
Laconic Schema Mappings:
Computing the Core with SQL Queries

Balder ten Cate
INRIA and ENS Cachan
balder.tencate@inria.fr

Laura Chiticariu
IBM Almaden

chiti@almaden.ibm.com

Phokion Kolaitis
UC Santa Cruz and

IBM Almaden
kolaitis@cs.ucsc.edu

Wang-Chiew Tan
UC Santa Cruz

wctan@cs.ucsc.edu

ABSTRACT
A schema mapping is a declarative specification of the relationship
between instances of a source schema and a target schema. The
data exchange (or data translation) problem asks: given an instance
over the source schema, materialize an instance (or solution) over
the target schema that satisfies the schema mapping. In general,
a given source instance may have numerous different solutions.
Among all the solutions, universal solutions and core universal so-
lutions have been singled out and extensively studied. A universal
solution is a most general one and also represents the entirespace
of solutions, while a core universal solution is the smallest univer-
sal solution and is unique up to isomorphism (hence, we can talk
about the core).

The problem of designing efficient algorithms for computingthe
core has attracted considerable attention in recent years.In this
paper, we present a method for directly computing the core by
SQL queries, when schema mappings are specified by source-to-
target tuple-generating dependencies (s-t tgds). Unlike prior meth-
ods that, given a source instance, first compute a target instance
and then recursively minimize that instance to the core, ourmethod
avoids the construction of such intermediate instances. This is done
by rewriting the schema mapping into a laconic schema mapping
that is specified by first-order s-t tgds with a linear order inthe ac-
tive domain of the source instances. A laconic schema mapping
has the property that a “direct translation” of the source instance
according to the laconic schema mapping produces the core. Fur-
thermore, a laconic schema mapping can be easily translatedinto
SQL, hence it can be optimized and executed by a database system
to produce the core. We also show that our results are optimal: the
use of the linear order is inevitable and, in general, schemamap-
pings with constraints over the target schema cannot be rewritten to
a laconic schema mapping.

1. INTRODUCTION
A schema mapping specifies the relationship between instances

of a source schema and a target schema. The data exchange (aka
data translation) problem asks: given a source instance, transform
it into a target instance so the schema mapping is satisfied. Such

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09,August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

a target instance is called asolutionfor the given source instance.
Data translation underlies numerous data inter-operability applica-
tions and has been the subject of research that dates back to more
than thirty-years ago [14]. In the past, schema mappings were ex-
pressed procedurally, as a query that can be directly executed to
compute a solution. In recent years, systems such as Clio [10] and
HePToX [1] adopt a declarative logical formalism for specifying
schema mappings.

More formally, aschema mappingis a tripleM = (S,T,Σ),
whereS is the source schema,T is the target schema, andΣ is the
specification of the relationship betweenS andT. In recent data
exchange literature,Σ is given by a finite set ofsource-to-target
tuple generating dependencies (s-t tgds), target tgds, and target
equality-generating dependencies (egds). Intuitively, the s-t tgds
of a schema mapping dictate the existence of certain facts ina solu-
tion for a given source instance. The target tgds and target egds are
constraints over the target schemaT that further “shape” the facts
dictated by the s-t tgds for a given source instance. Target tgds and
target egds contain as special cases such important dependencies as
inclusion dependencies and functional dependencies, respectively.

In general, a given source instance may have no solutions, since
it may not be possible to materialize a solution that satisfies a target
egd. On the other hand, a given source instance may have a multi-
tude of solutions. Intuitively, this is so because, while the s-t tgds
of a schema mapping dictate the existence of certain facts ina so-
lution of a given source instance, they do not spell out what should
not be in a solution for the given source instance. Furthermore, s-t
tgds may not specify how certain attributes of a relation in the target
schema should be populated with values from the given sourcein-
stance. As a consequence, there are numerous ways to materialize
these unknown values.

Prior research [5] has shown that, among all solutions of a given
source instance, theuniversal solutionsare the preferred ones be-
cause they are the most general and also encapsulate the entire
space of solutions. Furthermore, it was shown in [7] that thecoreof
a universal solution is the smallest universal solution andis unique
up to isomorphism. Henceforth, we shall talk aboutthe core uni-
versal solutionor, simply,the core. In addition to being the small-
est universal solution, the core possesses certain other good proper-
ties. Specifically, among all universal solutions, the corereturns the
most conservative answers on conjunctive queries with inequalities.
In other words, the result of evaluating a conjunctive querywith in-
equalitiesQ over the core is contained in the result of evaluating
Q over any univeral solution. Furthermore, in a precise sense, the
core is the solution that satisfies the most embedded dependencies.

Earlier Work on Computing the Core For schema mappings
specified by s-t tgds, Clio and HePToX compute universal solu-
tions by first compiling the schema mapping into a script in anex-

ecutable language, such as SQL, which can then be executed ona
given source instance to construct a universal solution forthat in-
stance. Such a framework for computing a universal solutionhas
several advantages. In particular, this framework is able to push
the computation process into off-the-shelf transformation engines,
such as relational database management systems.

In general, the universal solution produced by the above method
is not the core. In view of the desirable properties of the core (espe-
cially, being the smallest universal solution), one would like to have
a method to compute the core using SQL queries. It should be noted
that computing the core of an arbitrary database instance isan NP-
hard problem [2]. It was shown, however, that for broad classes of
schema mappings, there are polynomial-time algorithms forcom-
puting the core of universal solutions. Indeed, for schema map-
pings specified by s-t tgds and target egds (in particular, for schema
mappings specified by s-t tgds), two different polynomial-time al-
gorithms for computing the core of universal solutions weregiven
in [7]; the first is agreedyalgorithm, while the second is ablocks
algorithm. Furthermore, for schema mappings specified by s-t tgds,
target egds, and target tgds obeying theweak acyclicitycondition,
a polynomial-time algorithm for computing the core based ona so-
phisticated extension of the blocks algorithm was given in [9].

In contrast to the direct method of computing a universal solution
using SQL queries, all the above algorithms for computing the core
are recursive algorithms that rely on extra post-processing steps on
an intermediate target instance. Specifically, they are based on the
following generic methodology: first, compute an intermediate tar-
get instance for the given source instance; second, recursively min-
imize the intermediate target instance until the core is obtained.

In more concrete terms, for a schema mappingM specified by
s-t tgds and target egds, thegreedy algorithm, given a source in-
stanceI , first computes a target instanceJ that is universal for
I . After this, the greedy algorithm will repeatedly remove tuples
from J one at a time, as long as the s-t tgds ofM are satisfied.
When no more tuples can be removed, the resulting instance isthe
core of the universal solutions forI . The blocks algorithm for a
schema mappingM specified by s-t tgds and target egds begins
by computing a target instanceJ that is a universal solution forI
with respect to the s-t tgds ofM. After this, the blocks algorithm
computes a sequence of intermediate instances such that thenext
instance is both a proper subinstance and a homomorphic image
of the preceding instance via a homomorphism that is the identity
everywhere except for ablock (a connected component) of nulls.
When no proper subinstance of the current instance is the homo-
morphic image of the current instance via such a homomorphism,
then the current instance is the core. Both the greedy algorithm and
the blocks algorithm terminate after a number of iterationsthat, in
general, depends on the size of the given source instance. Thus,
both these algorithms are inherently recursive and do not give rise
to a computation of the core via SQL queries.

Summary of Contributions In this paper, we address the follow-
ing question: Can the core be computed using SQL queries? In
other words, can one leverage off-the-shelf relational database sys-
tems and compute the core while adhering to the framework of sys-
tems such as Clio and HePToX?

This question was first addressed by one of the authors of this
paper in [3], where it was shown that for schema mappings spec-
ified by a syntactically restricted (and rather limited) class of s-t
tgds, the core can be computed using SQL queries (see Section
5.1). Here, we present a method that applies to every schema map-
ping specified by s-t tgds and makes it possible to compute the
core using SQL queries. Unlike the aforementioned prior meth-
ods that, given a source instance, first compute a target instance

Σ : PTStud(x,y) → ∃z Advised(y,z)
GradStud(x,y) →∃z (Advised(y,z) Æ Workswith(y,z))

S PTStud(age, name)
GradStud(age, name)

T Advised(sname,facid)
Workswith(sname,facid)

age name
32 John
30 Ann

age name
GradStud

PTStud
sname facid
John N1
Ann N2
Bob N3
Ann N4

Advised
sname facid
John N1
Bob N3
Ann N4

Advised
sname facid
John N1
Bob N3
Ann N4
Cathy N1

Advised

age name
27 Bob
30 Ann sname facid

Bob N3
Ann N4

Workswith
sname facid
Bob N3
Ann N4

Workswith
sname facid
Bob N3
Ann N4

Workswith

Source instance I

Universal solution Ju The core JcA solution J

Figure 1: An example of a schema mappingM = (S,T,Σ), a
source instanceI , a solutionJ for I , a universal solutionJu for
I , and the coreJc for I .

and then recursively minimize that instance into a core, ourmethod
avoids the construction of such intermediate instances. Instead, we
first rewrite a schema mapping specified by s-t tgds into a logically
equivalentlaconicschema mapping that is specified by first-order
s-t tgds with a linear order in the active domain of the sourcein-
stance. A laconic schema mapping has the property that a “direct
translation” of the source instance according to the laconic schema
mapping produces the core. Furthermore, a laconic schema map-
ping can be easily translated into SQL, hence it can be optimized
and executed by a database system to produce the core. Our method
of computing the core can be easily integrated into existingdata ex-
change systems by adding a module that rewrites the schema map-
ping and slightly extending the existing SQL translation module to
handle first-order s-t tgds with a linear order. We also show that our
results are optimal; the linear order that may arise in the rewrite is
necessary and our method cannot be extended to schema mappings
that involve constraints over the target schema.

In [12], similar results were independently obtained for a re-
stricted class of s-t tgds, and empirical data is provided showing
that their method outperforms existing approaches to computing
core universal solutions.

Paper Outline In the next section, we recall basic notions and
properties of schema mappings. Section 3 explains how the canon-
ical universal solution of a source instance with respect toa schema
mapping specified by first-order s-t tgds can be obtained using SQL
queries. In Section 4, we introduce the notion of laconic schema
mappings, and present our algorithm for transforming a schema
mapping specified by first-order s-t tgds into a logically equivalent
laconic schema mapping specified by first-order s-t tgds, assum-
ing a linear order on the active domain of the source instance. In
Sections 5 and 6, we demonstrate the optimality of our algorithm.

2. BACKGROUND AND NOTATION
We present the necessary background and results related to the

core; we also illustrate various concepts by means of an example.

Instances and homomorphismsWe assume that there is an infi-
nite setConst of constant values and an infinite setVars of null
values that is disjoint fromConst. We further assume that we have
a fixed linear order< on the setConst of all constant values. We
consider source instances to have values fromConst and target in-

stances to have values fromConst∪Vars. We use dom(I) to denote
the set of values that occur in facts in the instanceI . A homomor-
phismh : I → J , with I, J instances of the same schema, is a
functionh : Const ∪ Vars → Const ∪ Vars with h(a) = a for all
a ∈ Const, such that for all relationsR and all tuples of (constant
or null) values(v1, . . . , vn) ∈ RI , (h(v1), . . . , h(vn)) ∈ RJ . In-
stancesI, J arehomomorphically equivalentif there are homomor-
phismsh : I → J andh′ : J → I . An isomorphismh : I ∼= J is
a homomorphism that is a bijection between dom(I) and dom(J)
and that preserves truth of atomic formulas in both directions. In-
tuitively, nulls act as placeholders for actual (constant)values, and
a homomorphism fromI to J captures the fact thatJ “contains
more, or at least as much information” asI .

Query languagesWe will denote by CQ, UCQ, and FO the sets of
conjunctive queries, unions of conjunctive queries, and first-order
queries, respectively. The sets CQ<, UCQ<, and FO< are defined
similarly, except that the queries may refer to the linear order. Thus,
unless indicated explicitly, it is assumed that queries do not refer to
the linear order. For a queryq and an instanceI , we denote by
q(I) the answers ofq in I ; furthermore, we denote byq(I)↓ the
ground answers ofq, i.e.,q(I)↓ = q(I)∩ Const

k for k the arity of
q. In other words,q(I)↓ contains the tuples fromq(I) that consist
entirely of constants.

Schema mappings, solutions, universal solutionsA schema map-
ping is a tripleM = (S,T,Σ), whereS andT are the disjoint
source and target schemas respectively, andΣ is a finite set of sen-
tences of some logical language over the schemaS∪T. From a se-
mantic point of view, a schema mapping can be identified with the
set of all pairs(I, J) such thatI is a source instance,J is a target
instance and(I, J) satisfiesΣ (which we denote by(I, J) |= Σ).
Two schema mappings,M = (S,T,Σ) andM′ = (S,T,Σ′), are
logically equivalentif Σ andΣ′ are logically equivalent, i.e., they
are satisfied by the same pairs of instances. Given a schema map-
pingM = (S,T,Σ) and a source instanceI , asolutionfor I with
respect toM is a target instanceJ such that(I, J) satisfiesΣ. We
denote the set of solutions forI with respect toM by SolM(I),
or simplySol(I) when the schema mapping is clear from the con-
text. A universal solution for a source instanceI with respect to
a schema mappingM is a solutionJ ∈ SolM(I) such that, for
everyJ ′ ∈ SolM(I), there is a homomorphism fromJ to J ′.

We will consider the following logical languages for specify-
ing schema mappings. Asource-to-target tuple generating depen-
dencyor, in short, ans-t tgd, is a first-order sentence of the form
∀x(φ(x) → ∃yψ(x,y)), whereφ(x) is a conjunction of atomic
formulas overS, andψ(x,y) is a conjunction of atomic formulas
overT, such that each variable inx occurs inφ(x). A LAV s-t tgd
is a s-t tgd in whichφ is a single atomic formula. Afull s-t tgd
is a s-t tgd in which there are no existentially quantified variables
(i.e., y is the empty set). The class offirst-order s-t tgds (FO s-t
tgds) generalizes s-t tgds by allowing the antecedentφ(x) to be an
arbitrary FO-formula overS. The class of FO< s-t tgds is defined
similarly, allowing also comparisons of the formxi < xj to be
used in the antecedent. In what follows and in order to simplify
notation, we will typically drop the outermost universal quantifiers
when writing s-t tgds, FO s-t tgds, or FO< s-t tgds.

It is common in data exchange to consider schema mappings
specified using also target constraints in the form oftarget tgdsand
target egds. We will only discuss such target constraints in detail
in Section 6 and therefore postpone the relevant definitionsto that
section.

Example 2.1 An example of a schema mapping is depicted in Fig-
ure 1. Both s-t tgds in that figure are LAV s-t tgds. Given the

source instanceI , three solutions (J , Ju, andJc) for I are shown.
The valuesN1, ...,N4 in the solutions are nulls fromVars. All
other values are fromConst. Even thoughJ is a solution forI , the
solutionJ contains an unnecessary tuple, namely, (Cathy,N1). In
other words, the result of removing (Cathy,N1) from J , which is
Ju, is still a solution. In fact,Ju is a universal solution. Intuitively,
Ju is the most general solution because it does not make unneces-
sary assumptions about the existence of other tuples or values in
place of the nulls. The solutionJc is also a universal solution (we
shall explain what is meant by “the core” shortly). There is ahomo-
morphismh : Ju → J , whereh(v) = v for everyv ∈ dom(Ju).
There is also a homomorphismh′ : Ju → Jc, whereh′(N2) = N4

andh(v) = v for everyv ∈ dom(Ju) andv 6= N2. Clearly, since
Jc ⊆ Ju, there is also a homomorphism fromJc to Ju.

2.1 The Core
As stated in the Introduction, a source instance may have a multi-

tude of solutions. Among all solutions, the universal solutions have
been singled out as the preferred ones because they are the most
general ones (i.e., for a given source instanceI , a universal solution
for I has a homomorphism into any solution forI). Among the uni-
versal solutions, thecore universal solutionplays a special role. A
target instanceJ is said to be acoreif there is no proper subinstance
J ′ ⊆ J and homomorphismh : J → J ′. An equivalent definition
in terms of retractions is as follows: A subinstanceJ ′ ⊆ J is called
a retract of J if there is a homomorphismh : J → J ′ such that for
all a ∈ dom(J ′), h(a) = a. The corresponding homomorphismh
is called aretraction. A retract isproper if it is a proper subinstance
of the original instance. A core of a target instanceJ is a retract
of J that has itself no proper retracts. Every (finite) target instance
has a unique core, up to isomorphism. Moreover, two instances are
homomorphically equivalent if and only if they have isomorphic
cores. It follows that, for every schema mappingM, every source
instance has at most one core universal solution up to isomorphism.
Indeed, if the schema mappingM is specified by FO s-t tgds then
each source instance hasexactlyone core universal solution up to
isomorphism [7]. We will therefore freely speak ofthecore.

Example 2.2 Referring back to the schema mapping in Figure 1,
the solutionJc is the core for the source instanceI . Intuitively,
every tuple inJc must exist in order for(I, Jc) to satisfyΣ. So
there are no redundant tuples inJc.

In addition to being the smallest universal solution, the core has
certain other desirable properties. Specifically, the corealso re-
turns the most conservative answers on conjunctive querieswith
inequalities: ifQ is a conjunctive query with inequalities, andJ
is the core universal solution for a given source instanceI , then
Q(J)↓ is contained inQ(J ′)↓ for every universal solutionJ ′ of
I . Furthermore, in a precise sense, the core is the universal solu-
tion that satisfies the most embedded dependencies. Indeed,it is
easy to show that if a (arbitrary) tgd or egd holds in a universal
solution, then it must also hold in the core. To make this precise,
let adisjunctive embedded dependencybe a first-order sentence of
the from∀x(φ(x) →

W

i
∃yi.ψi(x,yi)), whereφ, ψi are conjunc-

tions of atomic formulas over the target schemaT and/or equalities.
Then the following result holds.

Theorem 2.1 LetM be a schema mapping,I be a source instance,
let J the core universal solution ofI , and letJ ′ be any other uni-
versal solution ofI , i.e., one that is not a core. Then

• Every disjunctive embedded dependency true inJ ′ is true inJ ,

• Some disjunctive embedded dependency true inJ is false inJ ′.

The naive chase procedure
Input: A schema mappingM = (S,T,Σ) and a source instanceI
whereΣ is a finite set of FO< s-t tgds
Output:A universal solutionJ for I w.r.t.M

J := ∅;
for all ∀x(φ(x) → ∃y.ψ(x,y)) ∈ Σ do

for all tuples of constantsa such thatI |= φ(a) do
for eachyi ∈ y, pick a fresh null valueNi for yi.
add the facts inψ(a,N) to J .

end for
end for;
return J

Figure 2: Naive chase method for computing universal solu-
tions.

The proof is omitted for lack of space.
Concerning the complexity of computing the core, we have:

Theorem 2.2 ([7]) LetM be a schema mapping specified by FO<

s-t tgds. There is a polynomial-time algorithm such that, given a
source instanceI , the algorithm returns the core universal solution
for I .

Strictly speaking, this result was shown in [7] only for schema
mappings specified by s-t tgds and target egds. However, the same
argument applies for schema mappings specified by FO< s-t tgds
(and target egds).

Although the data complexity of computing core solutions is
polynomial time, the degree of the polynomial depends on the
schema mapping in question. Indeed, it was shown in [9] that com-
puting core universal solutions for schema mappings specified by
s-t tgds is fixed parameter intractable, where the parameteris the
maximum number of variables in occurring in each s-t tgd.

3. USING SQL TO COMPUTE UNIVERSAL
SOLUTIONS

In this section, we define canonical universal solutions, and we
describe how FO< s-t tgds can be compiled into SQL queries that,
when executed against any source instanceI , produce the canonical
universal solution forI . As we will see in Section 4, when this
method is applied to laconic schema mappings, the SQL queries
obtained produce the core universal solution ofI .

In [5], it was shown that, for schema mappings specified by s-t
tgds, thechaseprocedure can be used to compute a universal so-
lution for a given source instance. In fact, the same holds true for
schema mappings specified by FO< s-t tgds. Figure 2 describes
a variant of the chase procedure known as thenaive chase. For a
source instanceI and schema mappingM specified by FO< s-t
tgds, the result of applying the naive chase is called acanonical
universal solutionof I with respect toM. Observe that the result
of the naive chase is unique up to isomorphism, since it depends
only on the exact choice of fresh nulls. Also note that, even if two
schema mappings are logically equivalent, they may assign differ-
ent canonical universal solutions to a given source instance.

Example 3.1 The naive chase procedure on the schema mapping
M and source instanceI of Figure 1 produces the universal so-
lution Ju shown in the same figure. Intuitively, the first s-t tgd in
Σ on thePTStud relation caused the first two facts ofAdvised
relation to be created. The second s-t tgd inΣ on theGradStud

relation caused the last two facts of theAdvised relation and all
facts ofWorkswith relation to be created.

It is easy to see that, for schema mappings specified by FO< s-
t tgds, the naive chase procedure can be implemented using SQL
queries. In fact, Clio follows this approach [8]. We illustrate the
approach by returning to our running example of the schema map-
ping in Figure 1.

The first step is toSkolemizeeach s-t tgd inΣ. By this, we
mean replacing each existentially-quantified variable with a func-
tion termf(x), wheref is a fresh function symbol of appropriate
arity andx denotes the set of all universally-quantified variables in
the tgd. For example, after this step onΣ, we get:

PTStud(x, y) → Advised(y, f(x, y))

GradStud(x, y) → Advised(y, g(x, y)) ∧ Workswith(y, g(x, y))

These dependencies are logically equivalent to the following de-
pendencies with a single relational atom in the right-hand-side:

PTStud(x, y) → Advised(y, f(x, y))

GradStud(x, y) → Advised(y, g(x, y))

GradStud(x, y) → Workswith(y, g(x, y))

Next, for each target relationR we collect the dependencies that
containR in the right-hand-side, and we interpret these as constitut-
ing a definition ofR. In this way, we get the following definitions
of Advised andWorkswith.
Advised := {(y, f(x, y)) | PTStud(x, y)} ∪

{(y, g(x, y)) | GradStud(x, y)}
Workswith := {(y, g(x, y)) | GradStud(x, y)}

In general, the definition of ak-ary target relationR ∈ T will be
of the shape:

R := {(t1(x), . . . , tk(x)) | φ(x))} ∪ · · · ∪

{(t′1(x′), . . . , t′k(x)) | φ′(x′)} (1)

wheret1, . . . , tk, . . . , t′1, . . . , t
′
k are terms(i.e., variables such as

x1, or functions over terms, such asf(x1, x2)), φ, . . . , φ′ are first-
order queries over the source schema. Eachφ, . . . , φ′ corresponds
to a SQL query, and the union of these SQL queries is a query that
when executed on any source instanceI will compute the canonical
universal solution forI . To continue with our running example,
the following SQL queries may be generated forAdvised and
Workswith:
Advised:
select distinct name,

concat(“f(”,age,name,“)”)
from PTStud
union
select distinct name,

concat(“g(”,age,name,“)”)
from GradStud

Workswith:
select distinct name,

concat(“g(”,age,name,“)”)
from GradStud

Evaluating the SQL query associated toAdvised on the source
instanceI in Figure 1 yields the tuples{ (John, f(32,John)), (Ann,
f(30,Ann)), (Bob, g(27,Bob)), (Ann, g(30,Ann))}. The terms
f(32,John), f(30,Ann), g(27,Bob), and g(30,Ann) correspond, re-
spectively, to the nullsN1, N2, N3, N4 in Ju of Figure 1.

The general idea behind the construction of the SQL queries
should be clear from the example. The translation assumes the ex-
istence of aconcat function that returns the concatenation of all
its arguments. Intuitively, the result of theconcat function repre-
sents a null.

Note that, in this example, the resulting SQL queries are unions
of select-project-join queries (i.e., unions of conjunctive queries)
augmented with the use of theconcat function. In particular,
they do not contain anyGROUP BY clauses or any aggregate func-
tions. In the case of schema mappings specified by FO s-t tgds,the

(a) P (x) → ∃yz.R(x, y) ∧R(x, z)
(a′) P (x) → ∃y.R(x, y)

(b) P (x) → ∃y.R(x, y)
P (x) → R(x, x)

(b′) P (x) → R(x, x)

(c) R(x, y) → S(x, y)
P (x) → ∃y.S(x, y)

(c′) R(x, y) → S(x, y)
P (x) ∧ ¬∃y.R(x, y) → ∃y.S(x, y)

(d) R(x, y) → ∃z.S(x, y, z)
R(x, x) → S(x, x, x)

(d′) R(x, y) ∧ x 6= y → ∃z.S(x, y, z)
R(x, x) → S(x, x, x)

(e) R(x, y) → ∃z.(S(x, z) ∧ S(y, z))
(e′) (R(x, y) ∨R(y, x)) ∧ x ≤ y → ∃z.(S(x, z) ∧ S(y, z))

(f) PTStud(x, y) → ∃z.Advised(y, z)
GradStud(x, y) → ∃z.(Advised(y, z) ∧ Workswith(y, z))

(f′) PTStud(x, y) ∧ ¬∃u.GradStud(u, y) → ∃z.Advised(y, z)
GradStud(x, y) → ∃z.(Advised(y, z) ∧ Workswith(y, z))

Figure 3: Examples of non-laconic schema mappings (a-f) and
their laconic equivalents (a′-f′).

same approach will give rise to SQL queries that use the difference
(EXCEPT) operator but still do not contain anyGROUP BY clauses
or any aggregate functions. Finally, in the case of schema mappings
specified by FO< s-t tgds, the resulting SQL queries require the
use of comparisons of the formx < y in theWHERE clause, but no
further constructs. Also note that the translation from schema map-
pings to SQL queries computing the canonical universal solution is
polynomial.

To summarize, we have explained how, for schema mappings
specified by FO< s-t tgds, canonical universal solutions can be
obtained using SQL queries that do not contain anyGROUP BY
clauses or any aggregate functions, i.e., that belong to the(pure)
relational calculus fragment of SQL, except for the use of string
concatenation.

4. LACONIC SCHEMA MAPPINGS
In this section, we present an algorithm for tranforming any

schema mappingM specified by FO< s-t tgds into a logically
equivalent oneM′, such that the naive chase procedure applied to
M′ and to a source instanceI produces the core universal solution
for I andM. In particular, this shows that, for schema mappings
specified by FO< s-t tgds, the core universal solution can be com-
puted using SQL queries.

Definition 4.1 A schema mapping islaconic if for every source
instanceI , the canonical universal solution ofI with respect toM
is the core universal solution ofI with respect toM.

Note that the definition only makes sense for schema mappings
specified by FO< s-t tgds, because we have defined the notion of a
canonical universal solution only for such schema mappings.

Examples of laconic and non-laconic schema mappings are given
in Figure 3. For Example 3(d), the canonical universal solution
of the source instanceI = {R(a, a)} is {S(a, a,N), S(a, a, a)},
which is not the core universal solution ofI . Clearly, one should
only “translate” according to the first s-t tgd in Example 3(d) if

x 6= y, which explains the antecedent of the first tgd in Example
3(d′). It is easy to see that every schema mapping specified by full
s-t tgds only (i.e., s-t tgds without existential quantifiers) is laconic.
Indeed, in this case, the canonical universal solution doesnot con-
tain any nulls, and hence is guaranteed to be the core. Thus, being
specified by full s-t tgds is a sufficient condition for laconicity, al-
though a rather uninteresting one. The following provides us with
a necessary condition, which explains why the schema mapping in
Figure 3(a) is not laconic. Given an s-t tgd∀x(φ → ∃y.ψ), by
the canonical instance ofψ, we will mean the (unordered) target
instance whose facts are the conjuncts ofψ, where thex variables
are treated as constants and they variables as nulls.

Proposition 4.1 If a schema mapping(S,T,Σ) specified by s-t
tgds is laconic, then for each s-t tgd∀x(φ → ∃y.ψ) ∈ Σst, the
canonical instance ofψ is a core.

The proof is omitted for lack of space.
In the case of schema mapping (e) in Figure 3, the linear orderis

used in order to obtain a logically equivalent laconic schema map-
ping (e′). Note that the schema mapping (e′) is order-invariant in
the sense that the set of solutions of a source instanceI does not
depend on the interpretation of the< relation inI , as long as it is
a linear order. Still, the use of the linear order cannot be avoided,
as we will show in Section 5.1. What is really going on, in this
example, is that the right hand side of (e) has a non-trivial auto-
morphism (viz. the map sendingx to y and vice versa), and the
conjunctx ≤ y in the antecedent of (e′) plays, intuitively, the role
of a tie-breaker, cf. Section 4.1.3.

Testing whether a given schema mapping is laconic is not a
tractable problem:

Proposition 4.2 Testing laconicity of schema mappings specified
by FO s-t tgds is undecidable. It is coNP-hard already for schema
mappings specified by LAV s-t tgds.

In fact, testing laconicity of schema mappings specified by s-t
tgds is coNP-complete. We omit the proof for lack of space.

4.1 Making schema mappings laconic
In this section, we present a procedure for transforming any

schema mappingM specified by FO< s-t tgds into a logically
equivalentlaconicschema mappingM′ specified by FO< s-t tgds.
The laconic schema mapping can then be translated into SQL
queries, as described in Section 3, which when executed on any
source instance will produce the core universal solution.

To simplify the notation, throughout this section, we assume a
fixed input schema mappingM = (S, T,Σ), with Σ a finite set
of FO< s-t tgds. Moreover, we will assume that the FO< s-t tgds
∀x(φ → ∃y.ψ) ∈ Σ are non-decomposable [7], meaning that the
fact graph of∃y.ψ(x,y), where the facts are the conjuncts ofψ
and two facts are connected if they have an existentially quantified
variable in common, is connected. This assumption is harmless:
every FO< s-t tgd can be decomposed into a logically equivalent
finite set of non-decomposable FO< s-t tgds (with identical left-
hand-sides, one for each connected component of the fact graph) in
polynomial time.

The outline of the procedure for making schema mappings la-
conic is as follows (the items correspond to subsections of the
present section):

(1) Construct a finite listfact block types: these are descriptions of
potential “patterns” of tuples in the core. (See Section 4.1.1.)

(2) Compute for each of the fact block types aprecondition: a first-
order formula over the source schema that tells exactly when

the core will contain a fact block of the given type. (See Section
4.1.2.)

(3) If any of the fact block types has non-trivial automorphisms,
add an additional side-condition, consisting of a Boolean com-
bination of formulas of the formxi < xj . Side conditions
prevent the creation of multiple copies of the same fact block in
the canonical universal solution. (See Section 4.1.3.)

(4) Construct the new schema mappingM′ = (S,T,Σ′), where
Σ′ contains an FO< s-t tgd for each of the fact block types. The
left-hand-side of the FO< s-t tgd is the conjunction of the pre-
condition and side-condition of the respective fact block type,
while the right-hand-side is the fact block type itself. (See Sec-
tion 4.1.4.)

Next, we illustrate our approach with an example. The technical
notions that we use in discussing the example will be formally de-
fined in the next subsections.

Example 4.1 Consider the schema mappingM = (S,T,Σ),
whereS = {P,Q}, T = {R1, R2}, andΣ consists of the s-t tgds

P (x) → ∃y.R1(x, y)
Q(x) → ∃yzu.(R2(x, y) ∧R2(z, y) ∧R1(z, u))

In this case, there are exactly three relevant fact block types. They
are listed below, together with their preconditions.

Fact block type Precondition

t1(x; y) = {R1(x, y)} pret1(x) = P (x)
t2(x; yzu) = {R2(x, y), R2(z, y),

R1(z, u)} pret2(x) = Q(x) ∧ ¬P (x)
t3(x; y) = {R2(x, y)} pret3(x) = Q(x) ∧ P (x)

We use the notationt(x;y) for a fact block type to indicate that the
variablesx stand for constants and the variablesy stand for distinct
nulls.

As it happens, the above fact block types have no non-trivial
automorphisms. Hence, no side-conditions need to be added,and
Σ′ will consist of the following FO s-t tgds:

P (x) → ∃y.R1(x, y)
Q(x) ∧ ¬P (x) → ∃yzu.(R2(x, y) ∧ R2(z, y) ∧R1(z, u))
Q(x) ∧ P (x) → ∃y.(R2(x, y))

The reader may verify that in this case, the obtained schema map-
ping is indeed laconic. We prove in Section 4.1.4 that the output of
our transformation is guaranteed to be a laconic schema mapping
that is logically equivalent to the input schema mapping.

We now proceed to define the notions appearing in this example.

4.1.1 Generating the fact block types
The first step is to generate all fact block types of the schema

mapping. To formalize the notion of a fact block type, we first
define the concept of a fact graph of an instance. Thefact graph
of an instanceI is the graph whose nodes are the factsR(v) (with
R a k-ary relation andv ∈ (Const ∪ Vars)k, k ≥ 0) true in I ,
and such that there is an edge between two facts if they have a null
value in common. Afact block, or f-block for short, of an instance
is a connected component of the fact graph of the instance. We
know from [6] that, for any schema mappingM specified by FO<

s-t tgds, the size of f-blocks in core of any source instance forM is
bounded by the maximum number of atomic formulas in the right-
hand-side of the FO< s-t tgds inM.1 Consequently, there is a finite
1This is stated in [6] for schema mappings specified by s-t tgds, but
the same holds for FO< s-t tgd.

number of f-block types, such that every core universal solution
consists of f-blocks of these types. This is a crucial observation
that we will exploit in our construction.

Formally, anf-block typet(x;y) will be a finite set of atomic for-
mulas inx,y, wherex andy are disjoint sets of variables. We will
refer tox as theconstant variablesof t andy as thenull variables.
We say that a f-block typet(x;y) is a renamingof a f-block type
t′(x′;y′) if there is a bijectiong betweenx andx′ and between
y andy′, such thatt′ = {R(g(v)) | R(v) ∈ t}. In this case,
we write g : t ∼= t′ and we callg also a renaming. We will not
distinguish between f-block types that are renamings of each other.
We say that a f-blockB has typet(x;y) if B can be obtained from
t(x;y) by replacing constant variables by constants and null vari-
ables to distinct nulls, i.e., ifB = t(a;N) for some sequence of
constantsa and sequence of distinct nullsN. Note that we require
the relevant substitution to be injective on the null variables but not
necessarily on the constant variables. If a target instanceJ con-
tains a blockB = t(a;N) of typet(x;y) then we say thatt(x;y)
is realizedin J at a. Note that, in general, a f-block type may be
realized more than once at a tuple of constantsa, but this will not
happen if the target instanceJ is a core universal solution.

We are interested in the f-block types that may be realized in
core universal solutions. Eventually, the schema mappingM′ that
we will construct fromM will contain an FO< s-t tgd for each
relevant f-block type. Not every f-block type as defined above can
be realized. We may restrict attention to a subclass. Below,by
the canonical instance of a f-block typet(x;y), we will mean the
instance containing the facts int(x;y), consideringx as constants
andy as nulls.

Definition 4.2 The set TYPESM of f-block types generated byM
consists of all f-block typest(x;y) satisfying the following condi-
tions:

(a) Σ contains an FO< s-t tgd∀x′(φ(x′) → ∃y′.ψ(x′,y′)) with
y ⊆ y′, andt(x;y) is the set of conjuncts ofψ in which the
variablesy′ − y do not occur;

(b) The canonical instance oft(x;y) is a core;

(c) The fact graph of the canonical instance oft(x;y) is con-
nected.

If some f-block types generated byM are renamings of each other,
we add only one of them to TYPESM.

The main result of this subsection is:

Proposition 4.3 Let J be the core of a source instanceI with re-
spect toM. Then each f-block ofJ has typet(x;y) for some
t(x;y) ∈ TYPESM.

PROOF. LetB be any f-block ofJ . SinceJ is a core universal
solution, it is, up to isomorphism, an induced subinstance of the
canonical universal solutionJ ′ of I . It follows thatJ ′ must have
a f-blockB′ such thatB is the restriction ofB′ to domain ofJ .
SinceB′ is a connect component of the fact graph ofJ ′, it must
have been created in a single step during the naive chase. In other
words, there is an FO< s-t tgd

∀x(φ(x) → ∃y.ψ(x,y))

and an assignmentg of constants to the variablesx and distinct
nulls to the variablesy such thatB′ is contained in the set of con-
juncts ofψ(g(x), g(y)). Moreover, since we assume the FO< s-t
tgds ofM to be non-decomposable andB′ is a a connected com-
ponent of the fact graph ofJ , B′ must be exactly the set of facts
listed inψ(g(x), g(y)). In other words, if we lett(x;y) be the
set of all facts listed inψ, thenB′ has typet(x;y). Finally, let

t′(x′;y′) ⊆ t(x;y) be the set of all facts fromt(x;y) contain-
ing only variablesyi for which g(yi) occurs inB. SinceB is the
restriction ofB′ to the domain ofJ , we have thatB is of type
t′(x′;y′). Moreover, the fact graph of the canonical instance ofJ
is connected becauseB is connected, and the canonical instance of
t′(x′;y′) is a core, because, if it would not be, thenB would not be
a core either, and henceJ would not be a core either, which would
lead to a contradiction. It follows thatt′(x′;y′) ∈ TYPESM.

Note that TYPESM contains only finitely many f-block types.
Still, the number is in general exponential in the size of theschema
mapping, as the following example shows.

Example 4.2 Consider the schema mapping specified by the fol-
lowing s-t tgds:

Pi(x) → P ′
i (x) (for each1 ≤ i ≤ k)

Q(x) → ∃y0y1 . . . yk(R(x, y0) ∧
V

1≤i≤k
(R(yi, y0) ∧ P

′
i (yi)))

For eachS ⊆ {1, . . . , k}, the f-block type

tS(x; (yi)i∈S∪{0}) = {R(x, y0)} ∪ {R(yi, y0), P
′
i (yi) | i ∈ S}

belongs to TYPESM. Indeed, each of these2k f-block types is real-
ized in the core universal solution of a source instance. Theexam-
ple can be modified to use a fixed source and target schema: replace
P ′

i (x) byS(x, x1)∧S(x1, x2)∧. . . S(xi−1, xi)∧S(xi, xi).

The same example can be used to show that the smallest logi-
cally equivalent schema mapping that is laconic can be exponen-
tially longer.

Generating f-block types forM. Our algorithm generates f-block
types based of each FO< s-t tgd inM. For each FO< s-t tgd
∀x′(φ(x′) → ∃y′.ψ(x′,y′)) in M, we exhaustively consider all
subsetsy ⊆ y′ and determine the sett(x;y) of conjuncts ofψ
in which the variablesy′ − y do not occur. Subsequently,t(x;y)
is determined to be in TYPESM if (1) the canonical instance of
t(x;y) is a core and (2) the corresponding fact graph is connected.
The test for (1) involves determining whether a proper retraction
is possible. Finally, to ensure that TYPESM does not contain two
renamings of the same f-block type, we test for each pair of types
whether there is a renamings, and if so, we eliminate one of them.

4.1.2 Computing the precondition of a f-block type
The main result of this subsection is Proposition 4.4 below,

which shows that whether a f-block type is realized in the core at a
given sequence of constantsa is something that can be tested by a
first-order query on the source.

Our construction makes use of the notion ofcertain answers.
Given a source instanceI , a schema mappingM, and a target query
q, we will denote bycertainM,q(I), the set ofcertain answersto
q in I with respect toM, i.e., the intersection

T

J∈SolM(I) q(J). In
other words, a tuple of values is a certain answer toq if it belongs
to the set of answers ofq, no matter which solution ofI one picks.
There are two methods to compute certain answers to a conjunctive
query. The first method usesuniversal solutions[5] and the second
usesquery rewriting. Next, we shall briefly describe the method
based on query rewriting, which is relevant for our construction of
the precondition of a f-block type. In the query rewriting method,
a given queryqT over the target schemaT is rewritten to a query
qS over the source schemaSsuch thatqS(I) directly computes the
certain answers to the original query.

Theorem 4.1 LetL be any of UCQ, UCQ<, FO, FO<. Then for
every schema mappingM specified by s-t tgds and for everyL-
queryq over T, one can compute in exponential time anL-query
qS overS definingcertainM,q. That is, for every source instance
I , it is the case thatqS(I) = certainM,q(I).

There are various ways in which such certain answer queries can
be obtained. One possibility is to split up the schema mapping M
into a compositionM1 ◦ M2, with M1 specified by full s-t tgds
andM2 specified by LAV s-t tgds, and then to successively apply
the known query rewriting techniques of MiniCon [13] and full s-t
tgd unfolding (cf. [11]). In [15], an alternative rewritingmethod
was given for the case whereL = FO orL = FO<, which can be
used to transform an target queryq into a source queryq′ defining
certainM,q over source instances whose domain contains at least
two elements, in polynomial time (combined complexity).

Next, we use Theorem 4.1 to construct, for each f-block type
t(x;y), a FO< queryq such that for any given source instanceI ,
the resultsq(I) contain exactly the tuples of constants at which
t(x;y) is realised in the core universal solution.

Proposition 4.4 For each t(x;y) ∈ TYPESM, there is a FO<

queryprecont(x), such that for every source instanceI with core
universal solutionJ , and for every tuple of constantsa, the follow-
ing are equivalent:

• a ∈ precont(I)

• t(x;y) is realized inJ at a.

PROOF. We first define an intermediate formulaprecon′
t(x)

that almost satisfies the required properties, but not quiteyet. For
each f-block typet(x;y), letprecon′

t(x) be the following formula:

certainM(∃y.
^

t)(x)

∧
^

i6=j

¬certainM(∃y−i.
^

t[yi/yj])(x) (2)

∧
^

i

¬∃x′.certainM(∃y−i.
^

t[yi/x
′])(x, x′)

where y−i stands for the sequencey with yi removed, and
t[u/v] is the result of replacing each occurrence ofu by v in t.
By construction, ifprecont(a) holds inI , then every universal so-
lution J satisfiest(a;N) for some some sequence of distinct nulls
N. Still, it may not be the case thatt(x;y) is realized ata, since it
may be that thatt(a;N) is part of a bigger f-block. To make things
more precise, we introduce the notion of an embedding. For any
two f-block types,t(x;y) andt′(x′;y′), anembeddingof the first
into the second is a functionhmappingx intox′ and mappingy in-
jectively intoy′, such that whenevert contains an atomic formula
R(z), thenR(h(z)) belongs to oft′. The embeddingh is strict
if t′ contains an atomic formula that is not of the formR(h(z))
for anyR(z) ∈ t. Intuitively, the existence of a strict embedding
means thatt′ describes a f-block that properly contains the f-block
described byt.

Let I be any source instance,J the core universal solution ofI ,
t(x;y) ∈ TYPESM, anda a sequence of constants.

Claim 1: If t is realized inJ ata, thena ∈ precon′
t(I).

Proof of claim: Clearly, sincet is realized inJ at a andJ is a
universal solution, the first conjunct ofprecon′

t is satisfied. That
the rest of the query is satisfied is also easily seen: otherwiseJ
would not be a core. End of proof of claim 1.

Claim 2: If a ∈ precon′
t(I), then eithert is realized inJ at a or

some f-block typet′(x′;y′) ∈ TYPESM is realized at a tuple of
constantsa′, and there is a strict embeddingh : t → t′ such that
ai = a′j wheneverh(xi) = x′

j .

Proof of claim: It follows from the construction ofprecon′
t, and

the definition of TYPESM types, that the witnessing assignment for
its truth must send all existential variables to distinct nulls, which
belong to the same block. By Proposition 4.3, the diagram of this
block is a specialization of a f-block typet′ ∈ TYPESM. It fol-
lows thatt is embedded int′ anda, together with possible some
additional values inConst, realizet′. End of proof of claim 2.

We now defineprecont(x) to be the following formula:

precon′
t(x) ∧ (3)

^

t′(x′;y′) ∈ TYPESM

h : t(x; y) → t′(x′;y′) a strict embedding

¬∃x′.
“

^

i

(xi = h(xi)) ∧ precon′
t′(x

′)
”

This formula satisfies the required conditions:a ∈ precont(I)
iff t(x;y) is realized inJ at a. The left-to-right direction follows
from Claim 1 and 2, while the right-to-left direction follows from
Claim 1 and 2 together with the fact thatJ is a core.

Example 4.3 To see how Equation (2) in the above construction
is put into effect, consider Example (d) of Figure 3. There are
two f-block types, corresponding tot1(xy; z) = S(x, y, z) and
t2(x) = S(x, x, x). For the first f-block typet1, the first conjunct
of Equation 2 will returnR(x, y). The second conjunct of Equa-
tion 2 rewrites to true, since there is only one existential variabley
which cannot be replaced by a distinct other. The third conjunct,
in effect, translates to¬∃x′.certainM(S(x, y, x′)). Since only
R(x, x) will produce S-tuples that when evaluated withS(x, y, x′)
will produce tuples that consists entirely of constants, this means
that¬∃x′.certainM(S(x, y, x′)) rewrites to¬∃x′(R(x, x)∧x =
y = x′). Putting all the conjuncts together and simplifying them,
the conjuncts are equivalent toR(x, y)∧x 6= y, which explains the
antecedent in the first FO s-t tgd in Example (d′). Note that there
are no strict embeddings in this example.

To see how Equation (3) in the above construction is put into
effect, consider our example in Figure 1 (also shown as Ex-
ample (f) in Figure 3). There are two fact block types, cor-
responding tot1(y; z) = {Advised(y, z)} and t2(v;w) =
{Advised(v, w),Workswith(v, w)}. For precon′

t1
(y), Equation

(2) generates(∃x.PTStud(x, y) ∨ ∃x.GradStud(x, y)). Equation
(3) adds¬∃v.(y = v ∧ ∃u.GradStud(u, v)) to precon′

t1
(y). This

is because there is a strict embedding fromt1 to t2 that mapsy 7→ v
and z 7→ w. The resulting preconditionprecont1(y) is thus:
PTStud(x, y)∧¬∃u.GradStud(u, y). This explains the antecedent
in the first FO s-t tgd in Example (f′).

Generating preconditions for a f-block type. Our procedure for
generating the preconditions for a f-block type relies on the rewrit-
ing algorithm of [13] and query unfolding algorithm of full s-t tgds
(c.f [11]). The schema mappingM is first split into a sequence of
two schema mappingsM1 = (S,U,Σ1) andM2 = (U,T,Σ2)
as follows: For each s-t tgdφi(xi) → ∃yi.ψ(xi,yi) ∈ Σ, the
setΣ1 will contain a full s-t tgdφi(xi) → Ui(xi), andΣ2 will
contain a LAV s-t tgdUi(xi) → ∃yi.ψ(xi,yi). The setsΣ1 and
Σ2 consists of only such tgds. It is easy to see that since each s-t
tgdσi in Σ has a unique corresponding relational schemaUi ∈ U

that exports all universally-quantified variables ofσi, the composi-
tion M1 ◦ M2 is logically equivalent toM. Given a query over
the target schemaT, we first apply the rewriting algorithm of [13]

for LAV s-t tgds overM2 to obtain an intermediate query over
the schemaU. Subsequently, we apply the query unfolding algo-
rithm (c.f [11]) to obtain a query over the schemaS. This explains
how precon′

t(x) (i.e., Equation (2)) is obtained in general. The
next step is to find all strict embeddings among f-block typesas
required by Equation (3). This involves an exhaustive test for all
possible strict embeddings among all pairs of f-block types. There
may be more efficient ways to compute preconditions, for example
using the polynomial time algorithm for constructing certain an-
swer queries from [15] we mentioned earlier, and exploring this is
part of our future work.

4.1.3 Computing the side-conditions of a f-block type
The issue we address in this subsection, namely that ofnon-rigid

f-block types, is best explained by an example.

Example 4.4 Consider again schema mapping (e) in Fig-
ure 3. This schema mapping is not laconic. Indeed, if we
have the source instance with two tuples{R(a, b),R(b, a)},
where a 6= b, the canonical universal solution is
{S(a,N1), S(b,N1), S(b,N2), S(a,N2)}. This canonical
universal solution has two distinct nullsN1 and N2 and it is
clearly not the core. The essence of the problem is in the fact
that the right-hand-side of the dependency is “symmetric”:it
is a non-trivial renaming of itself, the renaming in question
being{x 7→ y, y 7→ x}. According to the terminology that we
will introduce below, the right-hand-side of this dependency is
non-rigid. Intuitively, this mean that there are two distinct ways in
which identical target fact blocks (up to renaming of nulls)may
be generated. Schema mapping (e′) from Figure 3 does not suffer
from this problem, because it containsx ≤ y in the antecedent,
and we are assuming< to be a linear order on the values in the
source instance.

In order to capture when identical target facts (up to renaming
of nulls) are generated, we say that two f-blocks,B,B′, arecopies
of each other, if there is a bijectiong from Const to Const and
from Vars to Vars such thatg(a) = a for all a ∈ Const andB′ =
{R(g(v1), . . . , g(vk)) | R(v1, . . . , vk) ∈ B}. In other words,
B′ can be obtained fromB by renaming null values. Next, we
formalize the condition under which there cannot be two distinct
ways of generating copies of a f-block.

Definition 4.3 A f-block type t(x;y) is rigid if for any two se-
quences of constantsa,a′ and for any two sequences of distinct
nullsN,N′, if t(a;N) andt(a′;N′) are copies of each other, then
a = a′.

Clearly, the s-t tgd from Example 4.4 is non-rigid. A simple
variation of the argument in the same example shows:

Proposition 4.5 If a f-block typet(x;y) is non-rigid, then the
schema mapping specified by the FO (in fact LAV) s-t tgd
∀x(R(x) → ∃y.

V

t(x;y)) is not laconic.

In other words, if a f-block type is non-rigid, the s-t tgd that
corresponds to the f-block cannot be naively chased withoutrun-
ning the risk of non-laconicity. Fortunately, it turns out that f-block
types can be made rigid by the addition of suitable side-conditions.
By a side-conditionΦ(x), we mean a Boolean combination of for-
mulas of the formxi < xj or xi = xj . Intuitively, the role of the
side-condition is to ensures that there cannot be two distinct ways
of generating copies of a f-block.

Definition 4.4 A f-block typet(x;y) is rigid relative to a side con-
dition Φ(x) if for any two sequences of constantsa,a′ satisfying

Φ(a) andΦ(a′) and for any two sequences of distinct nullsN,N′,
if t(a;N) andt(a′;N′) are copies of each other, thena = a′.

At the same time, we would like to ensure that the side-condition
is not too strong. Intuitively, this means that whenever a f-block
type should be realized in a core universal solution, there will be at
least one way of arranging the variables so that the side-condition
is satisfied.

Definition 4.5 A side-conditionΦ(x) is safe for a f-block type
t(x;y) if for every f-block t(a;N) of type t there is a f-block
t(a′;N′) of type t satisfyingΦ(a′) such that the two are copies
of each other.

The next result shows that every f-block type can be safely turned
rigid by a side-condition.

Proposition 4.6 For every f-block typet(x;y) there is a side
condition sidecont(x) such that t(x;y) is rigid relative to
sidecont(x), andsidecont(x) is safe fort(x;y).

PROOF. We will construct a sequence of side-conditions
Φ0(x), . . . ,Φn(x) safe fort(x;y), such that eachΦi+1 logically
strictly impliesΦi, and such thatt(x;y) is rigid relative toΦn(x).

For Φ0(x) we pick the tautology⊤, which is trivially safe for
t(x;y).

Suppose thatt(x;y) is not rigid relative toΦi(x), for some
i ≥ 0. By definition, this means that there are two sequences of
constantsa,a′ satisfyingΦi(a) andΦi(a

′) and two sequences of
distinct nullsN,N′, such thatt(a;N) and t(a′;N′) are copies
of each other, buta anda′ are not the same sequence, i.e., they
differ in some coordinate. Letψ(x) be the conjunction of all for-
mulas of the formxi < xj or xi = xj that are true under the
assignment sendingx to a, and letΦi+1(x) = Φi(x) ∧ ¬ψ(x). It
is clear thatΦi+1 is strictly stronger thanΦi. Moreover,Φi+1 is
still safe fort(x;y): consider any f-blockt(b,M) of typet(x;y).
SinceΦi is safe fort, we can find a f-blockt(b′,M′) of type t
such thatΦi(b

′) and the two blocks are copies of each other. If
¬ψ(b′) holds, then in factΦi+1(b

′) holds, and we are done. Oth-
erwise, we have thatt(b′,M′) is isomorphic tot(a,N) (via an
isomorphism that sends each constantb′i to the correspondingai)
and the preimage oft(a′,N′) under this isomorphism will be again
a copy oft(b′,M′) (and therefore also oft(b,M)) that satisfies
Φi(b

′) ∧ ¬ψ(b′), i.e.,Φi+1(b
′).

Example 4.5 To illustrate the construction of side-conditions, con-
sider Example (e) of Figure 3. The only f-block type ist(xy; z) =
{S(x, z), S(y, z)}. It is easy to see thatt(ba;N1) andt(ab;N2)
are copies of each other. Hence, the side-condition that is generated
is ¬(y < x), which is the same asx ≤ y.

As another example, considerR(x, y, z) → ∃w(S(x, y, w) ∧
S(x, z, w)). The only f-block type ist(xyz;w) = {S(x, y, w),
S(x, z, w)}, and t(aab;N1) and t(aba;N2) are copies of each
other. Hence, the condition¬(x = y ∧ y < z) is generated.
It is also the case thatt(abc;N1) and t(acb;N2) are copies of
each other. Hence, the condition is expanded to¬(x = y ∧ y <
z)∧¬(x < y∧y < z). No other pairs of constants and nulls make
t(x;y) copies of each other. Hence,¬(x = y ∧ y < z) ∧ ¬(x <
y ∧ y < z) is the final side-condition.

The proof of Proposition 4.6 shows how to compute for each
f-block type a suitable side-condition. Proposition 4.7 provides a
further improvement. Intuitively, it shows that we only need to
consider comparisons of the formxi < xj or xi = xj for which
xi andxj occur in similar attribute positions of relations inside

Algorithm ConvertToLaconic
Input:A schema mappingM = (S,T,Σ), whereΣ is specified by
a finite set of FO< s-t tgds
Output:A laconic schema mappingM′ = (S, T,Σ′), whereΣ′ is
specified by a finite set of FO< s-t tgds

Σ′ := ∅;
Generate TYPESM;
for all t(x;y) ∈ TYPESM do

Compute preconditionprecont(x);
Compute side-conditionsidecont(x);
Add the following FO< s-t tgd toΣ′:

∀x(precont(x) ∧ sidecont(x) → ∃y.
V

t(x;y))
end for;
return (S,T,Σ′)

Figure 4: Algorithm for constructing laconic schema mappings

the f-block type. Formally, given a f-block typet(x;y), and vari-
ablesxi, xj ∈ x, let us writexi ∼t xj if xi andxj occur in the
same attribute position of a relation, i.e., ift contains two atomic
formulas with the same relation symbolR, one havingxi as the
k-th argument and one havingxj as thek-th argument (for some
k ≤ arity(R)). Let ≡t be the equivalence relation onx gener-
ated by∼t. We call a side-conditionΦ(x) ≡t-local if all atomic
formulas in it are of the formxi < xj or xi = xj with xi ≡t xj .

Proposition 4.7 For every f-block typet(x;y) there is a≡t-local
side conditionsidecont(x) such thatt(x;y) is rigid relative to
sidecont(x), andsidecont(x) is safe fort(x;y).

The proof of Proposition 4.7 is omitted.

Generating side-conditions of a f-block type. Given a f-block
typet(x;y), we first compute the equivalence classes of the equiv-
alence relation≡t. Next, we determine whether a side-condition
is required by testing whether the f-block type is rigid withrespect
to the trivial side-conditionsΦ0(x) := ⊤. This test involves an
exhaustive generation of sequences of constants,a anda′, respect-
ing the equivalence relation≡t, and sequences of nulls,N and
N′, and testing whethert(a,N) andt(a′;N′) are copies of each
other (whileConst andVars are infinite in general, for reasons of
symmetry it suffices here to consider only a fixed subset of both
consisting of at most as many values as the number of variables in
x andy respectively). Whenever such sequences of constants and
nulls are found, we construct part of the side-conditionψ(x) as the
conjunction of all formulas of the formxi < xj or xi = xj that
are true under the assignment sendingx to a, with xi ≡t xj , and
let Φ1(x) = Φ0(x)∧¬ψ(x). We repeat the process until we reach
a side-conditionΦi(x) with respect to whicht(x;y) is rigid.

4.1.4 Putting things together: constructing the la-
conic schema mapping

Our algorithm for constructing laconic schema mappings from a
given schema mapping that is specified by a finite set of FO< s-t
tgds is described in Sections 4.1.1 to 4.1.3. Figure 4 summarizes
the steps taken by our algorithm.

Theorem 4.2 For every schema mappingM specified by FO< s-t
tgds, the algorithm in Figure 4 computes a laconic schema mapping
M′ specified by FO< s-t tgds that is logically equivalent toM.

PROOF. It is clear thatM′ is a schema mapping specified by
FO< s-t tgds. In order to show thatM′ is laconic and logically

equivalent toM, it is enough to show that, for every source in-
stanceI , the canonical universal solutionJ of I with respect to
M′ is a core universal solution forI with respect toM. This fol-
lows from the following three facts:

• Every f-block ofJ is a copy of a f-block of the core universal
solution ofI . This follows from Proposition 4.4.

• Every f-block of the core universal solution ofI is a copy of a
f-block of J . This follows from Proposition 4.3 and Proposi-
tion 4.4, together with the safety part of Proposition 4.6.

• No two distinct f-blocks ofJ are copies of each other. This
follows from the rigidity part of Proposition 4.6 together with
the fact that TYPESM contains no two distinct f-block types
that are renamings of each other.

The output schema mapping is in general exponentially longer
than the input schema mappingM. More precisely, Letn be the
number of FO< s-t tgds,k the length of each FO< s-t tgd, andr the
maximum number of variables occurring in each FO< s-t tgd. It is
easy to see that|TYPESM| ≤ n× 2r. Moreover, each f-block type
t(x;y) ∈ TYPESM has length at mostk, the precondition of each
f-block type has size2O(r log r) · poly(n · k) if computed using the
techniques of [15], and the side condition of each f-block type has
length at most2O(r log r). This blowup will be discussed in more
detail in Section 5.3.

Incidentally, if the side-conditions are left out, then theresulting
schema mapping is still logically equivalent to the original mapping
M, but it may not be laconic. It will still satisfy a weak form of
laconicity: a variant of the chase defined in [5], which only fires de-
pendencies whose right hand side is not yet satisfied, will produce
the core universal solution.

5. OPTIMALITY OF OUR ALGORITHM
In the previous sections, we have seen that our algorithm

ConvertToLaconic transforms a schema mapping specified by s-t
tgds into a laconic schema mapping that is specified, in general, by
FO< s-t tgds which may be exponential in the size of the original
schema mapping. In this section, we show that ConvertToLaconic
is optimal in the sense that the use of linear order, the use of
negation, and the fact that ConvertToLaconic generates a laconic
schema mapping that may be exponential in the size of the original
schema mapping, are essentially unavoidable.

5.1 The Use of Linear Order
The schema mapping produced by our algorithm

ConvertToLaconic is specified by FO< s-t tgds that may
contain comparisons of the formxi < xj , even if the input schema
mapping is specified by s-t tgds only. In practice, however, the use
of a linear order can be avoided in many situations. In particular,
this is the case when the input schema mapping is specified by
FO s-t tgds whose right-hand-sides have no self-joins, i.e., the
right-hand-side of each s-t tgd is such that every atomic formula
uses a different relation.

Theorem 5.1 If the input schema mapping is specified by FO s-t
tgds and the right-hand-side of each FO s-t tgd is such that every
atomic formula uses a different relation, then the output ofour al-
gorithm ConvertToLaconic is a schema mapping specified by FO
s-t tgds.

This follows immediately from the fact that every f-block type
in which every relation from the target schema occurs at mostone
is rigid. A special case of this result was obtained in [3], namely

that every schema mappings specified by s-t tgds whose right hand
side consists of a single atomic formula without repetitionof ex-
istentially quantified variables is logically equivalent to a laconic
schema mapping specified by FO s-t tgds.

It is also worth pointing out that if the source and target schema
are typed, in the sense that each attribute of each relation has an
associated data type and the variables respect the data types, then
the schema mapping computed by our algorithm will respect the
typing, in the sense that it will only involve comparisonsx < y
for x, y of the same data type. This follows from the fact that the
side-condition is≡t-local (cf. Proposition 4.7).

In the remainder, we show that the use of the linear order can-
not be avoided in general. Ideally, we would like to prove that
some schema mappings specified by s-t tgds cannot be compiled
into SQL queries that compute the core universal solution without
the use of comparisons of the formx < y. However, this is difficult
since SQL is a complex language and we don’t have a rigorous def-
inition of what it means to compute a solution with nulls by means
of SQL queries. Therefore, we will first introduce the notionof
FO-term interpretations and FO<-term interpretations, which cap-
ture the essence of the way in which we have used SQL queries for
computing solutions with nulls in Section 3. We will then show that
there is a schema mappingM specified by LAV s-t tgds, for which
there is no FO-term interpretation that computes for each source
instance the core universal solution w.r.t.M.

A formal account of what we did in Section 3, abstracting away
from the specifics of string concatenation, is as follows. Fix a
countably infinite set of function symbols of arityn, for each
n ≥ 0. For any setX, denote byTerms[X] be the set of all
termsbuilt up from elements ofX using these function symbols,
and denote byPTerms[X] ⊆ Terms[X] the set of allproper
terms, i.e., those with at least one occurrence of a function symbol.
For instance, ifg is a unary function andh is a binary function,
thenh(g(x), y), g(x) andx belong toTerms[{x, y}], but only the
first two belong toPTerms[{x, y}]. It is important to distinguish
between proper terms, which contain at least one function sym-
bol, and terms that consist of just a single constant, as onlythe
former will be treated as nulls. More precisely, we assume that
PTerms[Const] ⊆ Vars. Recall thatConst ∩ Vars = ∅.

Definition 5.1 An FO-term interpretationΠ is a map assigning
to eachk-ary relation symbolR ∈ T a union of expressions of
the form shown in equation (1), wheret1, . . . , tk ∈ Terms[x],
t′1, . . . , t

′
k ∈ Terms[x′], andφ(x), . . . , φ′(x′) are FO-queries over

S. FO<-term interpretationsare defined in the same way, using
FO<-queries.

Given a source instanceI , an FO<-term interpretationΠ gener-
ates an target instanceΠ(I), in the obvious way. Note thatΠ(I)
may contain constants as well as nulls. Although the programspec-
ifies exactly which nulls are generated, we will considerΠ(I) only
up to isomorphism, and hence the meaning of an FO<-term inter-
pretation does not depend on which function symbols it uses.

FO<-term interpretations and FO-term interpretations provide a
convenient level of abstraction. They capture the essence of the
SQL queries computing canonical universal solutions described in
Section 3 (with and without the use of comparisons), while ab-
stracting away from the specifics of creating labeled nulls by means
of string concatenation. The translation described in Section 3,
when stated in terms of FO<-term interpretations, gives us:

Proposition 5.1 For every schema mapping specified by FO
(resp. FO<) s-t tgds, there is an FO- (resp. FO<-)term interpreta-

tion that yields, for each source instanceI , the canonical universal
solution forI .

The following result shows the importance of having a linearor-
der for our approach to core computation: no FO-term interpreta-
tion can be used to compute the core universal solution in general.

Theorem 5.2 Consider the schema mappingM = (S,T,Σ),
whereS = {R}, T = {S} and Σ consists of the single LAV s-t
tgdR(x, y) → ∃z(S(x, z) ∧ S(y, z)). (This is Example 3(e) of
Figure 3.) No FO-term interpretation yields, for each source in-
stanceI , the core universal solution ofI w.r.tM.

PROOF. The argument uses the fact that FO formulas are in-
variant for automorphisms. LetI be the source instance whose
domain consists of the constantsa, b, c, d, and such thatR is the
total relation over this domain. Note that every permutation of
the domain is an automorphism ofI . Suppose for the sake of
contradiction that there is an FO-term interpretationΠ such that
the Π(I) is the core universal solution ofI . Then the domain of
Π(I) consists of the constantsa, b, c, d and a distinct null term,
call it N{x,y} ∈ PTerms[x], for each pair of distinct constants
x, y ∈ {a, b, c, d}, andΠ(I) contains the factsR(x,N{x,y}) and
R(y,N{x,y}) for each of these nullsN{x,y}. Now consider the
term N{a,b}. We can distinguish two cases. The first case is
where the termN{a,b} does not contain any constants as argu-
ments. In this case, it follows from the invariance of FO formu-
las for automorphisms thatΠ(I) containsR(x,N{a,b}) for every
x ∈ {a, b, c, d}, which is clearly not true. The second case is where
N{a,b} contains at least one constant as an argument. IfN{a,b}

contains the constanta or b then lett′ be obtained by switching
all occurrences ofa andb in N{a,b}, otherwise lett′ be obtained
by switching all occurrences ofc andd in N{a,b}. Either way, we
obtain that there is a second null, namelyt′, which is distinct from
N{a,b}, and which stands in exactly the same relations toa andb
asN{a,b} does. This again contradicts our assumption thatJ is the
core universal solution ofI .

Corollary 5.1 Let M be the schema mapping from Theorem 5.2.
There is no schema mappingM′ specified by FO s-t tgds, such
that for very source instanceI , the canonical universal solution of
I w.r.t.M′ is the core universal solution ofI w.r.t.M.

Hence, the use of a linear order in the equivalent laconic schema
mapping given in Figure 1(e′) is unavoidable.

Incidentally, there appears to be a close connection with the
copy-elimination problem for query languages involving object
creation, cf. [4].

5.2 The Use of Negation
In the previous section, we have shown that the use of linear or-

der is essentially unavoidable, even for an input schema mapping
that is specified by LAV s-t tgds. At the same time, we have shown
that every schema mapping specified by FO< s-t tgds has an equiv-
alent laconic schema mapping specified in the same language.A
natural question is therefore whether one needs the full expressive
power of FO< in specifying an equivalent laconic schema mapping
of an input schema mapping that is given by s-t tgds.

Let BCCQ< denote the class of Boolean combinations of con-
junctive queries that may refer to the linear order. The nexttheorem
tells us the general “shape” of the output dependencies, if the input
schema mapping is specified by s-t tgds. The subsequent proposi-
tion shows that the result is rather tight.

Theorem 5.3 If M is specified by s-t tgds, then the output of
our algorithm ConvertToLaconic is a schema mapping specified by
BCCQ< s-t tgds.

PROOF HINT. Close inspection of the translation.

Proposition 5.2 For the schema mapping given in Figure 3(c),
there is no UCQ<-term interpretation that computes the core uni-
versal solutions for each source instance.

PROOF SKETCH. Pick constantsa < b. Let I be the source
instance containing only the factP (a), and letI ′ be the source in-
stance containing the factsP (a) andR(a, b). Clearly,I ⊆ I ′ and
hence, for every union of conjunctive queriesq, the answers toq in
I ′ will include the answers toq in I . The core universal solution
of I consists of the f-block{S(a,N)} for some nullN . It follows
that the UCQ<-term interpretation must mapS to something that
generates a tuple(a, t), with t a term. It follows quite easily from
the definition of UCQ<-term interpretations and the monotonicity
of unions of conjunctive queries that the same tuple will be gener-
ated for the relationS in the case of source instanceI ′. But this
contradicts the fact that the the relationS contains only tuples of
constants in the core universal solution ofI ′.

5.3 Exponential blowup
Our transformation involves a exponential blowup: the length

of the specification of the output schema mapping is in general
bounded by a single exponential in the length of the specification
of the input schema mapping. This exponential blowup cannotbe
avoided:

Theorem 5.4 There is a sequence of schema mappings
M1,M2, . . . specified by LAV s-t tgds such that the specifi-
cation of eachMk is of lengthO(k), and such that every laconic
schema mapping logically equivalent toMk specified by FO< s-t
tgds contains at least2k many FO< s-t tgds.

PROOF SKETCH. Consider again the schema mapping from Ex-
ample 4.2 (which is parametrized by a natural numberk). As we
pointed out earlier, the number of f-block types realized incore so-
lutions is exponential ink. Now consider any logically equivalent
laconic schema mappingM′ specified by a finite set of FO< s-t
tgdsΣ. We may assume without loss of generality that the FO< s-t
tgds inΣ are non-decomposable and that their left-hand-sides are
satisfiable. Next, it is easy to see that, if the right-hand-side of one
of the FO< s-t tgds contains two different universally quantified
variables,x, x′ the left-hand-side must logically implyx = x′: if
not, then, since the FO< s-t tgd in question is non-decomposable,
there would be source instances for which the canonical universal
solution with respect toM′ has a block containing at least two
nulls, which contradicts the laconicity ofM′. Hence, we may as-
sume that the right-hand-side of each FO< s-t tgd contains only a
single universally quantified variable. Finally, the right-hand-side
of each FO< s-t tgd has to describe a specific fact block, in order
for the schema mapping to be laconic. All in all, this shows that
M needs to have as many FO< s-t tgds as there are f-block types,
which is exponential ink.

In some cases, the exponential blowup can be avoided. In partic-
ular, this is the case when the number of conjuncts in the right-
hand-sides of the dependencies of the input schema mapping is
bounded. A close inspection of the proof of our main result shows:

Theorem 5.5 Fix any k ≥ 0. Then for every input schema map-
pingM specified by FO< s-t tgds in which the number of atomic
formulas in the right-hand side of each FO< s-t tgd is at mostk,
the output schema mapping is of size polynomial in the size ofM.

6. TARGET CONSTRAINTS
In this section we consider schema mappings with target con-

straints and we address the question whether our main resultcan
be extended to this setting. The answer will be negative. However,
first we need to revisit our basic notions, as some subtle issues arise
in the case with target dependencies.

There are two types of target constraints that are generallycon-
sidered in the data exchange framework [5]: target tgds and target
equality generating dependencies(egds). Target tgds are simply
tgds where both left-hand-side and right-hand-side are conjunction
of atomic formulas over the target schema. Target egds are ofthe
form ∀x(φ(x) → x1 = x2), wherex1 andx2 are distinct vari-
ables amongx, andφ(x) is a conjunction of atomic formulas over
the target schema.

It is clear that we cannot expect to compute core universal so-
lutions for schema mappings with target dependencies by means
of FO<-term interpretations. Even for the simple schema map-
ping defined by the s-t tgdR(x, y) → R′(x, y) and the full target
tgd R′(x, y) ∧ R′(y, z) → R′(x, z) computing the core univer-
sal solution (or any other universal solution) means computing the
transitive closure ofR, which we know cannot be done in FO logic
even on finite ordered structures. Still, we can define a notion of
laconicity for schema mappings with target dependencies. LetM
be any schema mapping specified by a finite set of FO< s-t tgds
Σst and a finite set of target tgds and target egdsΣt, and letI be
a source instance. We define thecanonical universal solution ofI
with respect toM as the target instance (if it exists) obtained by
taking the canonical universal solution ofI with respect toΣst and
chasing it with the target dependenciesΣt. We assume a standard
chase but will not make any assumptions on the chase order. La-
conicity is now defined as before: a schema mapping is laconicif
for each source instance, the canonical universal solutioncoincides
with the core universal solution.

Recall that, according our main result, every schema mapping
M specified by FO< s-t tgds is logically equivalent to a laconic
schema mappingM′ specified by FO< s-t tgds. In particular, this
implies that, for each source instanceI , the core universal solution
for I with respect toM is the canonical universal solution forI
with respect toM′. The following theorem shows that no such
result holds for input schema mappings specified by LAV s-t tgds
and full target tgds. The proof has been omitted due to space con-
straints. We conjecture that, by similar arguments, an analogous
negative result can be obtained for schema mappings specified by
LAV s-t tgds and target egds.

Theorem 6.1 There is a schema mappingM specified by finitely
many LAV s-t tgds and full target tgds, for which there is no schema
mappingM′ specified of FO< tgds, target tgds and target egds,
such that for every source instanceI , the canonical universal solu-
tion ofI with respect toM′ is the core universal solution ofI with
respect toM.

7. CONCLUSION
We presented an algorithm for transforming a schema mapping

specified by FO< s-t tgds to an equivalent laconic schema mapping
specified by FO< s-t tgds. Laconic schema mappings have the ad-
vantage that they can be easily compiled into SQL queries, which,
when executed on any source instance, will generate the coreuni-
versal solution of that source instance. Our method paves the way
for leveraging existing DBMS technology to directly produce the
core universal solution in data exchange systems, such as Clio.

Since it requires evaluating exponentially many SQL queries
over the source database, it may seem that our method for com-

puting core universal solutions is rather inefficient. However, we
remark that other approaches face similar difficulties. Indeed, all
known approaches to computing core universal solutions that we
are aware of involve repeatedly testing for the existence ofa homo-
morphism, which is a task that is on a par with evaluating a con-
junctive query. Furthermore, the number of such homomorphism
tests depends on the size of the source database, and is therefore
not bounded by a function of the schema mapping. It would thus
be interesting to conduct an experimental evaluation in order to de-
termine which approach is more efficient.

We showed that our results are optimal, i.e., the use of the lin-
ear order and negation are unavoidable. Furthermore, our method
cannot be extended to schema mappings with target constraints.
We expect that the restricted (linear) form of recursion offered by
SQL:99 will not help either in extending or simplifying our results.

Acknowledgements.This work was carried out during a visit
of Ten Cate to UC Santa Cruz and IBM Almaden. Ten Cate is par-
tially supported by NWO grant 639.021.508 and by ERC Advanced
Grant Webdam on Foundation of Web data management. Kolaitis
is partially supported by NSF grant IIS-0430994. Tan is partially
supported by NSF CAREER Award IIS-0347065 and NSF grant
IIS-0430994.

8. REFERENCES
[1] A. Bonifati, E. Q. Chang, T. Ho, L. V. Lakshmanan, and R. Pottinger.

HePToX: Marrying XML and Heterogeneity in Your P2P Databases.
In VLDB (demo), pages 1267–1270, 2006.

[2] A. K. Chandra and P. M. Merlin. Optimal Implementation of
Conjunctive Queries in Relational Data Bases. InSTOC, pages
77–90, 1977.

[3] L. Chiticariu. Computing the Core in Data Exchange: Algorithmic
Issues.MS project report. CS Dept., UCSC, 2005.

[4] J. V. den Bussche and D. V. Gucht. A semideterministic approach to
object creation and nondeterminism in database queries.J. Comput.
Syst. Sci., 54(1):34–47, 1997.

[5] R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange:
Semantics and Query Answering.TCS, 336(1):89–124, 2005.

[6] R. Fagin, P. G. Kolaitis, A. Nash, and L. Popa. Towards a Theory of
Schema-mapping Optimization. InPODS, pages 33–42, 2008.

[7] R. Fagin, P. G. Kolaitis, and L. Popa. Data Exchange: Getting to the
Core.TODS, 30(1):174–210, 2005.

[8] A. Fuxman, M. A. Hernández, H. Ho, R. J. Miller, P. Papotti, and
L. Popa. Nested Mappings: Schema Mapping Reloaded. InVLDB,
pages 67–78, 2006.

[9] G. Gottlob and A. Nash. Efficient Core Computation in Data
Exchange.JACM, 55(2):1–49, 2008.

[10] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio
Grows Up: From Research Prototype to Industrial Tool. InSIGMOD,
pages 805–810, 2005.

[11] M. Lenzerini. Data Integration: A Theoretical Perspective. In PODS,
pages 233–246, 2002.

[12] G. Mecca, P. Papotti, and S. Raunich. Core schema mappings. In
SIGMOD, 2009.

[13] R. Pottinger and A. Halevy. MiniCon: A Scalable Algorithm for
Answering Queries using Views.VLDB Journal, 10(2-3):182–198,
2001.

[14] N. C. Shu, B. C. Housel, R. W. Taylor, S. P. Ghosh, and V. Y.Lum.
EXPRESS: A Data EXtraction, Processing, amd REStructuring
System.TODS, 2(2):134–174, 1977.

[15] B. ten Cate and P. G. Kolaitis. Structural Characterizations of
Schema Mapping Languages. InICDT, 2009.

