
Data Integration for the Relational Web

Michael J. Cafarella
∗

University of Washington
Seattle, WA 98195, USA

mjc@cs.washington.edu

Alon Halevy
Google, Inc.

Mountain View, CA 94043, USA
halevy@google.com

Nodira Khoussainova
University of Washington
Seattle, WA 98195, USA

nodira@cs.washington.edu

ABSTRACT
The Web contains a vast amount of structured information such
as HTML tables, HTML lists and deep-web databases; there is
enormous potential in combining and re-purposing this data in
creative ways. However, integrating data from this relational web
raises several challenges that are not addressed by current data
integration systems or mash-up tools. First, the structured data
is usually not published cleanly and must be extracted (say, from
an HTML list) before it can be used. Second, due to the vastness
of the corpus, a user can never know all of the potentially-relevant
databases ahead of time (much less write a wrapper or mapping
for each one); the source databases must be discovered during the
integration process. Third, some of the important information
regarding the data is only present in its enclosing web page and
needs to be extracted appropriately.

This paper describes Octopus, a system that combines search,
extraction, data cleaning and integration, and enables users to
create new data sets from those found on the Web. The key idea
underlying Octopus is to offer the user a set of best-effort opera-
tors that automate the most labor-intensive tasks. For example,
the Search operator takes a search-style keyword query and re-
turns a set of relevance-ranked and similarity-clustered structured
data sources on the Web; the Context operator helps the user
specify the semantics of the sources by inferring attribute values
that may not appear in the source itself, and the Extend opera-
tor helps the user find related sources that can be joined to add
new attributes to a table. Octopus executes some of these opera-
tors automatically, but always allows the user to provide feedback
and correct errors. We describe the algorithms underlying each of
these operators and experiments that demonstrate their efficacy.

1. INTRODUCTION
The Web contains a massive amount of structured data

such as tables [4] and lists, and there is enormous potential
in combining and re-purposing this data. For example, con-
sider the tasks of creating a comprehensive table of VLDB
PC members of the last ten years, or of collecting a list
of cafes all over the world with various attributes such as
customer-rating and wifi-availability. The relevant data is
available on the Web, but performing these tasks today is a

∗Work done while all authors were at Google, Inc.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

time-consuming and burdensome operation with little sup-
port from existing database and search systems.

In principle, we could approach this challenge as a data in-
tegration problem, but at a bigger scale. In fact, some tools
exist today for lightweight combination of sources found on
the Web [14, 21]. However, these tools and the traditional
data integration approach fall short in several ways. First,
simply locating relevant data sources on the Web is a major
challenge. Traditional data integration tools assume that
the relevant data sources have been identified apriori. This
assumption is clearly unreasonable at the Web’s vast scale.
Thus, we need a system that integrates well with search and
presents the user with relevant structured sources.

Second, most data sources are embedded in Web pages
and must be “prepared” before they can be processed. This
step involves extracting the relational data from the sur-
rounding HTML. Traditional systems (and Web tools that
assume XML-formatted inputs) assume datasets that are al-
ready reasonably clean and ready to be used. On the Web,
assuming XML data hugely limits the number of possible
data sources, and thus the usefulness of the overall data in-
tegration tool. Hence, our system needs to offer Web-specific
data-extraction operators.

Third, the semantics of Web data are often implicitly tied
to the source Web page and must be made explicit prior to
integration. For example, there are multiple tables on the
Web with VLDB PC members, but the year of the confer-
ence is in the Web page text, not the table itself. In contrast,
traditional data integration systems assume that any extra
data semantics are captured by a set of hand-made semantic
mappings, which are unavailable for a generic data source on
the Web. Thus, our system must be able to recover any rel-
evant and implicit columns for each extracted data source.

Finally, data integration systems have been tailored for
the use case in which many similar queries are posed against
a federation of stable data sources. In contrast, our aim is
to support a Web-centric use case in which the query load
consists of many transient tasks and the set of data sources
is constantly changing. (Indeed, a particular set of sources
may be combined just once.) Hence, our system cannot
require the user to spend much time on each data source.

This paper describes Octopus, a system that combines
search, extraction, data cleaning, and integration, and en-
ables users to create new data sets from those found on the
Web. The key idea underlying Octopus is to offer the user
a set of best-effort operators that automate the most labor-
intensive tasks. For example, the Search operator takes a
search-style keyword query and returns a set of relevance-



ranked and similarity-clustered structured data sources on
the Web. The Context operator helps the user specify the
semantics of the sources by inferring attribute values that
may not appear in the source itself. The Extend opera-
tor helps the user find related sources that can be joined to
add new attributes to a table. Octopus executes some of
these operators automatically, but always allows the user to
provide feedback and correct errors. The choice of opera-
tors in Octopus has a formal foundation in the following
sense: each operator, as reflected by its intended seman-
tics, is meant to recover some aspect of source descriptions
in data integration systems. Hence, together, the operators
enable creating integrations with a rich and well-defined set
of descriptions.

This paper describes the overall Octopus system and its
integration-related operators. (Octopus also has a number
of extraction-related operators that we do not discuss.) The
specific contributions of this paper are:

• We describe the operators of the Octopus System and
how it enables data integration from Web sources.

• We consider in detail the Search, Context, and Ex-
tend operators and describe several possible algorithms
for each. The algorithms explore the tradeoff between
computational overhead and result quality.

• We evaluate the system experimentally, showing high-
quality results when run on a test query load. We
evaluate most system components using data gathered
from a general Web audience, via the Amazon Mechan-
ical Turk.

We overview Octopus and give definitions for each of
the operators in Section 2. We describe the algorithms for
implementing the operators in Section 3. Sections 4 and 5
describe our implementation and experiments, and evaluate
the algorithmic tradeoffs on an implemented system. Fi-
nally, we conclude with a discussion of related and future
work in Sections 6 and 7.

2. OCTOPUS AND ITS OPERATORS
We begin by describing the data that is manipulated by

Octopus (Section 2.1), and then provide the formal mo-
tivation for our operators (Section 2.2). In Section 2.3 we
define the Octopus operators.

2.1 Data model
Octopus manipulates relations extracted from Web pages.

The system currently uses data extracted from HTML tables
and HTML lists, but in principle can manipulate data ob-
tained from any information extraction technique that emits
relational-style data (e.g., we might use a transformed ver-
sion of the outputs of [10, 17]). We extract data from HTML
tables using techniques described in [3], and process HTML
lists using techniques from [9].

Each extracted relation is a table T with k columns. There
are no strict type or value constraints on the contents of a
single column in T . However, the goal of Octopus’s extrac-
tion subsystem is for each T to “look good” by the time the
user examines the relation. A high-quality relation tends to
have multiple domain-sensitive columns, each appearing to
observe appropriate type rules. That is, a single column will
tend to contain only strings which depict integers, or strings

which are drawn from the same domain (e.g., movie titles).
Of course, the resulting data tables may contain extraction
errors as well as any factual errors that were present in the
original source material.

Each relation T also preserves its extraction lineage (its
source Web page and location within that page) for later
processing by Octopus operators (such as Context). A
single portion of crawled HTML can give rise to only a single
T .

To give an idea for the scale of the data available to Octo-
pus, we found 3.9B HTML lists in a portion of the Google
Web crawl. For tables, we estimated in [3] that 154M of
14B extracted HTML tables contain high-quality relational
data, which is a relatively small percentage (slightly more
than 1%). However, while HTML tables are often used for
page layout, HTML lists appear to be used fairly reliably for
some kind of structured data; thus we expect that a larger
percent of them contain good tabular data. By a conserva-
tive estimate, our current Octopus prototype has at least
200M relational sources at its disposal.

2.2 Integrating Web Sources
To provide the formal motivation for Octopus’s opera-

tors, we first imagine how the problem would be solved in
a traditional data integration setting. We would begin by
creating a mediated schema that could be used for writing
queries. For example, when collecting data about program
committees, we would have a mediated schema with a rela-
tion PCMember(name, institution, conference, year).

The contents of the data sources would be described with
semantic mappings. For example, if we use the GLAV ap-
proach [11] for describing sources on the Web, the pages from
the 2008 and 2009 VLDB web sites would be described as
follows:

VLDB08Page(N,I) ⊆ PCMember(N,I,C,Y), C=”VLDB”, Y=2008
VLDB09Page(N,I) ⊆ PCMember(N,I,C,Y), C=”VLDB”, Y=2009

Now if we queried for all VLDB PC members:

q(name, institution, year) :-
PCMember(name, institution, ”VLDB”, year)

then the query would be reformulated into the following
union:

q’(name, institution, 2008) :- VLDB08Page(name, institution),
q’(name, institution, 2009) :- VLDB09Page(name, institution)

However, as we pointed out earlier, our data integration
tasks may be transient and the number of data sources is
very large. Therefore preparing the data source descriptions
in advance is infeasible. Our operators are designed to help
the user effectively and quickly combine data sources by au-
tomatically recovering different aspects of an implicit set of
source descriptions.

Finding the relevant data sources is an integral part of
performing the integration. Specifically, Search initially
finds relevant data tables from the myriad sources on the
Web; it then clusters the results. Each cluster yielded by the
Search operator corresponds to a mediated schema relation
(e.g., the PCMember table in the example above). Each
member table of a given cluster is a concrete table that con-
tributes to the cluster’s mediated schema relation. (Mem-
bers of the PCMember cluster correspond to VLDB08Page,
VLDB09Page, and so on.)



Figure 1: The screenshot to the left shows a region of the VLDB 2005 website; the extracted table to the
right contains the corresponding data. This table was returned by Octopus after the user issued a Search
command for vldb program committee. In this case, the table was extracted from an HTML list and the
column-boundaries automatically recovered

The Context operator helps the user to discover selec-
tion predicates that apply to the semantic mapping between
source tables and a mediated table, but which are not ex-
plicit in the source tables themselves. For example, Con-
text recovers the fact that VLDB08Page has a year=2008
predicate (even though this information is only available via
the VLDB08Page’s embedding Web page). Context only
requires a single concrete relation (along with its lineage) to
operate on.

These two operators are sufficient to express semantic
mappings for sources that are projections and selections of
relations in the mediated schema. The Extend operator
will enable us to express joins between data sources. Sup-
pose the PCMember relation in the mediated schema is ex-
tended with another attribute, adviser, recording the Ph.D
adviser of PC members. To obtain tuples for the relation
PCMember we now have join the tables VLDB08Page and
VLDB09Page with other relations on the Web that describe
adviser relationships.

The Extend operator will find tables on the Web that
satisfy that criterion. I.e., it will find tables T such that:

PCMember(N,I,C,Y, Ad) ⊆
VLDB08Page(N,I), T(N,Ad), C=”VLDB”, Y=2008

or

PCMember(N,I,C,Y, Ad) ⊆
VLDB09Page(N,I), T(N,Ad), C=”VLDB”, Y=2009

Note that the adviser information may come from many
more tables on the Web. At the extreme, each adviser tuple
may come from a different source.

It is important to keep in mind that unlike traditional
relational operators, Octopus’s operators are not defined
to have a single correct output for a given set of inputs.
Consequently, the algorithms we present in Section 3 are also

best-effort algorithms. On a given input, the output of our
operators cannot be said to be “correct” vs “incorrect,” but
instead may be “high-quality” vs “low-quality.” In this way,
the Octopus operators are similar to traditional Web search
ranking (or to the match operator in the model management
literature [1]).

In principle, Octopus can also include cleaning opera-
tors such as data transformation and entity resolution, but
we have not implemented these yet. Currently, with the op-
erators provided by Octopus, the user is able to create in-
tegrations that can be expressed as select-project-union and
some limited joins over structured sources extracted from
the Web.

2.3 Integration operators
This paper focuses on the three integration-related oper-

ators of Octopus: Search, Context and Extend. We
now describe each one.

2.3.1 Search
The Search operator takes as input an extracted set of

relations S and a user’s keyword query string q. It returns
a sorted list of clusters of tables in S, ranked by relevance
to q. In our case, the set of relations can be considered all
the relations found on the Web.

A relevance ranking phase of Search allows the user to
quickly find useful source relations in S and is evaluated in
a similar fashion to relevance in web search. A secondary
clustering step allows the user to find relations in S that
are similar to each other. Intuitively, tables in the same
cluster can be described as projections and selections on a
single relation in the mediated schema, and are therefore
later good candidates for being unioned. Tables in a single
cluster should be unionable with few or no modifications
by the user. In particular, they should be identical or very
similar in column-cardinality and their per-column attribute



inria
...grenoble

...pisa

serge abiteboul
michel adiba

antonio albano

split

SEARCH("vldb program committee")
serge abiteboul, inria

michel adiba, ...grenoble
antonio albano, ...pisa

le chesnay inria
carnegie...
etz zurich

serge abiteboul
anastassia aila...
gustavo alonso

france
usa

switzerland

CONTEXT
inria

...grenoble
...pisa

serge abiteboul
michel adiba

antonio albano

1996
1996
1996

CONTEXT
inria

carnegie...
etz zurich

serge abiteboul
anastassia aila...
gustavo alonso

2005
2005
2005

union
inria

...grenoble
...pisa
inria

carnegie...
etz zurich

serge abiteboul
michel adiba

antonio albano
serge abiteboul

anastassia aila...
gustavo alonso

1996
1996
1996
2005
2005
2005

EXTEND(c=1, "publications")
inria

...grenoble
...pisa
inria

carnegie...
etz zurich

serge abiteboul
michel adiba

antonio albano
serge abiteboul

anastassia aila...
gustavo alonso

1996
1996
1996
2005
2005
2005

"Large Scale P2P Dist..."
"Exploiting bitemporal..."
"Another Example of a..."
"Large Scale P2P Dist..."

"Efficient Use of the Query..."
"A Dynamic and Flexible..."

inria
carnegie...
etz zurich

serge abiteboul
anastassia aila...
gustavo alonso

project(c=3)

Figure 2: A typical sequence of Octopus operations. The data integration operators of Octopus are in
upper-case type, while other operations in lower-case. The user starts with Search, which yields a cluster of
relevant and related tables. The user selects two of these tables for further work. In each case, she removes
the rightmost column, which is schematically inconsistent and irrelevant to the task at hand. On the left table
she verifies that the table has been split correctly into two columns (separating the name and the institution).
If needed, she may manually initiate an operator that will split a column into two. She then executes the
Context operator on each table, which recovers the relevant VLDB conference year. This extra information
is very useful after unioning the two tables together. (Otherwise, the two Serge Abiteboul tuples here would
be indistinguishable.) Finally, she executes Extend to adorn the table with publication information for each
PC member.

labels. (Octopus will present in a group all of the tables
in a single cluster, but the user actually applies the union
operation, removing tables or adjusting them as needed.)

The output of Search is a list L of table sets. Each set
C ∈ L contains tables from S. A single table may appear in
multiple clusters C. The Search operator may sort L for
both relevance and diversity of results. (As in web search,
it would be frustrating for the user to see a large number
of highly-ranked clusters that are only marginally different
from each other.)

2.3.2 Context
Context takes as input a single extracted relation T and

modifies it to contain additional columns, using data derived
from T ’s source Web page. For example, the extracted ta-
ble about 2009 VLDB PC members may contain attributes
for the member’s name and institution, but not the year,
location, or conference-name, even though this informa-
tion is obvious to a human reader. The values generated by
Context can be viewed as the selection conditions in the
semantic mappings first created by Search.

The Context operator is necessary because of a design
idiom that is very common to Web data. Data values that

hold for every tuple are generally “projected out” and added
to the Web page’s surrounding text. Indeed, it would be very
strange to see a Web-embedded relation that has 2009 in
every single tuple; instead, the 2009 value simply appears in
the page’s title or text. Consider that when a user combines
several extracted data tables from multiple sources, any PC
members who have served on multiple committees from the
same institution will appear as duplicated tuples. In this
scenario, making year and location explicit for each tuple
would be very valuable.

2.3.3 Extend
Extend enables the user to add more columns to a table
by performing a join. Extend takes as input a column c
of table T , and a topic keyword k. The column c contains
a set of values drawn from T (for example, a list of PC
member names), and k describes a desired attribute of c to
add to T (for example, the “publications” that correspond
to each name). Extend returns a modified version of T ,
adorned with one or more additional columns whose values
are described by k.

Extend differs from traditional join in one very impor-
tant way: any new columns added to T do not necessarily



come from the same single source table. It is more accurate
to think of Extend as a join operation that is applied inde-
pendently between each row of T and some other relevant
tuple from some extracted table; each such tuple still man-
ages to be about k and still satisfies the join constraint with
the row’s value in c. Thus, a single Extend operation may
involve gathering data from a large number of other sources.
(Note that join can be distributed over union and therefore
Octopus has the flexibility to consider individual sources
in isolation.)

Finally, note that k is merely a keyword describing the
desired new column. It is not a strict “schema” requirement,
and it is possible to use Extend to gather data from a table
that uses a different label from k or no label at all. Hence,
we are not requiring the user to know any mediated schema
in advance. The user can express her information need in
whatever terminology is natural to her.

2.4 Putting It All Together
Octopus operators provide a “workbench”-like interac-

tive setting for users to integrate Web data. From the user’s
perspective, each application of an operator further refines
a working set of relations on the screen. We can also think
of each operator as modifying an underlying semantic map-
ping that is never explicitly shown, but the on-screen data
set reflects this mapping to the user.

In addition to the three data-integration oriented Octo-
pus operators, the system allows users to make “manual”
changes to the tables and hence to the semantic mappings.
For example, if the user disagrees with Search’s decision
to include a table in a cluster she can simply delete the ta-
ble from the cluster. Other currently supported operations
include selection, projection, column-add, column-split, and
column-rename. However, the architecture and user interac-
tion are flexible and therefore we can add other data cleaning
and transformation operators as needed.

Figure 1 shows two tables in a single Search cluster after
the user has issued a request for vldb program committee.
Figure 2 shows the application’s state in the form of a transi-
tion diagram, taking as input the user’s decision to execute
one of the integration operators. In short, an interactive
session with Octopus involves a single Search followed by
any combination of Context, Extend, and other cleaning
and transformation operators. It is important to note (as
illustrated in Figure 1) that different sequences of operator
invocations will be appropriate depending on the data at
hand. For example, if the user starts with a table of US
cities, she may want to apply the Extend operator before
the Context to first add mayor data to the table (that may
exist in a single well-extracted table), and then recover the
year in which the data was collected.

3. ALGORITHMS
In this section we describe a series of algorithms that im-

plement the Octopus operators. The utility of a user’s
interaction with Octopus largely depends on the quality
of the results generated by Search, Context, and Ex-
tend. We propose several novel algorithms for each op-
erator, and describe why the current state of the art tech-
niques do not suffice. None of our operator implementations
are time-consuming in the sense of traditional algorithmic
complexity, but some require data values (e.g., word usage
statistics) that can be burdensome to compute. We eval-

1: function SimpleRank(keywords):
2: urls = searchengine(keywords) //in search-engine-rank order
3: tables = []
4: for url ∈ urls do
5: for table ∈extract tables(url): //in-page order do
6: tables.append(table)
7: end for
8: end for
9: return tables

Figure 3: The SimpleRank algorithm.

1: function SCPRank(keywords):
2: // returns in search-engine-rank order
3: urls = search engine(keywords)
4: tables = []
5: for url ∈ urls do
6: for table ∈ extract tables(url) do
7: //returns in-page order
8: tables.append((TableScore(keywords, table), table))
9: end for
10: end for
11: return tables.sort()
12:
13: function table score(keywords, table)
14: column scores = []
15: for column ∈ table do
16: column score =

P
c∈column.cells scp(keywords, c)

17: end for
18: return max(column scores)

Figure 4: The SCP and tablescore algorithms.

uate both result quality and runtime performance for each
algorithm in Section 5.

3.1 SEARCH
The Search operator takes a keyword query as input and

returns a ranked list of table clusters. There are two chal-
lenges in implementing Search. The first is to rank the
tables by relevance to the user’s query, and the second is to
cluster other related tables around the top-ranking Search
results.

3.1.1 Ranking
A strawman state-of-the-art algorithm for ranking is to

leverage the ranking provided by a search engine. The Sim-
pleRank algorithm (see Figure 3) simply transmits the
user’s Search text query to a traditional Web search engine,
obtains the URL ordering, and presents extracted structured
data according to that ordering. For pages that contain mul-
tiple tables, SimpleRank ranks them according to their
order of appearance on the page.

SimpleRank has several weaknesses. First, search en-
gines rank individual whole pages, so a highly-ranked page
that contains highly-relevant raw text can easily contain ir-
relevant or uninformative data. For example, a person’s
home page often contains HTML lists that serve as nav-
igation aids to other pages on the site. Another obvious
weakness is when multiple datasets are found on the same
page, and SimpleRank relies on the very possibly mislead-
ing in-page ordering.

It would be better to examine the extracted tables them-
selves, rather than ranking the overall page where the data
appears. Search engines traditionally rely on the tf-idf co-
sine measure, which scores a page according to how often it
contains the query terms, and how unusual those terms are.
Tf-idf works because its main observation generally holds
true in practice – pages that are “about” a term t generally
contain repetitions of t. However, this observation does not
strongly hold for HTML lists: e.g., the list from Figure 1
does not contain the terms vldb program committee. Fur-



ther, any “metadata” about an HTML list exists only in
the surrounding text, not the table itself, so we cannot ex-
pect to count hits between the query and a specific table’s
metadata. (Cafarella et al. attempted this approach when
ranking extracted HTML tables [4], which do often carry
metadata in the form of per-column labels.)

An alternative is to measure the correlation between a
query phrase and each element in the extracted database.
Our SCPRank algorithm (seen in Figure 4) uses symmetric
conditional probability, or SCP, to measure the correlation
between a cell in the extracted database and a query term.

In the SCPRank algorithm we use the following termi-
nology. Let s be a term. The value p(s) is the fraction of
Web documents that contain s:

p(s) =
# web docs that contain s

total # of web docs

Similarly, p(s1, s2) is the fraction of documents containing
both s1 and s2:

p(s1, s2) =
# web docs that contain both s1 and s2

total # of web docs

The symmetric conditional probability between a query q and
the text in a data cell c is defined as follows:

scp(q, c) =
p(q, c)2

p(q)p(c)

This formula determines how much more likely q and c
appear together in a document compared to chance. For ex-
ample, it is reasonable to believe that Stan Zdonik appears
with vldb program committee on the same page much more
frequently than might an arbitrarily-chosen string. Thus,
scp(Stan Zdonik, vldb program committee) will be rela-
tively large.

Symmetric conditional probability was first used by Lopes
and DaSilva for finding multiword units (such as bigrams or
trigrams) in text [5]. It is very similar to Pointwise Mu-
tual Information [19]. In the measure generally used in text
analysis, however, the p(q, c) value measures the probability
of q and c occurring in adjacent positions in a document.
In our data-extraction setting, a data cell is generally only
adjacent to other data cells. Thus our SCPRank employs
non-adjacent symmetric conditional probability, and only re-
quires that q and c appear together in the same document.

Of course, the SCPRank algorithm scores tables, not
individual cells. As Figure 4 shows, it starts by sending
the query to a search engine and extracting a candidate
set of tables. For each table, SCPRank computes a series
of per-column scores, each of which is simply the sum of
per-cell SCP scores in the column. A table’s overall score
is the maximum of all of its per-column scores. Finally, the
algorithm sorts the tables in order of their scores and returns
a ranked list of relevant tables. In Section 5 we show that
SCPRank is time-consuming due to the huge number of
required SCP scores, but that its result quality is very high.

Unfortunately, näıvely computing the SCP scores for
SCPRank can pose a runtime performance issue. The most
straightforward method is to use a search engine’s inverted
index to compute the number of indexed documents that
contain both q and c. A single inverted index lookup is
equivalent to an in-memory merge-join of “posting lists” -
the integers that represent the documents that contain q
and c. This operation can be done quickly (a classically-
designed search engines performs an inverted index lookup

1: function cluster(T, thresh):
2: clusters = []
3: for t ∈ T do
4: cluster = singlecluster(t, T, thresh)
5: clusters.append(sizeof(cluster), cluster)
6: end for
7: return clusters.sort()
8:
9: function singlecluster(t, T , thresh):
10: clusteredtables = []
11: for t′ ∈ T do
12: d = dist(t, t′)
13: if d > thresh then
14: clusteredtables.append(d, t′)
15: end if
16: end for
17: return clusteredtables.sort()

Figure 5: The generic cluster algorithm framework.

Possible implementations of dist() are TextCluster,

SizeCluster, and ColumnTextCluster.

for every Web search), but it is not completely trivial, as
each posting list may run in the tens or even hundreds of
millions of elements. We must merge a posting list for each
token in q and c, so multiple-term queries or data values are
more expensive.

The number of possible unique SCP scores is O(kT k),
where T is the number of unique tokens in the entire Web
corpus, and k is the number of tokens in q and c. Because
T is likely to be in the millions, precomputing SCP is not
feasible. We are unaware of any indexing techniques be-
yond the inverted index for computing the size of a docu-
ment set, given terms in those documents. To make matters
worse, SCPRank requires a large number of SCP scores:
one for every data value in every extracted candidate table.
A single table can contain hundreds of values, and a sin-
gle search may elicit hundreds of candidate tables. Thus,
to make SCPRank more tractable, we make two optimiza-
tions. First, we only compute scores for the first r rows of
every candidate table. Second, as described in Section 4
below, we substantially reduce the search engine load by
approximating SCP scores on a small subset of the Web
corpus.

3.1.2 Clustering
We now turn to the second part of the Search operator,

clustering the results by similarity. Intuitively, we want the
tables in the same cluster to be “unionable.” Put another
way, they should represent tables derived from the same
relation in some notional mediated schema. For example, a
good cluster that contains the two VLDB PC member tables
from Figure 1 roughly corresponds to a mediated schema
describing all PC members from all tracks across multiple
VLDB conferences.

We frame clustering as a simple similarity distance prob-
lem. For a result table t in a ranked list of tables T , cluster(t, T−
t) returns a ranked list of tables in T − t, sorted in order of
decreasing similarity to t. The generic cluster() algorithm
(seen in Figure 5) computes dist(t, t′) for every t′ ∈ T − t.
Finally, it applies a similarity score threshold that limits
the size of the cluster centered around t. The difference be-
tween good and bad cluster results (that is, the difference
between clusters in which the tables are unionable and those
in which the tables have little to do with each other) lies in
the definition for dist().

Our first and simplest dist() function is TextCluster,
which is identical to a very popular and simple document



clustering algorithm. TextCluster just computes the tf-idf
cosine distance between the texts of table a and the text of
table b. It does not preserve any column or row information.

Unfortunately, related tables may have few, if any, words
in common. As an example, consider two sets of country
names derived from a single underlying table, where one set
covers the countries starting with ”A-M” and the other set
covers ”N-Z”. These tables are two disjoint selections on the
overall relation of country names. With no text necessarily
in common, it is difficult to determine whether two data sets
are related or not.

While similar tables may not contain overlapping text,
data strings from the same data type will often follow roughly
similar size distributions. SizeCluster, the second dist()
function, computes a column-to-column similarity score that
measures the difference in mean string length between them.
The overall table-to-table similarity score for a pair of ta-
bles is the sum of the per-column scores for the best possible
column-to-column matching. (The best column-to-column
matching maximizes the sum of per-column scores.)

The final distance metric is ColumnTextCluster. Like
SizeCluster, the ColumnTextCluster distance between
two tables is the sum of the tables’ best per-column match
scores. However, instead of using differences in mean string
length to compute the column-to-column score, Column-
TextCluster computes a tf-idf cosine distance using only
text found in the two columns.

3.2 CONTEXT
The Context operator has a very difficult task: it must

add data columns to an extracted table that are suggested
by the table’s surrounding text. For example, recall that for
a listing of conference PC members, the conference’s year

will generally not be found in each row of the table - instead,
it can be found in the page text itself. When the Octopus
user wants to adorn a table with this information, she only
has to indicate the target table T (which already contains
the necessary extraction-lineage information).

We developed three competing algorithms for Context.
SignificantTerms is very simple. It examines the source
page where an extracted table was found and returns the k
terms with the highest tf-idf scores that do not also appear in
the extracted data. We hope that terms that are important
to a page, e.g.the VLDB conference year, will be repeated
relatively often within the page in question (thus having a
high term-frequency) while being relatively rare on the Web
as a whole.

The second algorithm is Related View Partners, or
RVP. It looks beyond just the table’s source page and tries
to find supporting evidence on other pages. The intuition is
that some Web pages may have already needed to perform
a form of the Context operator and published the results.
Recall that an extracted table of VLDB PC members is
likely to contain (name, institution) data. Elsewhere on
the Web, we might find a homepage for a researcher in the
PC member table (identified by a name value). If that home-
page lists the researcher’s professional services, then it might
contain explicit structured (conference, year) data. We
can think of the researcher’s professional services data as
another view on a notional underlying mediated-schema re-
lation (which also gave rise to the VLDB PC member data).

The RVP algorithm is described formally in Figure 6 and
operates roughly as follows. When operating on a table T , it

1: function RVPContext(table, source page):
2: sig terms = getSignificantTerms(source page, table)
3: list of tables = []
4: for row ∈ table do
5: list of tables.append(getRVPTables(row, sig terms))
6: end for
7: terms = all terms that occur in list of tables
8: sort terms in descending order of # of tables each term occurs

in
9: return terms
10:
11: function getRVPTables(row, sig terms):
12: tables = SEARCH(row, topk = 5).extractTables()
13: return tables that contain at least one term from sig terms

Figure 6: The RVP algorithm.

first obtains a large number of candidate related-view tables,
by using each value in T as a parameter to a new Web search
and downloading the top-10 result pages. There is one such
Web search for each cell in T . Because T may have a very
large number of tuples, RVP limits itself to a sample of s
rows (in our experiments below, we used s = 10).

RVP then filters out tables that are completely unrelated
to t’s source page, by removing all tables that do not contain
at least one value from SignificantTerms(T ). RVP then
obtains all data values in the remaining tables and ranks
them according to their frequency of occurrence. Finally,
RVP returns the k highest-ranked values.

Our last algorithm, Hybrid is a hybrid of the above
two algorithms. It leverages the fact that the Significant-
Terms and RVP algorithms are complementary in nature.
SignificantTerms finds context terms that RVP misses,
and RVP discovers context terms that SignificantTerms
misses. The Hybrid algorithm returns the context terms
that appear in the result of either algorithm. For the rank-
ing of the context terms, the Hybrid interleaves the results
starting with the first result of the SignificantTerms algo-
rithm. We show in our experiments that Hybrid outper-
forms the SignificantTerms and RVP algorithms.

3.3 EXTEND
Recall that Extend attempts to adorn an existing table

with additional relevant data columns derived from other
extracted data sources. The user indicates a source table T ,
a join column c, and a topic keyword k. The result is a table
that retains all the rows and columns of the original source
table, with additional columns of row-appropriate data that
are related to the topic.

It is important to note that any Extend algorithm must
address two hard data integration problems. First, it must
solve a schema matching problem [15] to verify that new
data added by Extend actually focus on the topic k, even if
the terminology from the candidate page or table is different
(e.g., it may be that k =publications while an extracted table
says papers). Second, it must solve a reference reconciliation
problem [8] to ensure that values in the join column c match
up if they represent the same real-world object, even if the
string representation differs (e.g., realizing that Alon Halevy
and Alon Levy as the same person but both are different from
Noga Alon).

We developed two algorithms for Extend that solve these
problems in different ways, and extract the relevant data
from sources on the Web. The algorithms largely reflect
two different notions of what kinds of Web data exist.

The first, JoinTest, looks for an extracted table that is
“about” the topic and which has a column that can join with
the indicated join column. Schema matching for JoinTest



relies on a combination of Web search and key-matching to
perform schema matching. It assumes that if a candidate
join-table was returned by a search for k, and the source
table T and the candidate are joinable, then it’s reasonable
to think that the new table’s columns are relevant to the
Extend operation. The join test in this case eliminates from
consideration many unrelated tables that might be returned
by the search engine simply because they appear on the same
page as a high-quality target table. Reference reconciliation
for JoinTest is based on a string edit-distance test.

The JoinTest algorithm assumes that for each Extend
operation, there is a single high-value “joinable” table on the
Web that simply needs to be found. For example, it is plau-
sible that a source table that describes major US cities could
thus be extended with the city column and the topic keyword
mayor. On the other hand, it appears unlikely that we can
use this technique to extend the set of VLDB PC members
on the PC member column, with topic publication; this
single table simply does not appear anywhere in our Web
crawl (even though the information is available scattered
across many different tables).

JoinTest works by finding the table that is “most about
k” while still being joinable to T on the c column. Because
Web data is always dirty and incomplete, we can never ex-
pect a perfect join between two tables; instead, we use Jac-
cardian distance to measure the compatibility between the
values in T ’s column c and each column in each candidate
table. If the distance is greater than a constant threshold t,
we consider the tables to be joinable. All tables that pass
this threshold are sorted in decreasing order of relevance to
k, as measured by a traditional Web search query. If there
is any extracted table that can pass the join-threshold, it
will be returned and used by Extend

1: function MultiJoin(column, keyword):
2: urls = []
3: for cell ∈ column do
4: urls += searchengine(cell + keyword)
5: tables = []
6: for url ∈ urls do
7: for table ∈ extract tables(url) do
8: table.setscore(table score(keywords, table))
9: tables.append(table)
10: end for
11: end for
12: end for
13: sort tables
14: clusters = []
15: for table ∈ tables do
16: cluster = makecluster(table)
17: cluster.setscore(join score(table.getScore(),column,

cluster))
18: clusters.append(cluster)
19: end for
20: sort clusters
21: return clusters
22:
23: function join score(tableScore, column, cluster):
24: // Weight w is a parameter of the system
25: scoreCount = len(cluster.getUniqueJoinSrcElts())
26: score = scoreCount / len(column)
27: return (w ∗ tableScore) + (1− w) ∗ score

Figure 7: The MultiJoin algorithm. Take par-

ticular note of the join score() function. The

getUniqueJoinSrcElts() function returns, for a given clus-

ter, the set of distinct cells from the original query col-

umn that elicited tables contained in the cluster. The

size of its output, when normalized by the size of col-

umn, measures the degree to which a cluster “covers”

data from the query column.

The second algorithm is MultiJoin. MultiJoin attempts
to join each tuple in the source table T with a potentially-
different table. It can thus handle the case when there is no
single joinable table, as with VLDB PC members’ publica-
tions. The algorithm resembles what a human search-user
might do when looking to adorn a table with additional in-
formation. The user could extend a table piecemeal by per-
forming a series of Web searches, one for each row in the
table. Each search would include the the topic-specific key-
word (e.g., publications) plus the individual value for that
row in column c (e.g., a PC member’s name). The user could
then examine the huge number of resulting tables, and check
whether any are both topic-appropriate and effectively join
with the value in c. MultiJoin, shown in detail in Figure 7,
attempts to automate this laborious process.

MultiJoin addresses the issue of schema matching via
the column-matching clustering algorithm described in Sec-
tion 3.1.2 above. Multiple distinct tables that are all about
the same topic should appear in the same cluster. For each
cluster, MultiJoin computes how many distinct tuples from
the source table T elicited a member of the cluster; the algo-
rithm then chooses the cluster with the greatest “coverage”
of T . This clustering-based approach is roughly similar to
data-sensitive schema-matching techniques [7].

Reference reconciliation in MultiJoin is partially solved
as a by-product of using a search engine to find a sepa-
rate table for each joinable-tuple. For example, a search for
“Alon Levy” will yield many of the same results as a search
for “Alon Halevy.” This works for several reasons: pages
that embed the tables will sometimes contain multiple use-
ful labels (as in the “Alon Levy” case here); search engines
incorporate incoming anchor text that will naturally give
data on a page multiple aliases; and search engines include
some amount of spelling correction, string normalization,
and acronym-expansion.

Note that MultiJoin is similar to the Search search-
and-cluster framework, with two important differences:

1. When generating the list of raw web pages, MultiJoin
issues a distinct web search query for every pair (vc, q),
where vc is a value in column c of T . Because of how
these queries are constructed, we can think of each
elicited result table as having a ”source join element”
to which it is related (i.e., vc).

2. When ranking the resulting clusters, MultiJoin uses
a combination of the relevance score for the ranked ta-
ble, and a join score for the cluster. The join score
counts how many unique values from the source ta-
ble’s c column elicited tables in the cluster via the web
search step. This gives higher rank to clusters that
extend the source table T more completely.

4. IMPLEMENTATION AT SCALE
The Octopus system provides users with a new way of

interacting deeply with the corpus of Web documents. As
with a traditional search engine, Octopus will require a lot
of hardware and software in order to scale to many users.
The main goal of this paper is to show that the system can
provide good-quality results, not to build the entire Octo-
pus back end software stack. That said, it is important to
see whether Octopus can ever provide low latencies for a
mass audience. In this section, we step through a few of the



special systems problems that Octopus poses beyond tra-
ditional relevance-based Web search and show that with the
right infrastructure, building a large-scale Octopus service
is feasible.

There are two novel operations executed by the algorithms
from the section above, each of which could reasonably re-
quire a new piece of back-end infrastructure software were
Octopus to be widely deployed. They include non-adjacent
SCP computations from Search’s SCPRank and multi-
query Web searches from the Context’s RVP algorithm
and Extend’s MultiJoin algorithm. All of these steps can
be implemented using standard Web searches (using just the
hitcounts in the SCPRank case), but this is not a good so-
lution. Search engines can afford to spend a huge amount
of resources in order to quickly process a single query, but
the same is unlikely to be true when a single Octopus user
yields tens of thousands of queries. Some Octopus-specific
infrastructure, however, can hugely reduce the required com-
putational resources. In the first two cases, we implemented
small prototypes for back-end systems. In the final case, we
relied exclusively on approximation techniques to make it
computationally feasible.

The first challenge, non-adjacent SCP statistics, are re-
quired by Search’s SCPRank algorithm. Unfortunately,
we cannot simply precompute word-pair statistics, as we
could if we focused only on adjacent words; each sampled
document in the nonadjacent case would yield O(w2) unique
token-combinations, even when considering just pairs of to-
kens. Therefore, we created a “miniature” search engine
that would fit entirely in memory for fast processing. Us-
ing about 100 GB of RAM over 100 machines, we searched
just a few million Web pages. We do not require absolute
precision from the hitcount numbers, so we saved memory
by representing document sets using Bloom Filters [2]. This
solution is usable, but quantifying how much worse it is than
a precise answer is a matter for future work.

The second challenge, multi-query Web searches, arises
from the RVP and MultiJoin algorithms. The näıve RVP
implementation requires rd Web searches, where r is the
number of tables processed by Context, and d is the aver-
age number of sampled non-numeric data cells in each table.
For reasonable values of r = 100, d = 30, RVP may require
several thousand search queries. Luckily, RVP computes a
score that is applied to the table as a whole, so it may be
reasonable to push d to fairly low values, drastically reduc-
ing the number of searches necessary. Further, as we will
see in Section 5.3 below, RVP offers a real gain in quality,
but whether it is enough to justify the extra cost of its Web
search load is not clear. Exploring alternate index schemes
for RVP is another interesting area for future work. Mul-
tiJoin has a similar, but smaller, problem of issuing a large
number of search queries for each source table. (It only
needs to issue a single query per row.)

5. EXPERIMENTS
We now evaluate the quality of results generated by each

of our operators: Search, Context, and Extend. We
begin with a description of our query collection technique.

5.1 Collecting Queries
It is not obvious how to choose a sample set of queries

for testing Octopus. Ideally, we would have drawn the
test queries from real user data. Of course, Octopus is a

- state capitals and largest cities in us
- cigarette use among high school students
- business expenditure on research and development
- international educational exchange in the united states
- usa pizza - currencies of different countries
- fast cars - 2008 beijing olympics
- mlb world series winners - bittorrent clients
- phases of the moon - australian cities
- video games - usa population by state
- used cellphones - science discoveries
- composition of the sun - running shoes
- pain medications - stock quote tables
- company income statements - periodic table of elements
- world’s tallest buildings - north american mountains
- pre production electric vehicles - pga leaderboard
- nba scoreboard - ipod models
- olympus digital slrs - 2008 olympic gold medal winners
- professional wrestlers - exchange rates for us dollar
- fuel consumption - wimbledon champions
- top grossing movies - world religions
- us cities - economy gdp
- car accidents - stocks
- clothing sizes - fifa world cup winners
- nutrition values - dog breeds
- prime ministers of england - country populations
- academy awards - black metal bands
- ibanez guitars - kings of africa
- world interest rates

Table 1: List of queries used.

research project with no user base beyond its developers, so
there is no such data to obtain. We also considered using
query logs from traditional Web search, but only a fraction
of searches are meant to obtain structured data, and any
mechanism to choose only the “structured” ones would have
entailed the risk of “cherry-picking” queries that would work
well. We do not know of a popular data-centric application
with an appropriate query stream.

So, we chose to use the Amazon Mechanical Turk service
to obtain a diverse query load suggested by Web users. It
is a service that allows a requester to post an “intelligence
task” along with an offered payment. Meanwhile, a worker
can examine the offered tasks and choose to perform zero or
more of them, earning payment upon completion. Example
tasks include image labeling and text summarizing.

We posted an intelligence task that asked each worker
to “Suggest [one or two] topics for a useful data table (e.g.,
”used cars” or ”US presidents”).” We also asked each worker
to supply two distinct URLs that provide an example table
for the topic. Finally, we also included a nontechnical de-
scription of what makes a good table of data. We paid be-
tween twenty-five and fifty cents per task completed, and all
submitted answers are included in our test query load. We
removed all data suggested by one worker who did not even
attempt to supply meaningful support URLs, and removed
a few queries that were essentially duplicates. We otherwise
kept the queries exactly as entered by the workers.

Of course, queries suggested by Turk workers may not be
representative of what Octopus users will actually enter.
But by collecting a test set in this manner, we avoided for-
mulating queries ourselves (and thus engaging in another
form of cherry-picking). Also, by forcing each query to be
supported by two example tables, we guaranteed that each
suggestion is at least roughly “structured.”

5.2 SEARCH
As we described in Section 3.1, there are two steps in im-

plementing Search: ranking and clustering. To compare
the different algorithms for each, we used the aforemen-



Algorithm Top 2 Top 5 Top 10
SimpleRank 27% 51% 73%

SCPRank 47% 64% 81%

Table 2: Fraction of top-k sets that contain at least one

“relevant” table.

tioned test set of 52 queries, each representing a starting
point for a complex information gathering task. See Table 1
for the list of queries.

5.2.1 Ranking
We ran the ranking phase of Search on each of the above

52 queries, first using the SimpleRank algorithm, and then
SCPRank. For each input text query, the system outputs a
ranked list of tables, sorted in order of relevance. We asked
two judges, again drawn from the Amazon Mechanical Turk
service, to independently examine each table/query pair and
label the table’s relevance to the query on a scale from 1-5.
We mark a table as relevant only when both examiners give
a score of 4 or higher.

We measure a ranking algorithm’s quality by computing
the average percentage of “relevant” results in the top-2,
top-5, and top-10 emitted query results. Table 2 summarizes
our results: on a plausible user-chosen workload, Octopus
returns a relevant structured table within the top-10 hits
more than 80% of the time. Almost half the time, there is a
relevant result within the top-2 hits. Note that SCPRank
performs substantially better than SimpleRank, especially
in the top-2 case. The extra computational overhead of
SCPRank clearly offers real gains in result quality.

5.2.2 Clustering
Next, we evaluate the three clustering algorithms described

in Section 3.1.2. The clustering system takes two inputs: a
“center” table to cluster around, and a set of cluster candi-
dates. A good cluster will contain tables that are similar to
the center table, in both structure and data. (As mentioned
in Section 2.3.1, the component tables of a cluster should be
unionable with few or no modifications.) The working Oc-
topus system presents results by invoking the cluster algo-
rithm once for each item in the ranked table results, with the
remaining tables provided as the candidate set. Octopus
then takes the resulting clusters and ranks them according
to the average in-cluster relevance score. Without effective
clustering, each resulting table group will be incoherent and
unusable.

We tested the competing clustering algorithms using the
queries in Table 1. We first issued each query and obtained a
sorted list of tables using the SCPRank ranking algorithm.
We then chose by hand the “best” table from each result
set, and used it as the table center input to the clustering
system. (We ignore cluster performance on irrelevant tables;
such tables are often not simply irrelevant to the query, but
also of general poor quality, with few rows and empty values.
Further, clusters centered on such tables are likely to be very
low in the final output, and thus never seen by the user.)

We assessed cluster quality by computing the percentage
of queries in which a k-sized cluster contains a table that
is “highly-similar” to the center. This value is computed
for k = 2, k = 5, and k = 10. This number reveals how
frequently clustering helps to find even a single related table
(i.e., that the cluster is at all useful). We determine whether
a table pair is “highly-similar” by again asking two workers

Algorithm k=2 k=5 k=10
SizeCluster 70% 88% 97%
TextCluster 67% 85% 91%

ColumnTextCluster 70% 88% 97%

Table 3: Percentage of queries that have at least one

table in top-k-sized cluster that is “very similar” to the

cluster center. The percentage should generally increase

as k grows, giving the algorithm more chances to find a

good table.

Algorithm k=2 k=5 k=10
SizeCluster 3.17 2.82 2.57
TextCluster 3.32 2.85 2.53

ColumnTextCluster 3.13 2.79 2.48

Table 4: Average user similarity scores between cluster

center and cluster member, for clusters of size k. Higher

scores are better. The average score should generally de-

crease as k increases, and the clustering algorithm must

find additional similar tables.

from the Amazon Mechanical Turk to rate the similarity
of the pair on a scale from 1 to 5. If both judges give a
similarity rating of 4 or higher, the two tables are marked
as highly-similar.

The results in Table 3 show that even when the requested
cluster has just two elements (and thus the system has only
two “guesses” to find a table that is similar to the center),
Octopus can generate a useful cluster 70% of the time. If
the requested cluster size is larger (k = 10), then Octopus
finds a useful cluster 97% of the time.

There is surprisingly little variance in quality across the al-
gorithms. The good performance from the näıve SizeClus-
ter algorithm is particularly interesting. To make sure that
this “single useful table” test was not too simple, we also
computed the overall average user similarity score for tables
in clusters of size k = 2, k = 5, and k = 10. As seen in
Table 4, the user quality ratings for a given cluster size are
very close to each other.

In the case of clustering, it appears that even very sim-
ple techniques are able to obtain good results. We con-
jecture that unlike a short text query, a data table is a
very elaborately-described object that leaves relatively little
room for ambiguity. It appears that many similarity metrics
will obtain the right answer; unfortunately, no clustering al-
gorithm is a very large consumer of search engine queries
and so there is little computational efficiency to be gained
here.

5.3 CONTEXT
In this section we compare and contrast the three Con-

text algorithms described above. To evaluate the algo-
rithms’ performance, we first created a test set of true con-
text values. First, we again took the first relevant table per
query listed in Table 1 (skipping over any results where there
was either no relevant table or where all relevant tables were
single-column). Next, two of the authors manually (and in-
dependently) reviewed each table’s source Web page, noting
terms in the page that appeared to be useful context val-
ues. Any context value that was listed by both reviewers
was added to the test set. This process left a test set of 27
tables with a non-empty set of test context values. Within
the test set, there is a median of three test context values
per table (and thus, per query).



!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$" %" &"

!
"#
$"
%&
'
()
*"

+#,-."/#0%)1%"%)23*"

4#3,&25*#0"#$"467+89+":(;#25%<3*"

-./0.1.230456789" :;<" =>?7.@"

Figure 8: A comparison of the Context algorithms.

Shows the percentage of tables (y-axis) for which the al-

gorithm returns a correct context term within the top-k

(x-axis) context terms.

Figure 8 shows the results of our experiments for the Con-
text operator. For each algorithm (SignificantTerms,
RVP, and Hybrid), we measure the percentage of tables
where a true context value is included in the top 1, top 2
or top 3 of the context terms generated by the algorithm.
(Because the Octopus user generally examines Context
results by hand, it is acceptable if Context’s output con-
tains some incorrect terms. The main goal for Context
is to prevent the user from examining the source pages by
hand.)

We see that Context can adorn a table with useful data
from the surrounding text over 80% of the time, when given
3 “guesses.” Even in the top-1 returned values, Context
finds a useful value more than 60% of the time.

The näıve SignificantTerms algorithm does a decent,
if not spectacular, job. For example, it finds a true context
term in the top 3 results for 70% of the tables. Although the
RVP algorithm does not outperform SignificantTerms,
we can see from the Hybrid algorithm’s performance that
RVP is still helpful. Recall that the Hybrid algorithm
interleaves the results of the SignificantTerms and RVP
algorithms. Although the RVP and SignificantTerms re-
sults are not disjoint, RVP is able to discover new context
terms that were missed by SignificantTerms. For exam-
ple, looking again at the top-3, the Hybrid algorithm out-
performs SignificantTerms algorithm by more than 16%;
thus achieving an accuracy of 81%.

Even though SignificantTerms does not yield the best
output quality, it is efficient and very easy to implement.
Combining it with RVP algorithm results in improved qual-
ity, but because RVP can entail very many search engine
queries, deciding between the two is likely to depend on the
amount of computational resources at hand.

5.4 EXTEND
When evaluating the performance of Extend algorithms,

we can imagine that the combination of each source tuple in
T and the query topic k forms a “question set” that Extend
attempts to answer. We compare JoinTest and MultiJoin
by examining what percentage of T ’s rows were adorned
with correct and relevant data. We do not distinguish be-
tween incorrect and nonexistent extensions.

Our test query set is necessarily more limited than the set
shown in Table 1, many of which do not have much plausible

Description of join column Topic query
countries universities
us states governors
us cities mayors
film titles characters
UK political parties member of parliament
baseball teams players
musical bands albums

Table 5: Test queries for Extend, derived from results

from queries in Table 1.

“extra” information. (E.g., it is unclear how a user might
want to add to the phases of the moon table.) Further, the
set of useful join keys is more limited than in a traditional
database setting, where a single administrator has designed
several tables to work together. Although numeric join keys
are common and reasonable for a traditional database, in
the Web setting they would suggest an implausible degree
of cooperation between page authors. Labels (i.e., proper
names, such as place or person names) are more useful keys
for our application. In addition, some table extensions might
not be possible because the data simply does not exist on
the Web.

We thus chose a small number of queries from Table 1
that appear to be Extend-able. For each, we chose as the
source table T the top-ranked “relevant” table (as marked
by a human reviewer) returned by Search. We chose the
join column c and topic query k by hand, opting for values
that appeared most amenable to Extend processing. (For
example, in the case of VLDB PC members, c is the name of
the reviewer, not the reviewer’s home institution; the topic
query is publications.) Table 5 enumerates the resulting
test set.

The JoinTest algorithm only found extended tuples in
three cases (countries, cities, and political parties). (Recall
that JoinTest tries to find a single satisfactory join table
that covers all tuples in the source table.) In these three
cases, 60% of the tuples were extended. The remaining 40%
of tuples could not be joined to any value in the join ta-
ble. Each source tuple matched just a single tuple in the
join table, except in the political parties case, where multiple
matches to the party name are possible.

In contrast, the MultiJoin algorithm found Extend data
for all of the query topics. On average, 33% of the source tu-
ples could be extended. This rate of tuple-extension is much
lower than in cases where JoinTest succeeds, but arguably
shows the flexibility of MultiJoin’s per-tuple approach. Ta-
bles that are difficult to extend will be impossible to process
with JoinTest, as a complete single table extension is sim-
ply unlikely to exist for many queries. With MultiJoin,
fewer rows may be extended, but at least some data can be
found.

The most remarkable difference between the two algo-
rithms, however, is the sheer number of extensions gener-
ated. As mentioned, JoinTest generally found a single
extension for each source tuple. In contrast, MultiJoin
finds an average of 45.5 correct extension values for every
successfully-extended source tuple. For example, Multi-
Join finds 12 albums by led zeppelin and 113 distinct mayors
for new york. (In this latter case, mayor extensions to new
york obviously reflect mainly past office-holders. However,
detecting the current mayor is an interesting area for future
research.)

In retrospect, this difference between JoinTest and Mul-



tiJoin is not surprising - if JoinTest could extend large
numbers of tuples in a single table and simultaneously find
many different values for each source tuple, it would sug-
gest the existence of extremely massive and comprehensive
tables. MultiJoin only requires that topic-and-tuple rele-
vant data be discoverable on some page somewhere, not that
all the source tuples will have all their topic data in exactly
the same place. Because it appears that choosing between
JoinTest and MultiJoin should depend on the underlying
nature of the data being joined, in the future we would like
to combine them into a single algorithm; for example, we
might first attempt JoinTest and then move to MultiJoin
if JoinTest fails to find a “good enough” joinable table.

Summary
Overall, our experiments show that it is possible to ob-
tain high-quality results for all three Octopus operators
discussed here. Even with imperfect outputs, Octopus al-
ready improves the productivity of the user, as generally the
only alternative to these operators is to manually compile
the data.

There are also promising areas for future research. Not
only are there likely gains in output quality and algorith-
mic runtime performance, there are also interesting ques-
tions about reasoning about the data (as in the case of find-
ing New York’s current mayor). There has been some re-
lated work in the textual information extraction area that
we would like to build on using our system [13].

6. RELATED WORK
Data integration on the web, often called a “mashup,” is

an increasingly popular area of work. The Yahoo! Pipes
project allows the user to graphically describe a “flow” of
data, but it works only with structured data feeds and re-
quires a large amount of work to describe data operations
and schema matches between sources [21]. There are other
mashup tools available, including the Marmite system [20].
Karma [18] automatically populates a user’s database, but
still requires sources with formal declarations.

The CIMPLE system is a data integration system tai-
lored for web use, being designed to construct “commu-
nity web sites [6].” A CIMPLE site consists of a series of
human-chosen data sources, extractors, and schema map-
pings. CIMPLE tools are designed to assist in the task, but
an administrator still spends a relatively large amount of
time (hours) on a site’s initial design. Of course, Octopus
is designed to have as little up-front cost as possible, and
can be used by untrained users.

Raman and Hellerstein’s Potter’s Wheel emphasizes live
interaction between a data cleaner and the system [16]. They
offer several special cleaning operators, many of which are
useful in a web setting, but do nothing to solve Web-centric
problems such as data-finding. There are other cleaning sys-
tems with operators that could be useful to Octopus [12].

7. CONCLUSIONS
We described Octopus, a system that engages users to

integrate data from many structured sources on the Web.
Unlike traditional data integration systems, Octopus offers
access to orders of magnitude more data sources because
it does not require writing site-specific wrappers, and frees
the user from having to design or even know about a medi-

ated schema and mappings between it and data sources. We
described a set of basic operators that enable Octopus to
provide time-saving services to the user, and described effec-
tive algorithms for implementing each of them. In the future
we plan to add several improvements to Octopus, including
index structures to support real-time user interaction.

8. REFERENCES
[1] P. A. Bernstein. Applying Model Management to Classical

Meta Data Problems. In CIDR, 2003.
[2] B. H. Bloom. Space/Time Trade-offs in Hash Coding with

Allowable Errors. Commun. ACM, 13(7):422–426, 1970.
[3] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang, and

E. Wu. Uncovering the Relational Web. In WebDB, 2008.
[4] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang, and

E. Wu. WebTables: Exploring the Power of Tables on the
Web. PVLDB, 1(1):538–549, 2008.

[5] J. F. da Silva and G. P. Lopes. A Local Maxima Method
and a Fair Dispersion Normalization for Extracting
Multi-Word Units from Corpora. Sixth Meeting on
Mathematics of Language, 1999.

[6] P. DeRose, W. Shen, F. Chen, A. Doan, and
R. Ramakrishnan. Building Structured Web Community
Portals: A Top-Down, Compositional, and Incremental
Approach. In VLDB, pages 399–410, 2007.

[7] A. Doan, P. Domingos, and A. Y. Halevy. Reconciling
Schemas of Disparate Data Sources: A Machine-Learning
Approach. In SIGMOD Conference, pages 509–520, 2001.

[8] X. Dong, A. Y. Halevy, and J. Madhavan. Reference
Reconciliation in Complex Information Spaces. In
SIGMOD Conference, pages 85–96, 2005.

[9] H. Elmeleegy, J. Madhavan, and A. Halevy. Harvesting
Relational Tables from Lists on the Web. PVLDB, 1(3),
2009.

[10] O. Etzioni, M. J. Cafarella, D. Downey, S. Kok, A.-M.
Popescu, T. Shaked, S. Soderland, D. S. Weld, and
A. Yates. Web-scale Information Extraction in KnowItAll:
(Preliminary Results). In WWW, pages 100–110, 2004.

[11] M. Friedman, A. Y. Levy, and T. D. Millstein. Navigational
Plans for Data Integration. In AAAI/IAAI, pages 67–73,
1999.

[12] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A.
Saita. Declarative Data Cleaning: Language, Model, and
Algorithms. In VLDB, pages 371–380, 2001.

[13] S. Kok and P. Domingos. Extracting Semantic Networks
from Text Via Relational Clustering. In ECML/PKDD (1),
pages 624–639, 2008.

[14] Microsoft Popfly. http://www.popfly.com/.
[15] E. Rahm and P. A. Bernstein. A Survey of Approaches to

Automatic Schema Matching. VLDB J., 10(4):334–350,
2001.

[16] V. Raman and J. M. Hellerstein. Potter’s Wheel: An
Interactive Data Cleaning System. In VLDB, pages
381–390, 2001.

[17] S. Sarawagi and W. W. Cohen. Semi-Markov Conditional
Random Fields for Information Extraction. In NIPS, 2004.

[18] R. Tuchinda, P. A. Szekely, and C. A. Knoblock. Building
Data Integration Queries by Demonstration. In Intelligent
User Interfaces, pages 170–179, 2007.

[19] P. D. Turney. Mining the Web for Synonyms: PMI-IR
versus LSA on TOEFL. CoRR, 2002.

[20] J. Wong and J. I. Hong. Making Mashups with Marmite:
Towards End-User Programming for the Web. In CHI,
pages 1435–1444, 2007.

[21] Yahoo Pipes. http://pipes.yahoo.com/pipes/.


