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ABSTRACT a target instance is calledsalutionfor the given source instance.

A schema mapping is a declarative specification of the miatiip Data tragsrl]atiog undehrlies Eymer(f)us data Lntﬁr-ogemlaigpg;a-
between instances of a source schema and a target schema. Th ons and has been the subject of research that dates baaréo m

data exchange (or data translation) problem asks: givenstarice ~ than thirty-years ago [14]. In the past, schema mappinge eer
over the source schema, materialize an instance (or so)utier pressed procedurally, as a query that can be directly exedot

the target schema that satisfies the schema mapping. Inaflener compute a solution. In recent_years,_ systems S_UCh as CI]G?[@
a given source instance may have numerous different sotutio 1P ToX [1] adopt a declarative logical formalism for spgii
Among all the solutions, universal solutions and core usiakso- schema mappings.

lutions have been singled out and extensively studied. Aeusal hMore forgwally, ascherr?a m?ppg‘@; a tripleévl =T, Eg’
solution is a most general one and also represents the sptre whereSis the source schem, is the target schema, andis the

of solutions, while a core universal solution is the smaligsver- specificatiop of the rglatiqnship betwgSrandT. In recent data
sal solution and is unique up to isomorphism (hence, we dén ta exchange literaturey. is given by a finite set ofource-to-target
about the core) tuple generating dependencies (s-t tgds)yget tgds, and target
The problem of designing efficient algorithms for computihg equahty-generatlng dependenues (egdb)tunwely, .the st t.gds
core has attracted considerable attention in recent ydarshis c_)fa?chem_a mapping d_|ctate the e;](lstence of((j:ertalg faats -
paper, we present a method for directly computing the core by tion or a given source instance. The target tg S an tfiggm«are
SQL queries, when schema mappings are specified by source-to cpnstralnts over the target schemahat furpher shape” the facts
target tuple-generating dependencies (s-t tgds). Unliiee meth- dictated by the S’F tgds for agiven source |_nstance. Taw‘js“*’”d
ods that, given a source instance, first compute a targetnost .target.egds contain as special cases such |mportant dem.em as
and then recursively minimize that instance to the corenwethod inclusion delpend_enues and f_unctlonal depﬁnden(:leselcrm_sely. .
avoids the construction of such intermediate instanceis i§done . N 9eneral, a given source instance may have no solutiams si
by rewriting the schema mapping into a laconic schema mappin it may not be possible to mat_erlallze aso!utlon that sassfltarget
that is specified by first-order s-t tgds with a linear ordethia ac- egd. On the pther han_d_, a given source Instance may have i mult
tive domain of the source instances. A laconic schema mgppin tude of solutions. I.ntU|t|yer, this is S0 because, wh[le tht ths
has the property that a “direct translation” of the sourcgance of a SChem"?‘ mapping d_|ctate the existence of certain faGssor
according to the laconic schema mapping produces the care. F !ution of a given source instance, they do not spell out whaid
thermore, a laconic schema mapping can be easily transfzted not be in a solution for the given source instance. Furtheepsst

SQL, hence it can be optimized and executed by a databasgrsyst tgds may not specify how certair] attributes of a relatiqnnmta(get
to produce the core. We also show that our results are optiimeal schema should be populated with values from the given sonfce
use of the linear order is inevitable and, in general, scherap- stance. As a consequence, there are numerous ways to fiegeria

pings with constraints over the target schema cannot béttewto thes? unknown values. . .
: : Prior research [5] has shown that, among all solutions ofargi
a laconic schema mapping. . . :
source instance, theniversal solutiongre the preferred ones be-
cause they are the most general and also encapsulate the enti
1. INTRODUCTION space of solutions. Furthermore, it was shown in [7] thattireof
A schema mapping specifies the relationship between inssanc @ universal solution is the smallest universal solutionigneique
of a source schema and a target schema. The data exchange (akéP to isomorphism. Henceforth, we shall talk abthg core uni-
data translation) problem asks: given a source instaraesftrm versal solutioror, simply,the core In addition to being the small-

it into a target instance so the schema mapping is satisfisdh S est universal solution, the core possesses certain otbergoper-
ties. Specifically, among all universal solutions, the cetarns the

most conservative answers on conjunctive queries withialiips.
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ecutable language, such as SQL, which can then be executzd or
given source instance to construct a universal solutiorHai in-
stance. Such a framework for computing a universal solutis
several advantages. In particular, this framework is ablpush
the computation process into off-the-shelf transfornragagines,
such as relational database management systems.

In general, the universal solution produced by the abovéoaet
is not the core. In view of the desirable properties of theespe-
cially, being the smallest universal solution), one woikd to have
a method to compute the core using SQL queries. It shouldteelno
that computing the core of an arbitrary database instaree éP-
hard problem [2]. It was shown, however, that for broad dassf
schema mappings, there are polynomial-time algorithmsdaon-
puting the core of universal solutions. Indeed, for schenag@-m
pings specified by s-t tgds and target egds (in particulagsdbema
mappings specified by s-t tgds), two different polynomiidet al-
gorithms for computing the core of universal solutions wgven
in [7]; the first is agreedyalgorithm, while the second istdocks
algorithm. Furthermore, for schema mappings specifiedtigds,
target egds, and target tgds obeying Weak acyclicitycondition,

a polynomial-time algorithm for computing the core base@o-
phisticated extension of the blocks algorithm was giver9in [

In contrast to the direct method of computing a universaltsmh
using SQL queries, all the above algorithms for computiregcibre
are recursive algorithms that rely on extra post-processieps on
an intermediate target instance. Specifically, they aredas the
following generic methodology: first, compute an internagelitar-
get instance for the given source instance; second, rgelysnin-
imize the intermediate target instance until the core isioled.

In more concrete terms, for a schema mapphgspecified by
s-t tgds and target egds, tiyeeedy algorithm given a source in-
stancel, first computes a target instandethat is universal for
1. After this, the greedy algorithm will repeatedly removelas
from J one at a time, as long as the s-t tgds/ef are satisfied.
When no more tuples can be removed, the resulting instarthe is
core of the universal solutions fdr. The blocks algorithm for a
schema mapping\t specified by s-t tgds and target egds begins
by computing a target instanckthat is a universal solution faf
with respect to the s-t tgds g¥1. After this, the blocks algorithm
computes a sequence of intermediate instances such thaexhe
instance is both a proper subinstance and a homomorphiceimag
of the preceding instance via a homomorphism that is thetitglen
everywhere except for block (a connected component) of nulls.
When no proper subinstance of the current instance is thehom
morphic image of the current instance via such a homomanrphis
then the current instance is the core. Both the greedy #hgornd
the blocks algorithm terminate after a number of iteratitvad, in
general, depends on the size of the given source instances, Th
both these algorithms are inherently recursive and do vet gge
to a computation of the core via SQL queries.

Summary of Contributions In this paper, we address the follow-

PTStud Advised Advised Advised
age | sname | facid_|
32 John John N1 John NI John NI
30 Ann Bob N3 Ann N2 Bob N3
Ann N4 Bob N3 Ann N4
GradStud Cathy N1 Ann N4
age
27 Bob Workswith Workswith Workswith
30 Ann
Bob N3 Bob N3 Bob N3
Source instance / Ann N4 Ann N4 Ann N4
A solution J Universal solution J, The core J,

S PTStud(age, name)
GradStud(age, name)

T Advised(sname,facid)
Workswith(sname,facid)

Y. PTStud(x,y) — Jz Advised(y,z)
GradStud(x,y) — 3z (Advised(y,z) A Workswith(y,z))

Figure 1: An example of a schema mapping\! = (S,T,X), a
source instancel, a solution J for I, a universal solution.J,, for
1, and the coreJ. for I.

and then recursively minimize that instance into a core poethod
avoids the construction of such intermediate instancestea, we
first rewrite a schema mapping specified by s-t tgds into a&ikyi
equivalentlaconic schema mapping that is specified by first-order
s-t tgds with a linear order in the active domain of the soumnee
stance. A laconic schema mapping has the property that ectdir
translation” of the source instance according to the laceohema
mapping produces the core. Furthermore, a laconic schema ma
ping can be easily translated into SQL, hence it can be opgidhi
and executed by a database system to produce the core. Gurdnet
of computing the core can be easily integrated into exisiatg ex-
change systems by adding a module that rewrites the schepra ma
ping and slightly extending the existing SQL translationdule to
handle first-order s-t tgds with a linear order. We also stiaw our
results are optimal; the linear order that may arise in theite is
necessary and our method cannot be extended to schema ggppin
that involve constraints over the target schema.

In [12], similar results were independently obtained forea r
stricted class of s-t tgds, and empirical data is providemvihg
that their method outperforms existing approaches to caoimgpu
core universal solutions.

Paper Outline In the next section, we recall basic notions and
properties of schema mappings. Section 3 explains how thenea
ical universal solution of a source instance with respeatdohema
mapping specified by first-order s-t tgds can be obtainedyS@L
queries. In Section 4, we introduce the notion of laconicesth
mappings, and present our algorithm for transforming a reehe
mapping specified by first-order s-t tgds into a logicallyieglent
laconic schema mapping specified by first-order s-t tgdsynass

ing question: Can the core be computed using SQL queries? Ining a linear order on the active domain of the source instahte

other words, can one leverage off-the-shelf relationaloade sys-
tems and compute the core while adhering to the frameworkssf s
tems such as Clio and HePToX?

This question was first addressed by one of the authors of this

paper in [3], where it was shown that for schema mappings-spec
ified by a syntactically restricted (and rather limited)sdaf s-t

Sections 5 and 6, we demonstrate the optimality of our algaori

2. BACKGROUND AND NOTATION

We present the necessary background and results relatkd to t
core; we also illustrate various concepts by means of an pbeam

tgds, the core can be computed using SQL queries (see Sectiorinstances and homomorphism3/e assume that there is an infi-

5.1). Here, we present a method that applies to every scheapa m

nite setConst of constant values and an infinite 9éirs of null

ping specified by s-t tgds and makes it possible to compute the values that is disjoint fronConst. We further assume that we have

core using SQL queries. Unlike the aforementioned priorhmet
ods that, given a source instance, first compute a targetnost

a fixed linear ordek on the setConst of all constant values. We
consider source instances to have values f@@mst and target in-



stances to have values frgbonstUVars. We use dorf/) to denote
the set of values that occur in facts in the instahcé& homomor-
phismh : I — J, with I,.J instances of the same schema, is a
functionh : Const U Vars — Const U Vars with h(a) = a for all

a € Const, such that for all relation® and all tuples of (constant
or null) values(vi, . .. ,vn) € RY, (h(v1),...,h(va)) € R7. In-
stanced, J arehomomorphically equivaleiitthere are homomor-
phismsh : I — J andh’ : J — I. Anisomorphismh : [ = J is
a homomorphism that is a bijection between déimand dong.J)
and that preserves truth of atomic formulas in both direstidn-
tuitively, nulls act as placeholders for actual (constaatyes, and
a homomorphism fronT to J captures the fact thaf “contains
more, or at least as much information” As

Query languagesWe will denote by CQ, UCQ, and FO the sets of
conjunctive queries, unions of conjunctive queries, arst-trder
queries, respectively. The sets EQUCQ<, and FO" are defined
similarly, except that the queries may refer to the linedearThus,
unless indicated explicitly, it is assumed that queriesataefer to
the linear order. For a query and an instancé, we denote by
q(I) the answers of in I; furthermore, we denote hy(I), the
ground answers af, i.e.,q(I); = q(I) N Const* for k the arity of

g. In other wordsg(7), contains the tuples fromp(/) that consist
entirely of constants.

Schema mappings, solutions, universal solutioms schema map-
ping is a tripleM = (S,T,X), whereS and T are the disjoint
source and target schemas respectively,Xigla finite set of sen-
tences of some logical language over the sch8m&. From a se-
mantic point of view, a schema mapping can be identified viiéh t
set of all pairg(1, J) such thatl is a source instancd] is a target
instance and!, J) satisfiess (which we denote by!, J) = %).
Two schema mappingsyl = (S, T, %) and M’ = (S, T,Y), are
logically equivalentf 3 andX’ are logically equivalent, i.e., they
are satisfied by the same pairs of instances. Given a schepra ma
ping M = (S, T, X) and a source instande asolutionfor I with
respect toM is a target instancé such that(1, J) satisfiest. We
denote the set of solutions fdrwith respect taM by Sola(1),

or simply Sol(I) when the schema mapping is clear from the con-
text. A universal solution for a source instanEevith respect to

a schema mapping is a solutionJ € Sola(I) such that, for
everyJ' € Sola (1), there is a homomorphism frothto J'.

We will consider the following logical languages for spgeif
ing schema mappings. source-to-target tuple generating depen-
dencyor, in short, ars-t tgd is a first-order sentence of the form
Vx(¢p(x) — Jyy(x,y)), wherep(x) is a conjunction of atomic
formulas overS, and(x, y) is a conjunction of atomic formulas
overT, such that each variable inoccurs ing(x). A LAV s-t tgd
is a s-t tgd in whichy is a single atomic formula. Aull s-t tgd
is a s-t tgd in which there are no existentially quantifiedalales
(i.e., y is the empty set). The class fifst-order s-t tgds FO s-t
tgd9 generalizes s-t tgds by allowing the antecedg(pt) to be an
arbitrary FO-formula oveB. The class of FO s-t tgds is defined
similarly, allowing also comparisons of the form < z; to be
used in the antecedent. In what follows and in order to siypli
notation, we will typically drop the outermost universabatifiers
when writing s-t tgds, FO s-t tgds, or FGs-t tgds.

source instancé, three solutions.f, J,,, andJ,) for I are shown.
The valuesNy, ..., N4 in the solutions are nulls froriwars. All
other values are froronst. Even though/ is a solution for7, the
solutionJ contains an unnecessary tuple, namely, (Cathy, In
other words, the result of removing (Cathyj ) from J, which is
Ju, is still a solution. In fact,/,, is a universal solution. Intuitively,
J. is the most general solution because it does not make unneces
sary assumptions about the existence of other tuples oewvatu
place of the nulls. The solutios is also a universal solution (we
shall explain what is meant by “the core” shortly). There i@ano-
morphismh : J, — J, whereh(v) = v for everyv € dom(J,,).
There is also a homomorphisi : J,, — J., whereh'(N2) = Ny
andh(v) = v for everyv € dom(J,,) andv # N». Clearly, since
Je. C Ju, there is also a homomorphism fraf to J,,. 0O

2.1 The Core

As stated in the Introduction, a source instance may havdta mu
tude of solutions. Among all solutions, the universal Soha have
been singled out as the preferred ones because they are gte mo
general ones (i.e., for a given source instahc@universal solution
for I has a homomorphism into any solution fgr Among the uni-
versal solutions, theore universal solutioplays a special role. A
target instancd is said to be &oreif there is no proper subinstance
J' C J and homomorphism : J — J’. An equivalent definition
in terms of retractions is as follows: A subinstanteC J is called
aretractof J if there is a homomorphisr : J — J’ such that for
alla € dom(J"), h(a) = a. The corresponding homomorphigm
is called aretraction A retract isproperifitis a proper subinstance
of the original instance. A core of a target instantés a retract
of J that has itself no proper retracts. Every (finite) targetanse
has a unique core, up to isomorphism. Moreover, two instace
homomorphically equivalent if and only if they have isomurmp
cores. It follows that, for every schema mapping, every source
instance has at most one core universal solution up to igamsm.
Indeed, if the schema mappinlgl is specified by FO s-t tgds then
each source instance hesactlyone core universal solution up to
isomorphism [7]. We will therefore freely speaktbie core.

Example 2.2 Referring back to the schema mapping in Figure 1,
the solutionJ. is the core for the source instanée Intuitively,
every tuple inJ. must exist in order fofI, J.) to satisfyX. So
there are no redundant tuplesin [

In addition to being the smallest universal solution, theedtas
certain other desirable properties. Specifically, the @ise re-
turns the most conservative answers on conjunctive queriis
inequalities: if@ is a conjunctive query with inequalities, and
is the core universal solution for a given source instahcthen
Q(J), is contained inQ(J"), for every universal solutio’ of
1. Furthermore, in a precise sense, the core is the univeskal s
tion that satisfies the most embedded dependencies. Iniégd,
easy to show that if a (arbitrary) tgd or egd holds in a unakers
solution, then it must also hold in the core. To make this igseec
let adisjunctive embedded dependemeya first-order sentence of
the fromvx(¢(x) — V, Jy:.1i(x,y:)), whereg, ¢; are conjunc-
tions of atomic formulas over the target schemand/or equalities.

It is common in data exchange to consider schema mappings Then the following result holds.

specified using also target constraints in the forrragjet tgdsand
target egds We will only discuss such target constraints in detail
in Section 6 and therefore postpone the relevant definitiomisat
section.

Example 2.1 An example of a schema mapping is depicted in Fig-
ure 1. Both s-t tgds in that figure are LAV s-t tgds. Given the

Theorem 2.1 Let M be a schema mappingbe a source instance,
let J the core universal solution df, and letJ’ be any other uni-
versal solution of, i.e., one that is not a core. Then

e Every disjunctive embedded dependency trug iis true in J,
e Some disjunctive embedded dependency trueisrfalse in.J’.



The naive chase procedure

Input: A schema mapping = (S, T, ) and a source instande
whereX is a finite set of FO s-t tgds

Output:A universal solution/ for I w.r.t. M

J =10
forall Vx(¢(x) — Iy (x,y)) € X do
for all tuples of constants such thatl = ¢(a) do
for eachy; € y, pick a fresh null valueV; for y;.
add the facts in)(a, IN) to J.
end for
end for;
return J

Figure 2: Naive chase method for computing universal solu-
tions.

The proof is omitted for lack of space.
Concerning the complexity of computing the core, we have:

Theorem 2.2 ([7]) Let M be a schema mapping specified by O
s-t tgds. There is a polynomial-time algorithm such thategia
source instancé, the algorithm returns the core universal solution
for I.

Strictly speaking, this result was shown in [7] only for sctze
mappings specified by s-t tgds and target egds. Howeverathe s
argument applies for schema mappings specified by B@ tgds
(and target egds).

Although the data complexity of computing core solutions is
polynomial time, the degree of the polynomial depends on the
schema mapping in question. Indeed, it was shown in [9] thiat-c
puting core universal solutions for schema mappings spelciy
s-t tgds is fixed parameter intractable, where the paransetae
maximum number of variables in occurring in each s-t tgd.

3. USING SQLTO COMPUTE UNIVERSAL
SOLUTIONS

In this section, we define canonical universal solutions, &e
describe how FO s-t tgds can be compiled into SQL queries that,
when executed against any source instang@eoduce the canonical
universal solution forl. As we will see in Section 4, when this
method is applied to laconic schema mappings, the SQL auerie
obtained produce the core universal solutiord of

In [5], it was shown that, for schema mappings specified by s-t
tgds, thechaseprocedure can be used to compute a universal so-
lution for a given source instance. In fact, the same holds fior
schema mappings specified by F@-t tgds. Figure 2 describes
a variant of the chase procedure known asrhive chase For a
source instancé and schema mapping! specified by FO s-t
tgds, the result of applying the naive chase is callezhaonical
universal solutiorof T with respect taM. Observe that the result
of the naive chase is unique up to isomorphism, since it dipen
only on the exact choice of fresh nulls. Also note that, e¥eéwad
schema mappings are logically equivalent, they may assitgr-d
ent canonical universal solutions to a given source ingtanc

relation caused the last two facts of thévi sed relation and all
facts ofWWor kswi t h relation to be created. [J

It is easy to see that, for schema mappings specified by &0
t tgds, the naive chase procedure can be implemented usihg SQ
queries. In fact, Clio follows this approach [8]. We illuste the
approach by returning to our running example of the schena ma
ping in Figure 1.

The first step is tdSkolemizesach s-t tgd inX. By this, we
mean replacing each existentially-quantified variablénitfunc-
tion term f(x), wheref is a fresh function symbol of appropriate
arity andx denotes the set of all universally-quantified variables in
the tgd. For example, after this step Bnwe get:

PTStudz, y) — Advisedy, f(z,v))
GradStudz, y) — Advisedy, g(x,y)) A Workswith(y, g(x, y))

These dependencies are logically equivalent to the foligwie-
pendencies with a single relational atom in the right-hsiale:

PTStudz, y) — Advisedy, f(z,v))
GradStudz, y) — Advisedy, g(z,y))
GradStudz, y) — Workswith(y, g(z, y))

Next, for each target relatioR we collect the dependencies that
containR in the right-hand-side, and we interpret these as constitut
ing a definition ofR. In this way, we get the following definitions
of Advi sed andWor kswi t h.

Advi sed = {(y, f(z,y)) | PTStudz, y)} U

{(y, 9(x, y)) | GradStudz, y)}

Wor kswi t h:={(y, g(z,y)) | GradStudz, y)}

In general, the definition of A-ary target relatiork € T will be
of the shape:

R = {t1(x),..,tx(x) [¢(x)} U -+ U
{81 (), (%)) [ ¢ (%)} @
wherety, ..., ty,...,t1,...,t, areterms(i.e., variables such as

x1, or functions over terms, such géx1,x2)), ¢, ..., ¢" are first-
order queries over the source schema. E&ch. , ¢’ corresponds
to a SQL query, and the union of these SQL queries is a quety tha
when executed on any source instafeell compute the canonical
universal solution forl. To continue with our running example,
the following SQL queries may be generated Aatvi sed and
Wor kswi t h:
Advi sed:
select distinct name,
concat(“f(",age,name,")")
from PTStud
union
select distinct name,
concat(“g(",age,name,“)")
from GradStud

Wor kswi t h:

select distinct name,
concat(“g(",age,name,")")

from GradStud

Evaluating the SQL query associatedMivi sed on the source
instance/ in Figure 1 yields the tuple$ (John, f(32,John)), (Ann,
f(30,Ann)), (Bob, g(27,Bob)), (Ann, g(30,Ann)). The terms
f(32,John), f(30,Ann), g(27,Bob), and g(30,Ann) corraxhore-
spectively, to the null$Vy, No, N3, Ny in J,, of Figure 1.

The general idea behind the construction of the SQL queries
should be clear from the example. The translation assuneesxth
istence of a&oncat function that returns the concatenation of all
its arguments. Intuitively, the result of tkencat function repre-
sents a null.

Example 3.1 The naive chase procedure on the schema mapping Note that, in this example, the resulting SQL queries arensi

M and source instanck of Figure 1 produces the universal so-
lution J,, shown in the same figure. Intuitively, the first s-t tgd in
3 on thePTSt ud relation caused the first two facts Aélvi sed
relation to be created. The second s-t tg&ion theGr adSt ud

of select-project-join queries (i.e., unions of conjunetgueries)
augmented with the use of tlmoncat function. In particular,
they do not contain an@ROUP BY clauses or any aggregate func-
tions. In the case of schema mappings specified by FO s-tttyals,



(@ P(z) — Jyz.R(z,y) A R(x, z)
@) P(z) — 3y.R(z,y)
(b) P(z) — Jy.R(z,y)
P(z) — R(z,x)
(o) P(x) — R(z,x)
(©  R(z,y) — S(z,y)
P(z) — Fy.S(z,y)
(€) R(z,y) — S(z,y)
P(x) A —Jy.R(x,y) — Jy.S(x,y)
(d) R(z,y) — 3z.5(z,y,2)
R(z,z) — S(z,x,z)
(d) R(z,y) ANz #y— 32.58(z,y,2)
R(z,z) — S(z,x,x)
(e) R(z,y) — 32.(S(z,2) AS(y,2))
(¢) (R(z,y)VR(y,x)) Az <y — 32.(S(z,2) A S(y, 2))

() PTStudz,y) — Jz.Advisedy, z)

GradStudz,y) — 3z.(Advisedy, z) A Workswith(y, z))
(f) PTStudz,y) A =Ju.GradStudu, y) — Jz.Advisedy, z)
GradStudz,y) — 3z.(Advisedy, z) A Workswith(y, z))

Figure 3: Examples of non-laconic schema mappings (a-f) and
their laconic equivalents (d-f').

same approach will give rise to SQL queries that use therdiffee
(EXCEPT) operator but still do not contain altgROUP BY clauses

or any aggregate functions. Finally, in the case of schengpings
specified by FO s-t tgds, the resulting SQL queries require the
use of comparisons of the form< y in the WHERE clause, but no
further constructs. Also note that the translation fromesch map-
pings to SQL queries computing the canonical universaltgwius
polynomial.

To summarize, we have explained how, for schema mappings

specified by FO s-t tgds, canonical universal solutions can be
obtained using SQL queries that do not contain &RpDUP BY
clauses or any aggregate functions, i.e., that belong tgptnes)
relational calculus fragment of SQL, except for the use dhgt
concatenation.

4. LACONIC SCHEMA MAPPINGS

x # y, which explains the antecedent of the first tgd in Example
3(d). It is easy to see that every schema mapping specified by full
s-ttgds only (i.e., s-t tgds without existential quant#)es laconic.
Indeed, in this case, the canonical universal solution doegson-
tain any nulls, and hence is guaranteed to be the core. Thirg b
specified by full s-t tgds is a sufficient condition for lacdity, al-
though a rather uninteresting one. The following providesvith

a necessary condition, which explains why the schema mgjpin
Figure 3(a) is not laconic. Given an s-t tyck(¢ — Jy.v), by

the canonical instance af, we will mean the (unordered) target
instance whose facts are the conjunctgypfvhere thex variables
are treated as constants and gheariables as nulls.

Proposition 4.1 If a schema mappindS, T, ) specified by s-t
tgds is laconic, then for each s-t totk(¢p — Jy.¢p) € Xy, the
canonical instance af is a core.

The proof is omitted for lack of space.

In the case of schema mapping (e) in Figure 3, the linear asder
used in order to obtain a logically equivalent laconic scaenap-
ping (€). Note that the schema mappind)(& order-invariantin
the sense that the set of solutions of a source instaromes not
depend on the interpretation of tkerelation inI, as long as it is
a linear order. Still, the use of the linear order cannot hedead,
as we will show in Section 5.1. What is really going on, in this
example, is that the right hand side of (e) has a non-trivi&b-a
morphism (viz. the map sendingto y and vice versa), and the
conjunctz < y in the antecedent of (eplays, intuitively, the role
of a tie-breaker, cf. Section 4.1.3.

Testing whether a given schema mapping is laconic is not a
tractable problem:

Proposition 4.2 Testing laconicity of schema mappings specified
by FO s-t tgds is undecidable. It is coNP-hard already foresoha
mappings specified by LAV s-t tgds.

In fact, testing laconicity of schema mappings specified 4y s
tgds is coNP-complete. We omit the proof for lack of space.

4.1 Making schema mappings laconic

In this section, we present a procedure for transforming any
schema mapping\U specified by FO s-t tgds into a logically
equivalentaconicschema mapping4’ specified by FO s-t tgds.

The laconic schema mapping can then be translated into SQL
queries, as described in Section 3, which when executed yn an

In this section, we present an algorithm for tranforming any Source instance will produce the core universal solution.

schema mapping\U specified by FO s-t tgds into a logically

To simplify the notation, throughout this section, we assuan

equivalent oneM’, such that the naive chase procedure applied to fixed input schema mappingt = (S, T, ¥), with X a finite set

M’ and to a source instandgproduces the core universal solution

of FO< s-t tgds. Moreover, we will assume that the F&-t tgds

for I and M. In particular, this shows that, for schema mappings VX(¢ — Jy.¢) € ¥ are non-decomposable [7], meaning that the

specified by FO s-t tgds, the core universal solution can be com-

puted using SQL queries.

Definition 4.1 A schema mapping itaconic if for every source
instancel, the canonical universal solution 6fwith respect taM
is the core universal solution @fwith respect toM. [

Note that the definition only makes sense for schema mappings
specified by FO s-t tgds, because we have defined the notion of a

canonical universal solution only for such schema mappings
Examples of laconic and non-laconic schema mappings aea giv
in Figure 3. For Example 3(d), the canonical universal $sofut
of the source instanceé = {R(a, a)} is {S(a,a, N), S(a,a,a)},
which is not the core universal solution 6f Clearly, one should
only “translate” according to the first s-t tgd in Example )3i{fd

fact graph ofdy.¢(x,y), where the facts are the conjunctsof
and two facts are connected if they have an existentiallytfied

variable in common, is connected. This assumption is hasnle

every FO s-t tgd can be decomposed into a logically equivalent

finite set of non-decomposable FGs-t tgds (with identical left-

hand-sides, one for each connected component of the faat)gra
polynomial time.

The outline of the procedure for making schema mappings la-
conic is as follows (the items correspond to subsectionshef t
present section):

(1) Construct a finite listact block typesthese are descriptions of
potential “patterns” of tuples in the core. (See Sectionl4)1

(2) Compute for each of the fact block typegracondition a first-
order formula over the source schema that tells exactly when



the core will contain a fact block of the given type. (See Bect
4.1.2))

(3) If any of the fact block types has non-trivial automorphs,
add an additional side-condition, consisting of a Booleam-c
bination of formulas of the fornx; < z;. Side conditions
prevent the creation of multiple copies of the same factkioc
the canonical universal solution. (See Section 4.1.3.)

(4) Construct the new schema mapping’ = (S, T,%’), where
¥’ contains an FO s-t tgd for each of the fact block types. The
left-hand-side of the FO s-t tgd is the conjunction of the pre-
condition and side-condition of the respective fact bloget
while the right-hand-side is the fact block type itself. éec-
tion 4.1.4.)

Next, we illustrate our approach with an example. The tezini
notions that we use in discussing the example will be foryrad-
fined in the next subsections.

Example 4.1 Consider the schema mappingt = (S, T,Y),
whereS= {P,Q}, T = {R1, R2}, andX consists of the s-t tgds

P(z) — Jy.Ri(z,y)
Q(z) — Fyzu.(Rz(x,y) A Ra(z,y) A Ri(z,u))

In this case, there are exactly three relevant fact blocksyfhey
are listed below, together with their preconditions.

Fact block type Precondition
ti(zy) = {Ri(z,y)} preg, (z) = P(x)
ta(w;yzu) = {Ra2(z,y), R2(z,y),

Ri(z,u)} pree, (z) = Q(z) A =P(x)
ta(zy) = {R2(zy)} preig(z) = Q(z) A P(z)

We use the notatiot(x; y) for a fact block type to indicate that the
variablesx stand for constants and the variabjestand for distinct
nulls.

As it happens, the above fact block types have no non-trivial
automorphisms. Hence, no side-conditions need to be addeld,
> will consist of the following FO s-t tgds:

P(z) —  Jy.Rai(z,y)
Q(x) N=P(x) — Fyzu.(Raz(z,y) A R2(z,y) A Ri(z,u))
Q@) AP(x) — 3Ty.(Ra(z,y))

The reader may verify that in this case, the obtained scheap m
ping is indeed laconic. We prove in Section 4.1.4 that thewtLof
our transformation is guaranteed to be a laconic schemainpp
that is logically equivalent to the input schema mappind.]

We now proceed to define the notions appearing in this example

4.1.1 Generating the fact block types

The first step is to generate all fact block types of the schema

mapping. To formalize the notion of a fact block type, we first
define the concept of a fact graph of an instance. felsegraph

of an instancd is the graph whose nodes are the fagts’) (with

R a k-ary relation andv € (Const U Vars)*, k& > 0) true in I,
and such that there is an edge between two facts if they hauk a n
value in common. Aact block or f-blockfor short, of an instance

is a connected component of the fact graph of the instance. We

know from [6] that, for any schema mappirlgl specified by FO

s-t tgds, the size of f-blocks in core of any source instancéM is
bounded by the maximum number of atomic formulas in the fight
hand-side of the FOs-ttgds inM.! Consequently, there is a finite

1This is stated in [6] for schema mappings specified by s-t, tojals
the same holds for FOs-t tgd.

number of f-block types, such that every core universal tsmiu
consists of f-blocks of these types. This is a crucial oletéra
that we will exploit in our construction.

Formally, anf-block typet(x; y) will be a finite set of atomic for-
mulas inx, y, wherex andy are disjoint sets of variables. We will
refer tox as theconstant variablesf ¢t andy as thenull variables
We say that a f-block typé(x;y) is arenamingof a f-block type
t'(x’;y’) if there is a bijectiony betweenx andx’ and between
y andy’, such that’ = {R(g(v)) | R(v) € t}. In this case,
we writeg : ¢ = ¢' and we callg also a renaming. We will not
distinguish between f-block types that are renamings dfl e4uer.
We say that a f-bloclB3 has typei(x; y) if B can be obtained from
t(x;y) by replacing constant variables by constants and null vari-
ables to distinct nulls, i.e., iB = t(a; N) for some sequence of
constantsx and sequence of distinct nulls. Note that we require
the relevant substitution to be injective on the null vaesatbut not
necessarily on the constant variables. If a target instancen-
tains a blockB = t(a; N) of typet(x;y) then we say that(x; y)
is realizedin J at a. Note that, in general, a f-block type may be
realized more than once at a tuple of constantbut this will not
happen if the target instanckis a core universal solution.

We are interested in the f-block types that may be realized in
core universal solutions. Eventually, the schema mappifigthat
we will construct fromM will contain an FO~ s-t tgd for each
relevant f-block type. Not every f-block type as defined aboan
be realized. We may restrict attention to a subclass. Bebgw,
the canonical instance of a f-block typex; y), we will mean the
instance containing the factsfix; y), consideringk as constants
andy as nulls.

Definition 4.2 The set TvPES\ of f-block types generated bt

consists of all f-block types(x; y) satisfying the following condi-

tions:

(@) ¥ contains an FO s-ttgdvx'(¢(x’) — Jy . (x',y")) with
y C y’, andt(x;y) is the set of conjuncts af in which the
variablesy’ — y do not occur;

(b) The canonical instance ofx;y) is a core;

(c) The fact graph of the canonical instancet¢k;y) is con-
nected.

If some f-block types generated Byl are renamings of each other,
we add only one of them toviPESn. [

The main result of this subsection is:

Proposition 4.3 Let J be the core of a source instanéewith re-
spect toM. Then each f-block of has typet(x;y) for some
t(x;y) € TYPESM.

PROOF. Let B be any f-block ofJ. SinceJ is a core universal
solution, it is, up to isomorphism, an induced subinstarfcthe
canonical universal solutiod’ of I. It follows that.J’ must have
a f-block B’ such thatB is the restriction ofB’ to domain ofJ.
Since B’ is a connect component of the fact graphJéf it must
have been created in a single step during the naive chasé¢hdn o
words, there is an FOs-t tgd

Vx(¢(x) — Iy P (x,y))

and an assignment of constants to the variables and distinct
nulls to the variableg such thatB’ is contained in the set of con-
juncts ofw(g(x), g(y)). Moreover, since we assume the F&-t
tgds of M to be non-decomposable aft is a a connected com-
ponent of the fact graph of, B’ must be exactly the set of facts
listed in(g(x),g(y)). In other words, if we let(x;y) be the
set of all facts listed inp, then B’ has typet(x;y). Finally, let



t'(x';y’") C t(x;y) be the set of all facts from(x;y) contain-
ing only variablesy; for which g(y;) occurs inB. SinceB is the
restriction of B’ to the domain ofJ, we have thatB is of type
t'(x';y"). Moreover, the fact graph of the canonical instance of
is connected becauggis connected, and the canonical instance of
t'(x’;y") is a core, because, if it would not be, thBrwould not be

a core either, and hencewould not be a core either, which would
lead to a contradiction. It follows that(x’;y’) € TYPESM. [

Note that TYPESy contains only finitely many f-block types.
Still, the number is in general exponential in the size ofdtigema
mapping, as the following example shows.

Example 4.2 Consider the schema mapping specified by the fol-
lowing s-t tgds:

Pi(z) — P/(z) (foreachl <i <k)

Q@) — Fyoyr .. Yk (R(x,90) A N\ <;<p (R(yi, yo) A Pi(y:)))

ForeachS C {1,...,k}, the f-block type
ts(z; (yi)iesugoy) = {R(z,y0)} U{R(yi, y0), P (y:) | i € S}

belongs to WPES\. Indeed, each of theg¥ f-block types is real-
ized in the core universal solution of a source instance. eXaen-
ple can be modified to use a fixed source and target schemaceepl
P/(z)by S(z,z1)AS(z1,2)A- .. (i1, 2:) AS(Tiy25). O

The same example can be used to show that the smallest logi-

cally equivalent schema mapping that is laconic can be expon
tially longer.

Generating f-block types for M. Our algorithm generates f-block
types based of each FOs-t tgd in M. For each FO s-t tgd
vx'(p(x') — Jy'(x’,y’)) in M, we exhaustively consider all
subsetsy C y’ and determine the séfx;y) of conjuncts ofy
in which the variabley” — y do not occur. Subsequentlyx;y)
is determined to be in PES\ if (1) the canonical instance of

t(x;y) is a core and (2) the corresponding fact graph is connected.

The test for (1) involves determining whether a proper ctioa

is possible. Finally, to ensure that¥PESy does not contain two
renamings of the same f-block type, we test for each pair gy
whether there is a renamings, and if so, we eliminate oneeofith

4.1.2 Computing the precondition of a f-block type

The main result of this subsection is Proposition 4.4 below,
which shows that whether a f-block type is realized in theeaira
given sequence of constantss something that can be tested by a
first-order query on the source.

Our construction makes use of the notionaefrtain answers
Given a source instande a schema mappinyt, and a target query
g, we will denote bycertainag,q(I), the set ofcertain answerso
qin I with respect to\, i.e., the intersectioft) ; s, (1) ¢(/)- I
other words, a tuple of values is a certain answey ifait belongs
to the set of answers @f no matter which solution of one picks.
There are two methods to compute certain answers to a cdivjeinc
query. The first method usesiversal solution$5] and the second
usesquery rewriting Next, we shall briefly describe the method
based on query rewriting, which is relevant for our congtouncof
the precondition of a f-block type. In the query rewriting timed,

a given queryyr over the target schemkis rewritten to a query
gs over the source schenSsuch thays (1) directly computes the
certain answers to the original query.

Theorem 4.1 Let L be any of UCQ, UCQ, FO, FO<. Then for
every schema mappiny! specified by s-t tgds and for eveby
queryq over T, one can compute in exponential time Arquery
gs overSdefiningcertaina,q. Thatis, for every source instance
I, itis the case thags(I) = certaina,q(I).

There are various ways in which such certain answer queaies ¢
be obtained. One possibility is to split up the schema mappin
into a compositionM; o M, with M, specified by full s-t tgds
and M., specified by LAV s-t tgds, and then to successively apply
the known query rewriting techniques of MiniCon [13] and ik
tgd unfolding (cf. [11]). In [15], an alternative rewritingethod
was given for the case whefe= FO or . = FO<, which can be
used to transform an target querynto a source query’ defining
certaina,q OVEr source instances whose domain contains at least
two elements, in polynomial time (combined complexity).

Next, we use Theorem 4.1 to construct, for each f-block type
t(x;y), a FO" queryq such that for any given source instanke
the resultsg(I) contain exactly the tuples of constants at which
t(x;y) is realised in the core universal solution.

Proposition 4.4 For eacht(x;y) € TYPESum, there is a FO'
queryprecon:(x), such that for every source instanfevith core
universal solution/, and for every tuple of constanis the follow-
ing are equivalent:

e a € precon;(I)
e i(x;y) is realized inJ at a.
ProOF We first define an intermediate formufarecon;(x)

that almost satisfies the required properties, but not gaite For
each f-block type(x;y), letprecon;(x) be the following formula:

certaina (Jy. /\ t)(x)
A\ —eertaina(Fy —i. \ tlyi /ys)) (%)
i#]
A /\ =3z certainp (Iy —i. /\ tlyi /2] (x, ")

(3

@)

wherey_; stands for the sequenge with y; removed, and
t[u/v] is the result of replacing each occurrenceuoby v in t.
By construction, ifprecon:(a) holds inI, then every universal so-
lution J satisfiest(a; N) for some some sequence of distinct nulls
N. Still, it may not be the case thé(x; y) is realized ah, since it
may be that that(a; N) is part of a bigger f-block. To make things
more precise, we introduce the notion of an embedding. Fpr an
two f-block typest(x;y) andt’(x’;y’), anembeddingf the first
into the second is a functionmappingx intox” and mapping in-
jectively intoy’, such that whenevercontains an atomic formula
R(z), then R(h(z)) belongs to oft’. The embedding is strict
if ¢ contains an atomic formula that is not of the fofR{h(z))
for any R(z) € t. Intuitively, the existence of a strict embedding
means that’ describes a f-block that properly contains the f-block
described by.

Let I be any source instancé,the core universal solution df,
t(x;y) € TYPES\, anda a sequence of constants.

Claim 1: If ¢ is realized inJ ata, thena € precon;(I).

Proof of claim: Clearly, sincet is realized inJ ata and J is a

universal solution, the first conjunct pf-econ; is satisfied. That
the rest of the query is satisfied is also easily seen: otkerwi
would not be a core. End of proof of claim 1.



Claim 2: If a € precon;(I), then eithet is realized inJ ata or
some f-block type’(x’;y’) € TYPESy is realized at a tuple of
constantsa’, and there is a strict embeddihg: ¢ — ¢’ such that
a; = a; whenevemh(z;) = .

Proof of claim: It follows from the construction oprecon;, and
the definition of TrPESA\ types, that the witnessing assignment for
its truth must send all existential variables to distincisyuwhich
belong to the same block. By Proposition 4.3, the diagranhisf t
block is a specialization of a f-block typ¢ € TYPESA\. It fol-
lows thatt is embedded i’ anda, together with possible some
additional values ir€onst, realizet’. End of proof of claim 2.

We now defineprecon;(x) to be the following formula:

©)

precony(x) A

/\ -3x’. ( /\(xl = h(zi)) A precon;/(x/))
t'(x';y") € TYPESA i
h:t(x;y) — t'(x';y") astrict embedding
This formula satisfies the required conditioms precon:(I)
iff ¢(x;y) is realized inJ ata. The left-to-right direction follows
from Claim 1 and 2, while the right-to-left direction foll@from
Claim 1 and 2 together with the fact thats a core. [

Example 4.3 To see how Equation (2) in the above construction
is put into effect, consider Example (d) of Figure 3. There ar
two f-block types, corresponding tq (zy;z) = S(x,y,z) and
ta(z) = S(z,z,z). For the first f-block typé, the first conjunct
of Equation 2 will returnR(x,y). The second conjunct of Equa-
tion 2 rewrites to true, since there is only one existentialabley
which cannot be replaced by a distinct other. The third aoctju

in effect, translates te-3z’.certaina(S(z,y,z")). Since only
R(z,z) will produce S-tuples that when evaluated withe, y, z)

will produce tuples that consists entirely of constantss theans
that—3z’.certainm (S(x,y,x')) rewrites to-3z' (R(x, z) Az =

y = z'). Putting all the conjuncts together and simplifying them,
the conjuncts are equivalent iz, y) Az # y, which explains the
antecedent in the first FO s-t tgd in Examplé)(dNote that there
are no strict embeddings in this example.

To see how Equation (3) in the above construction is put into
effect, consider our example in Figure 1 (also shown as Ex-
ample (f) in Figure 3). There are two fact block types, cor-
responding tot: (y; z) {Advisedy, z)} and t2(v;w)
{Advisedv, w), Workswith(v,w)}. For precon, (y), Equation
(2) generateg3z.PTStudz, y) vV Jz.GradStudz, y)). Equation
(3) adds—3v.(y = v A Ju.GradStudu, v)) to precony, (y). This
is because there is a strict embedding frarto ¢, that maps; — v
and z — w. The resulting preconditioprecon:, (y) is thus:
PTStudz,y) A =3u.GradStudu, y). This explains the antecedent
in the first FO s-t tgd in Example’ff [

Generating preconditions for a f-block type. Our procedure for
generating the preconditions for a f-block type relies anrdwrit-
ing algorithm of [13] and query unfolding algorithm of fultsgds
(c.f[11]). The schema mappiny! is first split into a sequence of
two schema mapping$t; = (S,U,%;) and M. = (U, T, X2)
as follows: For each s-t tgd;(x;) — Jy:.(xi,y:) € ¥, the
setX; will contain a full s-t tgdg;(x;) — U;(x:), and X2 will
contain a LAV s-t tgdU; (x;) — Jy:.¢(xi,y:). The sets; and
35 consists of only such tgds. It is easy to see that since e&ch s-
tgd o; in X has a unique corresponding relational schéma U
that exports all universally-quantified variablessgf the composi-
tion M1 o M, is logically equivalent toM. Given a query over
the target schem@, we first apply the rewriting algorithm of [13]

for LAV s-t tgds over.M. to obtain an intermediate query over
the schemd@J. Subsequently, we apply the query unfolding algo-
rithm (c.f [11]) to obtain a query over the schei®aThis explains
how precon;(x) (i.e., Equation (2)) is obtained in general. The
next step is to find all strict embeddings among f-block typss
required by Equation (3). This involves an exhaustive tesifl
possible strict embeddings among all pairs of f-block typdsere
may be more efficient ways to compute preconditions, for gtam
using the polynomial time algorithm for constructing cértan-
swer queries from [15] we mentioned earlier, and explorhig is
part of our future work.

4.1.3 Computingthe side-conditions of a f-block type

The issue we address in this subsection, namely thadmfigid
f-block types, is best explained by an example.

Example 4.4 Consider again schema mapping (e) in Fig-

ure 3. This schema mapping is not laconic. Indeed, if we
have the source instance with two tuplé®(a,b), R(b,a)},
where a #* b, the canonical universal solution is

{S(a, N1), S(b, N1),S(b, N2), S(a, N2)}. This canonical
universal solution has two distinct nully; and N, and it is
clearly not the core. The essence of the problem is in the fact
that the right-hand-side of the dependency is “symmetrid”
is a non-trivial renaming of itself, the renaming in questio
being{z — y,y — x}. According to the terminology that we
will introduce below, the right-hand-side of this dependeris
non-rigid. Intuitively, this mean that there are two distinct ways in
which identical target fact blocks (up to renaming of nulisqy
be generated. Schema mapping (eom Figure 3 does not suffer
from this problem, because it contains< y in the antecedent,
and we are assuming to be a linear order on the values in the
source instance. [

In order to capture when identical target facts (up to rengmi
of nulls) are generated, we say that two f-blocks,B’, arecopies
of each otherif there is a bijectiong from Const to Const and
from Vars to Vars such thay(a) = a for all a € Const and B’ =
{R(g(v1),...,9(vk)) | R(v1,...,vx) € B}. In other words,
B’ can be obtained fronB by renaming null values. Next, we
formalize the condition under which there cannot be twointist
ways of generating copies of a f-block.

Definition 4.3 A f-block type ¢(x;y) is rigid if for any two se-
quences of constants a’ and for any two sequences of distinct
nulls N, N’, if t(a; N) andt(a’; N') are copies of each other, then
a=a'. O

Clearly, the s-t tgd from Example 4.4 is non-rigid. A simple
variation of the argument in the same example shows:

Proposition 4.5 If a f-block typet(x;y) is non-rigid, then the
schema mapping specified by the FO (in fact LAV) s-t tgd
Vx(R(x) — Jy. A t(x;y)) is not laconic.

In other words, if a f-block type is non-rigid, the s-t tgd tha
corresponds to the f-block cannot be naively chased withaut
ning the risk of non-laconicity. Fortunately, it turns ohat f-block
types can be made rigid by the addition of suitable side-tiamnd.
By aside-condition®(x), we mean a Boolean combination of for-
mulas of the forme; < z; or z; = x;. Intuitively, the role of the
side-condition is to ensures that there cannot be two distiays
of generating copies of a f-block.

Definition 4.4 Af-block typet(x;y) isrigid relative to a side con-
dition ®(x) if for any two sequences of constantsa’ satisfying



®(a) and®(a’) and for any two sequences of distinct niiis N,
if t(a; IN) andt(a’; N) are copies of each other, than=a’. [

At the same time, we would like to ensure that the side-caondit
is not too strong. Intuitively, this means that wheneverkdottk
type should be realized in a core universal solution, thelldw at
least one way of arranging the variables so that the sidditton
is satisfied.

Definition 4.5 A side-condition®(x) is safefor a f-block type
t(x;y) if for every f-block t(a;IN) of type ¢ there is a f-block
t(a’; N’) of type t satisfying®(a’) such that the two are copies
of each other. [

The next result shows that every f-block type can be safehetl
rigid by a side-condition.

Proposition 4.6 For every f-block typet(x;y) there is a side
condition sidecon:(x) such that¢(x;y) is rigid relative to
sidecont (x), andsidecon:(x) is safe fort(x;y).

PROOF We will construct a sequence of side-conditions
Dy (x), ..., Py (x) safe fort(x;y), such that eack;,, logically
strictly implies®;, and such that(x; y) is rigid relative to®,, (x).

For @4 (x) we pick the tautologyT, which is trivially safe for
t(x;y).

Suppose that(x;y) is not rigid relative to®;(x), for some
i > 0. By definition, this means that there are two sequences of
constants, a’ satisfying®,(a) and®;(a’) and two sequences of
distinct nullsN, N’, such thati(a; N) and ¢(a’; N’) are copies
of each other, buh anda’ are not the same sequence, i.e., they
differ in some coordinate. Let(x) be the conjunction of all for-
mulas of the formz; < x; or x; = z; that are true under the
assignment sendingto a, and let®; 1 (x) = ®;(x) A =9 (x). It
is clear thatd; 1 is strictly stronger tha®;. Moreover,®;; is
still safe fort(x; y): consider any f-block(b, M) of typet(x;y).
Since ®; is safe fort, we can find a f-block(b’, M) of type t
such that®;(b’) and the two blocks are copies of each other. If
-1 (b’) holds, then in fact; 1 (b’) holds, and we are done. Oth-
erwise, we have that(b’, M') is isomorphic tot(a, N) (via an
isomorphism that sends each constignto the corresponding;)
and the preimage dfa’, N’) under this isomorphism will be again
a copy oft(b’, M) (and therefore also of(b, M)) that satisfies
(I’Z(b/) AN —n/;(b/), i.e.,<I>¢+1(b’). O

Example 4.5 Toillustrate the construction of side-conditions, con-
sider Example (e) of Figure 3. The only f-block type {svy; z)
{S(z,2),S(y,2)}. Itis easy to see thatba; N1) andt(ab; N2)
are copies of each other. Hence, the side-condition thatismgted

is =(y < x), which is the same as < y.

As another example, considé(x,y, z) — Jw(S(z,y,w) A
S(z,z,w)). The only f-block type is(zyz;w) = {S(z,y,w),
S(z,z,w)}, andt(aab; N1) andt(aba; N2) are copies of each
other. Hence, the condition(x = y Ay < z) is generated.
It is also the case that(abc; N1) and ¢(acb; N2) are copies of
each other. Hence, the condition is expandeehto = y Ay <
z)AN=(z < yAy < z). No other pairs of constants and nulls make
t(x;y) copies of each other. Hence(z = y Ay < 2) A =(z <
y Ay < z) is the final side-condition. [J

The proof of Proposition 4.6 shows how to compute for each
f-block type a suitable side-condition. Proposition 4.@vides a
further improvement. Intuitively, it shows that we only det®
consider comparisons of the form < z; or z; = x; for which
x; andz; occur in similar attribute positions of relations inside

Algorithm ConvertToLaconic
Input: A schema mapping = (S, T, ), whereX is specified by
a finite set of FO' s-t tgds
Output:A laconic schema mappingt’ = (S, T,%’), whereX' is
specified by a finite set of FOs-t tgds
¥ o= 0;
Generate YPES\v;
forall ¢(x;y) € TYPESy do
Compute preconditioprecon:(x);
Compute side-conditiosidecon:(x);
Add the following FO* s-t tgd tox":
Vx(precont(x) A sideconi(x) — Jy. At(x;y))
end for;
return (S,T,%)

Figure 4: Algorithm for constructing laconic schema mappings

the f-block type. Formally, given a f-block typéx;y), and vari-
ablesz;,z; € x, let us writez; ~; x; if x; andx; occur in the
same attribute position of a relation, i.e.ti€ontains two atomic
formulas with the same relation symbal, one havingz; as the
k-th argument and one having as thek-th argument (for some
k < arity(R)). Let =, be the equivalence relation ongener-
ated by~:. We call a side-conditio®(x) =.-local if all atomic
formulas in it are of the form; < z; or x; = x; with z; =, z;.

Proposition 4.7 For every f-block typé(x;y) there is a=;-local
side conditionsidecon:(x) such thatt(x;y) is rigid relative to
sidecont(x), andsidecon:(x) is safe fort(x;y).

The proof of Proposition 4.7 is omitted.

Generating side-conditions of a f-block type. Given a f-block
typet(x;y), we first compute the equivalence classes of the equiv-
alence relation=;. Next, we determine whether a side-condition
is required by testing whether the f-block type is rigid wiéispect

to the trivial side-conditionsbg(x) := T. This test involves an
exhaustive generation of sequences of constardada’, respect-

ing the equivalence relatios,, and sequences of null®y and

N’, and testing whethef{a, N) andt(a’; N') are copies of each
other (whileConst andVars are infinite in general, for reasons of
symmetry it suffices here to consider only a fixed subset df bot
consisting of at most as many values as the number of vasiatle

x andy respectively). Whenever such sequences of constants and
nulls are found, we construct part of the side-conditigx) as the
conjunction of all formulas of the form; < z; or x; = z; that

are true under the assignment sendinp a, with z; = x;, and

let ®; (x) = ®o(x) A—p(x). We repeat the process until we reach
a side-condition; (x) with respect to whicli(x; y) is rigid.

4.1.4 Putting things together: constructing the la-
conic schema mapping

Our algorithm for constructing laconic schema mappingmfeo
given schema mapping that is specified by a finite set of EQ
tgds is described in Sections 4.1.1 to 4.1.3. Figure 4 suigesr
the steps taken by our algorithm.

Theorem 4.2 For every schema mappinyt specified by FO s-t
tgds, the algorithm in Figure 4 computes a laconic schemapimap
M’ specified by FO s-t tgds that is logically equivalent t&1.

PROOF It is clear thatM’ is a schema mapping specified by
FO< s-t tgds. In order to show thatt’ is laconic and logically



equivalent toM, it is enough to show that, for every source in-
stancel, the canonical universal solutioh of I with respect to
M’ is a core universal solution fdrwith respect toM. This fol-
lows from the following three facts:

e Every f-block of J is a copy of a f-block of the core universal
solution of I. This follows from Proposition 4.4.

e Every f-block of the core universal solution &fis a copy of a
f-block of J. This follows from Proposition 4.3 and Proposi-
tion 4.4, together with the safety part of Proposition 4.6.

e No two distinct f-blocks ofJ are copies of each other. This
follows from the rigidity part of Proposition 4.6 togetheitiw
the fact that WPES\ contains no two distinct f-block types
that are renamings of each othet]

The output schema mapping is in general exponentially longe
than the input schema mappidlgl. More precisely, Let: be the
number of FO" s-t tgds k the length of each FOs-t tgd, and- the
maximum number of variables occurring in eachF©t tgd. It is
easy to see thaT YPESy| < n x 2". Moreover, each f-block type
t(x;y) € TYPESM has length at most, the precondition of each
f-block type has siz&®"1°¢™) . poly(n - k) if computed using the
techniques of [15], and the side condition of each f-bloglethas
length at mose®("°&™)  This blowup will be discussed in more
detail in Section 5.3.

Incidentally, if the side-conditions are left out, then tesulting
schema mapping is still logically equivalent to the oridgimapping
M, but it may not be laconic. It will still satisfy a weak form of
laconicity: a variant of the chase defined in [5], which ontgdide-
pendencies whose right hand side is not yet satisfied, vatiyce
the core universal solution.

5. OPTIMALITY OF OUR ALGORITHM

In the previous sections, we have seen that our algorithm
ConvertToLaconic transforms a schema mapping specifiedtby s
tgds into a laconic schema mapping that is specified, in gérnsr
FO< s-t tgds which may be exponential in the size of the original
schema mapping. In this section, we show that ConvertTahiaco

that every schema mappings specified by s-t tgds whose rgat h
side consists of a single atomic formula without repetitidrex-
istentially quantified variables is logically equivalenta laconic
schema mapping specified by FO s-t tgds.

It is also worth pointing out that if the source and targetescha
are typed, in the sense that each attribute of each relatisrah
associated data type and the variables respect the dat thpe
the schema mapping computed by our algorithm will respeet th
typing, in the sense that it will only involve comparisans< y
for x,y of the same data type. This follows from the fact that the
side-condition is=;-local (cf. Proposition 4.7).

In the remainder, we show that the use of the linear order can-
not be avoided in general. Ideally, we would like to provettha
some schema mappings specified by s-t tgds cannot be compiled
into SQL queries that compute the core universal solutichaut
the use of comparisons of the foum< y. However, this is difficult
since SQL is a complex language and we don't have a rigordus de
inition of what it means to compute a solution with nulls byane
of SQL queries. Therefore, we will first introduce the notioh
FO-term interpretations and FGterm interpretations, which cap-
ture the essence of the way in which we have used SQL queries fo
computing solutions with nulls in Section 3. We will then shihat
there is a schema mapping specified by LAV s-t tgds, for which
there is no FO-term interpretation that computes for eaciicgo
instance the core universal solution w.M.

A formal account of what we did in Section 3, abstracting away
from the specifics of string concatenation, is as followsx &i
countably infinite set of function symbols of arity, for each
n > 0. For any setX, denote byTerms[X] be the set of all
termsbuilt up from elements ofX using these function symbols,
and denote byPTerms[X]| C Terms[X] the set of allproper
terms i.e., those with at least one occurrence of a function symbo
For instance, ifg is a unary function and is a binary function,
thenh(g(x),y), g(z) andz belong toTerms[{x, y}], but only the
first two belong toPTerms[{x, y}]. It is important to distinguish
between proper terms, which contain at least one function- sy
bol, and terms that consist of just a single constant, as try

is optimal in the sense that the use of linear order, the use of former will be treated as nulls. More precisely, we assuna th

negation, and the fact that ConvertToLaconic generatesani@
schema mapping that may be exponential in the size of thanatig
schema mapping, are essentially unavoidable.

5.1 The Use of Linear Order

The schema mapping produced by our algorithm
ConvertToLaconic is specified by FO s-t tgds that may
contain comparisons of the form < z;, even if the input schema
mapping is specified by s-t tgds only. In practice, howeves,use
of a linear order can be avoided in many situations. In palic

PTerms|Const] C Vars. Recall thatConst N Vars = ().

Definition 5.1 An FO-term interpretationII is a map assigning
to eachk-ary relation symbolR € T a union of expressions of
the form shown in equation (1), wherg, ...,t; € Terms[x],
t, ..., 1, € Terms[x'], and¢(x), .. ., ¢'(x’) are FO-queries over
S. FO<-term interpretationsare defined in the same way, using
FO<-queries. [

Given a source instandg an FO*-term interpretatiodl gener-
ates an target instand®(/), in the obvious way. Note thai (/)

this is the case when the input schema mapping is specified by may contain constants as well as nulls. Although the progieec-

FO s-t tgds whose right-hand-sides have no self-joins, ite
right-hand-side of each s-t tgd is such that every atomiméda
uses a different relation.

Theorem 5.1 If the input schema mapping is specified by FO s-t
tgds and the right-hand-side of each FO s-t tgd is such thatyev
atomic formula uses a different relation, then the outpubwf al-

ifies exactly which nulls are generated, we will consitigr ) only

up to isomorphism, and hence the meaning of arr B&m inter-

pretation does not depend on which function symbols it uses.
FO<-term interpretations and FO-term interpretations prexad

convenient level of abstraction. They capture the essehtieeo

SQL queries computing canonical universal solutions desdrin

Section 3 (with and without the use of comparisons), while ab

gorithm ConvertToLaconic is a schema mapping specified by FO stracting away from the specifics of creating labeled nyllmeans

s-t tgds.

This follows immediately from the fact that every f-blockpty
in which every relation from the target schema occurs at roost
is rigid. A special case of this result was obtained in [3inedy

of string concatenation. The translation described iniSec3,
when stated in terms of F&term interpretations, gives us:

Proposition 5.1 For every schema mapping specified by FO
(resp. FOY) s-t tgds, there is an FO- (resp. FQ)term interpreta-



tion that yields, for each source instanfEgthe canonical universal
solution for/.

The following result shows the importance of having a linear
der for our approach to core computation: no FO-term ingepr
tion can be used to compute the core universal solution iergé&n

Theorem 5.2 Consider the schema mappinyt = (S, T,%),
whereS = {R}, T = {S} and X consists of the single LAV s-t
tgd R(z,y) — Jz(S(z,2) A S(y,2)). (This is Example 3(e) of
Figure 3.) No FO-term interpretation yields, for each saio-
stancel, the core universal solution dfw.r.t M.

PROOF The argument uses the fact that FO formulas are in-
variant for automorphisms. Let be the source instance whose
domain consists of the constanish, c, d, and such thaR: is the
total relation over this domain. Note that every permutatid
the domain is an automorphism éf Suppose for the sake of
contradiction that there is an FO-term interpretatldrsuch that
theII([) is the core universal solution df. Then the domain of
II(I) consists of the constants b, ¢,d and a distinct null term,
call it Ny, ,3; € PTerms[x], for each pair of distinct constants
z,y € {a,b,c,d}, andII(]) contains the fact®R(x, Ny, ;) and
R(y, Ni, ) for each of these nullévy, ,,. Now consider the
term Ny, 5. We can distinguish two cases. The first case is
where the termV, ;, does not contain any constants as argu-
ments. In this case, it follows from the invariance of FO farm
las for automorphisms thai (/) containsR(x, Ny, ) for every
x € {a, b, c,d}, whichis clearly not true. The second case is where
Nyaq,py cONtains at least one constant as an argumentVylf,,
contains the constant or b then lett’ be obtained by switching
all occurrences ofi andb in Ny, ,;, otherwise let’ be obtained
by switching all occurrences efandd in Ny, ;. Either way, we
obtain that there is a second null, nam&lywhich is distinct from
N¢aq,py, and which stands in exactly the same relations tmdb
asNy, »y does. This again contradicts our assumption thiatthe
core universal solution of. [

Corollary 5.1 Let M be the schema mapping from Theorem 5.2.
There is no schema mappingt’ specified by FO s-t tgds, such
that for very source instanck the canonical universal solution of
I w.r.t. M’ is the core universal solution dfw.r.t. M.

Hence, the use of a linear order in the equivalent laconierseh
mapping given in Figure 1(gis unavoidable.

Incidentally, there appears to be a close connection with th
copy-elimination problem for query languages involvingjea
creation, cf. [4].

5.2 The Use of Negation

In the previous section, we have shown that the use of linear o
der is essentially unavoidable, even for an input schemgmgp
that is specified by LAV s-t tgds. At the same time, we have show
that every schema mapping specified by¥F$t tgds has an equiv-
alent laconic schema mapping specified in the same language.
natural question is therefore whether one needs the futessjve
power of FO" in specifying an equivalent laconic schema mapping
of an input schema mapping that is given by s-t tgds.

Let BCCQ" denote the class of Boolean combinations of con-
junctive queries that may refer to the linear order. The tfeedrem
tells us the general “shape” of the output dependencidseifrput
schema mapping is specified by s-t tgds. The subsequentgiropo
tion shows that the result is rather tight.

Theorem 5.3 If M is specified by s-t tgds, then the output of
our algorithm ConvertToLaconic is a schema mapping specifie
BCCQ"® s-ttgds.

PROOF HINT. Close inspection of the translation[]

Proposition 5.2 For the schema mapping given in Figure 3(c),
there is no UCQ -term interpretation that computes the core uni-
versal solutions for each source instance.

PROOF SKETCH Pick constants: < b. Let I be the source
instance containing only the faét(a), and let/’ be the source in-
stance containing the facf3(a) and R(a,b). Clearly,/ C I’ and
hence, for every union of conjunctive querigghe answers tg in
I’ will include the answers tq in I. The core universal solution
of I consists of the f-blocK.S(a, N)} for some nullN. It follows
that the UCQ -term interpretation must mag to something that
generates a tuplgz, t), with ¢ a term. It follows quite easily from
the definition of UCQ -term interpretations and the monotonicity
of unions of conjunctive queries that the same tuple will beag-
ated for the relatiors in the case of source instanéé But this
contradicts the fact that the the relatiShcontains only tuples of
constants in the core universal solution/6f [

5.3 Exponential blowup

Our transformation involves a exponential blowup: the tang
of the specification of the output schema mapping is in geénera
bounded by a single exponential in the length of the spetifica
of the input schema mapping. This exponential blowup cabgot
avoided:

Theorem 5.4 There is a sequence of schema mappings
My, Ma,... specified by LAV s-t tgds such that the specifi-
cation of eachM, is of lengthO(k), and such that every laconic
schema mapping logically equivalent.te ;. specified by FO s-t
tgds contains at least* many FO® s-t tgds.

PROOF SKeETCH Consider again the schema mapping from Ex-
ample 4.2 (which is parametrized by a natural numberAs we
pointed out earlier, the number of f-block types realizeddre so-
lutions is exponential irk. Now consider any logically equivalent
laconic schema mapping/’ specified by a finite set of FOs-t
tgdsX. We may assume without loss of generality that the"R&t
tgds inX are non-decomposable and that their left-hand-sides are
satisfiable. Next, it is easy to see that, if the right-haidé-sf one
of the FO" s-t tgds contains two different universally quantified
variablesz, x’ the left-hand-side must logically imply = z': if
not, then, since the FOs-t tgd in question is non-decomposable,
there would be source instances for which the canonicaleusal
solution with respect tov’ has a block containing at least two
nulls, which contradicts the laconicity @f1’. Hence, we may as-
sume that the right-hand-side of each & tgd contains only a
single universally quantified variable. Finally, the rigtend-side
of each FO s-t tgd has to describe a specific fact block, in order
for the schema mapping to be laconic. All in all, this showat th
M needs to have as many FGQ-t tgds as there are f-block types,
which is exponential irk. [

In some cases, the exponential blowup can be avoided. licpart
ular, this is the case when the number of conjuncts in thet-righ
hand-sides of the dependencies of the input schema mapping i
bounded. A close inspection of the proof of our main resuoirsh

Theorem 5.5 Fix any & > 0. Then for every input schema map-
ping M specified by FO s-t tgds in which the number of atomic
formulas in the right-hand side of each FGs-t tgd is at most,
the output schema mapping is of size polynomial in the si2e of



6. TARGET CONSTRAINTS

In this section we consider schema mappings with target con-
straints and we address the question whether our main result
be extended to this setting. The answer will be negative. évew
first we need to revisit our basic notions, as some subtlessarise
in the case with target dependencies.

There are two types of target constraints that are genezaily
sidered in the data exchange framework [5]: target tgds amybt
equality generating dependenci@gds) Target tgds are simply
tgds where both left-hand-side and right-hand-side argioation
of atomic formulas over the target schema. Target egds atteeof
form Vx(¢(x) — z1 = w2), wherez;, andz. are distinct vari-
ables among, and¢(x) is a conjunction of atomic formulas over
the target schema.

It is clear that we cannot expect to compute core universal so
lutions for schema mappings with target dependencies bynsnea
of FO<-term interpretations. Even for the simple schema map-
ping defined by the s-t tg&(x,y) — R’(x,y) and the full target
tgd R'(z,y) A R'(y,2) — R'(z,z) computing the core univer-
sal solution (or any other universal solution) means coimguhe
transitive closure of?, which we know cannot be done in FO logic
even on finite ordered structures. Still, we can define a natio
laconicity for schema mappings with target dependencies M
be any schema mapping specified by a finite set of B tgds
Ys¢ and a finite set of target tgds and target efdsand letl be
a source instance. We define ttenonical universal solution aof
with respect taM as the target instance (if it exists) obtained by
taking the canonical universal solution bfvith respect to,; and
chasing it with the target dependenciés We assume a standard
chase but will not make any assumptions on the chase order. La
conicity is now defined as before: a schema mapping is ladgbnic
for each source instance, the canonical universal solaborcides
with the core universal solution.

Recall that, according our main result, every schema mappin
M specified by FO s-t tgds is logically equivalent to a laconic
schema mapping’ specified by FO s-t tgds. In particular, this
implies that, for each source instantehe core universal solution
for I with respect toM is the canonical universal solution fér
with respect taM’. The following theorem shows that no such
result holds for input schema mappings specified by LAV sistg
and full target tgds. The proof has been omitted due to spaice c
straints. We conjecture that, by similar arguments, ancguals
negative result can be obtained for schema mappings sjkebifie
LAV s-t tgds and target egds.

Theorem 6.1 There is a schema mappinigt specified by finitely
many LAV s-t tgds and full target tgds, for which there is rieesca
mapping M’ specified of FO tgds, target tgds and target egds,
such that for every source instangethe canonical universal solu-
tion of I with respect toM’ is the core universal solution dfwith
respect toM.

7. CONCLUSION

We presented an algorithm for transforming a schema mapping [14]

specified by FO s-t tgds to an equivalent laconic schema mapping
specified by FO s-t tgds. Laconic schema mappings have the ad-
vantage that they can be easily compiled into SQL querieghyh
when executed on any source instance, will generate theucre
versal solution of that source instance. Our method paves/dy

for leveraging existing DBMS technology to directly proéuihe
core universal solution in data exchange systems, suchi@s Cl

Since it requires evaluating exponentially many SQL querie

puting core universal solutions is rather inefficient. Hoere we
remark that other approaches face similar difficulties.ebd] all
known approaches to computing core universal solutionsvtiea
are aware of involve repeatedly testing for the existen@etaimo-
morphism, which is a task that is on a par with evaluating & con
junctive query. Furthermore, the number of such homomarphi
tests depends on the size of the source database, and ifotbere
not bounded by a function of the schema mapping. It would thus
be interesting to conduct an experimental evaluation ieiota de-
termine which approach is more efficient.

We showed that our results are optimal, i.e., the use of the li
ear order and negation are unavoidable. Furthermore, otirothe
cannot be extended to schema mappings with target cortstrain
We expect that the restricted (linear) form of recursioreit by
SQL:99 will not help either in extending or simplifying owesults.
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