

ORDER BY

c1.user_id, c1.ts, c2.ts

) candidate_paths

GROUP BY user_id, ts2

) matching_paths

WHERE

c.user_id = matching_paths.user_id AND

c.ts >= matching_paths.ts1 AND

c.ts <= matching_paths.ts2

GROUP BY

c.user_id, matching_paths.ts1

) pageview_counts;

Figure 9: The pure SQL query used to answer the
described clickstream analysis question.

the same user, provided that the Y-category click occurs
later in time. This is followed by a SELECT DISTINCT on the
joined result to leave only the ending click that happened
soonest after the starting click. Next, the timestamps of
each starting and ending click are projected, and the number
of clicks that occur in the clickstream between these two
timestamps is counted. Finally, this count is averaged across
all pairs of matching start and end clicks.

Next, we wrote a SQL/MR function to answer the same
question. The query that invokes this function is shown in
Figure 10. We partition the input data to this function by
user id and order it by ts. This means that the function
will read an ordered sequence of clicks. Additionally, the
function is provided argument clauses specifying the starting
page category, the ending page category, and the metrics to
be computed (in this case, length). Once the input data
is partitioned and sorted, this function makes a single pass
through the clickstream. Each time it encounters a click on
a page in the starting page category, it stores the position,
and each time it encounters a click on page in the ending
category, it emits the difference between the ending page’s



SELECT avg(length)

FROM match_path(

ON clicks

PARTITION BY user_id

ORDER BY ts

START_PAGE_CATEGORY(’X’)

END_PAGE_CATEGORY(’Y’)

COMPUTE(’length’)

);

Figure 10: The SQL/MR query used to answer the
described clickstream analysis question.

 0

 1

 2

 0  10  20  30  40

N
o
rm

a
liz

e
d
 R

u
n
n
in

g
 T

im
e

Number of Nodes

Hardware Cluster
Amazon EC2

Figure 11: Scale out behavior of SQL/MR on both
an hardware cluster and on a cluster deployed on
Amazon EC2.

position and the starting page’s position.
We ran both the above-described pure SQL and SQL/MR

queries on an nCluster composed of 2, 5, 10, and 20 nodes
as well as an nCluster deployed on Amazon EC2 with 2, 4,
8, 16, and 32 nodes. The amount of data per node was kept
constant. Figure 11 shows the linear scaling out behavior
of SQL/MR. A growth in the cluster’s size matched by a
proportional growth in the amount of data in the cluster
yields constant query performance. Because nearly all of
the computation of the path matching can be pushed down
to the worker nodes, this is the behavior we expected.

We also compared the running time of the SQL/MR query
to that of the pure SQL query. The SQL/MR query re-
turned a result about nine times faster than the SQL query.
Figure 12 shows a breakdown of the running time of both
queries. Note that the execution of the SQL/MR is split
evenly between the sorting of the input data (as defined by
the PARTITION BY and ORDER BY clauses) and the actual pro-
cessing of the data. The execution of the pure SQL query
is dominated by the self-join and local DISTINCT, with the
global DISTINCT and final join making up the remainder of
the running time.

6.2 Searching Baskets of Page Views
Because a SQL/MR function can maintain its own data

structures, it can perform analyses in a single pass over the
data that pure SQL requires multiple passes to accomplish.
To demonstrate this property, we will consider the task of
finding baskets of page views that contain a specified set
of pages. For this experiment we reuse the same click data
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Figure 12: A comparison of the runtime breakdown
of SQL and SQL/MR clickstream analysis queries.

as above on a 13 node nCluster. Each user’s clicks is now
considered a basket of page views. We further define one or
more sets of pages, referring to each as a “search set”. A
user’s basket is a match for this query if any one of the search
sets is completely contained in the user’s basket of page
views. Each search set may contain any number of distinct
pages. We created SQL and SQL/MR queries to answer
this question. Figure 13 shows the normalized performance
of searching these baskets for a search set of increasing size
using SQL and SQL/MR.

SQL performance degrades as we increase the size of the
largest search set. This is because self-joins are used to as-
semble candidate baskets of clicks for comparison with the
search sets. Assembling all size n sets of page views in a
user’s basket requires n − 1 self-joins on the clicks table.
The most optimized SQL query we were able to write is un-
fortunately too large to show here due to space constraints.
When the search set size is small, the SQL query outper-
forms SQL/MR because a query with zero or few joins is
relatively easy to optimize and evaluate. The increasing
number of self-joins eventually complicates both optimiza-
tion and execution. In fact, we found that searching for
multiple search sets, especially sets of different sizes, greatly
impacted SQL performance. The SQL results shown are for
the best performing SQL queries – those that match users’
baskets against only one search set.

The findset SQL/MR query that answers the same ques-
tion is shown below. The SETID clause specifies the basket
partitions, and the SETITEM clause defines the attribute that
is the item in the baskets. Each SETn clause defines one
search set.

SELECT userid

FROM findset( ON clicks

PARTITION BY userid

SETID(’userid’)

SETITEM(’pageid’)

SET1(’0’,’1’,’2’)

SET2(’3’,’10) )

In contrast to SQL performance, SQL/MR performance
is insensitive to both the search set size and the number of
search sets because only one pass over the data is required.
During this one pass, simple bookkeeping is performed to
test if a user’s clicks satisfy any of the candidate sets. The
SQL/MR query is also easier to extend to additional search
sets by simply adding new SETn argument clauses. This
stands in contrast to the SQL query, where the addition of
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Figure 13: Running time of finding users with clicks
that match given sets using SQL and SQL/MR.

a larger search set will require additional self-joins.

7. CONCLUSION
In this paper we have presented SQL/MapReduce, a new

framework for user-defined functions. In this framework,
functions are self-describing, polymorphic and inherently
parallelizable–whether over multi-core processors or over mas-
sively parallel servers. The functions accept relations as
inputs and output relations; in this respect, their behav-
ior is identical to SQL sub-queries. This enables the func-
tions to be composable, i.e., they can be nested and joined
to other sub-queries and functions. In fact, a nested SQL
query now trivially defines a data-flow path that chains to-
gether SQL sub-queries and SQL/MR functions. Since func-
tions behave like sub-queries, we enable dynamic cost-based
re-optimizers to collect statistics at run-time and change
the execution order of functions and sub-queries to improve
performance. The SQL/MR functions are self-describing at
query-time, which allows them to choose their behavior and
output schema based on the context in which they are used.
This self-describing, dynamic polymorphism facilitates the
creation of rich analytic libraries that can be invoked in very
different contexts, thereby maximizing code reuse.

We also present an implementation of the framework in a
massively-parallel shared-nothing database, Aster nCluster.
The implementation allows functions to manage their own
memory and file structures. The database manages resources
consumed by the function, ensuring that function executions
are well-behaved and clean-up after themselves.

As a model by which rich functions can be pushed inside
a parallel database, the SQL/MR framework makes the case
for an application-friendly database.
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