Oracle Database Replay
Romain Colle, Leonidas Galanis, Supiti Buranawatanachoke,

Stratos Papadomanolakis, Yujun Wang

Oracle USA
400 Oracle Parkway
Redwood City, CA 94065

{firsthame.lastname@oracle.com}

ABSTRACT

This demonstration presents Oracle Database Replay, a novel
approach to testing changes to the relational database
management system component of an information system
(software upgrades, hardware changes etc). Database Replay
makes it possible to subject a test system to a real production
workload, which helps identify all potential problems before
implementing the planned changes on the production system. Any
interesting workload period of a production database system can
be captured with minimal overhead. The captured workload is
used to drive a test system while maintaining the concurrency and
load characteristics of the real production workload.

The demonstration showcases how important maintaining the
concurrency and load characteristics of the real workload is. The
current testing solutions do not allow for synchronization based
on data dependencies. Without proper synchronization the
demonstration workload does not perform the work required and
does not exercise the test system appropriately, leading to poor
coverage and inadequate load. Thus many issues remain
undetected. Database replay with its data based synchronization
makes testing realistic and leads to the discovery of potential
problems.

1. INTRODUCTION

Any potential change to a production system (such as upgrading
the database or modifying configuration) necessitates extensive
testing and validation before these changes can be applied. In
order to be confident before implementing a change in the
production system one needs to expose the test system to a
workload that is very similar to the one it would experience in a
production environment. With current technology, producing a
workload that mimics a production workload is virtually
impossible. Therefore, current testing methods often fail to
predict problems that frequently plague production system
changes. As a consequence in most information system
environments, any change in production systems meets great
reluctance.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage, the
VLDB copyright notice and the title of the publication and its date appear, and
notice is given that copying is by permission of the Very Large Database
Endowment. To copy otherwise, or to republish, to post on servers or to
redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.

VLDB 09, August 24-28, 2009, Lyon, France.

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Oracle Database Replay ([1]) revolutionizes database testing. It
allows the recording of the production workload on the
production system with minimal performance impact. The
captured workload contains all requests made to the RDBMS
during the period of capture as well as all concurrency and
transactional information. ~One can then use the captured
workload to drive any test system and test any change before
implementing it in production. The workload produced by
Database Replay accurately reproduces the concurrency and load
characteristics of the production workload on the test system.
Hence, testing with a real workload ensures that there are no
surprises when a change is implemented in the production
RDBMS.

This demonstration highlights the importance of using a real
workload for testing database changes. A major technological
breakthrough introduced by Database Replay is a method of
synchronizing the replay of captured requests based on their data
dependencies ([1]), which produces a workload on the test system
that is virtually identical to the production workload. This
ensures that each replayed request operates on the same data as it
did when it was captured and therefore performs the same amount
of work as it did in the production system. Using a real-world
application architecture, we demonstrate that, without data based
synchronization, a workload cannot be used to make predictions
about potential changes to the production system.

2. DATABASE REPLAY ARCHITECTURE

Database replay allows the recording of a real workload on a
production system with minimal performance impact. The captured
workload contains all requests made to the RDBMS during the
period of capture as well as all concurrency and transactional
information. On a test system, Database Replay can then execute
the captured workload exactly as it ran on the production system to
test any change before implementing it in production. Thus, any
change to the RDBMS can be tested using Database Replay. For
example, the following changes can be tested before they are
applied to a production system: RDBMS software upgrades and
patches, indexing and partitioning changes, any configuration
changes and any changes of the underlying operating system or
hardware. During replay all existing Oracle diagnostic tools can be
used to their full extent to diagnose and remedy problems because
the RDBMS still accepts and services requests that do not belong to
the replayed workload.

2.1. Capturing Production Workloads

Oracle 1lg allows any running RDBMS instance to start
capturing the incoming workload. The user needs to pick an
interesting workload period and find adequate disk space for the

workload before capturing the workload. The workload is stored
in a user specified directory in operating system files. The impact
on the production system is minimal and the RDBMS continues to
behave normally from the viewpoint of the production
applications. The overhead of the capture infrastructure to the
running system is small (TPC-C throughput degradation up to 4.5%)
and is workload dependent. Even in the case that capture errors
out or runs out of disc space the production system is not affected.

Application Clients

[(j[[j[(j Replay Clients

il

Supported Changes

Capture Replay

Production System ‘ Test System

Figure 1 Database Replay Testing

Capturing the workload is made possible by instrumenting the
RDBMS kernel with special code (the capture probes) that
executes during capture and collects all data that is required for
replay. These probes produce platform- and protocol-independent
data that enables the captured workload to be replayed on any
hardware or operating system platform that runs the Oracle
Database. Each server process in the RDBMS captures its
activity in an OS file stored in the capture directory. Workload
from background processes such as maintenance tasks or scheduler
jobs is not captured because, at replay time, it will be automatically
triggered by the foreground workload that is captured.

The contents of the capture are sufficient to enable the replay on a
test system and determine its success afterwards. The workload
capture unit (a database call) is the minimum amount of
information required to replay a request and validate its outcome on
the test system. A database call contains data from the following
categories:

1. User data: This is data that is sent from the client to the
RDBMS. Examples include SQL text, host variables, fetch
requests, and execution requests.

2. Server response data: This is data that is sent from the server
back to the user. Result sets are the majority of this data
stream. However, results sets are not captured because this
would incur prohibitively high overhead during capture.
Instead, a synopsis of the work performed in the database is
captured: rows affected and error codes. This is enough to
determine the outcome of the replayed call.

3. System Data: This data is internal to the RDBMS kernel, is not
returned to the user, but is required for replay synchronization
and runtime data replacement (for more details see [1]).

The capture can be fine-tuned with the definition of workload
filters. Users can specify what part of the workload they want to

exclude or include in the captured data by setting filters on session
attributes, user IDs and other workload specific attributes. After the
user is done with the workload capture they can move the captured
workload to a test system where it can be replayed.

2.2. Replaying Production Workloads

The replay of the production workload aims to stress the RDBMS
on the test system so as to determine whether the test system
configuration would be appropriate for use in a production
environment. In general, any type of testing consists of 4 distinct
phases: 1) Setting up the test system, 2) defining the test workload,
3) running the workload, and 4) analyzing the results. When using
Database Replay the time consuming step 2 is unnecessary because
the workload is well defined: it was captured on the production
system.

At the beginning of the test system setup the database state needs to
be restored to a state that is logically equivalent to that at the
beginning of the capture. Oracle provides several tools to
accomplish this (see [2]). One final step to complete before replay
can start is the processing of the workload. This creates the
necessary metadata required for replay synchronization and runtime
re-mapping and needs to be done only once. Then the processed
workload can be replayed as many times as necessary.

A replay is performed by issuing the captured workload to the test
RDBMS. To this end we use one or more replay clients running on
one or more host systems. The replay client is a special executable
that reads the captured workload and submits it to the database. The
number of replay clients and hosts required is determined by the
maximum concurrency of the captured workload and can be
estimated using a utility provided. The replay clients replace the
original clients that were present during the capture (Figure 1).

After starting the replay clients the user can start the replay. At
that point the server sends a message to all connected clients so
that they can start issuing the workload. During replay, the replay
clients read the captured workload and convert it to appropriate
requests to the database. Each client is assigned a part of the
workload by the RDBMS. The aggregate workload generated by
all the replay clients accurately mimics the production workload.
For example, if during capture 10000 users connected to the
RDBMS, during replay the same 10000 users will connect
following the same connection and request patterns. Thus, the test
RDBMS is subjected to the same load and request rate as the
production system during capture. Additionally, the RDBMS
makes sure that the replayed requests perform meaningful work,
by maintaining the data dependencies seen during capture. For
example, if a request updated 10000 rows during capture, during
replay the RDBMS makes sure that this request executes after a
previous request that inserted these 10000 rows. The result is that
using capture and replay testing one can subject a test system to a
production workload and perform a highly authentic test.

Each replay client is a multithreaded application that spawns a
thread (the replay thread) for each captured session file. The
replay thread reads the captured workload file and translates the
data into the service calls to the RDBMS. The replay thread
maintains the timing characteristics of the capture by sleeping
appropriately between two consecutive calls. The goal is to
maintain the captured request rate unless otherwise specified by
the replay options.

Think time preservation during replay is not sufficient to maintain
the appropriate data dependencies because it cannot guarantee
that the RDBMS will serve the requests in the appropriate order.
Our main goal for each replayed request is to make it perform the
same work it did during capture, and this can be compromised if
the various requests execute out of order and therefore operate on
a different snapshot of the database with respect to the data they
operated on during capture. Thus, to ensure that each replayed
request performs the same work, the RDBMS under replay
ensures that it operates on the same data as it did during capture.
This is done by enforcing the commit ordering observed during
capture by allowing each replayed call to execute only after the
appropriate commit has been replayed (for details see section 3.3).

In addition to replay time synchronization, the replay employs
runtime re-mapping techniques to facilitate the replay of requests
with system specific data that varies from the production to the
test system. Replay also uses a method to recreate values of
generators of unique number (sequences) appropriately. The
details are beyond the scope of this paper (see [1]).

Despite great efforts to ensure that the replayed calls perform the
same work during replay as they did during capture, in some
situations replayed calls can affect (update/return) different data
and run into errors (Data and Error Divergence). Database
Replay detects data divergence by comparing both the number of
rows affected or returned by a SQL execution and the difference
in error codes from capture to replay. The divergence data is
extensively reported in the replay report, which is used to assess
the validity of a given replay.

After the replay is done analysis of the workload can be
performed using several reports and utilizing various Oracle
utilities. The replay report provides a high-level performance
overview and a divergence report that can be used to determine
whether the replay performed similar work as the production
workload. To further analyze the performance characteristics and
diagnose performance problems, existing well-established Oracle
features such as the Automatic Database Diagnostic Monitor
(ADDM) or the Automatic Workload Repository (AWR) reports
can be used. For more details on these tools see [2] and [3].

3. DEMONSTRATION

Our demonstration is based on a real world application that
features highly concurrent and synchronized access to the
database. We show how a replay of this workload loads the test
RDBMS in a realistic manner that is similar to the production
workload, whereas other tools that cannot recreate the appropriate
data dependencies would simply fail to produce an adequate load.

3.1. Demonstration Application

Our demonstration application is shown in Figure 2. It uses an
asynchronous background processing architecture, similar to the
one used by SAP (see [5]).

The application logic resides on an application server, while the
RDBMS is responsible for application data and for persisting
requests. The Dispatcher and Worker processes handle incoming
client requests in a concurrent fashion.

As shown in Figure 2, when a client sends a request to the
dispatcher (Step 1) the latter enqueues it in a database table (2)
and notifies the client that its request has been accepted. The
dispatcher then picks a free worker process to work on the given

request ID (3). The worker process de-queues the request from the
table (4) and starts its processing, that involves more accesses to
application data in the database (5).

Send
request

1)

Application/server

5) Process

2) Insert
request

request

Figure 2 Application architecture

3.2 Testing Strategies

The workload seen by the RDBMS consists of the DML/Queries
used to enqueue/de-queue requests and those used in the actual
processing. In order to realistically recreate this workload against
a test database, it is necessary to somehow emulate the behavior
of the worker and dispatcher processes without actually running
the application.

This is not easy to do. Existing database load testing tools (like
the Quest Benchmark Factory [4]) generate synthetic, manually
edited workloads. Synthetic workloads might contain some of the
requests sent in steps (2), (4) and (5) shown in Figure 2, but fail to
capture all the interactions with the RDBMS. Most important,
they fail to accurately model the dependencies between requests.

For example, when testing our demonstration application without
synchronization, it could happen that a de-queue request executes
on the server before its corresponding insert request. This is
possible since generic load testing tools do not model request
dependencies. In such a scenario, the de-queue request will fail
and so will all the subsequent processing on behalf of that request.
Such artificial errors are not representative of production
workloads and thus limit the effectiveness of load testing.

Our demonstration will compare synchronized vs. non-
synchronized testing and show how Database Replay takes
advantage of the fact that the data dependencies of the production
workload are reflected in the database as part of transaction
processing and are recorded as part of workload capture. Using
this information, Database Replay can recreate the same service
patterns seen by the RDBMS in a production setting. More
specifically, it makes sure that the part of the database workload
that corresponds to each of the client, dispatcher and worker

processes is accurately recreated and performs the same amount
of work on the test RDBMS as it did during capture in the
production system.

3.3 Database Replay with Synchronization
Database replay allows us to test and assess changes to the
database part of our application without running into concurrency
issues. Indeed, our novel synchronization infrastructure makes
sure that no request will ever be de-queued and deleted before it
has been inserted in the table. This way, the worker process’
workload in the database always finds the data it is looking for,
and the same load as the original one is applied to the test system.
The next paragraphs explain how this is achieved.

The captured system records with every database call some
system change numbers (SCN) that characterize the database state
in which the captured call executed. The SCN is a stamp that
defines a committed version of a database at a specific point in
time. Oracle assigns every committed transaction a unique SCN.
These SCNs are used for ensuring isolation and read consistency
within the database server. Each captured call contains the SCN
that corresponds to the database state when the call started
executing. This SCN is called the wait-for SCN. Additionally
each commit action contains the commit SCN that is the SCN that
corresponds to the database state immediately after the commit
action and before any subsequent commit action.

The captured commit SCN values are used to maintain the replay
clock during the replay. The replay clock is similar to simulation
clocks in that it is advanced by specific events. In the case of
replay these events are commit actions. Every commit action sets
the clock to the maximum of its commit SCN and the current
clock. The replay clock is observed by every replay call (both
commit and non-commit actions). During replay at the beginning
of each call the server process executing this call checks the value
of the replay clock. If the wait-for SCN of the replayed call is
less than or equal to the replay clock, then the call is allowed to
execute. Otherwise the call is blocked waiting to be posted by a
clock advance (i.e. a commit action). This enforces during replay
the same commit ordering that had been seen during capture.

In the case of our example application a single request is handled
as follows. During capture time, when the client request is
inserted in the table and committed, we also record the SCN
associated with this commit (the commit SCN) as well as the time
at which this operation was done. When the request is de-queued
and deleted from that table by the worker process, we record with
this operation the current SCN in the database (wait-for SCN) as
well as the current time. This wait-for SCN value (that we will
call W) is necessarily greater than or equal to the commit SCN
value (that we will call C) associated with the “insert request”
operation since it happened later.

During replay, our replay client reads the capture files and sends
the recorded operations to the database server based on the
timestamp recorded with each operation. Inside the database, if it
happens that the “de-queue request” operation tries to be executed
before the “insert request” operation is done, the synchronization
infrastructure will make it wait. Indeed, the replay clock will be

strictly less than C since the “insert request” operation has not
finished executing and committing yet and therefore has not
moved the clock to be at least equal to its commit SCN. And
because we already established that the “de-queue request”
operation’s wait-for SCN W is greater than or equal to C, W is
necessarily greater than the replay clock. It will thus block at least
until the “insert request” operation is done and has committed its
work, which is exactly what needs to happen in order to be able to
process the request.

Finally, the fact that the replay client issues the calls with the
same timing that has been seen during capture makes sure that the
“de-queue request” operation will arrive soon enough to the
database so that the request does not time out (if it did not time
out during capture).

3.3 Testing without synchronization

If a tool, that does not provide a data-aware synchronization
feature like the one we just described, is used to “replay” our
application workload, it has to rely on timing only to send the
calls to the database server. Under a highly concurrent load, it is
guaranteed that some “de-queue request” calls will end up being
executed before their corresponding “insert request” has finished
committing; all the subsequent worker calls for this request will
be invalid and the request itself will time out. Therefore, a fair
amount of requests will not be processed, resulting in a possibly
lighter and different load profile than the one that should have
been applied.

In order to highlight these problems, we simply use our database
replay tool with the synchronization feature turned off, and
compare some performance reports for this period against the
ones from the capture period and the synchronized replay period.
Whereas the capture and synchronized replay periods look
similar, the unsynchronized replay period is fairly different with a
much lighter load that is clearly not suitable for drawing
conclusions about the production system.

4. REFERENCES

[1] L. Galanis, S. Buranawatanachoke, R. Colle, B. Dageville,
K. Dias, J. Klein, S. Papadomanolakis, L. L. Tan, V.
Venkataramani, Y. Wang, G. Wood. Oracle Database
Replay. SIGMOD 2008

[2] Oracle 11g Documentation.
http://www.oracle.com/pls/db111/db111.homepage

[3] K. Dias, M. Ramacher, U. Shaft, V. Venkataramani,
G. Wood. Automatic Performance Diagnosis and Tuning in
Oracle. CIDR 2005

[4] Quest Benchmark Factory for Databases
http://www.quest.com/benchmark-factory/

[5] Architecture of the SAP Web AS
http://help.sap.com/saphelp nw04/helpdata/en/84/54953fc40
5330ee10000000a114084/content.htm

