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ABSTRACT
Clustering high dimensional data is an emerging research
field. Subspace clustering or projected clustering group sim-
ilar objects in subspaces, i.e. projections, of the full space.
In the past decade, several clustering paradigms have been
developed in parallel, without thorough evaluation and com-
parison between these paradigms on a common basis.

Conclusive evaluation and comparison is challenged by
three major issues. First, there is no ground truth that
describes the “true” clusters in real world data. Second,
a large variety of evaluation measures have been used that
reflect different aspects of the clustering result. Finally, in
typical publications authors have limited their analysis to
their favored paradigm only, while paying other paradigms
little or no attention.

In this paper, we take a systematic approach to evaluate
the major paradigms in a common framework. We study
representative clustering algorithms to characterize the dif-
ferent aspects of each paradigm and give a detailed compar-
ison of their properties. We provide a benchmark set of re-
sults on a large variety of real world and synthetic data sets.
Using different evaluation measures, we broaden the scope
of the experimental analysis and create a common baseline
for future developments and comparable evaluations in the
field. For repeatability, all implementations, data sets and
evaluation measures are available on our website1.

1. INTRODUCTION
Knowledge discovery in databases provides database own-

ers with new information about patterns in their data. Clus-
tering is a traditional data mining task for automatic group-

1http://dme.rwth-aachen.de/OpenSubspace/evaluation

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

ing of objects [14]. Cluster detection is based on similarity
between objects, typically measured with respect to distance
functions. In high dimensional spaces, effects attributed
to the “curse of dimensionality” are known to break tradi-
tional clustering algorithms [9]. Meaningful clusters cannot
be detected as distances are increasingly similar for grow-
ing dimensionality. To detect patterns obscured by irrele-
vant dimensions, global dimensionality reduction techniques
such as principle components analysis (PCA) are not suffi-
cient [16]. By definition, they reduce the original high di-
mensional space to a single lower dimensional projection for
all objects alike. In high dimensional spaces, however, di-
mensions might have locally varying relevance for different
groups of objects. These cannot be detected by a global
analysis of relevance. Recent research has introduced clus-
tering in subspace projections, aiming at detecting locally
relevant dimensions per cluster.

In several application scenarios like sensor networks, cus-
tomer profiling, and bioinformatics high dimensional data is
measured. Exemplary we highlight the requirement for clus-
ter detection in gene expression analysis [11], as research on
clustering in high dimensional data started with this applica-
tion domain. High throughput experiments of gene expres-
sions were available and opened questions like ‘which genes
have common functions and should be grouped ’. Databases
consist of genes (objects) described by expression levels in
different experimental conditions (attributes). High dimen-
sional data occur as there are very many different experi-
mental conditions to be analyzed. In general the problem
can be abstracted to a huge number of objects with various
attributes as depicted in Figure 1. Possible clusters in sub-
space projections are highlighted in gray. In many recent
applications like sensor networks, objects are also described
by very many attributes. As collecting and storing data is
cheap, users tend to record everything without considering
the relevance for their task. Clustering of such high dimen-
sional data has become a general challenge for a broader
range of data.

Recent research for clustering in high dimensional spaces
has introduced a number of different approaches. They were
named by the pioneers in this field subspace clustering [3] or
projected clustering [1]. Both terms were used in parallel
for development of further approaches. Their common goal
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Figure 1: Example for subspace clustering

is to detect the most relevant subspace projections for any
object in the database. Any cluster is then associated with
a set of relevant dimensions in which this pattern has been
discovered. These techniques have been successfully applied
in a number of scenarios. We illustrate possible clusters
with relevant subspace projections for an example database
in Figure 1. Cluster 3 represents a traditional cluster in full
space, while clusters 1, 2 and 4 appear only in a subset of
relevant dimensions. Please note, that for both objects and
dimensions an arbitrary subset can become a subspace clus-
ter. Projected clustering algorithms are restricted to dis-
joint sets of objects, while subspace clustering algorithms
might report several clusters for the same object in differ-
ent subspace projections. Motivated by the gene expression
analysis, a gene may have several function represented by
clusters with different relevant attributes (cf. object 8 in
Fig. 1). For simplicity of presentation, we choose subspace
clustering as the preferred term in this publication.

For evaluation and comparison, of subspace clustering al-
gorithms in general, the last decade has seen several para-
digms, characterized by their underlying cluster models and
their parametrization of the resulting clustering. In this
young field, however, we lack a common ground for evalua-
tion as a whole. Three major problems persist. First, there
is no ground truth that describes the “true” clusters in real
world data. Second, a large variety of evaluation measures
have been used that reflect different aspects of the clustering
result. Finally, in typical publications authors have limited
their analysis to their favored paradigm only, while paying
other paradigms little or no attention. This implies several
problems for the advancement of the field. Properties of the
different paradigms are not yet well understood, as cross-
comparisons are not available. The same is true for evalua-
tion measures. They reflect different aspects which are not
yet fully understood. It is therefore not possible to compare
the results that have been reported in different papers. As
a consequence, there is no common basis for research in the
area which implies misleading conclusions from reported ex-
periments, and hence possibly wrong assumptions about the
underlying properties of algorithms.

In this paper, we provide a systematic and thorough eval-
uation of subspace clustering paradigms. Results are ana-
lyzed using the measures that have been proposed by re-
searchers in recent papers. We use a large collection of data
sets, synthetic data with known hidden clusters and also

publicly available real world data sets. Our work provides a
meaningful characterization of the different paradigms and
how these are reflected in the evaluation measures. We cre-
ate a common ground on which future research in the field
can build. Our analysis uses our own open source frame-
work, which we recently presented to the community [7,
25, 23]. This framework extends the popular open source
WEKA platform that has been successful for full space data
mining algorithms [31]. Our work is therefore easily repeat-
able and extensible for future algorithms. Implementations,
data sets and measures are all available for anyone interested
in comparing their own algorithms or the ones evaluated in
this paper.

This paper is structured as follows: in Section 2 we review
existing subspace clustering paradigms and point out their
characteristics. Section 3 introduces the different measures
used to evaluate existing algorithms in the literature. Our
experimental evaluation in Section 4 gives a detailed analysis
of the different paradigms under these measures. Finally, we
conclude with discussion of our findings and some pointers
for future work in Section 5.

2. CLUSTERING
IN SUBSPACE PROJECTIONS

Clustering in subspace projections aims at detecting groups
of similar objects and a set of relevant dimensions for each
object group. While there are two different names in the
literature, subspace clustering [3] and projective clustering
[1], we identify three major paradigms characterized by the
underlying cluster definition and parametrization of the re-
sulting clustering:

First, cell-based approaches search for sets of fixed or
variable grid cells containing more than a certain thresh-
old many objects. Subspaces are considered restrictions of
a cell in a subset of the dimensions, while in the residual
dimensions the cell spans the whole attribute domain. Cell-
based approaches rely on counting objects in cells and with
their discretization of data are similar to frequent itemset
mining approaches.

Second, the density-based clustering paradigm defines clus-
ters as dense regions separated by sparse regions. As den-
sity computation is based on the distances between objects,
in subspace clustering one computes distances by taking
only the relevant dimensions into account. Density-based
approaches are thus dependent on the distance definition.
They can be parametrized by specifying which objects should
be grouped together due to their similarities / distances.

Finally, clustering-oriented approaches do not give a clus-
ter definition like the previous paradigms. In contrast, they
define properties of the entire set of clusters, like the number
of clusters, their average dimensionality or more statistically
oriented properties. As they do not rely on counting or den-
sity they are more flexible in handling different types of data
distributions. However, they do not allow parametrization
of each cluster.

For each of the three main paradigms we evaluate semi-
nal approaches which defined these paradigms and evaluate
also the most recent representatives. It is clearly not possi-
ble to include in this study all algorithms from all of these
paradigms. Also, it is beyond the scope to this work to in-
clude more specialized algorithms like correlation clustering
[2] which transform the data space based on detected cor-



paradigm approach properties

cell-based CLIQUE [3] fixed threshold, fixed grid, pruning by monotonicity property
cell-based DOC [29] fixed result size, fixed threshold, variable hypercubes, randomized, partitioning
cell-based MINECLUS [32] enhances DOC by FP-tree structure [15] resulting in more efficient mining
cell-based SCHISM [30] enhances CLIQUE by variable threshold, using heuristics for approximative pruning
density-based SUBCLU [17] fixed density threshold, pruning by monotonicity property
density-based FIRES [19] variable density threshold, using 1d histograms for approximative pruning
density-based INSCY [6] variable density threshold, reducing result size by redundancy elimination
clustering-oriented PROCLUS [1] fixed result size, iteratively improving result like k-means [20], partitioning
clustering-oriented P3C [22] statistical tests, using EM [12] clustering, pruning by monotonicity property
clustering-oriented STATPC [21] statistical tests, reducing result size by redundancy elimination, approximative

Table 1: Characteristics of three major paradigms

relations, or application dependent approaches popular e.g.
in bioinformatics [11]. Furthermore, we consider subspace
clustering only on continuous valued attributes. Subspace
clustering of categorical attributes is a specialization of the
frequent itemset mining task, and heterogeneous data is just
a very recently upcoming topic in subspace clustering [26].

We consider an abstract high dimensional database with
objects described by various attributes. As exemplified in
Figure 1, a subspace projection is an arbitrary subset of at-
tributes. Each cluster is described by a subset of objects
(rows) and a subset of attributes (columns). Please note
that in some approaches clusters in subspace projections
may overlap in both objects and dimensions, as similarity
between the objects is only evaluated with respect to the
relevant dimensions.

To study different paradigms we use various evaluation
measures that are described in more details in Section 3.
Both efficiency in terms of runtime and also clustering qual-
ity in terms of different measures are analyzed. For our
review on different subspace clustering paradigms we thus
highlight both the effect of the cluster model on the quality,
as well as the effect of algorithmic properties on the run-
time. An overview of all paradigms, the used approaches
and a summary of their important properties is given in Ta-
ble 1.

Notations. For consistent notations in the following sec-
tions we abstract from the individual definitions in the liter-
ature. Every cluster C in a subspace projection is defined by
a set of objects O that is a subset of the database DB and a
set of relevant dimensions S out of the set of all dimensions
D.

Definition 1. A cluster C in a subspace projection S is

C = (O,S) with O ⊆ DB,S ⊆ D

A clustering result is a set of found clusters in the respec-
tive subspace projections.

Definition 2. A clustering result R of k clusters is a set
of clusters

R = {C1, . . . , Ck}, Ci = (Oi, Si) for i = 1 . . . k

We define several basic objective functions to describe the
clustering result. The number of detected clusters is given
by numClusters(R) = k. The average dimensionality of the

clusters in the result is avgDim(R) = 1
k
·
∑k

i=1 |Si|. For ease
of presentation and w.l.o.g. we assume each dimension has
the same domain, thus, domain(DB) = [0..v]|D|.

2.1 Cell-Based Approaches
First, we consider the cluster definition and its parame-

terization. Cell-based clustering is based on a cell approx-
imation of the data space. Cells of width w are used to
describe clusters. For all cell-based approaches, a cluster re-
sult R consists of a set of cells; each of them containing more
than a threshold τ many objects (|Oi| ≥ τ for i = 1 . . . k).
These cells describe the objects of the clusters either by a
hypercube of variable width w [29, 32] or by a fixed grid of
ξ cells per dimension [3, 30]. Fixed grids can be seen as dis-
cretization of the data space in pre-processing. In contrast,
variable hypercubes are arbitrarily positioned to delimit a
region with many objects.

Definition 3. Cell-Based Subspace Cluster.

A cell-based subspace cluster (O,S) is defined w.r.t. mini-
mum number of objects τ in cells CS of w width specified
by intervals Ii per dimension ∀i ∈ S. Each interval is part
of the common domain Ii = [li . . . ui] ⊆ [0 . . . v] with lower
and upper bound li and ui. For all non-relevant dimensions
∀j ∈ D \ S the interval is the full domain Ij = [0 . . . v] i.e.
the cell is not restricted in these dimensions. The clustered
objects O = {o | o ∈ DB ∩ CS} fulfill |O| ≥ τ

The first approach for cell-based clustering was introduced
by CLIQUE [3]. CLIQUE defines a cluster as a connection
of grid cells with each more than τ many objects. Grid
cells are defined by a fixed grid splitting each dimension in
ξ equal width cells. Arbitrary dimensional cells are formed
by simple intersection of the 1d cells. First enhancements of
CLIQUE adapted the grid to a variable width of cells [27].
More recent approaches like DOC use flexible hypercubes of
width w [29]. In MINECLUS such hypercube approaches are
supported by FP-trees, known from fequent itemset mining
to achieve better runtimes [15, 32]. SCHISM, improves the
cluster definition by variable thresholds τ(|S|) adapting to
the subspace dimensionality |S| [30].

Second, we consider efficiency. As subspace clustering
searches for clusters in arbitrary subspaces, naive search is
exponential in the number of dimensions. CLIQUE pro-
poses a pruning criterion for efficient subspace clustering
based on a monotonicity property. A similar monotonic-
ity property was introduced in the apriori algorithm [4] for
efficient frequent itemset mining and has been adapted to
subspace clustering [3]. Monotonicity is used by most sub-
space clustering algorithms, and states that each subspace
cluster (O,S) appears in each lower dimensional projection



T , i.e. ∀T ⊂ S : (O, T ) is also a subspace cluster. The
negation of this monotonicity can then be used for pruning
in a bottom-up algorithm on the subspace lattice: If a set
of objects O does not form a cluster in subspace T then all
higher dimensional projects S ⊃ T do not form a cluster
either.

It is important to highlight two major characteristics of
this pioneer work in clustering subspace projections: First, a
monotonicity property is the most common way in pruning
subspaces. It has been applied also in other paradigms for
efficient computations of subspace clusters. And second,
the cell-based processing of the data space has been used in
several other techniques to efficiently compute regions with
at least a minimal amount of objects.

Although there are some differences, cell-based approaches
share a main common property. They all count the number
of objects inside a cell to determine if this cell is part of a
subspace cluster or not. This counting of objects is com-
parable to frequency counting in frequent itemset mining.
Subspace clusters are sets of frequently occurring attribute
value combinations in the discretized space. One abstracts
from the original data distribution of continuous valued at-
tributes and only takes the discretized (in or outside the
cell) information into account. On the one side, this makes
the computation more efficient, however, on the other side
discretization may result in loss of information and possibly
less accurate clustering results. Furthermore, quality of the
result is highly dependent on cell properties like width and
positioning.

Simple counting has further advantages as it is easy to
parametrize. Giving a threshold for the number of objects
in a cluster is very intuitive. However, as this is a property
of a single cluster one has only little control on the overall
clustering result. For example, the mentioned monotonicity
of CLIQUE induces that for each detected subspace clus-
ter all lower dimensional projections will also be clusters.
This might result in a tremendously large clustering result
R where numClusters(R)� |DB| is possible.

2.2 Density-Based Approaches
Density-based approaches are based on the clustering par-

adigm proposed in DBSCAN [13]. They compute the den-
sity of each object by counting the number of objects in
its ε-neighborhood without prior discretization. A cluster
with respect to the density-based paradigm is defined as a
set of dense objects having more than minPoints many ob-
jects in their ε-neighborhood. Arbitrarily shaped clusters
are formed by a chain of dense objects lying within ε dis-
tance of each other. To determine the neighborhood for each
object, a distance function is used (typically Euclidean dis-
tance). By changing the underlying distance function and
the ε parameter one can specify the range of similar objects
to be grouped in one cluster. This parametrization of the
similarity gives the approaches in this paradigm high flexi-
bility, but requires knowledge about suitable choices for the
data, often not available in unsupervised learning.

Definition 4. Density-Based Subspace Cluster.

A density-based subspace cluster (O,S) is defined w.r.t. a
density threshold minPoints and ε-neighborhood Nε(q) =
{p ∈ DB | distS(p, q) ≤ ε}, where distS denotes a distance
function restricted to the relevant dimensions S:

All objects are dense: ∀o ∈ O : |Nε(o)| ≥ minPoints.
All objects are connected: ∀o, p ∈ O : ∃ q1, . . . , qm ∈ O :
q1 = o ∧ qm = p ∧ ∀i ∈ {2, . . . ,m} qi ∈ Nε(qi−1).
The cluster is maximal: ∀o, p ∈ DB: o, p connected ⇒
(o ∈ O ⇔ p ∈ O)

The first approach in this area was SUBCLU [17], an ex-
tension of the DBSCAN algorithm to subspace clustering,
by restricting the density computation to only the relevant
dimensions. Using a monotonicity property, SUBCLU re-
duces the search space by pruning higher dimensional pro-
jections like CLIQUE. In contrast to grid-based approaches,
the density-based paradigm uses the original data and re-
quires expensive database scans for each ε-neighborhood
computation. This results in an inefficient computation. A
more efficient, however, approximative solution is proposed
by FIRES [19]. Instead of going through the subspaces bot-
tom up, FIRES uses 1d histogram information to jump di-
rectly to interesting subspace regions. A non-approximative
extension of SUBCLU is INSCY [6], which eliminates redun-
dant low dimensional clusters, detected already in higher di-
mensional projections. In contrast to bottom up approaches,
INSCY processes subspaces recursively and prunes low di-
mensional redundant subspace clusters. Thus, it achieves an
efficient computation of density-based subspace clusters.

The overall quality of density-based subspace clusters is
dependent on the similarity specification. Similar to the de-
pendency of cell-based approaches to their grid properties,
finding meaningful parameter settings for the neighborhood
range ε is a challenging task. FIRES uses a heuristic to
adapt its ε(|S|) to the subspace dimensionality |S|, however,
it still has to initialize ε(1). Similarly, INSCY uses a normal-
ization for the density threshold minPoints(|S|) for arbi-
trary subspaces [5], keeping the ε parameter fixed. Both en-
hancements allow flexible parametrization, but, not totally
eliminate the challenging task of finding an adequate sim-
ilarity for arbitrary subspaces. Furthermore, like for grid-
based approaches, individual cluster properties give almost
no control over the final clustering result.

2.3 Clustering-oriented Approaches
In contrast to the previous paradigms, clustering-oriented

approaches focus on the clustering result R by directly spec-
ifying objective functions like the number of clusters to be
detected or the average dimensionality of the clusters as in
PROCLUS [1], the first approach for this paradigm. PRO-
CLUS partitions the data into k clusters with average di-
mensionality l, extending K-means [20]. Instead of a cluster
definition, clustering oriented approaches define properties
of the set of resulting clusters. Each object is assigned to the
cluster it fits best. More statistically oriented, P3C uses χ2

test and the expectation maximization algorithm to find a
more sophisticated partitioning [22, 12]. Defining a statisti-
cally significant density, STATPC aims at choosing the best
non-redundant clustering [21]. Although it defines cluster
properties, it aims at an overall optimization of the cluster-
ing result R.

Definition 5. Clustering Oriented Results.

A clustering oriented result w.r.t. objective functions f(R),
which is based on the entire clustering result R and an op-
timal value parameter optF (e.g. numClusters(R) = k
and avgDim(R) = l in PROCLUS) is a result set R with:
f(R) = optF .



The most important property for clustering-oriented ap-
proaches is their global optimization of the clustering. Thus,
the occurrence of a cluster depends on the residual clus-
ters in the result. Based on this idea, these approaches are
parametrized by specifying objective functions for the re-
sulting set of clusters. Some further constraints about the
clusters like in STATPC are possible, but, the global opti-
mization of the result is still the major goal.

Clustering-oriented approaches directly control the result-
ing clusters, e.g. the number of clusters. Other paradigms
do not control such properties as they report every clus-
ter that fulfills their cluster definition. Both cell-based and
density-based paradigms provide a cluster definition; every
set of objects O and set of dimensions S fulfilling this def-
inition is reported as subspace cluster (O,S). There is no
optimization process to select clusters. On the other side,
clustering oriented approaches do not influence the individ-
ual clusters to be detected. For example, keeping the num-
ber of clusters fixed and partitioning the data, optimizes the
overall coverage of the clustering like in PROCLUS or P3C,
but, includes noise into the clusters. As these approaches op-
timize the overall clustering they try to assign each object
to a cluster, resulting in clusters containing highly dissimilar
objects (noise). Both approaches are aware of such effects
and use outlier detection mechanisms to remove noise out
of the detected clusters. As these mechanisms tackle noise
after the optimization process, clustering quality is still af-
fected by noisy data.

3. EVALUATION MEASURES
In this section we describe the measures used in our evalu-

ation of the different subspace clustering algorithms. While
the efficiency can easily be measured in terms of runtime, the
quality is more difficult to determine. One problem is that
there is usually no ground truth to which we can compare
the clustering resultR = {C1, . . . , Ck}. For the classification
task in contrast one can easily use labeled data as ground
truth and compare these labels with the predicted labels of
any classifier to obtain a reproducible quality measure. For
clustering two possibilities to determine the ground truth
are used. On synthetic data the “true” clustering is known a
priori and hence the ground truth is given. We refer to these
“true” clusters as the hidden clusters H = {H1, . . . , Hm} in
contrast to the found clustering result R = {C1, . . . , Ck}.
For each Hi = (Oi, Si) ∈ H we can use information about
the grouped objects Oi and the relevant dimensions Si of
the cluster, known by the data generator.
On real world data this information is not given. Therefore
the idea is to use labeled data with the assumption that the
natural grouping of the objects is somehow reflected by the
class labels. All objects Oi with the same class label i are
grouped together to one cluster Hi = (Oi, Si). Disadvan-
tageous for this method is that the relevant dimensions of
the cluster Hi cannot be deduced by the labels. However,
assuming all dimensions to be relevant for each cluster (i.e.
Si = D) one can define for real world data also the hidden
clusters H = {H1, . . . , Hm}.

We categorize the measures in two types depending on
the required information about the hidden clusters H. The
measures in the first category use information on which ob-
jects should be grouped together i.e. form a cluster. Conse-
quently only the information Oi out of each hidden cluster
Hi is regarded. The second category of measures is based

on the full information about the hidden subspace clusters.
The objects Oi and the relevant dimensions Si of each hid-
den cluster must be given to calculate these measures. The
application of these measures to real world data is some-
how restricted as typically the relevant dimensions are not
available as ground truth for the hidden clusters. We con-
stantly set the relevant dimensions for such data to D. By
this, full-space clusters are preferred over potentially more
meaningful subspace clusters. Nonetheless one can use these
measures to judge the grouping of the data objects based on
the information Oi.

3.1 Object-based measures
Entropy [5, 30]: The first approach is to measure the ho-

mogeneity of the found clusters with respect to the hidden
clusters. A found cluster should mainly contain objects from
one hidden cluster. The merging (splitting) of several hidden
clusters to one (different) found cluster (clusters) is deemed
to be a low quality cluster. The homogeneity can be mea-
sured by calculating the entropy an information theoretic

measure. Based on the relative number p(Hi|C) =
|OHi

∩O|
|O|

of objects from the hidden cluster Hi = (OHi , SHi) that are
contained in the found cluster C = (O,S), the entropy of C
is defined as:

E(C) = −
m∑

i=1

p(Hi|C) · log(p(Hi|C))

The overall quality of the clustering is obtained as the av-
erage over all clusters Cj ∈ R weighted by the number of
objects per cluster. By normalizing with the maximal en-
tropy log(m) for m hidden clusters and taking the inverse
the range is between 0 (low quality) and 1 (perfect):

1−

k∑
j=1

|Cj | · E(Cj)

log(m)
k∑

j=1

|Cj |

Hence the entropy measures the purity of the found clus-
ters with respect to the hidden clusters.

F1 [6, 24]: The next measure evaluates how well the hid-
den clusters are represented. The found clusters which rep-
resent a hidden cluster should cover many objects of the hid-
den cluster but few objects from other clusters. This idea
can be formulated with the terms recall and precision. Let
mapped(H) = {C1, . . . , Cl} (later described) be the found
clusters that represent the hidden cluster H. Let OH be the
objects of the cluster H and Om(H) the union of all objects
from the clusters in mapped(H). Recall and precision are
formalized by:

recall(H) =
|OH ∩Om(H)|
|OH |

precision(H) =
|OH ∩Om(H)|
|Om(H)|

A high recall corresponds to a high coverage of objects from
H, while a high precision denotes a low coverage of objects
from other clusters. The harmonic mean of precision and
recall is the F1-measure where a high F1-value corresponds
to a good cluster quality. The average over the F1-values
for all hidden clusters {H1, . . . , Hm} is the F1-value of the
clustering:

1

m

m∑
j=1

2 · recall(Hj) · precision(Hj)

recall(Hj) + precision(Hj)



Different mappings of the found clusters to the hidden
clusters are used in the literature. In our evaluation each
found cluster is mapped to the hidden cluster which is cov-
ered to the most part by this found cluster. Formally, Ci ∈
mapped(H) iff

|Oi ∩OH |
|OH |

≥
|Oi ∩OHj |
|OHj |

∀j ∈ {1, . . . ,m}

Accuracy [24, 10]: Another measure uses the accuracy

of classification specified by
|correctly predicted objects|

|all objects|
to

judge the clustering quality. The idea is to predict the hid-
den cluster of an object on the basis of the detected patterns
(i.e. the found clusters). The higher the accuracy the bet-
ter is the generalization of the data set by the found clus-
ters. The found clusters are a good description of the hidden
clusters and hence the clustering quality is high. For quality
measurement in recent publications, a decision tree classifier
is build and evaluated (C4.5 with 10-fold cross validation)
[24, 10]. To train the classifier the ’extracted dimensions’
out of the clustering are used. Each object o is therefore
represented as a bitvector of length k if we found k clusters
{C1, . . . , Ck}. The position j in the bitvector equals 1 if
o ∈ Cj , otherwise 0.
Please note that typically the classification accuracy based
on the original dimensions of the objects instead of the ex-
tracted dimensions is higher because the bitvectors contain
only knowledge that is generated by an unsupervised learn-
ing task.

3.2 Object- and subspace-based measures
Up to now no measure accounts for the relevant dimen-

sions of a subspace cluster. However for synthetic data sets
this information is available. The basic idea used in the
next two measures is to consider the subspaces as follows:
Instead of regarding the original database objects for the
evaluation, each object is partitioned into subobjects anno-
tated with a dimension. In a d-dimensional database the
object o is partitioned in d different objects o1, . . . , od. A
subspace cluster is henceforward not a subset of objects and
a subset of dimensions but only a subset of these new sub-
objects. As a consequence two subspace clusters that share
original objects but have disjoint relevant dimensions do not
share subobjects. On the basis of this new representation
further measures can be described.

RNIA [28]: A first approach is the relative nonintersecting
area (RNIA) which measures to which extent the hidden
subobjects are covered by the found subobjects. For a good
clustering it is desirable to cover all and only the hidden
subobjects. Formally one determines the subobjects which
are in a hidden or found cluster (union U of subobjects)
and subtracts the number of subobjects which are both in
a hidden and found cluster (intersection I of subobjects).
The more equal I and U the more equal are the found and
hidden clustering and hence the better the clustering quality.
To normalize the measure the term RNIA = (U − I)/U
is calculated. In the evaluation, we plot the value 1.0 −
RNIA so that the maximal value 1 corresponds to the best
clustering.

CE [28]: An extended version of RNIA is the clustering
error (CE). One problem for the RNIA measure is that one
cannot distinguish if several found clusters cover a hidden
cluster or exactly one found cluster matches the hidden clus-

ter. The RNIA-value is in both cases the same even though
the second case is usually preferable. Therefore the CE mea-
sure maps each found cluster to at most one hidden cluster
and also each hidden cluster to at most one found cluster.
For each such mapping of two clusters the intersection of
the subobjects is determined. Summing up the individual
values gives us a value Ī. Substituting the value I by Ī in
the RNIA formula results in the CE-value. In this way one
penalizes clustering results which split up a cluster in several
smaller ones (with respect to objects or dimensions).

Both measures, CE and RNIA, were implemented in ver-
sions that can handle also nondisjoint clusterings as de-
scribed in [28].

We perform thorough evaluation on all measures of the
two categories because there is no best solution so far. Each
measure has its advantages and disadvantages depicted in
the experimental section. Furthermore for some properties
like redundancy-removal ([21, 6]) or the consideration of rel-
evant subspaces in real world data there exist no measure
yet.

4. EXPERIMENTS
In our thorough evaluation, we focus on the general prop-

erties of the clustering paradigms. For comparability, we
implemented all algorithms in a common framework [23].
By extending the popular WEKA framework we base our
work on a widely used data input format for repeatable
and expandable experiments [31]. We used original im-
plementations provided by the authors and best-effort re-
implementations based on the original papers. The authors
of SUBCLU, FIRES and MINECLUS provided us with orig-
inal implementations, which we only adapted to our frame-
work. For all other approaches, we re-implemented the ap-
proaches in our framework as no publicly available imple-
mentations exist so far. We ensure comparable evaluations
and repeatability of experiments, as we deploy all imple-
mented algorithms and parameter settings on our website
http://dme.rwth-aachen.de/OpenSubspace/evaluation.

With INSCY, we include one of our own subspace cluster-
ing algorithms as part of the density-based clustering par-
adigm without compromising objectivity and independence
in evaluation. However, as it is our own approach we have
more knowledge about parameterizing it. Nonetheless, our
analysis is independent, as we evaluated a broad range of
parameter settings for each algorithm to find the best pa-
rameters on each data set. We thus claim to provide an
independent evaluation for clustering in subspaces of high
dimensional data.

For a fair evaluation we ran massive experiments with
various parameter settings for each algorithm. For the sake
of space, we show an aggregated view of the results. Due
to the enormous amount of experiment runs (23 data sets ×
10 algorithms × on average 100 parameter settings per algo-
rithm), we had to restrict the runtime for each run to 30 min-
utes. Based on preliminary experiments we observed run-
times of several days for some algorithms, which are clearly
impractical. Experiments were run on a compute cluster
with compute nodes equipped with four quad core Opteron
2.3 GHz CPUs running Windows 2008 Server. Java 32-bit
runtime environment has been limited to using 1.5GB of
RAM for each experiment. For repeatability, please refer to
our website for an exhaustive list of parameter settings for
each experiment.

http://dme.rwth-aachen.de/OpenSubspace/evaluation


4.1 Clustering Output (Quality)
For a meaningful clustering result different aspects are im-

portant. First of all, clustering should detect only a small
set of clusters, far less than the number of objects. Second,
the detected clusters should represent the hidden structures
in the data as closely as possible. In the following experi-
ments we will give more insights in these two properties for
each paradigm. We generated data with 10 hidden subspace
clusters with a dimensionality of 50%, 60% and 80% of the
five dimensional data space. In Figures 2, 3, 4, 5 and 6 we
show dependencies between the number of found clusters
and different quality measures as introduced in Section 3.
Out of various parameter settings we picked the best five
results for each of the presented measures. Thus, we real-
ize comparability with publications using only one of these
measures. In addition, we extend comparison to a broader
set of measures to achieve objective results.

For ease of illustration we depict each paradigm in a sep-
arate figure but on identical scales. First, let us consider
the number of clusters on the x-axis. For each paradigm we
observe different characteristics: The basic approaches of
cell-based and density-based clustering, CLIQUE and SUB-
CLU tend to produce a huge amount of clusters (> 1000)
to achieve good results as shown in Figure 2. It is a com-
mon property for the more recent representatives of the two
paradigms to achieve good quality with fewer clusters. In
contrast, clustering oriented approaches in general produce
only very few clusters. Their clustering optimization leads
to high clustering quality already with 10 to 100 clusters.

The distribution in number of clusters can be observed
throughout the following figures with different quality mea-
sures on the y-axis. In Figure 2 we observe that Accuracy
shows increasing quality with more and more detected clus-
ters. The measure is correlated with the number of clusters.
In contrast, in Figures 5 and 6 the RNIA and CE measure
show a peak around 10 clusters. This is exactly the number
of clusters hidden in the synthetic data set. For more clus-
ters both measures decrease as hidden structures are split
up into more clusters. CLIQUE and SUBCLU have only
low clustering quality w.r.t. RNIA and CE.

As a next aspect we want to analyze the cluster distribu-
tion w.r.t. average dimensionality of the detected clusters.
In Figure 7 we show the result distribution for all parame-
ter settings of the cell-based clustering approach DOC w.r.t.
CE vs. average dimensionality. Please keep in mind that the
CE measure takes not only objects but also the relevant di-
mensions into account. Thus, we see best results for three
to four dimensional subspaces as we have three and four
dimensional clusters hidden in the data. Due to space lim-
itations we show only the CE measure and the cell-based
paradigm. For RNIA and all other approaches a similar dis-
tribution has been observed. In contrast to other measures
like F1 and Accuracy the CE measure highlights clustering
quality if the right objects are detected as clusters in the
right subspaces.

At last, we want to compare some measures among each
other and point out advantages or disadvantages. First, we
analyze the entropy and F1 measure. While the entropy is
based on the found clusters, the F1 measure focuses on the
hidden clusters. The problem by focusing on the found clus-
ters is that in some sense the found clusters are regarded as
the “true” clusters. This could lead to misleading results.
For exemplification let us consider the case of an algorithm
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Figure 7: CE measure vs. average dimensionality

which detects only one out of several hidden clusters. If
this found cluster is perfectly pure (i.e. only objects from
one hidden cluster are contained), entropy reports optimal
quality even though several other hidden clusters are not
identified. Generally, entropy is biased towards high dimen-
sional and therefore usually small and pure clusters (cf. Fig.
4(b) INSCY).

On the other hand, the F1 measure evaluates also detec-
tion of the hidden clusters. Not only the purity of the found
clusters is important (resulting in a high precision), but also
the detection of all hidden clusters (to get a high recall). Be-
cause both aspects are considered, the F1 measure is usually
lower than the entropy measure (cf. Fig. 3 vs. 4), but also
more meaningful.

The most important advantage of the last two measures
RNIA and CE in comparison to Entropy, F1 and Accuracy
was already mentioned in Section 3 and illustrated in Fig-
ure 7: Both measures consider the relevant dimensions of
the clusters so that more meaningful quality values for syn-
thetic data can result. Now we compare these two measure
among each other. Looking at Figure 5 and 6 we see that the
quality for RNIA is always larger than the CE quality. This
is due to the fact that the RNIA measure do not penalize
clusterings that distribute the found clusters over several
hidden clusters. The difference in both measures however
becomes smaller (e.g. for SUBCLU in Fig. 5(b) and 6(b))
if the result size if very large. Because of the large number
of clusters the probability that a found cluster is mapped
to a nearly identical hidden cluster increases and hence the
difference in the intersection I in RNIA and Ī in CE (cf.
Section 3.2) is small.
Another property of both measures is that for a huge re-
sult size the measures report poor clustering quality. This
is in contrast to the accuracy measure which has usually
improved quality w.r.t. the result size.

Because of the advantages of the CE measure on synthetic
data, i.e. the consideration of the relevant subspaces, the
penalization of high result sizes and the improvement over
RNIA, we use this measure in the following experiments.

4.2 Scalability (Efficiency and Quality)
For scalability w.r.t. dimensionality of the database, we

use synthetic data sets with 5-75 dimensional data. We gen-
erate data of different dimensionalities and hide 10 subspace
clusters with a dimensionality of 50%, 60% and 80% of the
data dimensionality. In Figure 8 we show clustering accu-
racy based on CE measure. We check quality both on object
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Figure 2: Accuracy measure vs. number of clusters
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Figure 3: F1 measure vs. number of clusters
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Figure 4: Entropy measure vs. number of clusters
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Figure 5: RNIA measure vs. number of clusters
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Figure 6: CE measure vs. number of clusters
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Figure 8: Scalability: CE measure vs. database dimensionality
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Figure 9: Scalability: runtime vs. database dimensionality

groups and detected subspaces as we know this for the syn-
thetic data sets. Please note that for some algorithms due
to extremely high runtimes we could not get meaningful re-
sults. In each paradigm at least one such algorithm is shown
in Figure 8 where the quality measure decreases down to zero
as there is not enough time to detect the hidden clusters.
Preliminary experiments have shown that some algorithms
result in runtimes of several days. The authors of SUBCLU
published runtimes of up to six days [17]. Such extreme
effects were observed especially for high dimensional data
(|D| ≥ 25) for several algorithms (CLIQUE, SUBCLU, IN-
SCY, P3C). It is clearly impractical to evaluate algorithms
with such high runtimes on high dimensionalities.

In general, cell-based approaches, except CLIQUE, show
best results (CE : 0.6 − 0.8) for all dimensionalities. For
clustering oriented approaches we observe medium to high
quality (CE : 0.4−0.7). The density-based paradigm shows
the worst quality measures with good results (CE : 0.4−0.7)
only for low dimensional data (|D| < 20). Due to high
runtimes all density-based approaches (and also CLIQUE
and P3C in the other paradigms) are not scalable to higher
dimensional data as they cannot detect the clusters anymore
(CE < 0.3).

Efficiency is a major challenge in clustering of high di-
mensional data. In Figure 9 we depict the runtimes for
the algorithms which detected the hidden clusters within
the limit of 30 minutes. The runtimes of MINECLUS and
PROCLUS show best runtimes for different dimensionali-
ties. All other approaches show either significant increase
of runtime for higher dimensional data sets or constantly
high runtimes even for low dimensional data. Depending
on the underlying clustering model, algorithms always have
to tackle the trade-off between quality and runtime. Typ-
ically, high quality results have to be paid with high run-
time. For cell-based approaches, DOC requires very many

runs to achieve its very good clustering quality on our data
sets, while SCHISM falls prey to the dramatically increasing
number of fixed grid cells in high dimensional spaces. The
density-based approaches in general do not scale to high di-
mensional data due to their expensive database scans for
neighborhood density computation. Both their runtimes in-
crease and thus high quality results are not achieved within
the limited time in our evaluation. For clustering-oriented
approaches statistic evaluations in both P3C and STATPC
do not scale w.r.t. dimensionality.

Scalability w.r.t. database size is an important challenge
especially for very large databases. In Figure 10(a) we show
CE measure, while Figure 10(b) depicts the runtimes. We
generated synthetic data by varying the number of objects
per cluster, while keeping dimensionality fixed to 20d. We
include only those algorithms which showed good quality
results in this dimensionality in the previous experiments.

The cell-based paradigm outperforms the other paradigms
also w.r.t. larger database sizes. It only slightly varies in
clustering quality. Density-based and clustering oriented ap-
proaches show higher variance and overall significantly lower
clustering quality. Considering runtime, the time to detect
the clusters increases with the number of given objects for
all approaches.

As clustering aims to detect clusters, it is challenging to
cope with noisy data where some objects do not fit to any
cluster. For the following experiment, we increase the per-
centage of noise objects in the database from 10% noise up to
70% noise, using the 20d database from the first scalability
experiment. Figure 11 depicts quality and runtime results.
As for database scalability we skip approaches that did not
cluster in the given time. For clustering quality we see a
significant decrease for almost all paradigms. Especially the
clustering oriented approaches like PROCLUS are highly
affected by the increase of noise. In terms of runtime we
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observe dramatically increasing runtimes for the cell-based
approaches. Due to the increased amount of noise, more
cells tend to have enough objects to form a cluster, but still
DOC and MINCLUS achieve best quality results. For the
residual algorithms, this leads to both a decrease in quality
as clusters which mainly contain noise are detected, and an
increase in runtime as overall more clusters are detected. In
general, a partitioning of the data is not always meaningful
as noise should not be assigned to any cluster.

4.3 Real World Data
We use benchmark real world data from the UCI archive

[8]. These data sets, all of them or a subset, have been used
for performance evaluations in recent publications [30, 6, 21].
In addition, we use 17-dimensional features as extracted [6]
from the sequence data in [18]. In contrast to some of the
data sets used in other publications, all of the data sets are
publicly accessible. For repeatability we provide them along
with the synthetic data sets on our website. For each of the
data sets we have optimized parameters for each algorithm
based on the resulting F1 and Accuracy measure. As the
real world data sets are typically used for classification tasks,
they all have class labels. However, there is no information
about the relevance of dimensions per cluster. Thus, the
measures CE and RNIA can only be applied on the object
grouping. Therefore, we optimized F1 and Accuracy as these
are the most meaningful measures where no information is
given about the relevant subspaces (cf. Sec. 3 and Sec. 4.1).

For ease of illustration we picked one real world data set
for discussion, while the residual data sets are given in Fig-
ure 13. Figure 12 shows the results for the glass data set. We
show minimum and maximum values for various measures,
starting with F1 and Accuracy which were used for param-
eter optimization. For these optimized results, we also show
all other measures described in Section 3. For each measure
we highlighted the best 95% results in gray. Additional in-
formation like the coverage of the resulting clustering, i.e.
the proportion of objects which are contained in at least one
cluster, the number of clusters, the average dimensionality
(cf. Section 2), and the runtime are also included in the
figures.

For F1 and Accuracy, the cell-based paradigm shows best
results while also two density-based approaches have good
accuracy values and one clustering oriented approach has
the best result according to the F1 measure. However, go-
ing a little more into details, we observe that only DOC,
MINECLUS and INSCY have also good values in CE and
RNIA. Possible explanations can be derived from the basic
measures: CLIQUE and SUBCLU achieve good F1 and Ac-
curacy, but are punished by CE and RNIA for detection of
very many clusters (far more than number of objects: 214
in the glass data set). Due to this excessive cluster detec-
tion covering 100% of the data (including noise as in most
real world data sets) we also observe very high runtimes
for both approaches. For our biggest real world data set,
pendigits, SUBCLU did not even finish. Although SCHISM



max min max min max min max min max min max min max min max min max min
CLIQUE 0,51 0,31 0,67 0,50 0,02 0,00 0,06 0,00 0,39 0,24 1,00 1,00 6169 175 5,4 3,1 411195 1375
DOC 0,74 0,50 0,63 0,50 0,23 0,13 0,93 0,33 0,72 0,50 0,93 0,91 64 11 9,0 3,3 23172 78

MINECLUS 0,76 0,40 0,52 0,50 0,24 0,19 0,78 0,45 0,72 0,46 1,00 0,87 64 6 7,0 4,3 907 15
SCHISM 0,46 0,39 0,63 0,47 0,11 0,04 0,33 0,20 0,44 0,38 1,00 0,79 158 30 3,9 2,1 313 31
SUBCLU 0,50 0,45 0,65 0,46 0,00 0,00 0,01 0,01 0,42 0,39 1,00 1,00 1648 831 4,9 4,3 14410 4250
FIRES 0,30 0,30 0,49 0,49 0,21 0,21 0,45 0,45 0,40 0,40 0,86 0,86 7 7 2,7 2,7 78 78
INSCY 0,57 0,41 0,65 0,47 0,23 0,09 0,54 0,26 0,67 0,47 0,86 0,79 72 30 5,9 2,7 4703 578

PROCLUS 0,60 0,56 0,60 0,57 0,13 0,05 0,51 0,17 0,76 0,68 0,79 0,57 29 26 8,0 2,0 375 250
P3C 0,28 0,23 0,47 0,39 0,14 0,13 0,30 0,27 0,43 0,38 0,89 0,81 3 2 3,0 3,0 32 31

STATPC 0,75 0,40 0,49 0,36 0,19 0,05 0,67 0,37 0,88 0,36 0,93 0,80 106 27 9,0 9,0 1265 390
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Figure 12: Real world data set: glass

and STATPC have best results in Accuracy or F1 they show
similar low values in CE and RNIA. Here the reason might
be the detected relevant dimensions. While SCHISM tends
to detect only very low dimensional projections, STATPC
detects for all real world data sets full dimensional clusters
(except on the liver data set).

The main properties we observed on synthetic data are
validated by our real world scenarios. The cell-based par-
adigm overall shows best results with low runtimes in its
recent representatives. The distance-based paradigm falls
prey to its high runtimes and only finish on small data and
only up to medium dimensional data (like e.g. glass with
10 dimensions). Clustering oriented approaches have shown
reasonable runtimes and easy parametrization as they di-
rectly control the clustering result. However, as they do not
define cluster properties explicitly like cell-based approaches
they have lower quality measure values.

5. CONCLUSIONS
With this paper we provide a thorough evaluation and

comparison of clustering in subspace projections of high di-
mensional data. We gave an overview of three major par-
adigms (cell-based, density-based and clustering oriented).
We highlighted important properties for each of these par-
adigms and compared them in extensive evaluations. In a
systematic evaluation we used several quality measures and
provide results for a broad range of synthetic and real world
data.

We provide the first comparison of different paradigm
properties in a thorough evaluation. We could show that
density-based approaches do not scale to very high dimen-
sional data, while clustering oriented approaches are affected
by noisy data resulting in low clustering quality. The re-
cent cell-based approach MINECLUS outperformed, in most
cases, the competitors in both efficiency and clustering qual-
ity. Surprisingly, the basic approach PROCLUS, in the clus-
tering oriented paradigm, performs very well in our com-
parison. In contrast, the basic approaches CLIQUE and
SUBCLU of the other two paradigms showed major draw-
back induced by the tremendously large result set. Recent
approaches of these paradigms enhanced the quality and ef-
ficiency, however, could reach top results only in few cases.
Summing up, we show that computing only a small set of
relevant clusters like MINECLUS and PROCLUS and prun-
ing most of the redundant subspace clusters achieves best
results.

Our evaluation constitutes an important basis for sub-
space clustering research. We observe ongoing publications

in this area for which our study gives a baseline for future
evaluations. Our proposed baseline includes multiple as-
pects for a fair comparison not only in evaluation studies:
First, a common open source framework with baseline im-
plementations for a fair comparison of different algorithms.
Second, a broad set of evaluation measures for clustering
quality comparison. Third, a baseline of evaluation results
for both real world and synthetic data sets with given pa-
rameter settings for repeatability. All of this can be down-
loaded from our website for further research, comparison or
repeatability.
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DOC 0,49 0,49 0,44 0,44 0,14 0,14 0,85 0,85 0,58 0,58 0,86 0,86 64 64 10,0 10,0 120015 120015

MINECLUS 0,48 0,43 0,37 0,37 0,09 0,04 0,62 0,34 0,60 0,46 0,98 0,87 64 64 7,2 3,6 7734 5204
SCHISM 0,37 0,23 0,62 0,52 0,05 0,01 0,43 0,11 0,29 0,21 1,00 0,93 494 121 4,3 2,8 23031 391
SUBCLU 0,24 0,18 0,58 0,38 0,04 0,01 0,39 0,04 0,30 0,13 1,00 1,00 10881 709 3,6 2,0 26047 2250
FIRES 0,16 0,14 0,13 0,11 0,02 0,02 0,14 0,13 0,16 0,13 0,50 0,45 32 24 2,1 1,9 563 250
INSCY 0,82 0,33 0,61 0,15 0,09 0,07 0,75 0,26 0,94 0,21 0,90 0,81 163 74 9,5 4,3 75706 39390

PROCLUS 0,49 0,49 0,44 0,44 0,11 0,11 0,53 0,53 0,65 0,65 0,67 0,67 64 64 8,0 8,0 766 766
P3C 0,08 0,05 0,17 0,16 0,12 0,08 0,69 0,43 0,13 0,12 0,98 0,95 3 2 7,0 4,7 1610 625

STATPC 0,22 0,22 0,56 0,56 0,06 0,06 0,12 0,12 0,14 0,14 1,00 1,00 39 39 10,0 10,0 18485 16671
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RNIA AvgDim RuntimeAccuracy CE NumClustersCoverageEntropy
max min max min max min max min max min max min max min max min max min

CLIQUE 0,70 0,39 0,72 0,69 0,03 0,01 0,14 0,01 0,23 0,13 1,00 1,00 349 202 4,2 2,4 11953 203
DOC 0,71 0,71 0,72 0,69 0,31 0,26 0,92 0,79 0,31 0,24 1,00 0,93 64 17 8,0 5,1 1E+06 51640

MINECLUS 0,72 0,66 0,71 0,69 0,63 0,13 0,89 0,58 0,29 0,17 0,99 0,96 39 3 6,0 5,2 3578 62
SCHISM 0,70 0,62 0,73 0,68 0,08 0,01 0,36 0,09 0,34 0,20 1,00 0,79 270 21 4,2 3,9 35468 250
SUBCLU 0,74 0,45 0,71 0,68 0,01 0,01 0,01 0,01 0,14 0,11 1,00 1,00 1601 325 4,7 4,0 190122 58718
FIRES 0,52 0,03 0,65 0,64 0,12 0,00 0,27 0,00 0,68 0,00 0,81 0,03 17 1 2,5 1,0 4234 360
INSCY 0,65 0,39 0,70 0,65 0,37 0,11 0,45 0,42 0,44 0,15 0,83 0,73 132 3 6,7 5,7 112093 33531

PROCLUS 0,67 0,61 0,72 0,71 0,34 0,21 0,78 0,69 0,23 0,19 0,92 0,78 9 3 8,0 6,0 360 109
P3C 0,39 0,39 0,66 0,65 0,56 0,11 0,85 0,22 0,09 0,07 0,97 0,88 2 1 7,0 2,0 656 141

STATPC 0,73 0,59 0,70 0,65 0,06 0,00 0,63 0,17 0,72 0,28 0,97 0,75 363 27 8,0 8,0 27749 4657
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max min max min max min max min max min max min max min max min max min
CLIQUE 0,30 0,17 0,96 0,86 0,06 0,01 0,20 0,06 0,41 0,26 1,00 1,00 1890 36 3,1 1,5 67891 219
DOC 0,52 0,52 0,54 0,54 0,18 0,18 0,35 0,35 0,53 0,53 0,91 0,91 15 15 5,5 5,5 178358 178358

MINECLUS 0,87 0,87 0,86 0,86 0,48 0,48 0,89 0,89 0,82 0,82 1,00 1,00 64 64 12,1 12,1 780167 692651
SCHISM 0,45 0,26 0,93 0,71 0,05 0,01 0,30 0,08 0,50 0,45 1,00 0,93 1092 290 10,1 3,4 5E+08 21266
SUBCLU ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐ ‐‐
FIRES 0,45 0,45 0,73 0,73 0,09 0,09 0,33 0,33 0,31 0,31 0,94 0,94 27 27 2,5 2,5 169999 169999
INSCY 0,65 0,48 0,78 0,68 0,07 0,07 0,30 0,28 0,77 0,69 0,91 0,82 262 106 5,3 4,6 2E+06 1E+06

PROCLUS 0,78 0,73 0,74 0,73 0,31 0,27 0,64 0,45 0,90 0,71 0,90 0,74 37 17 14,0 8,0 6045 4250
P3C 0,74 0,74 0,72 0,72 0,28 0,28 0,58 0,58 0,76 0,76 0,90 0,90 31 31 9,0 9,0 2E+06 2E+06

STATPC 0,91 0,32 0,92 0,10 0,09 0,00 0,67 0,11 1,00 0,53 0,99 0,84 4109 56 16,0 16,0 5E+07 3E+06
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max min max min max min max min max min max min max min max min max min
CLIQUE 0,68 0,65 0,67 0,58 0,08 0,02 0,38 0,03 0,10 0,02 1,00 1,00 1922 19 4,1 1,7 38281 15
DOC 0,67 0,64 0,68 0,58 0,11 0,07 0,51 0,35 0,18 0,11 0,99 0,90 45 13 3,0 1,9 625324 1625

MINECLUS 0,73 0,63 0,65 0,58 0,09 0,09 0,68 0,48 0,33 0,16 0,99 0,92 64 32 4,0 3,7 49563 1954
SCHISM 0,69 0,69 0,68 0,59 0,04 0,03 0,45 0,26 0,10 0,08 0,99 0,99 90 68 2,7 2,1 31 0
SUBCLU 0,68 0,68 0,64 0,58 0,11 0,02 0,68 0,05 0,07 0,02 1,00 1,00 334 64 3,4 1,3 1422 47
FIRES 0,58 0,04 0,58 0,56 0,14 0,00 0,39 0,01 0,37 0,00 0,84 0,03 10 1 3,0 1,0 531 46
INSCY 0,66 0,66 0,62 0,61 0,03 0,03 0,42 0,39 0,21 0,20 0,85 0,81 166 130 2,1 2,1 407 234

PROCLUS 0,53 0,39 0,63 0,63 0,26 0,11 0,66 0,25 0,05 0,05 0,83 0,46 6 2 5,0 3,0 78 31
P3C 0,36 0,35 0,58 0,58 0,55 0,27 0,96 0,47 0,02 0,01 0,98 0,94 2 1 6,0 3,0 172 32

STATPC 0,69 0,57 0,65 0,58 0,23 0,01 0,58 0,37 0,63 0,05 0,77 0,71 159 4 6,0 3,3 1890 781Li
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max min max min max min max min max min max min max min max min max min
CLIQUE 0,31 0,31 0,76 0,76 0,01 0,01 0,07 0,07 0,66 0,66 1,00 1,00 486 486 3,3 3,3 235 235
DOC 0,90 0,83 0,79 0,54 0,56 0,38 0,90 0,82 0,93 0,86 1,00 1,00 53 29 13,8 12,8 2E+06 86500

MINECLUS 0,94 0,86 0,79 0,60 0,58 0,46 1,00 1,00 0,93 0,82 1,00 1,00 64 32 17,0 17,0 46703 3266
SCHISM 0,51 0,30 0,74 0,49 0,10 0,00 0,26 0,01 0,85 0,55 1,00 0,92 8835 90 6,0 3,9 712964 9031
SUBCLU 0,36 0,29 0,70 0,64 0,00 0,00 0,05 0,04 0,89 0,88 1,00 1,00 3468 3337 4,5 4,1 4063 1891
FIRES 0,36 0,36 0,51 0,44 0,20 0,13 0,25 0,20 0,88 0,82 0,45 0,39 10 5 7,6 5,3 63 47
INSCY 0,84 0,59 0,76 0,48 0,18 0,16 0,37 0,24 0,94 0,87 0,88 0,82 185 48 9,8 9,5 22578 11531

PROCLUS 0,84 0,81 0,72 0,71 0,25 0,18 0,61 0,37 0,93 0,91 0,89 0,79 34 34 13,0 7,0 593 469
P3C 0,51 0,51 0,61 0,61 0,14 0,14 0,17 0,17 0,80 0,80 0,66 0,66 9 9 4,1 4,1 140 140

STATPC 0,43 0,43 0,74 0,74 0,45 0,45 0,55 0,55 0,56 0,56 0,92 0,92 9 9 17,0 17,0 250 171
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max min max min max min max min max min max min max min max min max min

CLIQUE 0,67 0,67 0,71 0,71 0,02 0,02 0,40 0,40 0,26 0,26 1,00 1,00 107 107 1,7 1,7 453 453
DOC 0,73 0,61 0,81 0,76 0,11 0,04 0,84 0,07 0,46 0,27 1,00 0,80 60 6 27,2 2,8 1E+06 37515

MINECLUS 0,78 0,69 0,78 0,76 0,19 0,18 1,00 1,00 0,56 0,37 1,00 1,00 64 32 33,0 33,0 40359 29437
SCHISM 0,67 0,67 0,75 0,69 0,01 0,01 0,36 0,34 0,35 0,34 1,00 0,99 248 197 2,3 2,2 158749 114609
SUBCLU 0,68 0,51 0,77 0,67 0,02 0,01 0,54 0,04 0,27 0,24 1,00 0,82 357 5 2,0 1,0 5265 16
FIRES 0,49 0,03 0,76 0,76 0,03 0,00 0,05 0,00 1,00 0,01 0,76 0,04 11 1 2,5 1,0 250 31
INSCY 0,74 0,55 0,77 0,76 0,02 0,00 0,24 0,11 0,60 0,39 0,97 0,74 2038 167 11,0 4,4 134373 63484

PROCLUS 0,57 0,52 0,80 0,74 0,51 0,11 0,65 0,43 0,32 0,23 0,89 0,69 9 2 24,0 18,0 703 141
P3C 0,63 0,63 0,77 0,77 0,04 0,04 0,19 0,19 0,36 0,36 0,85 0,85 28 28 6,9 6,9 6281 6281

STATPC 0,41 0,41 0,78 0,78 0,16 0,16 0,33 0,33 0,29 0,29 0,43 0,43 5 5 33,0 33,0 5187 4906
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Figure 13: Residual real world data sets
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