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ABSTRACT

Conventional data warehouses employ the query-at-a-time model,

which maps each query to a distinct physical plan. When several

queries execute concurrently, this model introduces contention, be-

cause the physical plans—unaware of each other—compete for ac-

cess to the underlying I/O and computation resources. As a result,

while modern systems can efficiently optimize and evaluate a single

complex data analysis query, their performance suffers significantly

when multiple complex queries run at the same time.

We describe an augmentation of traditional query engines that

improves join throughput in large-scale concurrent data warehouses.

In contrast to the conventional query-at-a-time model, our approach

employs a single physical plan that can share I/O, computation, and

tuple storage across all in-flight join queries. We use an “always-

on” pipeline of non-blocking operators, coupled with a controller

that continuously examines the current query mix and performs

run-time optimizations. Our design allows the query engine to scale

gracefully to large data sets, provide predictable execution times,

and reduce contention. In our empirical evaluation, we found that

our prototype outperforms conventional commercial systems by an

order of magnitude for tens to hundreds of concurrent queries.

1. INTRODUCTION
Businesses and governments rely heavily on data warehouses to

store and analyze vast amounts of data; the information within is

key to making sound strategic decisions. Data warehousing has re-

cently penetrated the domains of Internet services, social networks,

advertising, and product recommendation, where complex queries

are used to identify behavioral patterns in users’ online activities.

These systems query ever increasing volumes of data—hundreds

of terabytes to petabytes—and the owners of the data scramble to

“monetize” it, i.e., distill the data into social or financial profit.

Unlike in the past, modern data warehouse (DW) deployments

require support for many concurrent users. Commercial customers

today require support for tens of concurrent queries, with some

even wishing to concurrently process hundreds of reports for the

same time period. Moreover, such customers desire that going

from one query to several concurrent ones should not drastically
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increase query latency. For example, one of our large DW clients

specifically asked that increasing concurrency from one query to 40

should not increase latency of any given query by more than a fac-

tor of six. Large organizations employing DWs indicate that their

data warehouses will have to routinely support many hundreds of

concurrent queries in the near future.

We know of no general-purpose DW system that can meet these

real-world requirements today. Adding a new query can have un-

predictable effects or predictably negative ones. For instance, when

going from 1 to 256 concurrent queries, the query response time in

a widely used commercial DBMS increases by an order of mag-

nitude; in open-source PostgreSQL, it increases by two orders of

magnitude. Queries that take hours or days to complete are no

longer able to provide real-time analysis, since, depending on isola-

tion level, they may need to operate on hours-old or days-old data.

This situation leads to “workload fear”: users of the DW are pro-

hibited from submitting ad-hoc queries and only sanctioned reports

can be executed. In order to achieve better scalability, organizations

break their data warehouse into smaller data marts, perform aggres-

sive summarization, and batch query tasks. These measures, how-

ever, delay the availability of answers, restrict severely the types

of queries that can be run (and consequently the richness of the in-

formation that can be extracted), and increase maintenance costs.

In effect, the available data and computation resources end up be-

ing used inefficiently, preventing the organization from taking full

advantage of their investment. Workload fear acts as a barrier to

deploying novel applications that use the data in imaginative ways.

This phenomenon is not necessarily due to faulty designs, but

merely indicates that most existing DBMSes were designed for

a common case that is no longer common—workloads and data

volumes, as well as hardware architectures, have changed rapidly

in the past decade. Conventional DBMSes employ the query-at-

a-time model, where each query is mapped to a distinct physi-

cal plan. This model introduces contention when several queries

execute concurrently, as the physical plans compete in mutually-

unaware fashion for access to the underlying I/O and computation

resources. As a result, concurrent queries result in random I/O;

for a 1-petabyte DW, even a query that touches only 0.1% of the

database will still retrieve on the order of 100GB of data, thus likely

performing a crippling number of random I/O operations.

Contributions. This paper introduces a query processing architec-

ture that enables DW systems to scale to hundreds of concurrent

users, issuing ad-hoc queries and receiving real-time answers. Our

goal is to enable a new way of using data warehouses, in which

users shed their workload fear and experiment freely with ad-hoc

data analysis, drill arbitrarily deep, and broaden their queries.

More concretely, we introduce CJOIN, a physical operator that

can evaluate concurrent join queries efficiently. The design of CJOIN



achieves deep sharing of both computation and resources, and it is

well suited to the characteristics of modern DW platforms: star

schema design, many-core systems, fast sequential scans, and large

main memories. Using CJOIN as the basis, we build a query pro-

cessing engine that scales gracefully to highly concurrent, dynamic

workloads. The query engine employs a single physical plan that

is “always on” and is optimized continuously based on run-time

statistics. A new query can latch onto the single plan at any point

in time, and it immediately starts sharing work with concurrent

queries in the same plan. This deep, aggressive sharing is key to

CJOIN’s efficiency and sets it apart from prior work.

Measurements indicate that CJOIN achieves substantial improve-

ment over state-of-the-art commercial and research systems. For

256 concurrent queries on a star schema, CJOIN outperforms ma-

jor commercial and open-source systems by a factor of 10 to 100

on the Star Schema Benchmark [17]. For 32 concurrent queries,

CJOIN outperforms them by up to 5x. More importantly, when

going from 1 to 256 concurrent queries, CJOIN’s response time in-

creases by less than 30%, compared to over 500% for a leading

commercial system.

The rest of the paper is structured as follows: §2 describes our

target data warehousing setting and summarizes related work; §3

details the CJOIN operator and the new query processing engine

built around it; §4 describes the deployment of CJOIN on modern

DW platforms; §5 presents several extensions; §6 evaluates various

aspects of performance and scalability; and §7 concludes.

2. BACKGROUND AND STATE OF THE ART
In this section, we provide background on the central problem

addressed in our paper: improving support for concurrent queries

in large data warehouses (§2.1). We then survey related work that

has approached this or similar challenges (§2.2).

2.1 Our Target Domain

Data Warehousing Model. Below, we describe the model targeted

by our solution; in §5 we show how specific assumptions behind

this model can be lifted without affecting our techniques.

We consider a DW that organizes information using a star schema,

which has become standard in the data warehousing industry. We

assume a fact table F that is linked through foreign keys to d di-

mension tables D1, . . . , Dd. Following common practice, we as-

sume that F is too large to fit in main memory and is considerably

larger than the dimension tables.

The warehouse supports a workload of SQL queries, including

periodic updates. Following common industrial practice, we as-

sume that the concurrency control protocol provides snapshot iso-

lation guarantees. In this setting, each transaction is “tagged” with

a snapshot identifier, which is inherited by each query and update

statement in the transaction.

We distinguish the class of SQL star queries that are common

in DW workloads, particularly in ad-hoc data analytics. As will

be seen later, this specific query structure enables us to develop

efficient techniques for answering concurrent queries. Formally, a

star query conforms to the following template:

SELECT A, Aggr
1
, . . . ,Aggrk

FROM F , Dd1
,. . . ,Ddn

WHERE
V

1≤j≤n

F 1 Ddj
AND

V

1≤j≤n

σcj
(Ddj

) AND σc0(F )

GROUP BY B

Symbols A and B denote attribute sets from the referenced ta-

bles, and Aggr
1
, . . . ,Aggrk are standard SQL aggregate functions,

e.g., MIN, MAX, AVG. The WHERE clause is a conjunction of

fact-to-dimension joins and selection predicates. A join predicate

F 1 Ddj
has the standard form of a key/foreign-key equi-join. A

selection predicate cj can be arbitrarily complex (e.g., contain dis-

junction or sub-queries), but can reference solely the tuple variable

of Ddj
from the star query. For convenience of notation, we set cj

to TRUE if the query does not place a predicate on the correspond-

ing table. Note that we allow for the case where B = ∅ (i.e., there

is no GROUP BY clause, so either k = 0 or A = ∅) or A = ∅.
In the remainder of the paper, we assume the most general case,

where A 6= ∅, B 6= ∅, and k > 0.

Problem Statement. We consider the problem of efficiently eval-

uating a large number of concurrent star queries in a single data

warehouse. These queries can either be submitted directly by users,

or constitute sub-plans of more complex queries.

An effective solution to this problem should yield high query

throughput, as well as enable graceful degradation of query re-

sponse time as the number of concurrent queries increases (i.e.,

avoid thrashing). This goal also implies a notion of predictability:

Query response time should be determined primarily by the char-

acteristics of the query, and not by the presence or absence of other

queries executing concurrently in the system. Existing general-

purpose DWs do not fare well in this setting, hence our motivation

to find a solution suitable for highly concurrent data warehouses.

We emphasize that the overall workload need not be restricted

solely to star queries. On the contrary, we envision a system archi-

tecture where concurrent star queries are diverted to a specialized

query processor (such as the one presented in this paper) and any

other SQL queries and update statements are handled using conven-

tional infrastructure. While it is clearly desirable to support high

concurrency across all types of queries, there are significant chal-

lenges even in doing so for just the subset of star queries. Moreover,

this focus does not restrict the practicality of our solution, since star

queries are common in DW workloads. Finally, our query evalua-

tion techniques can be employed as sub-plans, to evaluate the star

“portion” of more complex queries.

Physical Data Storage. We develop our techniques assuming that

the DW employs a conventional row-store for data storage. This as-

sumption is driven by the design of existing commercial DW solu-

tions, including Oracle, IBM, Microsoft, Teradata, and the product

within which CJOIN was developed. However, our approach can

be applied equally well to different architectures. For instance, it

is possible to implement CJOIN within a column store or a system

employing compressed tables. We examine these cases in §5.

We do not make any specific assumptions about the physical de-

sign of the DW, such as partitioning, existence of indices, or mate-

rialized views. However, as we show in §5, CJOIN can take advan-

tage of existing physical structures (e.g., fact table partitioning).

2.2 Related Work
Our work builds builds upon a rich body of prior research and in-

dustrial efforts in addressing the concurrency problem. We review

here primarily techniques that enable work sharing, which is key in

achieving high processing throughput.

Multi-Query Optimization. When a batch of queries is optimized

as a unit, it becomes possible to identify common sub-expressions

and generate physical plans that share the common computation [21].

This approach requires queries to be submitted in batches, which

is incompatible with ad-hoc decision support queries. Moreover,

common computation can be factored only within the batch of opti-

mized queries, thus making it impossible to share work with queries

that are already executing. In contrast, our approach shares work

among the currently executing queries regardless of when they were



submitted and without requiring batch submission.

Work Sharing. Staged database systems [11, 12] enable work

sharing at run-time through an operator-centric approach. Essen-

tially, each physical operator acts as a mini query engine that ser-

vices several concurrent queries, which in turn enables dynamic

work sharing across several queries. A hash join operator, for in-

stance, can share the build phase of a relation that participates in

different hash joins in several queries. This design was shown to

scale well to tens of complex queries. Our approach adopts a sim-

ilar work-sharing philosophy, but customizes it for the common

class of star queries. As a result, our design can scale to a sub-

stantially larger number of concurrent queries.

In the Redbrick DW [9], a shared scan operator was used to share

disk I/O among multiple scan operations executing concurrently on

multiple processors; however, the in-memory data and the state of

other operators were not shared. Cooperative scans [24] improve

data sharing across concurrent scans by dynamically scheduling

queries and their data requests, taking into account current sys-

tem conditions. Qiao et al. [18] have investigated shared memory

scans as a specific form of work sharing in multi-core systems: by

scheduling concurrent queries carefully, tuple accesses can be co-

ordinated in the processor’s cache. Our approach also leverages a

form of scan sharing, but targets large warehouses, where the fact

relation cannot fit in main memory. In addition to I/O, our approach

also shares substantial computation across concurrent queries.

Recent work [8, 18] has investigated work-sharing techniques for

the computation of aggregates on chip multiprocessors. The devel-

oped techniques essentially synchronize the execution of different

aggregation operators in order to reduce contention on the hash ta-

bles used for aggregate computation. As discussed later, CJOIN can

be combined with these techniques in an orthogonal fashion.

Finally, work sharing has been investigated extensively in the

context of streaming database systems [3, 6, 7, 14, 15, 16]. By shar-

ing work (or state) among continuous-query operators, a streaming

DBMS can maintain a low per-tuple processing cost and thus han-

dle a large number of continuous queries over fast streams. These

techniques are specific to streaming database systems and cannot

be applied directly to the environment that we target. An interest-

ing aspect of our proposed architecture is that it incorporates ele-

ments from continuous query processing, which in turn allow us

to transfer techniques from streaming databases to a DW setting.

For instance, CJOIN adopts the Grouped Filter operator of Mad-

den et al. [15], but extends it to support fact-to-dimension joins and

arbitrary selection predicates; the original operator only supported

range predicates on ordered attributes.

In summary, CJOIN enables a deeper form of work sharing than

any prior work we know of: CJOIN employs a single plan that

shares I/O, join computation, and tuple storage across all CJOIN

queries that are in-flight at any given point in time.

Materialized Views. Materialized views enable explicit work shar-

ing by caching the results of sub-expressions that appear in concur-

rently executing queries. The selection of materialized views is

typically performed off-line, by examining a representative work-

load and identifying common sub-expressions [10, 20]. Capturing

a representative workload is a challenging task in the context of ad-

hoc decision-support queries, due to the volatility of the data and

the diversity of queries. Moreover, materialized views add to the

maintenance cost of the warehouse, and hence they do not offer

clear advantages for the problem considered in this paper.

Constant Time Query Processing. BLINK [19] is a query pro-

cessing architecture that achieves constant response time for the

type of queries considered in our work. The idea is to run each

query using the same plan—a single pass over a fully de-normalized,

in-memory fact table—thus incurring more or less the same ex-

ecution cost. CJOIN achieves a similar goal, in that it enables

predictable execution times for star queries. The key differences

compared to BLINK are that we do not require the database to

be memory-resident, we do not require the fact table to be de-

normalized, and our design directly supports high query concur-

rency, whereas BLINK targets the execution of one query at a time.

3. THE CJOIN PIPELINE
This section details the design of CJOIN. We first provide an

overview of CJOIN, using an illustrative example (§3.1) and then

describe the various components in more detail (§3.2-§3.4). For

clarity, we initially assume a query-only workload that references

the same snapshot of the data. We then expand our discussion to

mixed workloads of both queries and updates in §3.5.

Notation. In what follows, we write Q to denote the set of con-

current star queries that are being evaluated. We assume that each

query is assigned a unique positive integer identifier, and we use

Qi to denote the query with id i. These identifiers are specific to

CJOIN and can be assigned when queries are registered with the

operator. Also, an identifier can be reused after a query finishes its

evaluation. The maximum query id in Q is denoted as maxId(Q).

We note that maxId(Q) ≥ |Q| in the general case, since we do not

require query identifiers to be consecutive. Moreover, we expect

that maxId(Q) is bounded by a system parameter maxConc that

limits the total number of concurrent queries.

We use cij to denote the selection predicate placed by Qi on a di-

mension table Dj that it references. We assume that cij ≡ TRUE

if no explicit predicate is placed. We also define ci0 similarly with

respect to the fact table F . Finally, we use b to denote a bit-vector

of bounded length, and b[l] to denote the l-th bit. The symbol 0

denotes the bit vector with all bits set to 0.

3.1 Design Overview
CJOIN leverages the observation that star queries have a common

structure: they “filter” the fact table through dimension predicates.

Correspondingly, the architecture of CJOIN consists of a pipeline

of components, as shown in Figure 1.

Fact 
Table

Preprocessor Filter Distributor

Continuous Scan

Pipeline 

Manager

Filter...

...

Aggr.
Operator

Aggr.
Operator

Aggr.
Operator

Figure 1: General architecture of the CJOIN pipeline.

The CJOIN pipeline receives its input from a continuous scan of

the fact table and pipes its output to aggregation operators (either

sort-based or hash-based) that compute the query results. In be-

tween, the fact tuples are processed through a sequence of Filters,

one for each dimension table, where each Filter encodes the cor-

responding dimension predicates of all queries in Q. In this way,

CJOIN can share I/O and computation among all queries inQ.

The continuous scan implies that the operator is “always on,” i.e.,

a new query Q can be registered with the operator at any point in

time. The Preprocessor marks the point in the scan where Q enters

the operator and then signals the completion of Q when the scan

wraps around at that same point. This design turns the fact table

into a “stream” that is filtered continuously by a dynamic set of



dimension predicates.

We illustrate the operation of the pipeline and the basic ideas be-

hind the design of CJOIN using the simple workload shown below:

two star queries that join fact table F with dimension tables D1 and

D2. The queries compute different aggregates and apply different

selection predicates on D1 and D2.

Q1

SELECT Aggr
1

FROM F τ , D1 δ, D2 δ′

WHERE τ 1 δ 1 δ′ AND σc11(δ) AND σc12(δ
′)

Q2

SELECT Aggr
2

FROM F τ , D1 δ, D2 δ′

WHERE τ 1 δ 1 δ′ AND σc21(δ) AND σc22(δ
′)

Figure 2 shows a possible CJOIN pipeline for this workload. The

following paragraphs describe the functionality of each component

for this specific example.

013

2 11

1 10

dim tuple bitvec

Filter Distributor

Dimension 
Hash Table

Aggr1

11

fact tuple bitvec

Aggr2

'
2 11

'
1 01

dim tuple bitvec
Dimension 
Hash Table

Pipeline 

Manager

Fact 
Table

Continuous

    Scan

Preprocessor Filter

Figure 2: One possible instantiation of the CJOIN pipeline for

the example queries shown above.

The Preprocessor receives tuples from the continuous scan and

forwards them to the remainder of the pipeline. Each fact tuple τ is

augmented with a bit-vector bτ that contains one bit for each query

in the workload. In this example, the bit-vector consists of two bits

such that bτ [1] = bτ [2] = 1. This signifies that, initially, every

fact tuple is relevant for both queries Q1 and Q2.

The Distributor receives fact tuples that are relevant for at least

one query in the current workload. Given a received fact tuple τ ,

the Distributor examines its bit-vector bτ and routes it to the ag-

gregation operators of query Qi if and only if bτ [i] = 1.

A Dimension hash table stores a union of the tuples of a specific

dimension table that satisfy the predicates of the current queries. In

our example, say the predicates of Q1 select exactly two tuples δ1

and δ2 from table D1 and one tuple δ′2 from D2, while Q2 selects

tuples δ2 and δ3 from D1 and tuples δ′1 and δ′2 from D2. Each

stored dimension tuple δ is augmented with a bit-vector bδ , whose

length is equal to the bit-vector bτ attached to fact tuples, with the

following interpretation: bδ[i] = 1 iff the dimension tuple satisfies

the predicates of query Qi. For instance, the bit-vector for tuple

δ1 is set as bδ1 [1] = 1 and bδ1 [2] = 0. Figure 2 illustrates the

bit-vectors for all the tuples in our example.

Each Filter retrieves fact tuples from its input queue and probes

the corresponding dimension hash table to identify the joining di-

mension tuples. Given a fact tuple τ , the semantics of the foreign

key join ensure that there is exactly one dimension tuple δ that cor-

responds to the foreign key value. If δ is present in the dimension

hash table, then its bit-vector bδ is combined (using bitwise AND)

with the bit-vector bτ of τ . Otherwise, bτ is set to 0. The Filter

forwards τ to its output only if bτ 6= 0 after the combining (i.e.,

only if the tuple is still relevant to at least one query), otherwise the

tuple is discarded. In this example, the first Filter outputs a tuple τ

only if it joins with one of δ1, δ2, or δ3. The second Filter forwards

a fact tuple only if it joins with one of δ′1 or δ′2. Since the two Fil-

ters work in sequence, τ appears in the output of the second Filter

only if its dimension values satisfy the predicates of Q1 or Q2.

The Pipeline Manager regulates the operation of the pipeline.

This component is responsible for registering new queries with

CJOIN and for cleaning up after registered queries finish executing.

Another important function is to monitor the performance of the

pipeline and to optimize it on-the-fly to maximize query through-

put. For this reason and others that we mention below, it is desir-

able for the Pipeline Manager to operate in parallel with the main

pipeline. Therefore, this component has ideally its own execution

context (e.g., a separate thread or process).

Overall, the basic idea behind CJOIN is that fact tuples flow from

the continuous scan to the aggregation operators, being filtered in

between based on the predicates of the dimension tables. At a high

level, this is similar to a conventional plan that would employ a

pipeline of hash join operators to join the fact table with the di-

mension tables. However, CJOIN shares the fact table scan among

all queries, filters a fact tuple against all queries with a single di-

mension table probe, and stores the union of dimension tuples se-

lected by queries. Therefore, the fundamental difference from con-

ventional plans is that CJOIN evaluates all queries concurrently in

a single plan that shares I/O, computation, and data. The pro-

posed design also differs from previous operator-centric designs

(e.g., QPipe [11]) in that it takes advantage of the semantics of star

queries to provide a much tighter degree of integration and sharing.

For instance, QPipe would simulate two hash join operators with

different state for each query, whereas in our design there is only

one operator for all concurrent queries.

In this example we illustrated only one possible CJOIN pipeline

for the sample workload. As we discuss later, there are other pos-

sibilities with potentially vast differences in performance. For in-

stance, it is possible to change the order in which the Filters are

applied. Another possibility is to have the Filter operators run in

parallel using a variable degree of parallelism, e.g., the first Filter

can employ two parallel threads while the second Filter can have

just one thread. We discuss these issues in §3.4 and §4.

3.2 Query Processing
We now discuss in more detail how the CJOIN operator evaluates

concurrent queries. For this part of our discussion, we assume that

the workload Q remains fixed and that the operator uses a fixed

ordering of filters. We discuss later the admission of new queries

(§3.3) and the optimization of the pipeline’s filter order (§3.4).

3.2.1 Dimension Hash Tables

Each dimension table Dj referenced by at least one query is

mapped to a hash table HDj , which stores those tuples of Dj that

are selected by at least one query in the workload. More formally,

a tuple δ ∈ Dj is stored in HDj if and only if there exists a query

Qi that references Dj and δ satisfies cij . Tuple δ is also associ-

ated with a bit-vector bδ of length maxId(Q) that determines the

queries that select δ. This bit-vector is defined as follows:

bδ[i] =

8

>

>

>

<

>

>

>

:

0 if there is no query Qi inQ

1 if Qi references Dj ∧ δ satisfies cij

0 if Qi references Dj ∧ δ does not satisfy cij

1 if Qi does not reference Dj



The last case inserts an implicit TRUE predicate for a query Qi

that does not reference the dimension table. The reason is that Qi

does not filter fact tuples based on Dj , so implicitly it selects all

the fact tuples in Dj . The hash table also records a single comple-

mentary bitmap bDj
defined as follows: bDj

[i] = 1 if Qi does

not reference Dj and bDj
[i] = 0 otherwise. Essentially, bDj

is

the bitmap assigned to any tuple δ that does not satisfy any of the

predicates inQ and hence is not stored in HDj .

By definition, HDj stores only a subset of Dj . Each stored tuple

is further augmented with a bit-vector of size maxId(Q), which

is a moderate memory overhead. Given that the dimension tables

tend to grow at a much slower rate than the fact table (typically, by

a logarithmic rate [17, 23]), it is reasonable to expect that the hash

tables fit in main memory for modern hardware configurations. As

a concrete example, TPC-DS [23] employs 2.5GB of dimension

data for a 1TB warehouse; today, even a workstation-class machine

can be economically equipped with 16GB of main memory.

3.2.2 Processing Fact Tuples

We consider next the details of processing a fact tuple τ through

the CJOIN pipeline, starting with the Preprocessor. The Preproces-

sor attaches to τ a bit-vector bτ of length maxId(Q) that traces the

relevance of the tuple to different queries. This bit-vector is modi-

fied as τ is processed by Filters and it is used in the Distributor to

route τ to aggregation operators.

The bit-vector is initialized based on the predicates placed on the

fact table, as follows: bτ [i] = 1 if Qi ∈ Qi ∧ τ satisfies ci0 (i.e.,

the selection predicate on the fact table) and bτ [i] = 0 otherwise.

After bτ is initialized, the Preprocessor forwards it to its output

queue if bτ 6= 0. In the opposite case, τ can be safely dropped

from further processing, as it is guaranteed to not belong to the

output of any query in Q. Computing bτ involves evaluating a set

of predicates on τ , and thus it is necessary to employ an efficient

evaluation mechanism to ensure that the Preprocessor does not be-

come the bottleneck. This issue, however, is less crucial in practice,

since most queries place predicates solely on dimension tables.

Tuple τ passes next through the sequence of Filters. Consider

one such filter, corresponding to dimension table Dj . Let δ be the

joining dimension tuple for τ . The Filter probes HDj using the

foreign key of τ and eventually computes (as explained in the next

paragraph) a “filtering bit-vector” denoted by bτ1HDj
, which re-

flects the subset of queries that select δ through their dimension

predicates. The Filter thus joins τ with Dj with respect to all

queries in the workload by performing a single probe to HDj . Sub-

sequently, bτ is bitwise ANDed with bτ1HDj
. If this updated bτ

vector is 0, then the fact tuple can safely be dropped from further

processing, since it will not belong to the output of any query inQ;

otherwise it is passed to the output of the Filter. As an optimization,

it is possible to avoid completely the probing of HDj by checking

first whether bτ AND ¬bDj
is 0 (i.e., Dj does not appear in any

query Qi to which τ is relevant). In this case, τ is not relevant to

any queries that reference HDj and can be simply forwarded to the

next Filter.

The filtering bit-vector is computed as follows: if the probe finds

δ in HDj then bτ1HDj
= bδ , similar to the example of Figure 2;

otherwise, bτ1HDj
is set to bDj

, the bit-vector of any tuple that

is not stored in HDj . Given the definitions of bδ and bDj
, we

can assert the following key property for the filtering bit-vector:

bτ1HDj
[i] = 1 if and only if either Qi references Dj and δ is

selected by Qi, or Qi does not reference table Dj . This property

ensures that bτ AND bτ1HDj
results in a bit-vector that reflects

accurately the relevance of τ to workload queries up to this point.

This can be stated formally with the following invariant:

CJOIN Filtering Invariant Let Dd1
,..., Ddm be the dimension ta-

bles corresponding to the first m Filters in the CJOIN pipeline,

m ≥ 1. If a tuple τ appears in the output of the Filter corre-

sponding to Ddm , then we have bτ [i] = 1 if and only if Qi ∈ Q
and τ satisfies the predicates of Qi on the fact table and τ joins

with those dimension tuples in {Dd1
, . . . , Ddm} that also satisfy

the predicates of Qi.

Tuple τ eventually reaches the Distributor if its bit-vector is non-

zero after passing through all the Filters. Given that the Filters

cover all the dimension tables referenced in the current workload,

the invariant guarantees that bτ [i] = 1 if and only if τ satisfies all

the selection and join predicates of Qi.

The Distributor routes τ to the aggregation operator of each query

Qi for which bτ [i] = 1. The aggregation operator can directly ex-

tract any needed fact table attributes from τ . If the operator needs

to access the attributes on some dimension Dj , then it can use the

foreign key in τ to probe for the joining dimension tuple. A more

efficient alternative is to attach to τ memory pointers to the joining

dimension tuples as it is processed by the Filters. Specifically, let

δ be a tuple of Dj that joins to τ and assume that Qi references

Dj . Based on our definition of HDj , it is possible to show that δ is

in HDj when τ is processed through the corresponding Filter and

remains in memory until τ reaches the Distributor. This makes it

possible to attach to τ a pointer to δ after HDj is probed, so that the

aggregation operator can directly access all the needed information.

3.2.3 Cost of CJOIN Query Processing

The design of CJOIN has specific implications on the cost of

query processing, which we discuss below.

We consider first the end-to-end processing for a single fact tuple

through the CJOIN operator. Once a tuple is initialized in the Pre-

processor, if K is the total number of Filters in the pipeline, then

processing the fact tuple involves K probes and K bit-vector AND

operations in the worst case. Since the probe and the AND opera-

tion have limited complexity, and assuming that the Preprocessor

can initialize efficiently the bit-vector of the tuple, CJOIN can sus-

tain a high throughput between the continuous scan and the aggre-

gation operators. Moreover, the reliance on sequential scans as the

sole access method allows CJOIN to scale gracefully to large data

sets, without incurring the costs of creating and maintaining mate-

rialized views or indices on the fact table, or maintaining statistics.

We discuss now the cost of a single query. The response time of

a query evaluated with CJOIN is dominated by the time required to

loop around the continuous scan. This cost is relatively stable with

respect to the total number of queries in the workload, because the

I/O is shared across all queries and the cost of probing in each Fil-

ter (cost of a hash table lookup and cost of a bitwise AND) grows

at a low rate with the number of queries. Thus, as long as the rate

of query submission does not surpass the rate of query completion,

CJOIN yields response times with low variance across different de-

grees of concurrency. This property is crucial if we are to scale

effectively to a large number of concurrent queries.

An added bonus is that the current point in the continuous scan

can serve as a reliable progress indicator for the registered queries,

and it is also possible to derive an estimated time of completion

based on the current processing rate of the pipeline. Both of these

metrics can provide valuable feedback to users during the execution

of ad-hoc analytic queries in large data warehouses.

The predictability property implies that query response time is

bounded below by the cost of a full sequential scan of the fact ta-

ble. Conventional physical plans for star queries are likely to have

the same property; for instance, a common plan in commercial sys-

tems is a left-deep pipeline of hash joins with the fact table as the



outer relation. In principle, the large table scan can be avoided

by the use of indices or materialized views, but these structures

are generally considered too expensive in the DW setting, because

fact table indices have a prohibitively high maintenance cost, and

ad-hoc data analysis workloads may not be stable enough to iden-

tify useful views to materialize. A common method in practice is

to limit queries on specific partitions of the fact table; as will be

discussed in §6, this method can also be integrated in CJOIN with

similar benefits. In any case, we stress that CJOIN becomes yet one

more choice for the database query optimizer; it is always possi-

ble to execute queries with conventional execution plans if this is

estimated to be more efficient.

3.3 Query Admission and Finalization
Up to this point, we have examined the processing of fact tu-

ples assuming that the CJOIN pipeline has been initialized correctly

with respect to a given workload. In this section, we discuss how

the state of the CJOIN pipeline is updated when a new query is ad-

mitted, or when an existing query finishes its processing.

We use n to denote the id of the query in question. For a new

query, n is assigned as the first unused query id in the interval

[1,maxConc], where maxConc is the system-wide limit on the

maximum number of concurrent queries. To simplify our presenta-

tion, we assume without loss of generality that n ≤ maxId(Q).

3.3.1 Admitting New Queries

The registration of Qn is done through the Pipeline Manager,

which orchestrates the update of information in the remaining com-

ponents. This approach takes advantage of the fact that the Pipeline

Manager executes in parallel with the CJOIN pipeline, thus mini-

mizing the disruption in the processing of fact tuples.

The registration is performed in the Pipeline Manager thread us-

ing Algorithm 1. The first step is to update bit n of bDj
for each

dimension table that is referenced by Qi or appears in the pipeline

(line 3). Subsequently, the algorithm updates the hash tables for

the dimensions referenced in the query (line 11). For each such di-

mension table Dj , the Pipeline Manager issues the query σcnj
(Dj)

and updates HDj with the retrieved dimension tuples. If a retrieved

tuple δ is not already in HDj , then δ is inserted in HDj and its bit-

vector initialized to bDj
. We then set bδ[n]← 1 to indicate that δ

is of interest to Qn. At the end of these updates, all the dimension

hash tables are up to date with respect to the workloadQ ∪ {Qn}.
Having updated the dimension tables, the algorithm completes

the registration by installing Qn in the Preprocessor and the Dis-

tributor. This involves several steps. First, the Pipeline Manager

suspends the processing of input tuples in the Preprocessor, which

stalls the pipeline (line 17). This enables the addition of new Fil-

ters in the pipeline to cover the dimension tables referenced by the

query. (While new Filters are appended in the current pipeline,

their placement may change as part of the run-time optimization—

see §3.4.) Q is also updated to include Qn, which allows bit n of

the fact tuple bit-vector to be initialized correctly. Next, the first

unprocessed input fact tuple, say τ , is marked as the first tuple of

Qn, so that it is possible to identify the end of processing Qn (see

next paragraph). Finally, a special “query start” control tuple τn

that contains Qn is appended to the output queue of the Preproces-

sor, and the Preprocessor is resumed. The control tuple precedes

the starting tuple τ in the output stream of the Preprocessor and is

forwarded without filtering through the Filters and on to the Dis-

tributor. In turn, the latter uses the information in τQn to set up the

aggregation operators for Qn. Since τQn precedes any potential

results for Qn (the pipeline preserves the order of control tuples

relative to data tuples), we guarantee that the aggregation operators

Algorithm 1: Admitting a new query to the CJOIN pipeline.

Input: Query Qn

Data: A list L of dimension hash tables, initially empty
Let D be the set of dimension tables referenced by Qn1

Let D′ be the set of dimension tables in the pipeline2

foreach Dj ∈ D ∪ D′ do3

if Dj is not in the pipeline then4

Initialize HDj and bDj
based onQ ∪ {Qn}5

Append HDj to L6

else if Dj is referenced by Qn then7

bDj
[n] = 08

else9

bDj
[n] = 110

foreach Dj ∈ D do11

foreach δ ∈ σcnj
(Dj) do12

if δ is not in HDj then13

Insert δ in HDj14

bδ ← bDj15

bδ[n]← 1;16

Stall Preprocessor;17

foreach HDj in L do insert a Filter for HDj18

Q ← Q∪ {Qn};19

Set start of Qn to next tuple in Preprocessor’s input20

Append a control tuple τQn
in Preprocessor’s output21

Resume Preprocessor22

will not miss any relevant fact tuples.

It is important to note that query registration occurs in the Pipeline

Manager thread and thus it can proceed, up to line 17, in parallel

with the processing of fact tuples through the pipeline. This ensures

that other queries are minimally disrupted during the registration of

Qn. The concurrent update of the bit-vectors in dimension hash ta-

bles does not compromise the correctness of results, since the Pre-

processor continues to mark each fact tuple as irrelevant to query

Qn (bτ [n] = 0). Thus, even if bδ[n] is switched on for some tuple

δ (line 16), it does not lead to the generation of results for Qn until

after it becomes part of the workload in line 19, because bit n in

the fact tuples’ bit-vectors will be 0 until that point.

3.3.2 Finalizing Queries

Query Qn is finalized when the continuous scan wraps around

the starting fact tuple τ . Upon encountering τ in its input, the Pre-

processor first removes Qn from Q, which ensures that the bit-

vector of τ (and of any subsequent tuple) will have bit n switched

off. This ensures that Qn becomes irrelevant for the filtering of

fact tuples. Subsequently, the Preprocessor emits an “end of query”

control tuple that precedes τ in the output stream. The control tu-

ple is handled in a fashion similar to the query-start tuple and is

forwarded through the pipeline to the Distributor, which finalizes

the aggregation operators of Qn and outputs their results. Since the

control tuple precedes τ , we ensure that the aggregation operators

of Qn will not consume any fact tuple more than once.

The final step is to clear the dimension hash tables from any in-

formation pertinent to Qn. This is handled in the Pipeline Man-

ager thread according to Algorithm 2, which essentially reverses

the updates performed when the query was admitted. This clean-

up may render certain information in the hash tables useless. For

instance, if for some tuple δ in HDj we have δ[i] = 0, then δ can

be removed. In turn, if HDj becomes empty, then it can be re-

moved from the pipeline along with the corresponding Filter. Of

course, the latter requires a stall of the pipeline in order to recon-

figure the Filter sequence. Note that this “garbage collection” can



Algorithm 2: Removing a finished query from the pipeline.

Input: Query Qn.
Data: A list L of dimension hash tables, initially empty.
Let D be the set of dimension tables referenced by Qn ;1

Let D′ be the set of dimension tables in the pipeline ;2

foreach Dj ∈ D′ do3

bDj
[n] = 1;4

foreach Dj ∈ D do5

foreach δ ∈ HDj do6

bδ[n]← 0;7

if bδ = 0 then remove δ from HDj8

if HDj = ∅ then Append HDj to L9

if L 6= ∅ then10

Stall pipeline;11

foreach HDj ∈ L do remove corresponding Filter;12

Resume pipeline;13

be done asynchronously (as long as the query identifiers are cor-

rectly handled); one could also maintain usage bits and evict the

least-recently-used tuples according to memory needs.

3.3.3 Correctness

The correctness of CJOIN with respect to query finalization hinges

upon two properties. First, the continuous scan returns fact tuples in

the same order once resumed. This is necessary so that the Prepro-

cessor can identify correctly when the fact table has been scanned

exactly once for each query. It is reasonable to expect that this prop-

erty holds for real-world systems. The second property is that, if a

control tuple τ ′ is placed in the output queue of the Preprocessor

before (respectively after) a fact tuple τ , then τ ′ is not processed in

the Distributor after (respectively before) τ . This property guaran-

tees that the aggregation operators of a query neither miss relevant

tuples nor process them more than once. This property needs to be

enforced by the implementation of the CJOIN pipeline.

3.4 Pipeline Optimization
The order of Filters in the pipeline influences performance, be-

cause it determines the expected number of probes for each fact

tuple. Drawing a correspondence to the ordering of joins in a sin-

gle query plan, we expect that a good order will apply the most

selective Filters first, in order to drop fact tuples early. We there-

fore face the following optimization problem: Given a workloadQ
and a CJOIN pipeline for Q, determine an ordering of the Filters

that minimizes the expected number of probes for each fact tuple.

One complicating factor is that the selectivity of each Filter de-

pends on the workloadQ, since a Filter encodes the join predicates

of several queries on a specific dimension table. Thus, if the work-

load is unpredictable, as is the case with ad-hoc analytics in a data

warehouse, then the optimal order might change as the query mix

changes. This observation suggests an online approach to optimiz-

ing the order of Filters in the CJOIN pipeline. The idea is to monitor

at run-time the selectivity of each Filter and then optimize the order

based on the gathered statistics. This continuous process of mon-

itoring and re-optimizing can be performed asynchronously inside

the Pipeline Manager thread.

Previous work introduced several techniques for optimizing the

execution order of relational operators on-the-fly [4, 5, 13]. In par-

ticular, the optimization of the CJOIN pipeline maps precisely to

the following problem that has been investigated in the context of

streaming database systems: We are given a conjunction of pred-

icates that are applied on the tuples of an infinite stream, and the

goal is to determine an order for evaluating the predicates that min-

imizes the expected processing cost of each stream tuple. The cor-

respondence to CJOIN appears when viewing Filters as predicates,

and the continuous scan as an infinite stream. Moreover, since each

Filter has a fixed cost—one probe of the in-memory hash table

and one bitwise AND operation—minimizing the expected process-

ing cost is equivalent to minimizing the expected number of Filter

probes. In our work, we employ the techniques of Babu et al. [5]

to implement the run-time optimization of the Filter ordering. A

detailed discussion of these techniques is beyond the scope of our

paper. We do note, however, that other techniques are applicable

too, such as those introduced by Liu et al. [13].

3.5 Handling Updates
Up to this point, we have considered the case of read-only trans-

actions that reference the same data snapshot. This enables group-

ing all queries of these transactions in the same CJOIN operator

that performs a single continuous scan of the specific snapshot.

In the remainder of this section we examine adaptations of CJOIN

when this assumption is relaxed, i.e., when the queries correspond

to transactions with different snapshot ids. (As mentioned in §2,

we assume snapshot-based isolation, since this is the norm in prac-

tice.) This scenario arises when read-only transactions are inter-

leaved with updates, or when the same transaction contains both

queries and updates. In all cases that we examine, we focus on up-

dates that reference only the fact table. In the rare event of updates

on dimension tables, we assume that the admission of new queries

in CJOIN is serialized with the transaction of the update.

We consider two possibilities for adapting CJOIN to this sce-

nario, that depend on the functionality of the continuous scan op-

erator. The first possibility is that the continuous scan operator can

return all fact tuples corresponding to the snapshots in the current

query mix. This essentially requires the scan to expose the multi-

version concurrency control information for the retrieved fact tu-

ples. Then, the association of a query Qi to a specific snapshot can

be viewed as a virtual fact table predicate, and it can be evaluated by

the Preprocessor over the concurrency control information of each

fact tuple. The remaining CJOIN mechanism remains unchanged.

Of course, the benefits of the CJOIN operator are decreased as the

snapshots referenced by the transactions become disjoint, but we

believe this case to be infrequent in practice.

The second possibility is when the previous functionality is not

provided, i.e., the scan only returns tuples of a specific snapshot. In

this case, we create several CJOIN operators, one for each snapshot

that is referenced, and register queries to the respective operator.

This approach could degenerate into a single plan per query, if each

transaction in our workload mix referenced different snapshot ids.

This, however, is an exceptionally rare event in practice.

4. CJOIN IMPLEMENTATION
In this section, we discuss the implementation of CJOIN on a

multi-core system, the predominant hardware architecture in real-

world deployments today and in the near future. Nevertheless, we

expect CJOIN to yield significant benefits on single-core/single-

CPU hardware as well.

An efficient implementation of CJOIN on a multi-core architec-

ture requires that the operator’s components (Preprocessor, Filters,

and Distributor) be mapped to multiple threads, which in turn are

mapped by an operating system to different processor cores. As an

example, one obvious mapping is to assign each component to a

different thread and then employ tuple queues to link the pipeline.

However, the mapping of CJOIN components to threads must strike

a balance between the degree of parallelism, the overhead of pass-

ing tuples between the threads, and the utilization of processor



caches. Passing a tuple from one thread to another requires syn-

chronization between the threads and also results in data cache

misses if the two threads execute on different cores. On the other

hand, executing components in different threads improves cache

locality if the internal state is read-mostly (such as the dimension

hash tables) and can be partitioned among multiple threads.

Since the internal states of the Preprocessor and Distributor are

frequently updated, we chose to map each to a single thread as

shown in Figure 3. Filters, where the bulk of CJOIN processing

happens, do not have any internal state other than the dimension

hash tables, which are read-mostly. Our implementation allows for

a flexible mapping of Filters to threads by collapsing multiple ad-

jacent Filters to a Stage (to reduce the overhead of passing tuples

between the threads) and assigning multiple threads to each Stage

(to increase parallelism). This approach gives rise to the following

possible configurations:

•A vertical configuration assigns a single Stage to each Filter, with

a (potentially) different number of threads per Stage. This design

favors the affinity of Stages to cores so that instruction and data

locality is maximized. On the other hand, we expect a large number

of data cache misses when tuples are transferred between Filters.

Moreover, the problem of pipeline optimization now acquires an

extra free variable: the number of threads per Stage.

• A horizontal configuration assigns a single Stage to the entire

sequence of Filters, and all the threads are assigned to this single

Stage. This implies that several copies of the Filter sequence are

running in parallel (one for each thread) and accessing the same

hash tables. This scheme avoids data cache misses when tuples are

passed between Filters, but may incur more misses on the accesses

of the hash tables, since each thread needs to access more data.

Pipeline optimization involves solely ordering the Filters.

• A hybrid configuration employs several Stages and an assign-

ment of threads per Stage. This configuration can strike a balance

between the two extremes of a horizontal vs. vertical configuration.

More concretely, the cost of tuple passing is incurred only between

Stages, and each thread needs to access solely the dimension ta-

bles that exist within a Stage. However, the run-time optimization

becomes more complex, as there are now three free variables: the

order of Filters, the boxing of Filters in Stages, and the assignment

of threads to Stages.

Preprocessor Filter Filter Filter Filter Filter Distributor

Stage Stage

Figure 3: An example mapping of a CJOIN pipeline to threads.

Our experiments indicate that the extra parallelism resulting from

using multiple Stages does not outweigh the cost of forwarding the

tuples between them. Consequently, we henceforth assume the hor-

izontal configuration, and we achieve parallelism by allocating sev-

eral threads to the single Stage.

A few well-known design principles turned out to be crucial to

achieving good CJOIN performance in our prototype. To reduce

the overhead of thread scheduling, we wake up a consumer thread

only when its input queue is almost full. Similarly, we resume the

producer thread only when its output queue is almost empty. We

also reduce the overhead of queue synchronization by having each

thread retrieve or deposit tuples in batches, whenever possible. Fi-

nally, we reduce the cost of memory management synchronization

by using a specialized allocator for fact tuples. The specialized al-

locator preallocates data structures for all in-flight tuples, whose

number is determined based on the upper bound on the length of a

tuple queue and the upper bound on the number of threads. Given

the pool of preallocated tuples, the allocator reserves and releases

tuples using bitmap operations, which entail a single machine in-

struction on most CPUs, thus being both atomic and efficient.

5. EXTENSIONS
In this section, we revisit some of the assumptions made in §2.

We discuss ways in which CJOIN can be adapted to accommodate

the lifting of these assumptions.

Galaxy Schemata. A galaxy schema involves several fact rela-

tions, each of which is the center of a star schema. Star queries

remain common in this setting and can thus be evaluated using

CJOIN, but it is also common to observe queries involving the join

of several fact tables (typically two).

CJOIN can benefit the evaluation of these queries even though

it was not designed for this specific case. Concretely, consider a

query Q with a single fact-to-fact join predicate. By using the fact-

to-fact join as a pivot, we can express the evaluation of Q as the

join between the results of two star queries, say Qa and Qb, over

the corresponding fact tables. It now becomes possible to register

each Qi with the CJOIN operator that handles the concurrent star

queries on the corresponding fact table, the difference being that

the Distributor pipes the results of Qi to a fact-to-fact join operator

instead of an aggregation operator. Notice that each CJOIN operator

will be evaluating concurrently several star queries that participate

in concurrent fact-to-fact join queries. Thus, the overall idea is to

use CJOIN as a physical operator that can evaluate efficiently the

“star sub-plans” of bigger query plans.

Column Stores. Column stores have been gaining traction as a

scalable system architecture for large data warehouses [1, 2, 22]. It

is possible to adapt CJOIN in this setting as follows: The continuous

fact table scan can be realized with a continuous scan/merge of only

those fact table columns that are accessed by the current query mix.

Thus, CJOIN can take advantage of the columnar store in order

to reduce the volume of data transferred by the scan. The other

case that we need to examine is the evaluation of filter queries over

dimension tables, which occurs as part of a new query registration.

This case is readily handled by the column store, since CJOIN uses

the existing query processing infrastructure to retrieve the resulting

dimension tuples.

Compressed Tables. Data warehouses may employ compression

to reduce the amount of I/O and memory bandwidth used for data

transfer [1, 19]. CJOIN makes no assumptions about the physi-

cal storage of tuples, except that it is possible to evaluate predi-

cates, extract fields, and retrieve result tuples for dimension queries.

Thus, compression of tables is an orthogonal technique that can be

easily incorporated in CJOIN. For instance, the continuous scan

can bring in compressed tuples and decompress on-demand and on-

the-fly as needed for probing the dimension hash tables. Another

option is to use the partial decompression technique proposed in

BLINK [19] in order to evaluate predicates efficiently on the com-

pressed fact table.

Fact Table Partitioning. The organization of the fact table in parti-

tions may arise naturally from the operational semantics of the DW,

e.g., the fact table may be range-partitioned by a date attribute cor-

responding to the loading of new data. The optimizer can take ad-



vantage of this partitioning in order to limit the execution of a query

to a subset of the fact table. Thus, a query that sets a range pred-

icate on the partitioning date attribute will need to examine only a

subset of the partitions. In principle, this approach can reduce sig-

nificantly the response time of an individual query, but concurrent

queries can still lead to random I/O, which has crippling effects on

overall performance.

CJOIN can take advantage of partitioning in order to reduce the

volume of data accessed by the continuous scan and also to reduce

query response time. More concretely, the query registration algo-

rithm can be modified to tag each new query with the set of parti-

tions that it needs to scan. This set can be determined by correlating

the selection predicates on the fact table with the specific partition-

ing scheme. The Preprocessor can then realize the continuous scan

as a sequential scan of the union of identified partitions. At the end

of each partition, the end-of-query control tuple can be emitted for

the queries that have covered their respective set of partitions, thus

allowing queries to terminate early.

Efficient Aggregate Computation. The current CJOIN design for-

wards the resulting tuples to aggregation operators that compute

the final query results. There may be opportunities to optimize this

final stage, e.g., by sharing work among aggregation operators, de-

pending on the current query mix. This optimization is orthogonal

to CJOIN and can be performed using existing techniques [8, 18].

Memory-resident Databases. The design of CJOIN was motivated

by large-scale data warehouses, where the fact table is orders of

magnitude larger that the available main memory. However, it is

straightforward to employ CJOIN for a memory-resident data set as

well. One difference is that the sharing of the continuous scan may

not have as significant an effect as when the fact table resides on

disk. Still, CJOIN will enable work sharing among the concurrent

queries, which is important in achieving high throughput.

Indexes and Materialized Views. As discussed earlier, fact table

indexes are not likely to be useful in the DW setting that we con-

sider, due to their high maintenance cost. Similarly, the inherent

volatility of ad-hoc queries limits the appearance of common pat-

terns and hence the importance of materialized views that involve

the fact table. It is more common (and affordable) for data ware-

houses to maintain indexes and views on dimension tables. CJOIN

takes advantage of these structures transparently, since they can op-

timize the dimension filter queries that are part of new query regis-

tration (see also Algorithm 1).

6. EVALUATION
This section reports the results of an experimental evaluation of

our CJOIN prototype. We investigate the performance characteris-

tics of CJOIN and compare it to real-world database systems using

workloads of different characteristics. In particular, we focus on

the following high-level questions:

•Which is the best way to map the components of a CJOIN pipeline

to CPUs? (§6.2.1)

• How does CJOIN throughput scale with increasing numbers of

concurrent queries? (§6.2.2)

• How sensitive is the throughput of CJOIN to workload character-

istics? (§6.2.3)

• How does the size of a data warehouse impact CJOIN’s perfor-

mance? (§6.2.4)

6.1 Methodology
We describe here the systems, data sets, workloads, and evalua-

tion metrics that characterize our experiments.

6.1.1 Systems

Our CJOIN prototype is implemented as a multi-threaded pro-

cess executing on top of the PostgreSQL database system. CJOIN

uses PostgreSQL to issue queries over the dimension tables for the

registration of new queries. The continuous scan is implemented

by issuing successive SELECT * FROM F queries to PostgreSQL.

To increase the throughput of the scan, we have implemented a

fast tuple copy mechanism between PostgreSQL and CJOIN using

a shared memory buffer. Our prototype supports both the horizontal

(one Stage for all Filters) and vertical (one Stage per Filter) config-

urations described in §4.

We compare CJOIN to both a widely used commercial database

system (henceforth referred to as “System X”) and PostgreSQL. We

tune both systems (e.g., computation of optimization statistics, al-

lowing a high number of concurrent connections, scans using large

data chunks, etc.) to ensure that the experimental workloads are

executed without obvious performance problems. We have veri-

fied that both systems employ the same physical plan structure to

evaluate the star queries in the experimental workloads, namely, a

pipeline of hash joins that filter a single scan of the fact table. The

small size of the dimension tables implies that they can be cached

efficiently in main memory and hence their processing is expected

to be very fast. As a result, we do not tune the physical design of

any of the database systems with indices or materialized views on

the dimension tables, since this would not improve query response

time (we verified this claim for the experimental workloads). We

also avoid using indices and views on the fact table, for the obvi-

ous reasons mentioned in previous sections. For PostgreSQL, we

enable the shared-scans feature to maximize its work sharing.

Our experimental server has two quad-core Intel Xeon CPUs,

with a unified 6 MB L2 cache on each CPU shared among all 4

cores and 8 GB of shared RAM. The machine has four HP 300GB

15K SAS disks, arranged in a hardware-controlled RAID-5 array.

6.1.2 Data Set and Workload

We employ the data set and queries defined in the Star Schema

Benchmark (SSB) [17]. We choose this particular benchmark be-

cause it models a realistic DW scenario and targets exactly the class

of queries that we consider in our work.

We generate instances of the SSB data set using the data genera-

tor supplied with the benchmark. The size of each instance is con-

trolled by a scale factor parameter denoted as sf . A value sf = X

results in a data set of size X GB, with 94% of the data correspond-

ing to the fact table. We limit the maximum value of the scale factor

to 100 (i.e., a 100GB data set) to ensure the timely execution of the

test workloads on our single experimental machine.

We generate workloads of star queries from the queries speci-

fied in the benchmark. Specifically, we first convert each bench-

mark query to a template, by substituting each range predicate in

the query with an abstract range predicate, e.g., d_year >= 1992

and d_year <= 1997 is converted to d_year >= X and d_year

<= Y, where X and Y are variables. To create a workload query, we

first sample a query template and then substitute the abstract ranges

with concrete predicates based on a parameter s that controls the se-

lectivity of the predicate. Thus, s allows us to control the number

of dimension tuples that are loaded by CJOIN per query, as well as

the size of the hash tables in the physical plans of PostgreSQL and

System X.

Note that the original benchmark specification contains 13 queries

of varying complexity. We excluded queries Q1.1, Q1.2 and Q1.3

from the generation of workload queries because they contain se-

lection predicates on fact table attributes, and this functionality is

not yet supported by our prototype. This modification does not af-



fect the usefulness of the generated workloads, since the omitted

queries are the simplest ones in the SSB benchmark and the only

ones that do not have a group-by clause.

6.1.3 Evaluation Metrics

We measure the performance of a system with respect to a spe-

cific workload using query throughput (in queries per hour) and the

average and standard deviation of response times for each of the 10

SSB query templates. We employ the standard deviation to quan-

tify performance stability and predictability.

For each tested system, we execute the workload using a single

client and a cold cache. The degree of query concurrency is con-

trolled by an integer parameter n, as follows: the client initially

submits the first n queries of the workload in a batch, and then sub-

mits the next query in the workload whenever an outstanding query

finishes. This way, there are always n queries executing concur-

rently. To ensure that we evaluate the steady state of each system,

we measure the above metrics over queries 256...512 in the work-

load (n = 256 is the highest degree of concurrency in our experi-

ments). The fact that we measure a fixed set of queries allows us to

make meaningful comparisons across different values of n.

6.2 Experiments
This section presents a subset of the experiments that we con-

ducted to evaluate the effectiveness of the CJOIN operator.

6.2.1 Pipeline Configuration

We begin with a comparison of the vertical and horizontal CJOIN

configurations that are supported by our prototype. The vertical

configuration maps each Filter to a distinct Stage, which implies

that Filters work in parallel with each other. The horizontal con-

figuration boxes all Filters in a single Stage that is assigned several

threads. Thus, each thread evaluates in parallel the sequence of

Filters for a subset of the fact tuples. As discussed in §4, the ver-

tical and horizontal configurations represent the two extremes for

mapping the CJOIN operator to a multi-core system.

We evaluate the performance of each configuration as we vary

the total number of threads in CJOIN. Each configuration has the

minimum number of threads needed for its execution; we also set

an upper limit so that each CPU core does not execute more than

one “active” thread. Specifically, we always set aside three cores

for the PostgreSQL process and the Preprocessor and Distributor

threads. This leaves five cores out of the eight available on our

experimental machine, so we use this number as the upper limit for

the number of Stage threads. For the horizontal configuration, all

available threads go to the single Stage. The vertical configuration

requires at least four threads (there are four Filters corresponding

to the dimension tables in the SSB data set) and, if there is a fifth

thread available, we assign it to the first Stage.

Figure 4 shows the query throughput of the two configurations

as we vary the number of Stage threads. The results show clearly

that the horizontal pipeline configuration consistently outperforms

the vertical configuration, as long as it has more than one thread

assigned to the single Stage. Upon closer inspection, we found that

the overhead of passing tuples between threads, which includes L2

data cache misses and thread synchronization, outweighs the ben-

efits gained by the parallelism of the vertical configuration. Based

on these results, we focus the subsequent experiments on the hori-

zontal configuration for the CJOIN operator.

6.2.2 Influence of Concurrency Scale

The next set of experiments evaluates the performance of the

three systems as we increase n, the degree of query concurrency.
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Figure 4: The effect of pipeline configuration on performance.

Ideally, a system with infinite resources would exhibit linear scal-

ing: an increase of n by a factor k would increase throughput by the

same factor. In practice, we expect a sub-linear scale-up, due to the

limited resources and the interference among concurrent queries.

Figure 5 shows query throughput for the three systems as a func-

tion of n (measurements are gathered with a 100GB data set and

selectivity s = 0.01). An immediate observation is that CJOIN de-

livers a significant improvement in throughput compared to System

X and PostgreSQL. The improvement can be observed for n ≥ 32
and reaches up to an order of magnitude for n = 256.
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Figure 5: Query throughput scale-up with number of queries.

CJOIN achieves the ideal linear scale-up for 1 ≤ n ≤ 128. In-

creasing n from 128 to 256 results in a sub-linear query throughput

increase of 133%. We profiled the CJOIN executable and found that

bitmap operations took up a large fraction of running time for this

particular n, and so we believe that the sub-linear scale-up is due

mostly to the specific bitmap implementation we employ. Since

the efficiency of bitmap operations is crucial for CJOIN’s scalabil-

ity, we plan to replace the bitmap implementation.

Unlike CJOIN, the query throughputs of System X and Post-

greSQL actually decrease when the number of concurrent queries

increases past 32. As expected, this decrease is a consequence of an

increased competition among all concurrently executing queries for

both I/O bandwidth (for scan) and main memory (for hash tables).

We examine next the predictability of each system with respect

to query response time. A system with predictable performance

delivers a constant query response time independently of the num-

ber of queries that execute concurrently. To quantify this notion

of predictability, we report the response times of queries generated

from the template corresponding to SSB query Q4.2, which is one

of the most complex queries in the benchmark (it joins with more



dimension tables than most other queries and the cardinality of its

Group-By is among the largest). The results are qualitatively the

same for the other templates in the benchmark.

Figure 6 shows the average response time for queries conforming

to template Q4.2 as a function of n. When increasing the number

of concurrent queries n from 1 to 256, the response time of System

X grows by a factor of 19 and the response time of PostgreSQL

grows by a factor of 66. These are precisely the undesirable perfor-

mance patterns that lead to “workload fear” in existing DW plat-

forms. CJOIN response time, on the other hand, grows by less than

30%, which is a small degradation in performance if one takes into

account that the number of queries range over two orders of mag-

nitude. Our measurements of deviation indicate that all systems

deliver relatively stable query response times in steady state, al-

though CJOIN does better: the standard deviation of response time

is within 0.5% of the average for CJOIN, 5% for System X, and 9%

for PostgreSQL.
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Figure 6: Predictability of query response time.

At this point, we quantify the overhead of query submission in

CJOIN as we vary n. We focus again on queries matching tem-

plate Q4.2 and measure the total time from the submission of the

query up until the point the “start query” control tuple is inserted

in the pipeline. This period represents the interval during which

the submitted query competes for resources with the remainder of

the pipeline, and thus it is interesting to examine its magnitude for

different parameters of the workload.

Table 1 shows that the time to submit a query does not depend on

the number of active queries. Moreover, the “interference” interval

is small compared to the total execution time of each query. These

results indicate a negligible overhead for registering a query.

n 32 64 128 256

Submission time (sec) 2.4 2.4 2.4 2.3

Response time (sec) 724.8 723.1 759.0 861.2

Table 1: Influence of concurrency on query submission time.

6.2.3 Influence of Predicate Selectivity

In the next set of experiments we evaluate the performance of

the three systems as we increase s, the selectivity of the query

template predicates. Increasing s forces all evaluated systems to

access more data to answer queries. Therefore, we expect the per-

formance to degrade at least linearly with s. However, other factors

may contribute to a super-linear degradation, e.g., hash tables may

not fit into L2 caches, or System X and PostgreSQL may thrash by

spilling data to temporary disk files.

Figure 7 shows query throughput for all three systems as a func-

tion of s (we again use a 100 GB data set with n = 128 concur-

rent queries). First, we observe that CJOIN continues to outper-

form System X and PostgreSQL for all settings of s. However,

we observe that the gap is reduced when s = 10%, which we in-

vestigate below. Second, query throughputs of CJOIN and System

X do indeed drop approximately linearly with s as expected. We

cannot draw any conclusions about PostgreSQL, because we have

only two data points: for s = 10%, we terminated the experiment,

because PostgreSQL took excessive amounts of time. Overall, we

find CJOIN reacts predictably to changes in workload selectivity.
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Figure 7: Influence of query selectivity on throughput.

As noted above, the performance of CJOIN decreases signifi-

cantly for higher values of s. Essentially, the dimension hash ta-

bles have to hold an increased number of tuples, which has adverse

effects on cache locality and hence access times. Moreover, as we

explain below, the overhead of submitting new queries grows sub-

stantially, which contributes to the slow down of the operator.

Table 2 reports the overhead of new query submission for differ-

ent values of s. When s increases, it is more expensive to evaluate

the predicates of newly submitted queries. The dimension hash ta-

bles also grow larger, and hence it is more expensive to update them

when a new query arrives. On the other hand, there are fixed costs

of new query admission that do not depend on s, including the de-

lay to submit predicate queries to the underlying PostgreSQL, to

disconnect and drain the pipeline, and to update the metadata that

tracks active queries in the system. As shown in the table, the fac-

tors independent of s are significant for s ≤ 1%, but the factors

dependent on s become dominant for s = 10%.

Predicate selectivity (%) 0.1 1 10

Submission time (sec) 1.6 2.4 11.6

Response time (sec) 707.2 759.0 3418.0

Table 2: Influence of predicate selectivity on query submission

time.

6.2.4 Influence of Data Scale

In the next set of experiments, we evaluate the performance of

the three systems as we increase sf , the scale factor that controls

the size of the SSB data set. A scale factor sf = α implies a data

set of α GB. Ideally, query throughput is inversely proportional

to sf , since queries should take k times longer to complete on a

k-times larger data set. Consequently, we expect the normalized

query throughput, defined as a product of query throughput and sf ,

to remain approximately constant as sf increases.



Figure 8 shows normalized query throughput for the three sys-

tems as a function of sf (we use a workload of selectivity s = 1%
and n = 128 concurrently executing queries). We observe that

CJOIN outperforms System X for sf ≥ 1 and PostgreSQL for all

values of sf . Moreover, the performance gap increases with sf :

CJOIN delivers only 85% of query throughput of System X when

sf = 1, but outperforms System X by a factor of 6 when sf = 100.

Similarly, CJOIN outperforms PostgreSQL by a factor of two when

sf = 1, and by a factor of 28 when sf = 100.
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Figure 8: Influence of data scale on throughput.

Comparing the trends of query throughput, we observe that the

normalized query throughput of System X and PostgreSQL de-

creases with sf , as expected, yet the normalized query through-

put of CJOIN actually increases with sf . The explanation lies in

the overhead of new query submission. As shown in Table 3, the

overhead drops relative to the query response time as sf increases.

The reason is twofold: (a) the fixed overhead of query submission

(e.g., pipeline disconnection, or submission of predicate queries to

the underlying PostgreSQL) becomes less significant as query re-

sponse time grows with sf , and (b) the overhead that depends on di-

mension table size (e.g., evaluating dimension table predicates and

updating dimension hash tables) does not grow linearly with sf , be-

cause some SSB dimension tables are fixed in size (e.g., date), and

some grow logarithmically with sf (e.g., supplier and customer).

Consequently, the cost of query submission becomes less signifi-

cant as sf increases, and this has a positive effect on total perfor-

mance.

Scale factor 1 10 100

Submission time (sec) 0.4 0.7 2.4

Response time (sec) 18.8 105.1 759.0

Table 3: Influence of data scale on query submission overhead.

7. CONCLUSIONS AND FUTURE WORK
We presented the design of CJOIN, a novel operator for the con-

current evaluation of large numbers of star-schema queries. The

CJOIN design leverages sharing common parts of execution plans

of multiple star-schema queries that use the same fact table. More-

over, such sharing does not require the queries to be optimized or

even submitted in a batch. We presented an empirical study of

CJOIN using the Star-Schema Benchmark. Our results demonstrate

that CJOIN consistently outperforms both a widely used commer-

cial database system and PostgreSQL on a variety of workloads.

Furthermore, CJOIN delivers one to two orders of magnitude im-

provement when executing 256 concurrent queries.
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