
Index Interactions in Physical Design Tuning:
Modeling, Analysis, and Applications∗

Karl Schnaitter
UC Santa Cruz

karlsch@ucsc.edu

Neoklis Polyzotis
UC Santa Cruz

alkis@ucsc.edu

Lise Getoor
Univ. of Maryland

getoor@cs.umd.edu

ABSTRACT
One of the key tasks of a database administrator is to optimize the
set of materialized indices with respect to the current workload.
To aid administrators in this challenging task, commercial DBMSs
provide advisors that recommend a set of indices based on a sample
workload. It is left for the administrator to decide which of the rec-
ommended indices to materialize and when. This decision requires
some knowledge of how the indices benefit the workload, which
may be difficult to understand if there are any dependencies or in-
teractions among indices. Unfortunately, advisors do not provide
this crucial information as part of the recommendation.

Motivated by this shortcoming, we propose a framework and as-
sociated tools that can help an administrator understand the inter-
actions within the recommended set of indices. We formalize the
notion of index interactions and develop a novel algorithm to iden-
tify the interaction relationships that exist within a set of indices.
We present experimental results with a prototype implementation
over IBM DB2 that demonstrate the efficiency of our approach. We
also describe two new database tuning tools that utilize information
about index interactions. The first tool visualizes interactions based
on a partitioning of the index-set into non-interacting subsets, and
the second tool computes a schedule that materializes the indices
over several maintenance windows with maximal overall benefit.
In both cases, we provide strong analytical results showing that in-
dex interactions can enable enhanced functionality.

1. INTRODUCTION
One of the fundamental tasks that a database administrator needs

to perform is tuning the indices in the physical design. This is a dif-
ficult optimization problem, since typically the goal is to maximize
the benefit of the materialized indices with respect to an expected
workload, under constraints on resources [2, 4].

In order to assist in this process, commercial systems offer au-
tomated index advisors. An index advisor takes as input the ex-
pected workload and the constraints, and generates a recommended

∗This work was supported in part by an award from the UC-
SC/LANL Institute for Scalable Scientific Data Management and
by an IBM Faculty Development Award.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

set of indices; this is referred to as a recommended configuration.
Typically, the recommended configuration is also accompanied by
statistics such as the total estimated benefit on the expected work-
load, and a breakdown of the benefit per index or per query.

While the returned statistics provide a glimpse of the benefit of
the recommended configuration, they do not give a complete pic-
ture. Basically, they ignore the key issue of index interaction, which
is crucial in understanding the cost/benefit trade-off of the recom-
mended indices. Informally, an index a interacts with an index b
if the benefit of a is affected by the presence of b and vice-versa.
Interactions heavily affect the usage of indices in optimized query
plans and are thus crucial in understanding how the configuration
will affect the performance of the database system. Moreover,
knowledge of the interactions can help the administrator to make
informed decisions about which indices to actually materialize.

We provide a simple example that illustrates the significance of
index interactions. In our example, the recommended configura-
tion contains three indices a, b, c that are all useful for some subset
of the workload. Suppose that b and c are not used individually
in optimal plans but they bring a great deal of benefit when they
are employed together, e.g., using index intersection. This is an
example of a positive interaction between indices. Also, suppose
that b and c together can be used in lieu of a for certain queries,
albeit with lower benefit compared to a. This is an example of a
negative interaction, since the presence of an index (in this case,
a) precludes the usage of other indices in an optimal plan (in this
case, b and c). Knowledge of these dependencies helps the ad-
ministrator to better understand how the three indices affect query
performance. For instance, it becomes obvious that materializing b
on its own will not bring much benefit, since it interacts positively
with c. Or, the administrator may decide to not materialize a, if the
difference in performance from its substitution with b or c is within
some tolerable threshold.

The importance of index interactions has also been emphasized
in the context of tools for automated index selection [1, 2, 3, 6, 7,
10, 17, 18]. Interactions affect the computation of index benefit
which in turn complicates significantly the search for a good con-
figuration [6]. Previous studies have attempted to work around this
issue either by modeling interactions under specific conditions for
the query optimizer, or by making heuristic assumptions about the
characteristics of interactions. Clearly, index selection tools can
benefit from a systematic methodology that can characterize index
interactions without making limiting assumptions about the prop-
erties of the interactions or the optimizer.

Motivated by these observations, we study the problem of char-
acterizing interactions within a given set of indices and with respect
to a specific workload. This setting matches directly the aforemen-
tioned scenario where a system administrator examines the output

of an index advisor tool. We first formalize the notion of index
interaction in this context, and then define two useful problems:
computing the degree of interaction between all pairs of indices,
and determining the pairs of indices whose degree of interaction
exceeds a threshold. Both problems are important in helping the
administrator understand the dependencies between indices in a
recommended configuration. Moreover, a methodology that solves
these problems can be integrated into index selection tools in order
to avoid the use of heuristic assumptions about index interactions.

A precise characterization of index interactions is straightfor-
ward to derive if the workload cost is known for all possible index
configurations. Following prior work on index selection [7, 10], we
can evaluate query cost with what-if optimization. This approach
ensures consistency with the behavior of the query optimizer, but
what-if optimization is unfortunately time-consuming. Even with
heuristics that make more efficient use of the optimizer [5, 14], it
can be prohibitively expensive to evaluate the workload cost under
all subsets of even a moderately sized index configuration.

In order to enable a more efficient analysis, we develop novel al-
gorithms that leverage the inherent structure of the optimizer’s cost
model and avoid enumerating all subsets of the configuration. Our
algorithms have the added feature that they can provide approxi-
mate information about index interactions at any point during their
execution, and thus they can operate under a time budget for ana-
lyzing interactions. This feature is important for the integration of
the algorithms in tuning tools.

We present an experimental study of the proposed algorithms us-
ing a prototype implementation of our methodology on top of IBM
DB2. Our prototype uses the DB2 Design Advisor to obtain a rec-
ommended configuration for a given workload and then proceeds
to analyze the interactions within the configuration. Experimental
results on the TPC-H workload validate the effectiveness of our al-
gorithms in efficiently identifying index interactions even for com-
plex configurations.

Finally, we propose two novel database tuning tools that incor-
porate information about index interactions. The first tool provides
a rich visualization of index interactions. The visualization format
leads to a natural partitioning of the indices into subsets that do
not interact. We formalize the properties of this partitioning and
show how it may be computed efficiently. The second tool uses
knowledge of index interactions to schedule the materialization of
new indices. The goal is to maximize the observed benefit over
time, but we find that generating the optimal schedule is computa-
tionally hard. Fortunately, knowledge of index interactions may be
exploited to formulate an intelligent scheduling heuristic, and we
demonstrate the robustness of our approach with a formal analysis.
Overall, these two concrete applications demonstrate the usefulness
of index interactions in enabling new tools for database tuning.

2. PRELIMINARIES
Basic Concepts. We assume we are given a workloadW of query
and update statements over some relational database. We use q to
denote a statement inW .

We are also given a set of indices S that represents a possible
configuration for optimizing the processing ofW . We do not make
specific assumptions about the origin of S, e.g., it can be generated
by an index advisor tool, or specified by the database administrator.
At a high level, our goal is to characterize the interactions between
indices in S with respect to the statements inW .

For any index configuration X ⊆ S and query q ∈ W , we
use optplanq(X) to denote the optimal execution plan for q that
only uses indices in X . In practice, optplanq(X) can be retrieved

directly from the system’s query optimizer by employing what-if
optimization (which is supported in all commercial systems). We
interpret optplanq(X) as an opaque object with two abstract prop-
erties. The first property is simply the optimal plan cost, which is
denoted costq(X). The other property is the subset of available in-
dices that are used in the optimal plan, which is denoted usedq(X).
Hence, usedq(X) ⊆ X by definition, and X − usedq(X) may be
nonempty if some available indices are not used by the optimizer.

The existence of a cost function leads naturally to the definition
of index benefit, as follows.

DEFINITION 2.1. Given index-sets X, Y ⊆ S and a statement
q ∈ W , the benefit of X with respect to Y and q is defined as
benefitq(X, Y) = costq(Y)− costq(X ∪ Y).

It is also useful to consider the cost and benefit metrics expressed
over the complete workload. We thus define benefit(X, Y) and
cost(X) as the summation of the per-statement metrics over all
statements inW .

Index Interactions. As stated earlier, we are interested in charac-
terizing the interactions between indices in S in terms of benefit.
Loosely speaking, two indices a and b interact when their benefits
are not independent. This can happen, for instance, when a over-
laps with b and thus the optimizer can substitute one for the other
in a physical plan. This constitutes a type of negative interaction,
since the presence of one index reduces the benefit of the other.
Another case is when a and b are used together in the same phys-
ical plan, e.g., in an index intersection. This constitutes a type of
positive interaction, where the presence of one index increases the
benefit of the other.

Formally, we introduce a metric doiq(a, b, X), termed the de-
gree of interaction, that captures how strongly a and b interact
in the processing of q, assuming that the hypothetical index-set
X ⊆ S is materialized. Before proceeding with the definition of
doiq(a, b, X), we make an important observation for the case of
update statements. We assume that an update q can be broken into
two components: a select shell qsel (which is a query) that retrieves
the tuples to be updated, and an update shell qupd that performs the
actual update and also updates any affected materialized indices.
Clearly, index interactions can exist within the select shell qsel and
our model accounts for them directly. On the other hand, an inter-
action within qupd or between an index in qupd and an index in qsel

would imply that the presence of an index affects the update cost
of another. It is not clear whether this type of interaction is mean-
ingful (or even common) in practice, and in addition it introduces
another layer of complexity in the characterization of index inter-
actions. As a reasonable compromise, our model captures index
interactions only in the select shell of update statements.

We are now ready to define the degree of interaction metric that
we use in our work.

DEFINITION 2.2. Let a, b be indices in S, and X ⊆ S be an
index-set such that X ∩ {a, b} = ∅. For a query statement q, the
degree of interaction doiq(a, b, X) is defined as:

doiq(a, b, X) =
|benefitq({a}, X)− benefitq({a}, X ∪ {b})|

min{costq(X ∪M) |M ⊆ {a, b}} .

For an update statement q, doiq(a, b, X) is defined as:

doiq(a, b, X) = doiqsel (a, b, X).

Observe that the computation of doiq(a, b, X) involves solely query
statements, and hence it is possible to substitute each update state-
ment q with its select shell qsel without modifying the computed

interactions. Thus, for the rest of the paper we restrictW to con-
tain only query statements. We stress again, however, that this as-
sumption is without loss of generality.

The degree of interaction is essentially expressed as a fraction
of benefit difference to query cost. More concretely, the numera-
tor captures the difference in the benefit of a when b is added to
the physical design. A large difference implies a strong interaction
between a and b and vice versa, and we can thus consider this ex-
pression as an absolute metric for the degree of interaction between
a and b. The denominator relates the absolute metric to the cost of
processing q using X and a, b. We employ the minimum cost under
the four possible index sets in order to obtain a conservative metric
for the amount of interaction. Thus, an absolute difference of 100
cost units is more important if the minimum query cost is 10 units
compared to a minimum query cost of 1000 units.

The above definition can be used to derive a natural interaction
metric that is independent from the choice of X .

DEFINITION 2.3. Given a statement q ∈ W and indices a, b ∈
S, the degree of interaction between a and b with respect to q is
defined as doiq(a, b) = max{doiq(a, b, X) |X ⊆ S}.
This metric exhibits symmetry, as doiq(a, b) = doiq(b, a). How-
ever, doiq(a, b) is not a true “distance” metric, since the trian-
gle inequality does not hold and doiq(a, a) is positive whenever
benefitq(a, X) > 0 for at least one X ⊆ S. Another point is that
doiq(a, b) does not reveal the type of interaction between a and b,
i.e., negative, positive, or mixed, since we are primarily interested
in the magnitude of the interaction. We note that it is possible to
define alternative metrics that capture the maximum negative and
maximum positive degree of interaction respectively between two
indices. These metrics do not change the complexity of the overall
problem, and they require a straightforward extension of the tech-
niques that we present later.

Problem Statements. The degree of interaction between any pair
of indices a, b ∈ S is crucial in understanding the effect of S on
the processing of statements inW . We thus arrive at the following
fundamental problem that we address in our work:

Degree of Interaction Problem (DOIP) Given an index-set S
and a workloadW , compute doiq(a, b) for any two distinct indices
a, b ∈ S and statement q ∈ W .

A complementary problem that is equally important is identify-
ing the pairs of indices that exhibit a strong interaction with respect
to the statements in q. Thus, the goal is not to obtain the precise
degree of interaction but only to decide whether it is high enough.
More concretely, we assume we are given a non-negative threshold
τ that specifies a lower bound on what constitutes a strong degree
of interaction. We define the binary relation∼τ as follows: a ∼τ b
if and only if a 6= b and doiq(a, b) > τ for some query q ∈ W .
The problem can now be defined as follows:

Index Interaction Problem (IIP) Given an index-set S, a work-
loadW , and a threshold τ ≥ 0, compute the binary relation ∼τ .

An interesting technical point is that a ∼τ b requires at least
one q ∈ W and X ⊆ S such that doiq(a, b, X) > τ . On the
other hand, a 6∼τ b essentially requires that doiq(a, b, X) ≤ τ
for all choices of q, X . Thus, it is not possible to determine index
independence based on a subset of the choices for q and X , which
implies that the worst case complexity for IIP is as bad as DOIP.

3. OPTIMAL PLAN CHARACTERIZATION
In our statement of the DOIP and IIP problems, index interac-

tions are computed in terms of the function costq that yields the

cost of optimal plans for each query q ∈ W . If the costq func-
tion is completely arbitrary, a correct algorithm for either DOIP or
IIP has to examine every pair of indices a, b and every index-set
X ⊆ S in order to compute doiq(a, b). This implies a complex-
ity of Ω(2|S||S|2) which can be prohibitively high for real-world
workloads.

In practice, query optimization does not depend on the configu-
ration in an arbitrary way. For instance, the cost of a query should
not increase when indices are added to the configuration, since this
can only expand the space of feasible plans. In order to avoid such
anomalies, we make a natural assumption for the behavior of the
optimizer. Conceptually, we assume that the optimizer chooses the
cheapest execution plan from its search space, while breaking ties
in a consistent way. This is formalized by the following definition.

DEFINITION 3.1. Well-Behaved Optimizer: An optimizer is well
behaved if for any query q ∈ W there exists a set of plans Pq and a
total order on Pq such that (i) plans are ordered by non-decreasing
cost and (ii) given an index-set X , the optimizer chooses the first
plan in the ordering that employs indices solely from X .

From now on we assume that the optimizer is well behaved.
Even with this assumption, the optimizer has a great deal of free-
dom in its choices since no constraints are placed on the space of
plans Pq or the calculation of plan cost. The main consequence of
this assumption is that the optimizer must choose the first available
plan in the total order, which is always the cheapest plan since plans
are ordered by ascending cost. The order of plans with equal cost
is not specified, but all plans chosen for an individual query must
be consistent with some total ordering.

We note that our assumption applies to query statements only.
The cost of an update statement also includes the cost to update in-
dices and this is not captured properly by the total ordering of plans.
However, as clarified in Section 2, our index interaction model for
update statements is based on the corresponding query shell, where
we may assume the optimizer is well behaved.

The remainder of this section builds further infrastructure on top
of the well-behaved optimizer. First we prove useful properties that
follow from the definition and then introduce a technique to expose
the structure in the cost function, costq .

3.1 Properties of Optimal Plan Generation
We derive two properties of a well-behaved optimizer that we

use extensively in the development of our algorithms. We state
the two properties and their proofs below, and then discuss their
interpretation.

PROPERTY 3.1. Monotonicity: For any index-sets X, Y and
query q, if X ⊆ Y then costq(X) ≥ costq(Y).

PROOF. Let Pq be the ordered set of plans considered by the
well-behaved optimizer, and let seqq(Y) be the ordered sequence
of plans inPq using indices solely in Y . If X ⊆ Y , then optplanq(X)
must appear in seqq(Y). Since optplanq(Y) is the first mem-
ber of seqq(Y), this implies that optplanq(X) does not precede
optplanq(Y) in the total order. Hence, costq(Y) ≤ costq(X).

PROPERTY 3.2. Sanity: For any index-sets X, Y and query q,
if usedq(Y) ⊆ X ⊆ Y then optplanq(X) = optplanq(Y).

PROOF. Define seqq(X) and seqq(Y) as in the previous proof.
As before, we know that optplanq(X) appears in seqq(Y) when
X ⊆ Y . We also know optplanq(Y) is in seqq(X) from the as-
sumption that usedq(Y) ⊆ X . Using the reasoning in the previous
proof, these observations imply that optplanq(X) does not precede
optplanq(Y) and optplanq(Y) does not precede optplanq(X).
Hence, optplanq(X) = optplanq(Y).

abcd : 20

abc : 45 bcd : 50

ac : 80 bc : 50

d : 80 c : 80

cd : 65

Figure 1: An example IBG for S = {a, b, c, d}. The set
usedq(Y) for a node Y is depicted by underlining the corre-
sponding indices. The costq(Y) is shown beside each node.

The monotonicity property simply states that the cost of a query
can only improve if more indices are available. The sanity property
states that the optimal plan under a set Y does not change if we ex-
clude from Y indices that are not used in the plan. In what follows,
we use X �Y as a shorthand for the notation usedq(Y) ⊆ X ⊆ Y
and we say that X is covered by Y , or Y covers X .

We stress that we do not use the previous two properties to by-
pass the optimizer. Indeed, our algorithms will rely on what-if
optimization in order to obtain the optimal plan under hypotheti-
cal index sets. These properties, however, imply that the costq()
function exhibits some structure, which we can exploit to improve
efficiency.

As a minor observation, we note that the monotonicity prop-
erty enables us to simplify the denominator in the definition of
doiq(a, b, X) and obtain the following expression:

doiq(a, b, X) =
|benefitq({a}, X)− benefitq({a}, X ∪ {b})|

costq(X ∪ {a, b}) .

We henceforth assume this definition for doiq(a, b, X).

3.2 Index Benefit Graph
The concept of an Index Benefit Graph (IBG) was introduced by

Frank et al. [11]. An IBG enables a space-efficient encoding of
the properties of optimal query plans when the optimizer is well
behaved. Our algorithms build upon this functionality, however
we note that our treatment of the IBG has important differences
compared to the original study, as explained in Section 7.

The IBG for a specific query q is a DAG over subsets of S. Each
node represents an index-set Y ⊆ S and records usedq(Y) and
costq(Y). In a slight abuse of notation, we also use Y to denote
the node in the IBG. The nodes and edges of the IBG are defined
inductively as follows: The IBG contains the node S; For each
node Y and each used index a ∈ usedq(Y), the IBG contains the
node Y ′ = Y − {a} and the directed edge (Y, Y ′).

Figure 1 shows an example IBG for S = {a, b, c, d}. One in-
teresting observation is that bcd and bc differ by index d, yet no
edge exists between them because d 6∈ usedq(bcd). Also, notice
that bcd � bc and hence the two nodes are somewhat redundant
with respect to information on optimal plans (but they are needed
to complete the graph).

Because the IBG nodes only have one child per used index, the
size of an IBG for a particular index-set can vary drastically. Some
interesting ways to measure the size of an IBG are the number of
nodes, the maximum children per node (i.e. fan-out), and the maxi-
mum path length (i.e. height). In the worst case, used(Y) = Y for
each node Y and this results in a node for each subset of S, a fan-
out of |S|, and a height of |S|. However, in practice the optimizer
may not use every index in Y (especially if Y is large), in which
case the IBG can be much smaller. Indeed, Figure 1 contains only
8 of the 16 possible subsets, a fan-out of 2, and a height of 3.

An IBG is naturally constructed by a top-down process, starting
from S as the topmost node. For each node Y in the IBG, the pro-
cess performs a what-if optimization and, for each a ∈ usedq(Y),
adds Y − {a} to the children of Y . Each child is built recursively
unless it already exists, which may be checked by storing nodes in
a hash table. Overall, constructing an IBG with N nodes and fan-
out f requires N what-if optimizations, O(fN) operations on the
hash table of index-sets, and O(fN) other basic operations.

The key property of the IBG is that it is sufficient to derive
costq(X) and usedq(X) for any index-set X ⊆ S , even if X
is not represented directly in the IBG. This is made possible by the
following theorem, which is an immediate consequence of Theo-
rem 3 in [11] when the optimizer is well behaved.

THEOREM 3.1. For any index-set X ⊆ S, there exists a node
Y in the IBG such that X � Y , i.e., used(Y) ⊆ X ⊆ Y .

Thus, any X is covered by an IBG node Y , and the sanity property
implies that costq(X) = costq(Y) and usedq(X) = usedq(Y).
Given that the IBG might not contain a node for each subset of S,
we may view the IBG as a space-efficient representation of the op-
timizer’s behavior for a single query.

A covering node for X can be identified efficiently using the
following simple algorithm: Start from the root node and iteratively
move to a child that corresponds to the removal of an index not in
X , until no such child exists. There may be many choices for the
followed path, but the final node is always a covering node for X .
This algorithm requires enumerating the outgoing edges of each
node in the path to find an appropriate child. If the IBG has height
h and fan-out f , then the time to find a covering node is O(fh).

4. COMPUTING INDEX INTERACTIONS
In this section, we present novel algorithms that efficiently solve

DOIP and IIP (Section 2). The presented algorithms rely heavily
on the machinery introduced in the previous section: information
about index interactions is derived by analyzing the IBG for each
query q ∈ W , taking advantage of the sanity and monotonicity
properties to ensure a correct analysis.

The following subsections present the details of our algorithms.
We first describe an algorithm that operates on a single query q
and determines the degree of interaction for all pairs of indices by
analyzing the IBG of q. This algorithm forms the basis for the al-
gorithms that solve DOIP and IIP for a complete workload, which
are presented in the subsequent subsections.

4.1 Computing the Degree of Index Interac-
tion on a Single Query

We present an algorithm that computes doiq(a, b) for every pair
of indices a, b in S. The main idea is to construct the IBG of q
first and then derive the degrees of interaction by a careful analysis
of the graph’s structure. In what follows, we first present the basic
intuition and then give a complete algorithm description.

4.1.1 Algorithm Intuition
We start by presenting a naive algorithm that correctly computes

doiq(a, b) for all a, b ∈ S but has a prohibitively high complexity
for practical applications. We then use it as the vehicle for devel-
oping and explaining our proposed techniques.

Figure 2 shows the pseudocode for the NAIVE algorithm. The
algorithm first constructs the IBG, which provides a concise repre-
sentation of the optimal plans for any set X ⊆ S. Subsequently,
the algorithm iterates over every possible set X and pair of indices
a, b ∈ S −X and computes doiq(a, b, X). The iteration skips in-

Function NAIVE
Input: Index-set S. Query q.
Output: doiq(a, b) for each distinct a, b ∈ S.
Data: Hash table tq : S × S → R.
Initialize tq [a, b]← 0 for each distinct a, b ⊆ S;1
Construct the IBG for q;2
foreach X : X ⊆ S do3

foreach distinct a, b ∈ S −X do4
Xa ← X ∪ {a}; Xb ← X ∪ {b}; Xab ← X ∪ {a, b} ;5
Find graph nodes Y, Ya, Yb, Yab such that6

Y � X , Ya � Xa, Yb � Xb, Yab � Xab;7

d← |costq(Y)−costq(Ya)−costq(Yb)+costq(Yab)|
costq(Yab)

;8
tq [a, b]← max{tq [a, b], d};9

return doiq(a, b) = tq [a, b] for each {a, b} ⊆ S ;10

Figure 2: Naive algorithm for computing doiq(a, b) for all in-
dices a, b ∈ S.

dices in X since these indices cannot interact within X . The max-
imum over all sets X is stored in the hash table entry tq[a, b], so
that at the end of the computation tq[a, b] yields the desired metric
doiq(a, b).

Each time the algorithm computes doiq(a, b, X), it requires the
cost of q under the quadruple of configurations (X, Xa, Xb, Xab)
where Xa ≡ X∪{a}, Xb ≡ X∪{b} and Xab ≡ X∪{a, b}. The
algorithm evaluates these costs by covering each set with a node
from the IBG. These covering nodes are named Y, Ya, Yb, Yab but
note that these choices are not unique. The sanity property en-
sures that the costs of corresponding nodes are equal, implying that
doiq(a, b, X) can be computed using the quadruple (Y, Ya, Yb, Yab)
in place of (X, Xa, Xb, Xab).

Recall that the number of nodes in the IBG may be much smaller
than the number of subsets of S. This suggests that there may be
other subsets X ′ 6= X such that Y , Ya, Yb, and Yab are the covering
nodes of X ′, X ′∪{a}, X ′∪{b}, and X ′∪{a, b}. In other words,
the same Y -quadruple may be used to compute doiq(a, b, X) for
multiple choices of X .

EXAMPLE 4.1. Consider again the IBG shown in Figure 1 and
suppose we are interested in the value of doiq(a, b, {c}). This de-
gree of interaction is determined by the query costs for the quadru-
ple {c}, {c, a}, {c, b}, and {c, a, b}. These costs are straightfor-
ward to derive from the IBG, since these sets correspond exactly to
graph nodes. Carrying out the arithmetic yields doiq(a, b, {c}) =
|(80 − 80) − (50 − 45)|/45 ≈ 0.1. On the other hand, con-
sider doiq(a, b, ∅). This relies on the query costs for the quadruple
∅, {a}, {b}, and {a, b}. None of these sets exist in the IBG, but
these nodes are covered one-to-one by the previous quadruple, i.e.,
{c}� ∅, {c, a}� {a}, {c, b}� {b}, and {c, a, b}� {a, b}. There-
fore, the same quadruple used to compute doiq(a, b, {c}) may be
used to compute doiq(a, b, ∅).

This example indicates that the NAIVE algorithm may be doing
redundant work by considering all subsets X ⊆ S, since different
X-quadruples may be covered by the same Y -quadruple of graph
nodes. Hence, our goal is to calculate the degree of interaction
for a sufficient collection of Y -quadruples in order to account for
all possible choices of X . This approach can lead to substantial
savings if the IBG is small in size.

4.1.2 The QINTERACT Algorithm
Our new algorithm, termed QINTERACT, is based on the idea

presented above. The pseudocode is given in Figure 3. As shown,

Function QINTERACT
Input: Index-set S. Query q.
Output: doiq(a, b) for each distinct a, b ∈ S.
Data: Hash table tq : S × S → R.
Initialize tq [a, b]← 0 for each distinct a, b ∈ S;1
Construct the IBG for q;2
foreach Y in the IBG do3

foreach distinct a, b ∈ S − usedq(Y) do4
Y ← generate quadruples (Y, Ya, Yb, Yab) based on Y, a, b ;5
foreach (Y, Ya, Yb, Yab) ∈ Y do6

d← |costq(Y)−costq(Ya)−costq(Yb)+costq(Yab)|
costq(Yab)

;7
tq [a, b]← max{tq [a, b], d};8

return doiq(a, b) = tq [a, b] for each {a, b} : a, b ∈ S ;9

Figure 3: Algorithm QINTERACT for computing doiq(a, b) for
all a, b ∈ S. The specifics of the quadruple generation on line 5
are discussed in Section 4.1.2.

the algorithm follows a very similar structure to the NAIVE algo-
rithm of Figure 2, since the IBG is constructed first (line 2) and then
there is an analysis phase which follows to compute interactions
(lines 3–8). The key difference from NAIVE is the enumeration of
IBG nodes instead of all subsets of S in the analysis phase.

For each node Y in the IBG, the QINTERACT algorithm performs
a number of tests for interaction between indices. At a high level,
the goal is to capture the interactions that are witnessed by some
of the sets X covered by Y , but not necessarily all such X . When
processing Y , the algorithm tests interaction for all pairs of indices
a, b ∈ S −usedq(Y). The used indices of Y are excluded because
any index used in Y must also exist in the node X covered by Y ,
and we know that doiq(a, b, X) = 0 whenever a or b is in X .

The first step in processing a pair of indices is the formation
of quadruples (Y, Ya, Yb, Yab) (line 5), each of which are used to
compute a degree of interaction and update the current maximum
in tq[a, b], much in the same way as NAIVE. As mentioned before,
the Y -quadruples should be generated to account for each X with
at least one choice of Y . Our investigation shows that this goal
is non-trivial and requires very careful choices for the components
Ya, Yb, and Yab.

A natural, but incorrect, approach is to generate nodes that sim-
ply test whether an interaction is witnessed by each graph node Y .
To strengthen this approach, a and b should be excluded from Y
since doiq(a, b, Y) = 0 when a or b is in Y . Hence, we can try
generating quadruples that yield the degree of interaction witnessed
by Y − {a, b}. This implies the following strategy for line 5:

Given Y, a, b where a, b 6∈ usedq(Y), choose IBG nodes
Ya � (Y − {a, b}) ∪ {a}
Yb � (Y − {a, b}) ∪ {b}

Yab � (Y − {a, b}) ∪ {a, b}
Consider the following choice of Y:
Ywrong ← {(Y, Ya, Yb, Yab)}

We can verify that Y � Y − {a, b} because a, b 6∈ usedq(Y).
Therefore, the value of d that is computed using the single tuple in
Ywrong will capture doiq(a, b, Y − {a, b}). Following the reason-
ing used earlier, d will also capture the value of doiq(a, b, X) for
any other X such that X � Y ∧Xa � Ya ∧Xb � Yb ∧Xab � Yab.
Unfortunately, this may not be sufficient to capture all index inter-
actions, which may result in an underestimate of doiq(a, b). This
fact is proven in the following example.

EXAMPLE 4.2. Consider the problem of computing doiq(a, b)
on the IBG shown in Figure 4(a). As a first step, we can compute

abuv : 20

auv : 30 buv : 30

au : 40 uv : 40

v : 50 u : 50

bv : 40

abuv : 20

auv : 30 buv : 30

au : 40 uv : 40

v : 50 u : 50

bv : 40

Y
b

Y
a

Y

Y
b

Y
b

+

!
Y

a

Y

Y
ab

Y
ab

abuv : 20

auv : 30 buv : 30

au : 40 uv : 40

v : 50 u : 50

bv : 40

abuv : 20

auv : 30 buv : 30

au : 40 uv : 40

v : 50 u : 50

bv : 40

Y
b

Y
a

Y

Y
b

Y
b

+

!
Y

a

Y

Y
ab

Y
ab

(a) (b)

Figure 4: Quadruples of nodes in the computation of
doiq(a, b). Part (a) depicts the case where a single quadruple
(Y, Ya, Yb, Yab) is used. Part (b) depicts the case where the al-
gorithm uses Y −

b and Y +
b instead of Yb.

the value of doiq(a, b, ∅) by observing that {u}� ∅, {a, u}� {a},
{b, v}� {b}, and {a, b, u, v}� {a, b}. This yields doiq(a, b, ∅) =
|(50 − 40) − (40 − 20)|/20 = 0.5. However, if we use Ywrong to
implement line 5 of QINTERACT, the algorithm will not discover an
interaction between a and b when visiting any node. For example,
the shaded quadruple (Y, Ya, Yb, Yab) would be examined when
visiting node {u}, but these nodes do not witness an interaction
between a and b.

Conceptually, the flaw withYwrong is that that there may be some
X ⊆ S such that the sets X, X ∪ {a}, X ∪ {b}, X ∪ {a, b} do not
have costs that match any quadruple (Y, Ya, Yb, Yab). Below, we
describe a correction to this flaw, along with some high level rea-
soning behind the strategy. We formally prove that the final strategy
is correct in the accompanying technical report [16].

We start with an important observation that is drawn from the
technical report: When a, b are fixed and we consider an arbitrary
X ⊆ S, there is some IBG node Y such that

costq(Y) = costq(X)
∧ costq(Ya) = costq(X ∪ {a})
∧ costq(Yab) = costq(X ∪ {a, b}).

Hence, the Y -quadruples considered by Ywrong will see three out
of four costs that are needed to compute doiq(a, b, X). Based on
this observation, a reasonable strategy is to use the three exact costs
provided above, and find tight bounds for the fourth required value
costq(X ∪{b}). Since the algorithm is only interested in the max-
imum doiq(a, b, X) over X , it is sufficient to consider the value
of costq(X ∪ {b}) within the bounds that yields the largest degree
of interaction. To derive bounds on costq(X ∪ {b}), we find IBG
nodes Y −

b , Y +
b conforming to

Uab = usedq(Y) ∪ usedq(Ya) ∪ usedq(Yab)

Y −
b � (Uab − {a, b}) ∪ {b}

Y +
b � (Y − {a, b}) ∪ {b}

and assume costq(X ∪ {b}) ∈ [costq(Y
+

b), costq(Y
−

b)]. The in-
spiration behind this approach is the following fact, which follows
easily from our definitions and the constraint a, b 6∈ usedq(Y):

(X � Y) ∧ (X ∪ {a}� Ya) ∧ (X ∪ {a, b}� Yab)
if and only if Uab − {a, b} ⊆ X ⊆ Y − {a, b}

The first line is related to the earlier observation that three of the
four required cost values in the computation of doi(X, a, b) are
captured by some Y, Ya, Yab. When these equivalent conditions
hold, the monotonicity and sanity properties imply that the costs of
Y +

b , Y −
b provide tight bounds for the fourth value costq(X ∪{b}).

To make the final leap in reasoning, we notice that the expression
for doiq(a, b, X) is a convex function of costq(X ∪ {b}), which

implies the maximum value is taken when costq(X ∪ {b}) has an
extreme value. This means that it is sufficient to consider only the
cases where costq(X ∪{b}) is equal to costq(Y

+
b) or costq(Y

−
b).

Finally, our implementation of line 5 chooses two quadruples.

Y ← {(Y, Ya, Y −
b , Yab), (Y, Ya, Y +

b , Yab)}

Using this strategy, we have the following correctness result.

THEOREM 4.1. The values doiq(a, b) returned by QINTERACT
are correct for every distinct a, b ∈ S.

We conclude our presentation of QINTERACT with a running
time analysis. The running time of IBG construction was detailed
in Section 3, so we focus on the analysis phase. As in Section 3,
we assume the IBG has N nodes, height h, and fan-out f . For each
IBG node Y and relevant indices a, b, the QINTERACT algorithm
generates two quadruples and does a constant amount of computa-
tion for each. Hence, the processing for Y, a, b is dominated by the
time to generate a quadruple. A quadruple is generated by search-
ing for a constant number of of covering nodes, and each search
requires O(fh) time (Section 3). Hence, O(fh) time is spent pro-
cessing Y, a, b, which results in O(fhN · |S|2) time to compute the
Θ(|S|2) return values. In cases where the size of the IBG is poly-
nomial in |S|, this implies polynomial time complexity overall.

4.2 Algorithms for DOIP
We now turn our attention to the Degree of Interaction Problem

(DOIP) where the goal is to compute doiq(a, b) for every q ∈ W
and a, b ∈ S. We present two algorithms, termed SERIAL and
INTERLEAVED, that use the logic of QINTERACT as a sub-routine
in order to solve DOIP.

The two algorithms that we present share the following impor-
tant feature: They maintain a per-query hash table lq : S ×S → R
such that, at any point in time, lq[a, b] provides a lower bound on
doiq(a, b). Each bound lq[a, b] is initialized to 0, meaning that the
algorithm does not have any information on the interaction between
a and b, and it converges to the final value doiq(a, b) as the algo-
rithm is running. The bounds thus provide an any-time approximate
solution to DOIP, and can even serve in lieu of the actual solution if
the database administrator finds the approximation sufficient. The
following paragraphs describe the details of the two algorithms.

The SERIAL algorithm is a direct adaptation of QINTERACT to
DOIP. Essentially, the algorithm iterates over every query q inW
and performs lines 1–8 of QINTERACT, except that the hash table
tq is replaced with lq . Once the processing of q is complete, each
entry lq[a, b] is equivalent to doiq(a, b).

The INTERLEAVED algorithm interleaves IBG construction and
analysis among all queries in the workload in an attempt to compute
more interactions sooner. It thus avoids the “blocking” nature of
SERIAL which computes interactions for one query at a time.

More concretely, INTERLEAVED performs a round-robin itera-
tion over the queries in W , and for each q it expands its IBG by
invoking the what-if optimizer on exactly one node. To illustrate
this process, assume that a query q has the IBG shown in Figure 1.
Initially, the graph will contain S = {a, b, c, d} but usedq(S) and
costq(S) will not be known. The first time q is examined, a what-if
call will be made to compute usedq(S) and costq(S) and to add
the nodes Y1 = {a, b, c} and Y2 = {b, c, d} which will be marked
as unexpanded. After examining other queries, INTERLEAVED will
revisit q and invoke the what-if optimizer on one of the unexpanded
nodes, say Yj , to discover costq(Yj) and usedq(Yj), which in turn
will cause more unexpanded nodes to be introduced, and so on. We
assume that unexpanded nodes are processed in order of their size,
which guarantees that the IBG is built in a breadth-first fashion.

After a node expansion, INTERLEAVED processes the new node
by testing all relevant pairs of indices for interaction, using the ap-
proach from lines 3–8 of QINTERACT, except that the hash table tq

is replaced with lq . In this processing, there is a possibility that one
or more covering nodes that are required for the analysis may not
be expanded. INTERLEAVED keeps track of these occurrences and
retries the computation after more of the graph is built. In our ex-
perience observing the behavior of INTERLEAVED, the breadth-first
expansion of the IBG is conducive to minimizing the likelihood of
needing to revisit a node.

Overall, we expect INTERLEAVED to update its lower bounds
more steadily compared to SERIAL and it is thus a more appeal-
ing choice for generating an approximate solution to DOIP. We
note that we also explored methods for deriving upper bounds on
doiq(a, b) based on partially constructed IBGs. However, the re-
sulting bounds were very loose and thus did not provide much in-
formation. Our investigation indicated that obtaining a tight upper
bound is technically challenging, but more generally its usefulness
is unclear due to the difficulty of determining index independence.

4.3 Algorithms for IIP
Recall that the Index Interaction Problem (IIP) entails the com-

putation of the binary relation ∼τ , where a ∼τ b iff doiq(a, b) ex-
ceeds a threshold τ ≥ 0. Our solution to this problem is essentially
an adaptation of the aforementioned SERIAL and INTERLEAVED
algorithms. The idea is to output the pair (a, b) in the solution as
soon as lq[a, b] > τ for some query q, since the lower bounding
property also implies that doiq(a, b) > τ . Thus, at any point in
time, SERIAL and INTERLEAVED provide a subset of ∼τ which
can serve as an approximate solution to IIP, and they converge to
the true solution upon completion.

Both algorithms can be optimized by modifying QINTERACT to
skip pairs of indices a, b that already appear in the solution. How-
ever, the worst case complexity for either algorithm is exactly the
same as its counterpart for DOIP, since pairs of independent in-
dices a 6∼τ b force the algorithms to compute the precise value of
doiq(a, b) for every query q ∈ W .

5. EXPERIMENTAL STUDY
In this section, we conduct an empirical study to evaluate the ef-

ficiency of algorithms SERIAL and INTERLEAVED in different sce-
narios. We first describe the aspects of our experimental methodol-
ogy, then provide a summary of our main results.

5.1 Methodology
Testing platform. Our experiments use a prototype implementa-
tion of our interaction modeling methodology written in the Java
language. The implementation includes algorithms SERIAL and
INTERLEAVED for DOIP and IIP. The code is executed on a ma-
chine running Mac OS X with a 2.4GHz dual-core processor and
2GB RAM. The database system in our experiments is the freely
available IBM DB2 Express-C which includes an advisor tool that
can generate index recommendations for a representative workload.
We use the EVALUATE INDEXES mode of DB2 to perform what-
if optimization.

Data and queries. We use the TPC-H data set with the default
scale of 1 GB to evaluate our techniques for discovering index in-
teractions. We chose TPC-H since it is commonly used in studies
on index selection [2, 15, 12]. Our representative workload W
comprises the 22 benchmark queries, which provide an interesting
variety of query plans where indices may interact.

Candidate index generation. Both SERIAL and INTERLEAVED
assume that a set of candidate indices S is provided as input. Of
course, there are many methods for generating S based on the
database and representative workload. In our setting, it is reason-
able to use the default advisor provided by DB2 to select the candi-
date indices. Since larger index-sets have more potential for index
interactions, we do not specify any constraints on the size of the
recommendation. This essentially results in an index configuration
that is optimal for the workload. We refer to this set of indices as
SALL. As an alternative approach to candidate generation, we also
consider the set of indices S1C that contains a single-column in-
dex on R.A for each attribute R.A that occurs in some member of
SALL. In other words, S1C contains all single-column indices that
might be relevant for the workload. We note that |SALL| = 51 and
|S1C| = 48.

Evaluation metrics. As described in Section 4, SERIAL and
INTERLEAVED begin with no knowledge of interactions and pro-
gressively obtain information throughout their execution. It is thus
interesting to examine the rate at which each algorithm obtains in-
formation on index interaction before it completes.

We measure running time with two metrics. One of our metrics,
which is the most natural, is the real “wall clock” time consumed
by the algorithm. This metric provides an idea of the practicality of
our approach, but the real time is highly dependent on the database
system and computer architecture. A more stable metric for run-
ning time is the number of query optimizations performed for IBG
construction. In our experiments, we found that this was the most
expensive operation, and the true running time of the algorithm was
highly correlated with the number of query optimizations.

The metric for measuring algorithm progress depends on whether
the algorithm is applied to IIP or to DOIP. For IIP, the metric is the
number of pairwise interactions given a specific threshold τ . We
vary τ over the set {0.01, 0.1, 1} to observe the trends for different
thresholds. For DOIP, we measure progress as the distance be-
tween the lower bound lq[a, b] and the actual interaction doiq(a, b)
over all queries inW . The metric we use for this is mean relative
error for all interacting pairs of indices in S, which is expressed as

MRE =
1P

q∈W
|Pq|
·

X
q∈W

X
(a,b)∈Pq

1− lq[a, b]

doiq(a, b)

where Pq = {(a, b) ∈ S × S | a 6= b ∧ doiq(a, b) > 0}

Note that each term in the summation is nonnegative since each
lq[a, b] is initially zero and increases monotonically to doiq(a, b).

5.2 Results
We now present our performance results for the two algorithms,

SERIAL and INTERLEAVED (abbreviated “intlvd” in the figures).
We first show the performance of these algorithms when solving
IIP, and then discuss their performance for DOIP. Some of the
different scenarios in our study showed very similar trends, so we
restrict our presentation to a representative subset of the results.

Convergence to IIP Solution. We measure the convergence of
SERIAL and INTERLEAVED for the IIP problem in terms of the
number of known interacting pairs over time. The first results that
we present use optimizer invocations to measure time, and the fol-
lowing results use wall clock time.

Figure 5 shows our measurements using the SALL candidate set
and threshold of τ = 0.01. This low setting of τ causes the num-
ber of interacting pairs a ∼τ b to be 180. The curves that we
observed for τ = 0.1 and 1.0 had very similar shape, although the
total number of interactions were reduced to 122 and 92 respec-

0
25
50
75

100
125
150
175
200

0 2500 5000 7500 10000

K

no
w

n
In

te
ra

ct
io

ns

Query Optimizations

Serial
Intlvd

0

5

10

15

20

0 50 100 150 200 250 300

K

no
w

n
In

te
ra

ct
io

ns

Query Optimizations

Serial
Intlvd

0

2

4

6

8

10

0 50 100 150 200 250 300

K

no
w

n
In

te
ra

ct
io

ns

Query Optimizations

Serial
Intlvd

Figure 5: Convergence with SALL can-
didate set and τ = 0.01. Results with
τ = 0.1, 1.0 showed similar trends.

Figure 6: Convergence with S1C can-
didate set and τ = 0.01. Results with
τ = 0.1 showed similar trends.

Figure 7: Convergence with S1C can-
didate set and τ = 1.0.

0

200

400

600

800

1000

1200

1400

25% 50% 75% 100%

Ex
ec

ut
io

n
Ti

m
e

(s
)

Known Interactions

Serial
Intlvd

0

5

10

15

20

25

30

25% 50% 75% 100%

Ex
ec

ut
io

n
Ti

m
e

(s
)

Known Interactions

Serial
Intlvd

Figure 8: Time required to discover percentages of in-
teractions in SALL candidate set, where τ = 0.1.

Figure 9: Time required to discover percentages of in-
teractions in S1C candidate set, where τ = 0.1.

0

0.2

0.4

0.6

0.8

1

0 2500 5000 7500 10000

M
ea

n
R

el
at

iv
e

Er
ro

r

Query Optimizations

Serial
Intlvd

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

M
ea

n
R

el
at

iv
e

Er
ro

r

Query Optimizations

Serial
Intlvd

Figure 10: Convergence of MRE with SALL candidate set. Figure 11: Convergence of MRE with S1C candidate set.

tively. The graph clearly shows that INTERLEAVED starts discov-
ering interactions very quickly compared to SERIAL. Moreover,
INTERLEAVED finds all 180 interacting pairs after about 5,000 op-
timizer calls, which is about half of the number of calls required to
build all of the index benefit graphs.

The trends in our observations for the S1C candidate set are no-
ticeably different. The difference may be due to the smaller IBGs,
which required less than 300 query optimizations to construct, com-
pared to about 10,000 for SALL. The results for τ = 0.01 are shown
in Figure 6 (results for τ = 0.1 were very similar). The graph
indicates that serial analysis finds several of the interacting pairs
by examining the first few queries, whereas interleaved analysis
takes more time to find the first interactions. On the other hand, the
interleaved approach still converges to complete knowledge of in-
teractions significantly faster than serial. We see somewhat similar
behavior when the value of τ is increased to 1.0, as shown in Fig-
ure 7. However, the convergence with the serial approach is much
less smooth, since most of the interactions are discovered near the
beginning or the end of the analysis.

We next turn our attention to the wall clock time used by the al-

gorithms, for a moderate setting of the threshold τ = 0.1. Figure 8
shows the time taken to discover a given percentage of interacting
pairs within the SALL index-set. The interleaved approach finds the
first 25% of interacting pairs in under one minute, whereas serial
analysis takes several minutes to make this progress. The number
of interacting pairs known in the serial approach stays below 50%
of the total until the end, when the IBGs are finished constructing.
The two approaches are more comparable within the S1C index set,
as shown in Figure 9. The overall time required to converge is un-
der 30 seconds, which is much smaller than the 15 minutes needed
to analyze the SALL index-set. This is interesting since SALL and S1C

have comparable size—essentially, our observations imply that the
structure of the IBG has more of an effect on running time than the
number of candidate indices. In this case, the SALL index set has
many relevant indices for some queries, which leads to large IBGs.

Convergence to DOIP Solution. We now examine the progress of
SERIAL and INTERLEAVED for DOIP in terms of the mean relative
error (MRE) metric defined previously. In Figure 10, we observe
that INTERLEAVED converges to zero error much more smoothly
than SERIAL. This is a desirable property for an algorithm, since

it means that it is generally beneficial to spend more time with
the analysis. The jumps in error exhibited with serial analysis are
less attractive, since they show that long periods of time may pass
where the algorithm does not make progress. The picture is some-
what different for the S1C index-set shown in Figure 11. The inter-
leaved approach takes some time to make any significant progress,
but converges smoothly after the first 100 query optimizations. We
can interpret this behavior based on the implementation described
in Section 4.2. Since the interleaved approach alternates between
queries when building IBGs, this suggests that the upper layers of
the IBGs of each query do not have significant information about
index interactions. It appears that the first few queries analyzed in
the serial approach lead to more initial improvement in MRE .

Discussion. The results of our study show the practicality of an-
alyzing index interactions assuming that the optimizer is well be-
haved. Recall that without this assumption, our only recourse is to
evaluate the workload cost under all 2|S| index-sets. By extrapolat-
ing the measurements on our testing platform, this would require
several million years of computation to analyze the SALL configura-
tion. Our results also show the benefits of the INTERLEAVED algo-
rithm, which generally converges faster than the SERIAL variant.
The advantage is more clear for the SALL index-set, as illustrated by
the dominance shown in Figure 5, 8, 10. We argue that this case
deserves the most attention, since the total number of interactions
imply a more challenging analysis.

Finally, we note that there may be significant room for improve-
ment with respect to the absolute running time of the algorithms.
As mentioned earlier, the main bottleneck in the analysis is what-if
optimization. Our prototype uses the optimizer in a naive fash-
ion, which starts from scratch each time the set of available indices
changes. A more intelligent implementation could take advantage
of recent work on efficient query optimization under varying phys-
ical designs [5, 14] which can improve the performance of query
optimization by up to two orders of magnitude [5].

6. APPLICATION IN TUNING TOOLS
The algorithms described in Section 4 provide a solution to DOIP,

which includes complete information about all index interactions
that exist among indices in S. However, a list of interacting pairs is
not straightforward for a database administrator to interpret, so this
information is not easy to utilize in its raw form. In this section, we
investigate the development of database tuning tools that are based
on the index interactions discovered by the algorithms for DOIP.
These tools are meant to augment the current tool set provided by
commercial DBMSs.

6.1 Visualizing Index Interactions
As mentioned before, knowledge of index interactions allows for

a better understanding of the cost/benefit trade-offs involved when
materializing indices. Consider a scenario where an index a is be-
ing considered as an addition to the current materialized set. If a
has a negative interaction with a materialized index b, a standard
what-if analysis may return low benefit for materializing a. On the
other hand, knowledge of the interaction would suggest replacing b
with a as another interesting design choice.

In these scenarios, it would be useful to develop visualization
tools that present information about index interactions in a concise
yet informative fashion. Since a solution to DOIP gives the degree
of interaction for every pair of indices, it is natural to interpret these
values as the weights of edges in an undirected graph. The thresh-
old τ may be used to filter edges of low weight, meaning that the
graph only includes an edge between a and b if a ∼τ b.

O(CK,OK)

C(CK,NK)

LI(SK,SD,D,EP,OK)

LI(SD,D)

S(NK,N,SK) S(NK,SK) S(SK,NK)

C(NK,CK)

LI(SD,Q)

0.01

0.02

0.04

0.02

0.03

0.09 0.02
0.01

0.02

Figure 12: Graph of index interactions for TPC-H Query 7.

EXAMPLE 6.1. A sample interaction graph is presented in Fig-
ure 12, which is derived from Q7 in the TPC-H benchmark and the
SALL set of indices described in Section 5. The nodes of the graph
comprise the members of SALL that are relevant to the query, and
the edges are denoted with the value of doiq for the pair of indices
(edges below the threshold τ = 0.01 are omitted). One immediate
observation that can be made from the graph is that, although one
would expect the overlapping indices on relation S to interact, the
lack of edges between them indicates that their interaction is not
strong compared to the query cost. In fact, the strongest interac-
tion occurs between indices on different tables LI and O.

The graph described in the previous example was intentionally
simplistic for the purpose of illustration. The basic graph could
be extended in many ways through a GUI. For instance, the edges
could be separated into positive and negative interactions. It would
also be straightforward to allow an administrator to select an edge
and examine the particular conditions in which the indices interact.

Our example graph was reasonably small, but in some cases the
graph may have too many edges to examine one at a time. In these
situations, some insight may still be gained by examining the con-
nected components of the graph. In Figure 12, there is one compo-
nent of seven indices and three singleton components. Intuitively,
the connected components are a sound visualization method be-
cause they represent a partitioning of S into subsets of independent
benefit. In what follows, we formalize this intuition.

DEFINITION 6.1. A stable subset of S is defined as any subset
C ⊆ S such that benefit(C′, X) = benefit(C′, X ∩ C) for all
C′ ⊆ C, X ⊆ S.

The definition of a stable subset C essentially states that the ben-
efits of indices within C are not affected by indices outside of C.
This is a useful property for a system administrator to know, as it
ensures that decisions may be made independently within different
stable subsets.

In principle, smaller stable subsets provide more information
about which indices are independent (indeed, S is a stable subset of
itself, but this does not provide any information). Our main result
states that if we consider the graph with edges defined by the ∼0

relation, each connected component is stable. Moreover, S cannot
be decomposed further into smaller stable subsets. The following
theorem gives the formal result.

THEOREM 6.1. Define G(V, E) as the undirected graph where
V = S and (a, b) ∈ E if and only if a ∼0 b. Let C1, . . . , Cm

denote a partitioning of S corresponding to the connected compo-
nents of G. Then the following hold:

(1) Each Ci is a stable subset of S.

(2) If C′
i ⊆ Ci and 1 ≤ |C′

i| < |Ci|, then C′
i is not stable.

(3) C1, . . . , Cm is the only partitioning of S satisfying (1), (2).

ø a a,b a,b,c Materialized
Indices

benefit({a,b,c}, ø)

Benefit

benefit({a,b,c}, ø)

ø c a,c a,b,c Materialized
Indices

Benefit

Figure 13: Benefit for the schedules in Example 6.2.

The main step of the proof [16] is to show that C ⊆ S is stable if
and only if C is a union of connected components.

The theorem shows that the connected components have a useful
interpretation on their own, even if the edges within the compo-
nents are not known. It is interesting to note that we examined
the convergence to the correct connected components in the ex-
periments of Section 5. In general, we observed that discovering
the connected components was significantly less expensive, as the
INTERLEAVED algorithm found the correct connected components
2–5 times faster than discovering all interacting pairs of indices.
We also observed that most stable subsets were small, containing
fewer than ten indices in nearly all cases.

6.2 Scheduling Index Materializations

6.2.1 Motivation and Problem Formalization
Our discussion of interaction visualization showed how a solu-

tion to IIP can help an administrator understand the relationships
between indices when selecting a configuration. After the config-
uration is decided, it is still important to choose a good schedule
for materializing the new indices. The ideal schedule would mate-
rialize all indices at once during a “maintenance window” of low
database activity. Unfortunately, this might not be feasible due to
the size of the new indices or other constraints, which forces the
indices to be gradually materialized over time. Obviously, this has
the consequence that queries may only take advantage of the subset
of indices that have been materialized in the past.

When an index configuration is materialized over time, it is prefer-
able to schedule indices in a way that achieves high benefit as early
as possible. The following example shows that index interactions
play a significant role when determining the best schedule under
this criterion.

EXAMPLE 6.2. Let S = {a, b, c} and assume that only a and
b interact. We specify the benefit function as follows:

benefit({a}, ∅) = 5 benefit({c}, ∅) = 10
benefit({b}, ∅) = 5

benefit({a, b}, ∅) = 100

Consider two materialization schedules which materialize indices
in the order a, b, c and c, a, b. Assume that each index is mate-
rialized in a separate maintenance window. Figure 13 shows the
benefit that is realized by the two schedules after each window. The

first schedule is the natural choice since the majority of the ben-
efit of S is realized by {a, b}, and the first schedule achieves this
benefit as early as possible. On the other hand, if the positive inter-
action between a and b were unknown, we might be led to choose
the second schedule that materializes c first, since this achieves a
slightly higher benefit after the first window.

In this example, it is not immediately obvious which schedule is
preferred, since the first schedule has the least benefit after the first
window, but the most benefit after the second window. In order to
enable a principled study of materialization scheduling, we intro-
duce some terminology and a metric for the quality of a schedule.
Any sequence of distinct indices is referred to as a materialization
schedule. If T is a materialization schedule, we use T (i) to denote
the i-th element of T and define T [i, j] = {T (k) | i ≤ k ≤ j}.
If S is a set of indices and the set of elements in T is equal to S,
then we say T is a schedule of S. In this case, we define our quality
metric accbenefit of T as

accbenefit(T) =

|S|X
i=1

benefit(T [1, i], ∅).

This metric indicates the accumulated benefit of T over time, which
is equivalent to the shaded areas in Figure 13. The first schedule
has a higher value of accbenefit , which confirms our instinct to
materialize the highly beneficial pair a, b as early as possible. We
use this metric to formalize the scheduling problem.

Index Materialization Scheduling Problem (IMSP) Given an
index-set S, compute a schedule T of S maximizing accbenefit(T).

Before exploring solutions to IMSP, we analyze the computa-
tional complexity of the problem. We first make the problem in-
put more precise. The statement of IMSP explicitly requires S
as an input, but we must also consider the workload W and the
well-behaved optimizer to be inputs to the problem, since these are
needed to evaluate benefit(X, Y). For the sake of this analysis, it
is reasonable to model the optimizer using polynomial-time algo-
rithms that compute costq(X) and usedq(X) for any q ∈ W and
X ⊆ S. To formulate a simple example, suppose all indices are
used independently for each query inW . An algorithm for query
cost may fix constants cq ≡ costq(∅) and βa

q ≡ benefitq({a}, ∅)
for all q ∈ W , a ∈ S, and define costq(X) = cq−

P
a∈X βa

q . We
also have usedq(X) = X in this example.

Consider the decision problem related to IMSP, where we wish
to know whether there exists a schedule T such that accbenefit(T)
is above a particular value. This decision problem is clearly in
NP since accbenefit requires polynomial time to evaluate. The
hardness of IMSP is expressed by the following theorem.

THEOREM 6.2. IMSP cannot be solved in polynomial time un-
less P = NP.

PROOF. The proof uses a reduction from the Pipelined Set Cover
problem as presented by Munagala et al. [13]. Essentially, we as-
sume that the benefit of a configuration is described in terms of
a union of sets, which correspond to the sets in the Pipelined Set
Cover problem. Although this representation of benefit cannot de-
scribe all instances of IMSP, it is general enough to reduce all
instances of Pipelined Set Cover, which is sufficient to show the
hardness of the problem. The details of the reduction may be found
in the technical report [16].

Since our proof of hardness shows that IMSP has a close re-
lationship with the Pipelined Set Cover problem, it makes sense
to apply the greedy heuristics associated with Set Cover. In our

context, this amounts to choosing the indices from first to last, ac-
cording to the following inductive rule:

T (i) = argmax
a∈S−T [1,i−1]

benefit({a}, T [1, i− 1]).

In the context of Pipelined Set Cover, this heuristic has been shown
to approximate the cost of the optimal ordering by a factor of 4 [9].
However, the proof of this approximation ratio does not extend to
IMSP. As we show next, the greedy heuristic may result in a sched-
ule with an accbenefit approximately 1/(|S| − 1) times optimal.

EXAMPLE 6.3. Let S = {a1, a2, . . . , an−2, b1, b2}. Suppose
that each ai does not interact with any other index, and has a ben-
efit of 1. Also assume that b1 and b2 have zero benefit individually,
but the pair b1, b2 provides a benefit of β. The greedy heuristic will
produce a schedule T G that materializes b1 and b2 last, resulting in
an accumulated benefit of

accbenefit(T G) = β +
(n− 2)(n + 3)

2
.

When β > 2, it is straightforward to show that the optimal schedule
T ∗ materializes b1, b2 first, so

accbenefit(T ∗) = (n− 1)β +
(n− 2)(n− 1)

2
.

As β →∞, the ratio accbenefit(T G)/accbenefit(T ∗) approaches
1/(n− 1).

To put this example in context, it is interesting to note that every
schedule achieves a benefit of at least 1/|S| times optimal. This fol-
lows from the observation that each term in accbenefit has an upper
bound of benefit(S, ∅) and the last term is equal to benefit(S, ∅)
for all schedules. Hence, greedy scheduling is nearly as bad as an
arbitrary schedule in the worst case!

6.2.2 Scheduling with Stable Subsets
Since the greedy heuristic has major shortcomings, it is desirable

to find heuristics with more robust properties. We now propose a
scheduling algorithm that exploits the stable subsets defined in Sec-
tion 6.1 in order to avoid the mistakes that can be made by greedy
scheduling. The main idea behind our approach is that we may be
able to partition a large set S into stable subsets C1, . . . , Cm that
are small enough to find the optimal schedule Ti for each Ci in iso-
lation. (An optimal schedule may be found in O(|Ci| · 2|Ci|) time
with dynamic programming.) Since the indices in disjoint stable
subsets do not interact, it is natural to choose a schedule for S that
preserves the ordering of each Ti. In other words, we would like to
arrange S into a sequence that contains each Ti as a subsequence.
We refer to such a schedule as an interleaving of T1, . . . , Tm. Al-
though there may not be any interleaving that is optimal, this strat-
egy avoids many shortcomings of the greedy heuristic by directly
accounting for index interactions.

We now present the details of our scheduling heuristic. We focus
our presentation on a simplified problem of merging the schedules
of two disjoint, stable subsets C1, C2 ⊆ S. Specifically, we have
schedules T1, T2 for C1, C2 and we would like to choose an inter-
leaving of T1, T2. A solution to this problem may easily be applied
to the problem of merging m schedules by iteratively merging pairs
of schedules.

We can determine the optimal interleaving of T1, T2 using a dy-
namic programming algorithm. Let M(k1, k2) denote the accumu-
lated benefit of the optimal interleaving of T1[1, k1] and T2[1, k2].

The value of M(k1, k2) may be expressed by the following recur-
rence:

For 1 ≤ k1 ≤ |C1| and 1 ≤ k2 ≤ |C2|,
M(k1, k2) = benefit(T1[1, k1] ∪ T2[1, k2], ∅)

+ max(M(k1 − 1, k2), M(k1, k2 − 1))
M(k1, 0) = benefit(T1[1, k1], ∅) + M(k1 − 1, 0)
M(0, k2) = benefit(T2[1, k2], ∅) + M(0, k2 − 1)
M(0, 0) = 0

This recurrence leads to a simple dynamic programming algorithm
for choosing the optimal interleaving of two schedules. When the
schedules are on stable subsets and we assume that the two sched-
ules are optimal, we can show that the result of this merging achieves
an interesting approximation ratio that we prove in the technical re-
port [16].

THEOREM 6.3. Let C1, C2 be disjoint, stable subsets of S and
assume that T1, T2 are optimal schedules for C1, C2 respectively.
Let T be the optimal interleaving of T1, T2 and let T ∗ be the opti-
mal schedule of C1 ∪ C2. Then

accbenefit(T) ≥ accbenefit(T ∗)

min(|C1|, |C2|) + 1
.

The min() operation in the approximation ratio is intuitive since
we expect the merged schedule to be closer to optimal when one of
the optimal schedules is very short, meaning that the optimality of
the longer schedule should not be “disturbed” significantly.

The approximation ratio for our merging approach is a signif-
icant improvement over the greedy heuristic whose performance
can be arbitrarily close to 1/(|C1|+ |C2| − 1) in the worst case, as
indicated by Example 6.3. Going back to this example, we can ver-
ify by inspection that our merging heuristic will choose a schedule
with the same optimal cost of T ∗. Also, this schedule can be found
very efficiently given that the connected components of S have size
1 or 2.

In practice, we expect a tuning tool to try both our merging algo-
rithm and the greedy heuristic and return the materialization sched-
ule that maximizes the accumulated benefit. Although it is not pos-
sible to make guarantees on the winning algorithm, the theoretical
results suggest that our approach is more robust for solving difficult
scheduling problems and can thus provide meaningful alternatives
to greedy scheduling.

7. RELATED WORK
Several previous studies have introduced methodologies for mod-

eling index interactions. The first reference known to us is the work
of Whang et al. [17], where it is shown that interactions cannot ex-
ist between indices on different tables if the join operators satisfy
specific properties. Finkelstein et al. [10] observe that these proper-
ties may not hold for common join operators such as nested-loops,
and introduce a more general rule: interactions do not exist be-
tween indices that are relevant for disjoint subsets of the workload.
These works, however, do not provide methods for identifying in-
teractions or measuring their magnitude. Bruno and Chaudhuri [3]
describe a heuristic approach for identifying negative index inter-
actions and measuring the respective degree of interaction. A more
systematic approach is taken by Choenni et al. [8] who show that
the existence of positive (respectively, negative) interactions is di-
rectly linked to sub-modular (respectively, super-modular) query
cost functions. This result, however, is restricted to a workload
of single-table queries and single-column indices; moreover, it is
unclear whether the cost functions of actual optimizers exhibit sub-
/super-modularity with respect to the materialized index-set. Our

work provides a systematic methodology for identifying and quan-
tifying (positive and negative) interactions without making restric-
tive assumptions about the optimizer. Indeed, the techniques that
we develop rely solely on the optimizer being well behaved, which
is an intuitive property that is easy to verify on actual systems.

The importance of index interactions has been emphasized con-
sistently in previous works on workload-driven index selection [7,
3, 1, 2, 18, 6, 10, 17]. The developed algorithms attempt to take
into account index interactions either by modeling them directly,
e.g., using the aforementioned methodologies, or by making spe-
cific assumptions about the existence of interactions. For instance,
Choenni et al. [8] develop an efficient solution to a variant of the
index selection problem assuming that interactions can be captured
through a sub-modular (or super-modular) cost function. As an-
other example, Chaudhuri and Narasayya [7] employ the heuris-
tic that significant interactions exist only within index-sets up to
a fixed size. Our index interaction framework can serve two pur-
poses within this context. First, it can provide specific information
about index interactions that can substitute heuristic assumptions,
thus leading to more robust index selection techniques. Second, it
can enable new tools that help the database administrator in under-
standing and using the output of an index-selection algorithm. The
visualization method and scheduling algorithm described in Sec-
tion 6 provide two concrete examples of the latter.

As mentioned before, our work borrows the concept of the In-
dex Benefit Graph which was introduced by Frank et al. [11]. That
study also described a property of optimal plan generation that re-
sembles the sanity property that we introduce in Section 3.1. How-
ever, there are also significant differences to our work. We prove
the properties of the IBG and of the supporting machinery based on
the intuitive assumption that the optimizer is well behaved. Frank
et al. base their proofs on a rather complicated axiom (Property 1
in their paper) that does not have an easy natural interpretation and
is thus difficult to check for real systems. Another difference is
the definition of the sanity property, which in [11] implies solely
that usedq(X) = usedq(Y) and thus does not make any statement
about the corresponding optimal plans or their cost. Our sanity
property implies the equality of optimal plans and thus of execution
costs, which is more informative for the detection of interactions.

8. CONCLUSIONS
This paper introduced a systematic and general methodology for

computing the interactions within an index-set and with respect to
a given workload. Interactions heavily affect index benefits and
are thus crucial in characterizing the cost/benefit characteristics of
an index-set. We developed novel algorithms for computing index
interactions by leveraging the inherent structure in the cost model
of a query optimizer, and presented experimental results that vali-
date the efficiency of our methods. We also introduced two novel
database tuning tools that take advantage of index interactions, thus
demonstrating further the usefulness of our methods.

As part of our future work, we intend to generalize our method-
ology to the problem of identifying interactions within a set of in-
dices and materialized views. Our initial investigation indicates
that this extension is feasible and may require minimal extensions
to the presented framework. We also plan to examine the incremen-
tal characterization of interactions for the variants of the problem
where the workload or the index-set are allowed to vary. A solution
for these variants is especially interesting in the context of on-line
tuning tools, where the workload is observed one-statement-at-a-
time and the set of relevant indices is continuously evolving.

9. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and V. Narasayya. Automated

selection of materialized views and indexes for SQL
databases. In VLDB, pages 496–505, 2000.

[2] N. Bruno and S. Chaudhuri. Automatic physical database
tuning: A relaxation-based approach. In SIGMOD, pages
227–238, 2005.

[3] N. Bruno and S. Chaudhuri. An online approach to physical
design tuning. In ICDE, pages 826–835, 2007.

[4] N. Bruno and S. Chaudhuri. Constrained physical design
tuning. Proc. VLDB Endow., 1(1):4–15, 2008.

[5] N. Bruno and R. V. Nehme. Configuration-parametric query
optimization for physical design tuning. In SIGMOD, pages
941–952, 2008.

[6] S. Chaudhuri, M. Datar, and V. Narasayya. Index selection
for databases: A hardness study and a principled heuristic
solution. IEEE Trans. Knowl. and Data Eng.,
16(11):1313–1323, 2004.

[7] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven
index selection tool for microsoft sql server. In VLDB, pages
146–155, 1997.

[8] S. Choenni, H. M. Blanken, and T. Chang. On the selection
of secondary indices in relational databases. Data Knowl.
Eng., 11(3):207–233, 1993.

[9] U. Feige and P. Tetali. Approximating min sum set cover.
Algorithmica, 40(4):219–234, 2004.

[10] S. Finkelstein, M. Schkolnick, and P. Tiberio. Physical
database design for relational databases. ACM Trans.
Database Syst., 13(1):91–128, 1988.

[11] M. R. Frank, E. Omiecinski, and S. B. Navathe. Adaptive
and automated index selection in RDBMS. In EDBT, pages
277–292, 1992.

[12] M. Lühring, K.-U. Sattler, K. Schmidt, and E. Schallehn.
Autonomous management of soft indexes. In International
Workshop on Self-Managing Database Systems, pages
450–458, 2007.

[13] K. Munagala, S. Babu, R. Motwani, and J. Widom. The
pipelined set cover problem. In ICDT, pages 83–98, 2005.

[14] S. Papadomanolakis, D. Dash, and A. Ailamaki. Efficient use
of the query optimizer for automated database design. In
VLDB, pages 1093–1104, 2007.

[15] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis.
On-line index selection for shifting workloads. In
International Workshop on Self-Managing Database
Systems, pages 459–468, 2007.

[16] K. Schnaitter, N. Polyzotis, and L. Getoor. Index interactions
in physical design tuning: Modeling, analysis, and
applications. Technical report UCSC-SOE-09-23, UC Santa
Cruz, 2009.

[17] K.-Y. Whang, G. Wiederhold, and D. Sagalowicz.
Separability - an approach to physical data base design. In
VLDB, pages 320–332, 1981.

[18] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm,
C. Garcia-Arellano, and S. Fadden. DB2 design advisor:
integrated automatic physical database design. In VLDB,
pages 1087–1097, 2004.

