
A Wavelet Transform for Efficient Consolidation
of Sensor Relations with Quality Guarantees

Mirco Stern
Universität Karlsruhe (TH)

Germany

Mirco.Stern@ipd.uni-
karlsruhe.de

Erik Buchmann
Universität Karlsruhe (TH)

Germany

Buchmann@ipd.uni-
karlsruhe.de

Klemens Böhm
Universität Karlsruhe (TH)

Germany

Boehm@ipd.uni-
karlsruhe.de

ABSTRACT
Answering queries with a low selectivity in wireless sensor net-
works is a challenging problem. A simple tree-based data col-
lection is communication-intensive and costly in terms of energy.
Prior work has addressed the problem by approximating query re-
sults based on models of sensor readings. This cuts communication
effort if the accuracy requirements are loose, e.g., if the temperature
is required within±0.5◦C. For more accuracy, the models need
frequent updates, and the communication costs quickly increase.
In addition, sophisticated models incur substantial training costs.
We propose a query-processing scheme that efficiently consolidates
sensor data based on wavelet synopses. The difficulty is that the
synopsis has to be constructed incrementally during data collection
to ensure efficiency. Our core contribution is to show how to dis-
tribute the construction of wavelet synopses in sensor networks. In
addition, our approach provides strict error guarantees. We evaluate
our distributed wavelet compaction on real-world and on synthetic
sensor data. Our solution reduces communication costs by more
than a factor of five compared to state-of-the-art approaches. Fur-
ther, our error guarantees for which efficient data consolidation is
possible are better than theirs by more than an order of magnitude.

1. INTRODUCTION
Wireless sensor networks (WSNs) are an important technology

with many industrial applications. For instance, monitoring pro-
duction processes is essential to avoid unscheduled downtimes and
for quality management. As a concrete example, consider a drug
manufacturer [32] who has to comply with legal requirements for
documenting the production process. To do so, he has installed
130 wireless sensor nodes on an existing production line. WSNs
are ideally suited for such settings. The fact that they come with-
out wiring lowers installation costs by 80% and installation time by
90% and enables simple reconfigurations [41]. WSNs can consist
of many nodes which are equipped with sensors, have constrained
communication and computation capabilities and are battery oper-
ated. To obtain longevity, energy-efficiency is mandatory.

A common data-acquisition task in monitoring contexts is to
make the sensor readings available at a central location periodi-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permissionof the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/orspecial permission
from the publisher, ACM.
VLDB ‘09,August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

cally. Staff can then take corrective action immediately. In ad-
dition, it is often required to log the entire data, as with the drug
manufacturer. An important characteristic of the data acquisition is
that it usually covers readings from all of the sensors. This is quite
intuitive: Sensor nodes are not cheap and, hence, they are placed
with care at locations where monitoring is required. Thus, queries
often simply consolidate the readings from the network, i.e.,they
frequently have a low selectivity[5]. Beyond monitoring, non-
selective queries are common in explorative scenarios where users
simply collect data to get an idea of the environment observed. Fi-
nally, any query may have subqueries which are not selective. This
paper studies the evaluation of non-selective queries in WSNs. Our
concern is efficient consolidation of the state of the network ("snap-
shot", i.e., readings of (multiple) sensors of each node at the same
time). An application can request a snapshot once or periodically.

While, in a lot of applications, queries cannot dismiss any sen-
sor readings, accuracy tends to be less critical: An approximation
of the current snapshot is usually sufficient [11, 5]. At the same
time, it is important to bound the error of approximations. E.g.,
the drug manufacturer has to document that the temperature in the
production process did not exceed certain thresholds. This is not
possible without error guarantees. We approximate snapshots of
sensor readings under user-controlled error guarantees.

To obtain efficiency, prior work has focused on minimizing the
sensing and communication costs. They dominate the power con-
sumption by orders of magnitude, compared to computation and
RAM accesses [42, 25]. While optimizing sensing costs is well un-
derstood [25], minimizing communication is challenging. A wide-
spread method for answering queries is tree-based data collection
(TDC). To reduce communication, TDC exploits the selectivity of
queries by pushing data-reducing operators into the network. Then,
only the data that qualifies for the result is sent along a routing
tree to the base station. However, if selectivity is low, most of the
data is in the result, and plain TDC is communication-intensive. A
known idea for non-selective queries is approximate query process-
ing based on models [5, 11]. Here, a model is a compact represen-
tation ("synopsis") of the measurements, and queries are processed
against it. Current readings are used to update the model if error
guarantees are not met. Model-based approaches suffer from the
following problem: Predicting measurements is only possible with
large error bounds, e.g., we query the temperature within±0.5◦C.
Higher accuracy requires frequent updates. According to [11], "as
epsilon gets small (less than .1 degrees), it is necessary to observe
all nodes on every query...". In addition, sophisticated models re-
quire extensive training when each node has to transmit periodic
readings to the base station, e.g., every 30 - 60 seconds [37].

To overcome these problems, we propose a query-processing
scheme based on wavelet synopses. The wavelet transform is a

mathematical tool to decompose functions hierarchically. The idea
is to transform the input data to a set of wavelet coefficients. Then,
"thresholding" yields a synopsis, i.e., it discards some coefficients
and retains those required to reconstruct the data within the error
bounds. The use of wavelet synopses is motivated by their effec-
tiveness in compressing data and providing accurate answers [9].
However, exploiting these capabilities in our context requires a
distributed construction of synopses. Although being an area of
active research, to our knowledge, no prior work has presented a
distributed transform that is more efficient than a simple TDC (cf.
Sections 2 and 7), let alone error guarantees in this context.

In this paper, we present SNAP ("SNapshot APproximation"),
an efficient consolidation scheme for sensor readings. To achieve
efficiency, SNAP incrementally constructs a wavelet synopsis dur-
ing data collection. As our main contributions, we show how to
distribute the transform as well as the thresholding. Regarding the
distributed wavelet transform, we see two design alternatives. We
could use some standard transform and map it onto the network,
i.e., assign the computations to sensor nodes and set up a network
overlay. The overlay has to reflect data dependencies between com-
putations. This approach has been considered before (e.g., [43,
40]). The problem is that it sacrifices shortest paths: The routes
in the overlay will exceed those of simple TDC by much (cf. Sec-
tion 4). With SNAP, we explore an alternative design and integrate
a wavelet transform into an optimal routing structure. We show that
optimizing the integration is NP-hard and propose a polynomial al-
gorithm that comes close to the optimal solution. Most notably, our
solution is an online algorithm, i.e., the integration is not precom-
puted and can adapt to changes in the routing structure.

Regarding the thresholding process, discarding a subset of the
detail coefficients yields a compact synopsis. However, doing so
in a distributed environment leads to suboptimal synopses and to a
huge communication overhead (see Section 5). Hence, we propose
a distributed solution that is different and is inspired by work on
image compression: Instead of discarding coefficients, we find a
compact representation for them. The fundamental problem in dis-
tributing this alternative mechanism is as follows: To assign com-
pact codes to the coefficients, we must know their frequencies in
the overall synopsis. However, the synopsis is created incremen-
tally. The frequencies cannot be known at the time of encoding.
We show how to estimate the frequencies in a way that is math-
ematically sound. Our approach is also applicable to tuples with
multiple attributes. This is an optimization problem in its own right
if coefficients are discarded [9]. In summary, our contributions are:

• We present SNAP, a distributed approach to compute wavelet
synopses incrementally. To our knowledge, SNAP is the first
distributed wavelet compaction providing error guarantees.

• To distribute the wavelet transform, we propose to integrate
it into the routing structure. SNAP is first to explore this idea.

• Finding an optimal integration is NP-hard. We provide a
heuristical solution and show that it performs well by means
of an optimal algorithm based on dynamic programming.

• To distribute the construction of synopses, SNAP compactly
encodes coefficients, instead of discarding them.

• Compacting the coefficients requires to know their frequen-
cies in the overall synopsis. We show how to accurately esti-
mate these frequencies.

• We evaluate the performance of SNAP based on real-world
and synthetic sensor data. Our results are that SNAP re-
duces the communication costs by more than a factor of five
compared to state-of-the-art approaches. SNAP improves the
limit in the error guarantees for which data can be efficiently
consolidated by more than an order of magnitude.

2. RELATED WORK
Data-reduction mechanisms studied by the database community

include sampling, histograms, and wavelets. For sensor networks,
there are reduction schemes based on modeling sensor measure-
ments. As [3, 27, 39] has demonstrated that wavelets can achieve a
higher degree of accuracy of query results compared to histograms
and random sampling, we focus on model-based and wavelet-based
synopses in what follows. We leave aside approaches that exclu-
sively compute aggregates, e.g., [7, 10].

Model-based Approaches.The idea behind model-based ap-
proaches is to answer queries based on a model of the current mea-
surements, instead of querying the data from the sources. The ap-
proaches differ in the complexity of the model and their error guar-
antees. However, all model-based approaches estimate the mea-
surements. If they provide error guarantees, their performance crit-
ically depends on the deviation from the actual sensor readings that
an application can tolerate. For instance, estimating the tempera-
ture within±0.5◦C works well. For more accurate estimations in
turn, frequent updates of the model are required, and the commu-
nication costs quickly increase. In Section 7, we compare SNAP
to model-based approaches and show that it can efficiently answer
queries for error guarantees that are tighter by orders of magnitude.
Subsequently, we briefly introduce these approaches. This also jus-
tifies our choice of reference points for the experiments.

The simplest model is a constant. The base station caches the
most recently received readings of each node. A node sends an
update whenever a reading deviates by more than a thresholdt.
[31] addresses the problem of choosingt such that the number of
transmissions is minimal. [20] proposes to use Kalman Filters as
a model. SAF [37] uses time series forecasting models with much
weaker error guarantees. SNAP in turn yields strict guarantees.

The approaches mentioned exploit temporal correlations. Cap-
turing spatial correlations requires modeling several nodes, as [5,
11] do. Both use time-varying multivariate Gaussians. BBQ [11]
primarily executes at the base station, which maintains a proba-
bilistic model for the network. If the confidence of an estimate is
insufficient for a query, BBQ identifies the optimal set of attributes
to observe and queries them. Ken [5] organizes nodes in clusters
and maintains a model for each of them. Each cluster simulates
the estimates of the base station and sends updates whenever error
requirements are violated. This approach gives way to strict error
guarantees. However, next to the fact that error bounds are not tight,
such sophisticated models entail a very expensive learning phase.

PAQ [38] is a cluster-based approach that covers spatial correla-
tion based on a much simpler model, at the cost of increased com-
munication. Snapshot queries [23] follow a similar scheme. [15]
shows how to regress a function to the sensor measurements in a
distributed fashion. Both approaches provide no error guarantees.

Centralized Wavelet-Based Approaches.From a database per-
spective, there are many successful applications of wavelets as a
data reduction tool. The corresponding algorithms are inherently
centralized and are inappropriate for distributed environments (cf.
Section 5). Due their vast number, we only present some of them as
examples. Afterwards, we discuss distributed approaches in detail.

Wavelets have been used in selectivity estimation [27], for an-
swering range-sum aggregate queries over data cubes in [39] and
for general-purpose queries in [3]. [28] studies dynamic mainte-
nance of synopses. [9] introduced extended wavelets for data sets
with multiple measures. Recently, [33] also addressed the overhead
due to wavelet coordinates. While most of the early work focused
on the SSE (sum squared error), [12, 13] considered maximum er-
ror metrics. For streaming data, [14] proposes algorithms for build-
ing approximate synopses, and [22] introduces a greedy algorithm

for constructing synopses with maximum error guarantees.
Distributed Wavelet-based Approaches.A problem that has

received a lot of attention when deploying wavelet transforms in
sensor networks is mapping their regular refinement scheme onto
the irregular network topology. To compute approximate query an-
swers, a further problem has to be solved: One needs a distributed
thresholding approach with error guarantees. To our knowledge,
our work is the first solution to this problem.

[1] distributes the computation of a Haar wavelet if the sensor
network is a 1-dimensional regular chain. [6] is similar, except
that different wavelets are used (5/3-wavelets). Both approaches
are confined to very specific topologies. [43] distributes the com-
putation by means of an overlay, which is a 1-dimensional chain.
[40] proposes precomputation of a 2-dimensional hierarchical re-
finement scheme and computation of a distributed wavelet trans-
form on it. These approaches differ from our work in their goal
as they are not interested in consolidating an approximation at the
base station. [40] also shows that transforming the data and sub-
sequently collecting the coefficients is less efficient than collecting
the original data. This is because the routes in the overlay are sig-
nificantly longer than a shortest path routing tree. [16, 17] inte-
grates the wavelet transform into the routing tree. Since the routing
tree is not balanced, the authors introduce zeros for missing val-
ues in the transform ("zero padding"). As shown in Section 7, this
yields large detail coefficients, which is in the way of a compact
representation. [8] copes with the irregular topology by assigning
the nodes to clusters and transforming the data of each cluster. The
problem is that only data within a cluster is decorrelated, redun-
dancies between clusters are not removed. Thus, performance is
suboptimal, as we will show in Section 7.

3. PRELIMINARIES
The notion of a "sensor network" is by no means well-defined.

Frequently, the application influences the hardware deployed and
the network architecture. This section provides the context of our
work. The architecture and some fundamental aspects of query
processing are described in Sections 3.1 and 3.2. In 3.3, we specify
the problem, and Section 3.4 provides a brief recap of wavelets.

3.1 Network Architecture
Our work is based on a network architecture consisting of hun-

dreds of stationary sensor nodes. Each node is equipped with sev-
eral sensors, a processor, a small RAM, a wireless radio, and is
battery operated. A base station serves as the access point. Each
node is aware of its neighbors, i.e., the nodes in its wireless range.
It communicates with the other nodes using multi-hop routing.

To provide an example of sensor nodes, the nodes in our lab
are SunSPOTs. They have a processor with a 32 bit ARM920T
core which executes at 180MHz maximum clock speed. The nodes
are equipped with 512KB RAM and with a 4MB Flash memory.
Writing to Flash typically incurs non-negligible energy costs. We
disregard these costs as SNAP exclusively uses RAM. As radio
transceivers, the nodes use a CC2420 which is IEEE 802.15.4 com-
pliant ("ZigBee"). SunSPOTs are a development platform and are
shipped with a default sensor board. It contains a light sensor, a
temperature sensor, and an accelerometer. (In real deployments,
the sensors are usually customized to the application.) The nodes
are powered with a 3.7V rechargeable 750 mAh lithium-ion battery.

3.2 Query Processing
Declarative queries are an attractive interface to collect data in

sensor networks, as they hide technical details [11, 42]. To facili-
tate declarative queries, the network is seen as a(sensor) relation.

One can perceive it as a relation with one attribute per sensor (e.g.,
temperature) and one tuple per node. As the attributes reflect the
sensors of a node, the relation typically has less than ten attributes.

Queries can be one-time or continuous: Aone-time queryasks
for the current snapshot. A typical usage is an interactive explo-
ration. Acontinuous queryreports snapshots periodically.

Basic tree-based query processing works as follows: A query is
input at the base station. The network then disseminates the query
by a simple broadcast flooding. Query results are propagated to
the base station along a routing tree, with the base station as the
root. A routing tree is maintained in a distributed fashion: Based
on a periodic beaconing mechanism, each node maintains a parent
that minimizes the distance to the base station. In a state-of-the-art
implementation, the distance is measured in ’number of expected
transmissions’. Intuitively, this is the hop count weighted with the
link quality. This guarantees an important property of routing trees:
They are shortest path trees, with respect to the distance metric.
Further, routing trees are highly irregular, i.e., the degree of the
nodes can vary arbitrarily (in practice, a node has about 1 to 15
children), and the tree is by no means balanced.

3.3 Problem Statement
Our goal is to efficiently approximate snapshots under user-con-

trolled error guarantees. As the guarantees in our targeted applica-
tions refer to individual values, we need a maximum error metric.
This is because for SSE (sum squared error), the error for individ-
ual values could be arbitrarily high [12]. In the following, we will
sometimes refer to the maximum errore as specified in the query by
"(maximum) error bound". Formally, our goal is answering queries
that conform to the following structure:

SELECT Att1 ± e1, ..., Attn ± en

FROM Sensors
WHERE predicates(Att1, ..., Attn)
{SAMPLE PERIOD x | ONCE}

For instance,SELECT temp ±.1◦C FROM Sensors ONCE
queries the current temperature readings with a maximum error of
.1◦C. TheWHERE-clause is optional. The semantics is the standard
SQL semantics with extensions for temporal aspects of sensor data:
We adopt the non-SQL clausesONCE or SAMPLE PERIOD from
TinyDB [24] as SNAP supports one-time as well as continuous
queries:ONCE computes the result based on the current snapshot.
Thus,SELECT temp ±.1◦C FROM Sensors ONCE returns one
tuple from each node that belongs toSensors. SAMPLE PERIOD
yields a continuous monitoring. It defines the time interval between
independentexecutions of the query. The query is executed every
x seconds on the most recent snapshot.

3.4 Constructing Wavelet Synopses
Computing a wavelet synopsis consists of two subsequent tasks,

wavelet transform and thresholding.
Wavelet Transform. We illustrate the principle by means of an

example. Further information can be found in the standard liter-
ature, e.g., [36]. Our description is based on the Haar transform
which is the basis of SNAP. We justify this choice in Section 4.

Consider the following dataset, e.g., one column of a database
table:D = [2, 6, 7, 4]. The transform pairs neighboring valuesvx

andvy and computes anapproximation coefficientfor each pair.
In case of the Haar transform, the approximation coefficients are
simply the averages (vx+vy

2
): [4, 11

2
]. This is a "lower-resolution"

representation ofD. In addition, a set ofdetail coefficientsis
computed as pair-wise differences divided by 2 (vx−vy

2
): [−2, 3

2
].

These coefficients contain the information lost by averaging: Given

2 6 4

4
-2

5.5
1.5

4.75
-1.25

7

Figure 1: Structure graph for the Haar example

both the approximation and the detail coefficients, the original data
can be reconstructed. Recursive application of this pairwise av-
eraging and differencing process on the lower-resolution data (the
approximation) yields the following full transform:

Resolution Level Approximations Detail Coefficients
0 [19

4
] [− 3

4
]

1 [4,
11
2

] [−2,
3
2
]

2 [2, 6, 7, 4]

The result of a Haar transform is the single overall approxima-
tion coefficient followed by the detail coefficients in the order of
increasing resolution. Thus, the transform of our example data is
given byWD = [19

4
,− 3

4
,−2, 3

2
].

Each coefficient of the data transformed can be associated with
a coordinatewhich identifies the coefficient by its resolution level,
along with its position within this level. Intuitively, the coordinate
simply corresponds to the position of the coefficient inWD.

Thresholding. No information has been lost during the trans-
form. Notably, the original datasetD has four values, and so does
WD. The task of creating a compact representation of the dataset
(synopsis) fromWD is calledthresholding. In a nutshell, thresh-
olding is discarding a subset of the detail coefficients. During re-
construction, the coefficients omitted are assumed to be zero. Thus,
the resulting wavelet synopsis is an approximation ofD.

Why do we transform the data prior to thresholding? Wavelet
transforms decorrelate the data. Most notably, ifD contains sim-
ilar values, the detail coefficients tend to be small. Thresholding
then introduces only small errors. Thus,in our context, the goal of
the transformation step is to obtain small detail coefficients.The
subsequent thresholding problem then is an optimization problem,
e.g., find a minimum number of detail coefficients to retain, given
a maximum error in the reconstructed data.

Structure Graph. To distribute the wavelet transform, its logi-
cal data flow is important [17]. We capture it by means of a "struc-
ture graph". Figure 1 shows the structure graph for our example. A
node represents a computation, i.e., nodes compute a function on
the data obtained from their children. Edges represent data depen-
dencies. For the Haar transform, the structure graph is a balanced
binary tree. In general, structure graphs are not necessarily trees but
directed acyclic graphs (e.g., Daubechies-4, etc.). Graph structures
arise for transforms that use the same approximation coefficient in
more than one higher-level computation. Otherwise, we speak of a
"structure tree". The term "computation node" stands for nodes of
the structure graph, in contrast to sensor nodes.

4. SNAPSHOT APPROXIMATION
This section presents our approach for distributing wavelet trans-

forms. We extract design alternatives and justify our choice of in-
tegrating a transform into an unmodified routing tree (Section 4.1).
Our integration approach builds on flexible structure trees (Sec-
tion 4.2). We say how to optimize the integration in Section 4.3.

4.1 Distributing Wavelet Transforms
To reduce communication compared to TDC, we have to con-

struct the synopsis during forwarding incrementally. This requires
adistributedwavelet transform. The problem is integrating a struc-
ture graph with the network topology: Here, ’finding an integra-
tion’ means finding a wavelet transform and a mapping of its com-
putation nodes to sensor nodes. Then the edges of the structure
graph imply a communication overlay.

At a high level, we see two alternatives to address the problem:
(1) One could adapt the routing structure to the transform, i.e., take
a fixed structure graph and impose it as an overlay onto the net-
work. However, network topologies are highly irregular. Mapping
a fixed structure onto the network thus has an undesirable effect on
the communication costs: It leads to nodes that merely forward data
without prior wavelet compaction. The routes might not even be on
the shortest paths to the base station [17]. (2) One could integrate
the transform into the routing structure, i.e, the routing structure is
fix. Each node would receive approximation coefficients from its
children in the routing structure, transform them to obtain a synop-
sis and forward it to its parent. This approach requires specifying a
structure tree that can be mapped onto the routing tree.

Related work has mostly explored the first approach (cf. Sec-
tion 2). However, there are strong arguments for the alternative
design. Firstly, communication is difficult in WSNs, i.e., links are
often fragile, and packet-loss rates are high. A lot of work has gone
into maintaining routing trees that address these problems. It is de-
sirable to build upon this mature technology. Second, recall that
the routing tree is a shortest path tree. Deviating from it means
doing suboptimal routes. SNAP therefore explores this second al-
ternative. Note that this lets SNAP cope with node failures and the
network-related problems mentioned above.

There is one approach for building wavelet histograms [16] that
operates on a routing tree, i.e., each node transforms the data re-
ceived. To cope with the irregularity of the routing tree, theinput
data of the transform is adjusted ("zero padding"): Whenever a
node has less than2n children, the input is filled up with zeros.
The problem is that this results inlarge detail coefficients when-
ever an approximation coefficient is combined with a zero. For our
problem, zero padding turns out to be worse than a simple TDC (cf.
Section 7). In contrast, our goal is to adjust the transform itself.

4.2 Integration Approach
This section says how a structure graph can be integrated into

a routing tree. The key idea for coping with the irregularity of the
routing tree is to abandon the rigid structure of classical transforms.

As a first step in developing an integration approach, we need
to select a wavelet transform which will be integrated (e.g., Haar,
Daubechies-4, Mexican Hat, etc.). To do so, the question is which
properties its structure graph must have to enable an integration.
Foremost, the structure graph must be a tree. Otherwise, it would
be impossible to map it onto a routing tree. It would be optimal if
the structure graph complied with the routing tree. Unfortunately,
no classical wavelet transform fulfills this requirement. This is be-
cause classical transforms have a regular refinement scheme. Their
structure trees are balanced, and the node degree is fixed.

However, there are mathematical foundations on Haar wavelet
transforms that have arbitrary (binary) structure trees [30]. These
transforms are more general than classical Haar transforms since
the structure tree is not balanced any more. The problem remaining
when integrating such a structure tree into a routing tree is that
routing trees are not binary but have varying node degrees. The
key observation to address this issue is that if a Nodeni has to
transformmi approximation coefficients, it is possible to arrange

Root

A

D
F

B

C
E

H G

C E

B H G

Figure 2: Integration approach

them in a binary tree and to apply the transform.
The preceding observation is the basis of our work, i.e., SNAP

uses this flexible Haar transform. The flexibility of anarbitrary bi-
nary structure tree suffices to solve our integration problem. This is
illustrated in Figure 2: Node B has set up a binary structure tree on
the coefficients received from its children. This approach is pleas-
antly simple. At the same time, the flexibility in the structure tree
leads to an optimization problem: find an optimal integration. This
will be in the focus of the subsequent discussion.

4.3 Finding the Optimal Structure Tree
In the following, we present an online algorithm to integrate a

binary structure tree into the routing tree. By performing the inte-
gration on-the-fly in contrast to precomputing it, the structure tree
can react to changes in the network topology. Further, we avoid the
communication overhead of an isolated precomputation.

We start by stating the optimization problem and establish its
NP-hardness. As we cannot expect to find any exact polynomial
algorithm, we devise a polynomial heuristic. We present an algo-
rithm that finds an optimal integration based on dynamic program-
ming (DP), to evaluate the heuristic.

The optimization problem. If a Nodeni receivesmi approxi-
mation coefficients, one per child in the routing tree, it adds its own
sensor reading as a further coefficient. Thenni transforms the data
to obtain one overall approximation andmi detail coefficients. This
process reveals that the routing tree already determines the rough
shape of the structure tree. Only for themi + 1 approximation
coefficients at Nodeni, the structure tree is still unclear. The node
needs to arrange the approximation coefficients received in a binary
tree. For instance, if Noden0 receives two approximation coeffi-
cientsa1 anda2, there are three possible binary structure trees.n0

can either combinea1 anda2 and subsequently combine the result
a1,2 with its own coefficienta0. Alternatively, it can start combin-
ing a0 anda1 or a0 anda2. These combinations yield different
detail coefficients. Recall from Section 3.4 that the sizes of the de-
tail coefficients determine the size of the synopsis, which is created
from the data transformed. Thus, by specifying the structure tree,
we determine the size of the resulting synopsis. The optimization
problem then is to find the best alternative forn0.

What is an appropriate optimization function? We want to mini-
mize the data thatni forwards. This implies the optimization func-
tion Ω: Ω simply is the size of the synopsis (number of bits) built
from the transformed data. We defer constructing the synopsis to
Section 5. Note thatΩ also works for data with multiple attributes.

Theorem 1: (Complexity of the problem)The problem of find-
ing the optimal structure tree is NP-hard.

Proof: (Sketch)The problem of ordering joins can be reduced to
our problem. Ordering joins in its most general form has recently
been shown to be NP-hard [34]. The general problem includes con-
sidering bushy trees, i.e., there are no restrictions with respect to the

ordering. It also involves cross products, i.e., every pair of relations
from the query can be combined. The reduction works as follows:
Every relation of the join query is mapped to an approximation co-
efficient. The cost function corresponds to the costs of executing
the join of a particular ordering. Then, an optimal structure tree
corresponds to an optimal join ordering.2

Heuristic approach. Due to the hardness of the problem, any
algorithm that computes a structure tree on resource-constrained
sensor nodes should not try to enforce optimality. We use a heuris-
tical algorithm instead, which greedily minimizes the optimization
function: In every step, the heuristic combines those approximation
coefficients yielding the smallest detail coefficient (with respect to
Ω). In other words, it is simply agglomerative clustering creating
a dendrogram, where our optimization function is the distance. We
omit the pseudocode as it is straightforward (see for instance [21]).
We now say why this heuristic is appropriate. To do so, we present
a DP-based algorithm that computes an optimal solution, and in
Section 7 we will compare the heuristic to it.

Finding an optimal structure tree. The idea of DP is that
whenever two partial solutions are equivalent (can be substituted in
the overall solution), one only needs to consider the better one with
respect to the optimization function. In our case, two partial struc-
ture trees are equivalent if they cover the same set of approximation
coefficients and yield the same overall approximation coefficient.
The second condition is required since the overall approximation is
computed based onbinary averages. Thus, the overall coefficient
varies slightly with the order of the average computations, i.e., with
the structure tree. Figure 3 shows the corresponding DP algorithm.

The algorithm incrementally constructs all partial solutions of
size i. In Line 6, the partial solutions of size 1 are initialized. A
partial solution consists of five fields: (1) set of input coefficients
covered, (2) overall approximation coefficient, (3) the detail coef-
ficients of the partial solution, (4) the corresponding structure tree,
represented as a nested set, and (5) the costs of the partial solution
(size). The actual algorithm starts in Line 8. It iterates over the size
of the solutions and builds partial solutions of size i by combin-
ing pairs of partial solutions (Lines 10 - 15). Only combinations of
partial solutions that do not overlap in the covered input coefficients
are valid (Lines 28 - 30). In Lines 32 to 37, the new partial solution
is constructed. Lines 17 to 23 implement the DP truncation.

5. CONSTRUCTING SYNOPSES
The thresholding problem is fundamentally different in a dis-

tributed setting. We demonstrate the shortcomings of a distributed
discarding of coefficients in Section 5.1. To avoid these problems,
we use a different mechanism as starting point: Instead of dis-
carding coefficients, we compactly encode them (Section 5.2). To
achieve a distribution of this alternative mechanism, SNAP esti-
mates the frequencies of the detail coefficients (Section 5.3).

5.1 Thresholding in a Distributed Setting
In the following, we discuss two problems that arise if we dis-

tribute centralized solutions. (1) Discarding coefficients leads to
suboptimal synopses. (2) There is a substantial communication
overhead, because discarding coefficients and providing error guar-
antees requires the algorithm to maintain some state. This state
would have to be forwarded along the tree in addition to the data.

In centralized settings, thresholding is an optimization problem
under constraints. The goal either is to minimize an error given
a maximum size of the synopsis or, to minimize the size given a
maximum error bound. In a distributed context, the optimization
problem is different. This is because we need to forward partial
synopses, which incurs communication costs. Thus, we also need

1 OptimalStructureTree (Set {~a1, ...,~am})
2 //~ai: approximation coefficients (from children + own measurement)
3

4 //initialization− partial solutions of size 1:
5 for j = 1 .. m
6 PartSolutions[1] = PartSolutions[1]∪ ({~aj},~aj , ∅, {~aj}, 0);
7

8 for i = 2 .. m //i == size of solution
9 for l = 1 .. (i− 1) //l == length of left subtree

10 for k = 1 .. |PartSolutions[l]|
11 PartSol lSubtree = PartSolutions[l].nextElement();
12 for o = 1 ..|PartSolutions[i -l]|
13 PartSol rSubtree = PartSolutions[i− l]. nextElement();
14

15 PartSol newSol = CombineStructureTrees(lSubtree, rSubtree);
16

17 if (∃ x ∈ PartSolutions[i]:
18 x.covAPPs == newSol.covAPPs && x.app == newSol.app)
19 //truncation: retain only the better one
20 if (x.costs > newSol.costs)
21 PartSolutions[i] =(PartSolutions[i]− {x}) ∪ {newSol}
22 else//no equivalet solution available
23 PartSolutions[i] = PartSolutions[i]∪ {newSol}
24 return minx∈PartSolutions[m]{x.costs}
25

26

27 CombineStructureTrees(PartSol lSubttree,PartSol rSubttree)
28 //disregard pairs that overlap
29 if (lSubtree.covAPPs∩ rSubtree.covAPPs6= ∅)
30 return null ;
31

32 Set covAPPs = lSubtree.covAPPs∪ rSubtree.covAPPs;
33 Integer appCoeff = appCoeff(lSubtree.app, rSubtree.app);
34 Set detCoeffs ={detCoeff(lSubtree.app, rSubtree.app)}

35 ∪ lSubtree.detCoeffs∪ rSubtree.detCoeffs;
36 NestedSet strucTree ={lSubtree.strucTree, rSubtree.strucTree};
37 return (covAPPs, appCoeff, detCoeffs, strucTree, costs(detCoeffs));

Figure 3: DP for computing the optimal structure tree – a
benchmark for the heuristical approach

to consider the size of intermediate results, not only the size of the
final synopsis. Formally, the problem now is minimizing the data
volume ofall the synopses.

We illustrate the intricacy of this requirement from the point of
view of a single node. The problem is that the knowledge of a
node does not suffice to decide which coefficients to discard: If the
node discards a detail coefficient, the synopsis comes closer to the
maximum error. However, there might be smaller detail coefficients
to come and thus, it would have been better to save the error budget.

The second problem of discarding coefficients is metadata over-
head, in two ways. First, guaranteeing a maximum error requires
each node to know the error budget. Assigning fixed error budgets
per node would result in very small budgets, making it difficult to
discard any coefficients. [22] proposes a solution for the central-
ized case: One needs to keep track of the error that has already
been introduced. They show that this can be done effectively by
maintaining a range [min, max] for the error. If we transfer this
approach to our scenario, this enlarges each intermediate wavelet
that is forwarded by two additional numbers per attribute.

There is an even worse overhead: We need to know the coordi-
nates of the remaining coefficients to reconstruct the data. This is
done by storing the coefficients as <coordinate, coefficient>-tuples.
Thus, for a synopsis of a single attribute the coordinates double the
data volume. Reducing this overhead has been addressed in dif-
ferent ways, e.g., [9, 33]. A distributed approach to reduce the
overhead due to the coordinates is an open problem.

5.2 Foundations for Compact Synopses
To avoid these problems, we base SNAP on a different mecha-

nism for obtaining synopses. It is inspired by work on image com-
pression and consists of three steps:

1. Quantization
2. Integer Wavelet Transform
3. Entropy Coding(Huffman Coding)
This alternative mechanism does not solve our problem of dis-

tributing the construction of synopses – this is discussed in Sec-
tion 5.3 – but it is key to overcome the difficulties of discarding
coefficients: Our mechanism does not do any such discarding. The
error bound is exploited for the quantization which affects only a
single tuple. This eliminates the need to forward error budgets. Fi-
nally, we can avoid sending coordinates along with the coefficients.

Intuition. The important step to obtain a synopsis is Step (3), the
entropy coding. The idea is to use short codes for frequent symbols
and longer ones for less frequent symbols. In our case, the sym-
bols to encode are the detail coefficients. The performance of the
entropy coding depends on (a) the distribution of the symbols (the
more skewed the distribution is, the higher the effectiveness) and
(b) the number of different symbols that appear (the more symbols
there are, the more bits are required).

We can regard Steps (1) and (2) as creating the optimal condi-
tions for an entropy coding. Step (1) gives way to a small num-
ber of different symbols. Each node quantizes its sensor readings
based on the error bounds of the attributes. As a result, the infinite
set of possible readings is turned into a small set. Most notably,
an increase in the maximum error in the query reduces the number
of different symbols. The wavelet transform (Step 2) achieves a
skewed distribution. Recall that the wavelet transform is used to
generate small detail coefficients. Most notably, this usually results
in a distribution of the detail coefficients that is bell shaped around
zero [4]. Finally, we use an integer version of the transform: While
the quantization reduces the set of possible values, the regular Haar
transform involves divisions by two and thus would re-enlarge this
set. An integer transform avoids this problem as it yields coeffi-
cients within the input set. We will provide the details right away.

Quantization. Step (1) combines a quantization with a scaling
such that each quantized value is a (positive) integer. This is re-
quired for the integer wavelet transform. Letxi be the sensor read-
ing of nodei of an attribute, and lete be the error bound for this
attribute. Finally, letminVal be an arbitrary lower bound for the
sensor readings. Each node quantizes its measurements to obtain
the approximation coefficient to start the transform with (level1):

a1,i = Int(
xi − minVal

2 · e
). (1)

Here,Int(·) denotes the usual integer rounding. The base station
can easily reconstruct the values asx′

i = minVal+a1,i ·2 ·e. Given
a1,i, x′

i is within [xi − e, xi + e].
Integer Wavelet Transform. The integer version of the Haar

transform is the S-transform [2], wherel is the level in the structure
tree andp the index of the coefficient at levell:

al,p = ⌊
al−1,2p + al−1,2p+1

2
⌋, dl,p = al−1,2p+1 − al−1,2p

We use it with a minor modification. The S-transform either does
no rounding or rounds down. Thus, the approximation coefficients
systematically become smaller with the levels in the structure tree.
It turns out that estimating the frequencies of the detail coefficients
is much easier if we avoid this systematic deviation, see Theorem 2.
As can be seen from the corresponding proof, this systematic devi-
ation can be avoided by equally rounding up and down:

Wavelet: App DCoeff_1 DCoeff_m...

Padding
of

padded bits

App:
1_

,

Att

pla nAtt

pla
_

,
...

STS

DCoeff_x: 1_
Grp

Att nAtt _
Grp 1_

I
Att nAtt _

I... ...

:I
_ xAtt

Index orig. detail coeff.empty or or or

SignSign

Figure 4: Format of Wavelets (Encoding)

al,p =

(

⌊
al′,p′+al′′,p′′

2
⌋ if al′,p′ ≥ al′′,p′′

⌈
al′,p′+al′′,p′′

2
⌉ otherwise

(2)

dl,p = al′′,p′′ − al′,p′ (3)

As the structure tree is not balanced in our case, it is not obvious
how the levell is defined: We define it as the number of sensor
readings that a coefficient covers. This implies thatl = l′ + l′′. p

still denotes the index. The inverse is given by:

al′,p′ =

(

al,p − ⌊
dl,p

2
⌋ if dl,p ≤ 0

al,p − ⌈
dl,p

2
⌉ otherwise

al′′,p′′ = dl,p − al′,p′

Entropy Coding. While arithmetic coding [29] usually is state-
of-the-art for entropy coding, it is suboptimal in our case: It re-
quires adding a few bits to each sequence of symbols to obtain
unique encodings. Since our sequences consist of only a few sym-
bols (usually clearly less than ten, depending on the number of at-
tributes in the query) this is a substantial overhead. We use Huff-
man coding [18] which is well-known to yield better results for
such short sequences and is standard in this case. In addition, the
low storage requirements and its simplicity make it a good choice
for resource-constrained sensor nodes. Irrespective of the coder
used, there is a problem when it comes to distributing the approach.
Assigning codes requires knowledge on the frequency of the sym-
bols by the time of encoding. This is the main challenge when
distributing the approach and is addressed in Section 5.3.

Implementation issues. We conclude the description of the
framework with two details. First, we introduce the concept of
"groups". It is standard in entropy coding to cope with large num-
bers of symbols. Second, we describe the format of wavelets sent.

"Groups" of symbols are used to reduce the number of symbols
in entropy coding. The idea is to form groups of detail coefficients
with similar frequencies. As a result, the number of groups is much
smaller than the number of symbols, and each group is much more
frequent. Each group is then assigned a Huffman code, i.e., only
the group number is entropy-encoded. An index is used to discrim-
inate between the members of each group. For instance, the detail
coefficient 0 results in a single group.{−1, 1} might be the second
group. In particular, if a group containsx, it also contains−x, as
our distribution is symmetric.{−3,−2, 2, 3} might be the third
group, etc. The final group contains the tail of the distribution. It
contains all coefficients that are unlikely to appear.

The format used to send wavelets is shown in Figure 4. Basi-
cally, a wavelet is a bit stream which is padded at the end to align
it with byte boundaries. At a high level, the wavelet starts with

the approximation coefficients, one per attribute that is queried. A
node then inserts three bits ("padding size") representing the size of
the padding, followed by the detail coefficients. Their ordering cor-
responds to a depth first traversal of the structure tree. This allows
to construct wavelets with ease: A node takes two wavelets as re-
ceived from its children. Based on their approximation coefficients,
it computes a new approximation and a detail coefficient. The lat-
ter is first in depth-first ordering. The node then simply appends
the detail coefficients from the left child in the structure tree as re-
ceived, followed by those from the right child. Also, it removes the
padding from its children in this append step. Given the padding
size, this can be done without decoding the detail coefficients.

Figure 4 further shows the encoding of the detail coefficients:
Each one starts with two bits called Subsequent Tree Structure
(STS). As our structure tree is irregular, this is required to recon-
struct the tree at the base station. STS encodes whether a node has
two children, one left child, one right child, or no children. Thus,
the purpose is similar to the coordinates of coefficients. Following
the STS bits, the Huffman code of the group numbers are listed, one
for each attribute. Finally, the indices follow. In case of the zero
coefficient, no index is required. Otherwise, the indices start with
a single bit which encodes the sign of the coefficient. For groups
of size greater than2, an index number follows that identifies the
unsigned member. This number cannot be compressed since the
group members are equally frequent. However, it makes sense to
have groups whose size is a power of 2 to fully exploit this index
number. The group that encodes the tail of the distribution is spe-
cial: Here, the original detail coefficient is used.

5.3 Distribution by Estimating Frequencies
The mechanism described so far requires to know the frequen-

cies of the symbols in the overall synopsis. This is the main chal-
lenge when distributing this approach. As the synopsis is now cre-
ated incrementally, the frequencies are unknown by the time of en-
coding. Also, they strongly depend on the error bounde.

A common approach in entropy coding is to initially assume that
each symbol is equally frequent and to adjust the frequencies con-
tinuously with each symbol. This approach is not applicable in our
case. Each leaf node would start with a frequency distribution that
is far from the actual one. This results in a bad compression. This
distribution would only become better close to the root. Addition-
ally, a node at a higher level of the tree receives encoded coeffi-
cients. To get to a count of the coefficients seen so far, the node
would have to decode them. In the following, we propose an ap-
proach that lets each nodeestimatethe frequency of a coefficient in
the (unknown) final synopsis. Given this estimation approach, the
previous framework can be executed in a distributed environment.

5.3.1 Estimating Frequencies
Our approach is based on two ideas. In the style of selectivity es-

timation, the base station continuously keeps track of the frequency
distribution of the detail coefficients. I.e., the first idea is to estimate
the frequencies based on experience from previous queries. The
main problem is that the frequencies strongly depend on the maxi-
mum errore. The second idea addresses this issue: The distribution
is maintained for an errore = 0. As illustrated in the following,
this corresponds to acontinuousdistribution of detail coefficients.
Given that the nodes know this distribution, it is now possible for
each node to estimate the frequency of a detail coefficient fore 6= 0
by discretizing the continuous distribution according toe.

We start by illustrating the idea of discretizing a continuous dis-
tribution. Suppose that we know the distributionpdf(x) of a physi-
cal quantity, e.g., temperature. Figure 5(a) serves as an illustration.

-e e 3e-3e

(b)

(2i-1)e (2i+1)e

(a)

Figure 5: Estimating frequencies

Formally,pdf(x) is a probability distribution function. Discretiz-
ing the quantity corresponds to mapping all measurements of an
interval[(2i− 1) · e, (2i + 1) · e] to 2i · e (or i after scaling). Thus,
the relative frequency ofi is the probability that a sensor reading is
in this interval. Formally, letn be the number of sensor readings.
The absolute frequency ofi is:

freq(i) = n ·

(2i+1)·e
Z

(2i−1)·e

pdf(x)dx (4)

To apply this idea of quantizing a continuous distribution, we
need to define a "continuousdistribution of the detail coefficients
pdf0(x)". pdf0(x) is the distribution of the detail coefficients of
a slightly modified transform (e = 0): It omits the quantization
as there is no error budget. In addition, as it is exact, there is no
rounding in the wavelet transform:

â1,i = xi − minVal

âl,p =
âl′,p′ + âl′′,p′′

2

d̂l,p = âl′′,p′′ − âl′,p′

Given the distributionpdf0(x) of d̂l,p, we estimate the frequency
of dl,p by integration as in Equation 4 (cf. Figure 5b).

5.3.2 Requirements
The previous approach is a valid estimation if the following As-

sumption A1 and Proposition P1 hold. We justify them in Sec-
tion 5.3.4. As the estimation is based on experience from previous
executions, we assume that:
A1: pdf0(x) is largely unchanged since its last update.

As we base the estimation on a slightly modified transform, we
have to prove the following proposition:
P1: The distribution of the unscaled detail coefficientsdl,p · 2e of
our actual transform corresponds to the one of the continuous detail
coefficientsd̂l,p.

dl,p ·2e are the quantized detail coefficients except for scaling to
an integer. The scaling depends one and therefore is not captured
in the distributionpdf0(x), but in the integration – we integrate
over[(2dl,p − 1) · e, (2dl,p + 1) · e] (cf. Equation 4).

5.3.3 Maintaining Frequency Distributions
We have already described how each node estimates the fre-

quency ofdl,p from pdf0(x). We now discuss how to maintain
pdf0(x). As a starting point for the maintenance, suppose that we
have collected the continuous detail coefficients empirically. The
idea is to obtainpdf0(x) by fitting a curve to their distribution.

Fitting a curve to a set of detail coefficients requires to spec-
ify a family of functions (polynomial, Gaussian, etc.) to be used.
Bell curves often are well suited to describe the detail coefficients
of a wavelet transform, in particular generalized Gaussian distribu-
tions, e.g., [4]. However, they are not a good choice in our case:
They are computationally complex, and there is no antiderivative.
The nodes would have to use numerical integration over a com-
putationally complex function to arrive at an estimate. We found

that the following simple bell curve describes the distribution well:
pdf0(x) = 1

π

a0

1+(a0x)2
. The parametera0 describes the spread of

the coefficients around 0 and has to be determined by curve fitting.
Note that, whilepdf0(x) = 1

π

a0

1+(a0x)2
is well-suited for our

data, our technique is orthogonal to the curve function used.
Fitting pdf0(x) to the empirically determined detail coefficients

is difficult due to outliers, i.e., isolated large coefficients. They
yield a spread parametera0 which is too large. Thus, the tail of the
distribution is too heavy, and the estimate of the number of frequent
coefficients is too low. A simple extension would be to estimate the
distribution on anα-quantile, i.e., to discard the outliers. But in
this case the distribution is highly sensitive to the choice ofα.

Instead of usingpdf0(x), we estimate its cumulative distribution
cdf0(x) = 1

2
+ 1

Π
arctan(a0x). This has the following advantages

over usingpdf0(x): (a) The nodes do not have to solve an inte-
gral. Givencdf0(x), the frequency ofa1,i is simplyfreq(a1,i) =
n[cdf0([2a1,i+1]·e)−cdf0([2a1,i−1]·e)]. (b) Estimatingcdf0(x)
can be done robust to outliers by using anα-quantile. This is now
insensitive to the choice ofα: By first accumulating the frequen-
cies and then discarding the tails, we keep the information that there
were further coefficients. In a way, we only discard their "wrong"
position. (c)cdf0(x) can also be estimated from the quantized de-
tail coefficients. This is key to react to changes in the distribution:
We updatecdf0(x) every time the attribute has been queried.

In summary, our approach works as follows:
1. Initialization. Prior to executing any query, the base sta-

tion once collects the continuous detail coefficients for each
attribute, determines the cumulative frequencies, and calcu-
latesa0. In our implementation, we use a standard curve
fitting algorithm (Levenberg-Marquardt, [26]).

2. Usage. Given a query, for each of the attributes the corre-
spondinga0 ande are distributed in the network along with
the query. Thus, every node arrives at the same estimates of
the frequencies and thus at the same encoding.

3. Update. After execution, the base station re-estimatesa0. A
moving average continuously adapts the distribution.

5.3.4 Justification
We now justify A1 and prove P1. Assumption A1 states that the

distribution of the detail coefficientspdf0() is largely unchanged
since its last update. If it does not hold, the effectiveness of the
coding degrades, the more the current distribution of the detail co-
efficients deviates frompdf0(). That distribution may change due
to changes in the data being transformed. More precisely, (major)
changes in therelative differencesof the data might affectpdf0().
In contrast, spatial and temporal correlation of the sensor readings
lead to stable differences. Changes inpdf0() can also stem from
changes in the structure tree. But this is even less critical. First,
recall that the underlying routing tree dictates its coarse structure.
While routing trees change from time to time due to links going
down, etc., such changes affect the tree only locally. Given that the
differences of the approximations that a node receives are similar,
the resulting structure tree is roughly the same as well.

Proposition P1 is that the distribution of the unscaled detail co-
efficientsdl,p · 2e corresponds to the one of the continuous coeffi-
cientsd̂l,p. This will be shown as follows: Starting with a contin-
uous distribution we examine the influence of (a) the quantization
and (b) the rounding on the continuous coefficients. We show that:

1. The expected value of the coefficients remains unchanged.
2. The variance of the detail coefficients is small (usually much

smaller thane).
(2) implies that the expected value represents the detail coefficients
well. Given (1), Proposition P1 follows.

What is difficult in proving the statements is to model the influ-
ence of the quantization and the rounding appropriately. We will
present this in detail. Given the idea, some proofs are obvious
and will only be sketched. In order to calculate the expected value
and variance of the detail coefficients we will introduce the random
variablesAl,p, Dl,p, R1,i, Tl,p. We start by defining a random vari-
ableR1,i modeling the quantization (cf. Equation 1). Without the
scaling the coefficients are quantized to a multiple of2e. As each
value in[−e, e] is equally likely,R1,i is uniformly distributed:

Definition 1: R1,i is a random variable that is uniformly dis-
tributed in[−e, e].

It follows thatR1,i has meanµ = 0 and varianceσ2 = e2

3
.

Definition 2: Let A1,i := â1,i + R1,i be the random variable
that models the quantized̂a1,i.

Lemma 1: E(A1,i) = â1,i andV (A1,i) = e2

3
whereE(·) is

the expected value andV (·) is the variance.
Proof: (Sketch)This can be seen by simply substituting the def-

inition of A1,i and regarding Definition 1.2

Definition 3: For l′+l′′ = l, l > 1, letAl,p :=
Al′,p′+Al′′,p′′

2
+

Tl,p · e. Here,Tl,p is a random variable∈ {−1, 0, 1}. Further, let
Rl,p := âl,p − Al,p for l > 1.

Tl,p · e models the effect of rounding in the integer transform on
the unscaled coefficients.

Lemma 2: E(Tl,p) = 0 andV (Tl,p) = 1
2
.

Proof: (Sketch)For the rounding, we distinguish between four
cases (cf. Equation 2): Ifal′,p′ andal′′,p′′ are both even or uneven,
there is no rounding. That is, in two out of four cases,Tl,p = 0.
Otherwise, we either round up (Tl,p = 1) if al′,p′ > al′′,p′′ or
down (Tl,p = −1) if al′,p′ < al′′,p′′ . Both cases are equally likely.
The lemma then follows from the definition of E and V.2

Definition 4: Let Dl,p := Al′′,p′′ − Al′,p′ .
Theorem 2: E(Al,p) = âl,p. E(Dl,p) = d̂l,p.
Remark: As Dl,p incorporates the quantization and the round-

ing, the second statement in the theorem is actually our first claim
(1) for justifying P1.

Proof: The first statement can be proven by induction onl.
For l = 1, the statement is true due to Lemma 1. Assuming
E(Al′,p′) = âl′,p′ andE(Al′′,p′′) = âl′′,p′′ we get:E(Al,p) =

E(
Al′,p′+Al′′,p′′

2
+Tl,p·e) = 1

2
E(Al′,p′)+ 1

2
E(Al′′,p′′)+E(Tl,p)·

e = 1
2
âl′,p′ + 1

2
âl′′,p′′ + 0e = âl,p. The second statement can be

obtained directly:E(Dl,p) = E(Al′′,p′′ −Al′,p′) = E(Al′′,p′′)−

E(Al′,p′) = âl′′,p′′ − âl′,p′ = d̂l,p.2
Lemma 3: V (Al,p) < e2.
Proof: (Induction) Note thatV (Al,p) = V (Rl,p) by definition.

For l = 1, Lemma 3 is true due to Lemma 1.
If V (Al′,p′) = V (Rl′,p′) < e2, V (Al′′,p′′) = V (Rl′′,p′′) < e2

we get:V (Al,p) = V (
Al′,p′+Al′′,p′′

2
+ Tl,p · e)

= V (
âl′,p′+Rl′,p′+âl′′,p′′+Rl′′,p′′

2
+ Tl,p · e)

= 1
4
V (Rl′,p′)+ 1

4
V (Rl′′,p′′)+e2 ·V (Tl,p) < 1

4
e2 + 1

4
e2 +e2 · 1

2

= e2.2
The equality in the second to last line holds asR and T model
roundings and can be assumed to be stochastically independent.

Remark: In this general case,e2 is the smallest upper bound that
can be proven for the variance. It is possible to show via induction
that for a perfectly balanced structure tree that covers l readings,
V (Al,p) = e2 − 1

l
2
3
e2 which quickly converges toe2.

Theorem 3: V (Dl,p) < 2e2.
Proof: V (Dl,p) = V (Al′′,p′′ −Al′,p′) = V (âl′′,p′′ +Rl′′,p′′ −

âl′,p′ − Rl′,p′) = V (Rl′′,p′′) + V (Rl′,p′) < e2 + e2 = 2e2.2
Theorem 2 is the second statement (2) for justifying Proposi-

tion P1 and thus completes our discussion.

6. SENDING APPROXIMATIONS
We conclude the description of SNAP with an optimization re-

garding sending of approximation coefficients. It is based on the
observation that the quantization not only leads to a small set of
detail coefficients – this is exploited by the entropy coding. It also
restricts the set of approximation coefficients to a small number.

Consider a system that collects temperature values withe =
0.1◦C. Suppose that the measurements within the network range
between 18.5274◦C and 23.3883◦C. Then the approximation coef-
ficients must also be within this range. Most notably, there are only
˚

23.3883−18.5274
2·0.1

ˇ

= 25 possible values. In this case, sending an
approximation should not require more than⌈log2(25)⌉ = 5 bits.

Underlying idea. Intuitively, the approximation coefficients will
mostly vary in a small range around the overall averageavgnet.
Assume for now thatavgnet is known. If Nodeni computes an ap-
proximation coefficiental,p and then computes its difference from
the quantized overall averagēal,p = Int(avgnet−minVal

2e
) − al,p,

this differenceāl,p will be a small number. Thus its binary rep-
resentation will be of one of the following forms:0...01X0...Xr,
1...10X0...Xr, or 0...0 for al,p <, > or = avgnet (whereXi =
{0|1}). If we know the remainder (01X0...Xr, 10X0...Xr, or
0...0), we can restorēal,p by prefixing 0’s or 1’s depending on the
first bit. I.e., there is no information in the beginning ofāl,p. The
idea is to only send this remainder.Technically, this requires know-
ing the length of the remainder, which depends on the quantization.

Approach. In general, our optimization works as follows: As-
sume that each node knowsavgnet and the ranger. The latter is
defined as the difference of the max and the min value measured.
To send the information contained inal,p, ni computes̄al,p. It then
truncates̄al,p to the last

˚

log2(
˚

r
2e

ˇ

)
ˇ

bits. The parent ofni recon-
structsal,p by filling up the remainder and adding it toavgnet.

Note that
˚

log2(
˚

r
2e

ˇ

)
ˇ

bits are only sufficient if both values
avgnet andr are accurate. Therefore, the encoding actually used
by SNAP is as follows: If

˚

log2(
˚

r
2e

ˇ

)
ˇ

bits are sufficient, a node
starts the encoding with a ’0’-bit followed by the remainder. ’suffi-
cient’ means that at least01X0...Xr or 10X0...Xr can be captured
to achieve uniqueness. If this condition is not fulfilled, the node
starts the encoding with ’10’ followed by

˚

log2(
˚

r
2e

ˇ

)
ˇ

+ 1 bits.
Note that this effectively doubles the range. In case of any errors,
the encoding can start with ’11’ followed by the originalal,p.

Finally, we say how the nodes get to knowavgnet andr. We do
not require each node to know the max and min value but only the
range which is much more stable in time. The base station simply
maintains these parameters as part of its catalog. In detail, the base
station keeps moving averages foravgnet as well as for the min and
max value per attribute.avgnet or r are distributed along with the
query whenever its deviation from the value currently used exceeds
a threshold. Determining these thresholds is straightforward. The
question is when the length of the remainder changes. Ifavgnet is
correct, the length changes if the range doubles or halves. Ifr is
valid, we need to updateavgnet if it deviates by more thanr. Over-
all, the combination of both parameters must not deviate by more
thanr from the values currently used. This budget should not be
fully exploited since the encoding gets worse if the deviations come
close to these upper bounds. In our implementation, we updater if
the range halves or becomes larger by1

3
. We updateavgnet when-

ever it changes by more than half of the range currently used.

7. EVALUATION
In this section, we demonstrate the performance of SNAP based

on real-world and synthetic sensor data. We will show that SNAP
efficiently consolidates sensor relations even for tight error bounds.

7.1 Experimental Setup
We implemented a prototype of SNAP in the ns-2 network sim-

ulator. It is a widely used simulator that allows for a controlled
environment of our experiments and ensures repeatability.

Query Workload. Our evaluation is based on queries that match
the pattern from our problem specification (cf. Section 3.3). There
are two degrees of freedom in this pattern: (1) the number of at-
tributes in theSELECT-clause and (2) the error budget for each of
them. Both will serve as parameters in our experiments.

Comparison Schemes.In line with the discussion in Section 2,
we compare SNAP to the following schemes:

(1) Wavelet-based approaches.We want to highlight the benefit
of our integration approach of building upon an unmodified routing
tree and using an irregular transform. Two alternatives have been
proposed: Using zero padding to account for the irregular routing
tree [16] and subdividing the network into clusters, each of which
applies a wavelet transform [8]. However, these approaches pro-
vide no error guarantees and are not designed to cope with multiple
attributes. We extended them based on state-of-the-art approaches
for dealing with tuples [9] and for thresholding with error guaran-
tees [22]. In our experiments, we do not account for any overheads
due to these extensions like sending coordinates of the coefficients
or forwarding the remaining error budgets. Thus, we heavily un-
derestimate the costs of the related approaches.

(2) Model-based approaches.We compare SNAP to approaches
based on multivariate Gaussians. While these sophisticated models
have high training costs, they are best when it comes to normal op-
eration. (We do not account for training costs in our experiments.)
[5] has shown that Ken is superior to Caching and Kalman Filters.
Among Ken and BBQ [11], we decided to compare SNAP to Ken
since Ken provides the same error guarantees as SNAP. Note that
the problem of model-based approaches are false predictions for
tight error bounds, which is the same for BBQ and Ken.

(3) Tree-based Data Collection.We compare SNAP to simple
tree-based data collection (TDC). As we will show, for the related
approaches, TDC is among the best for tight error bounds.

Data sets and Setting.Our goal is to evaluate SNAP on real-
world data sets, i.e., traces from WSNs. We used two data sets in
our experiments: The LUCE data [35] and the Intel lab data [19].
SNAP performs equally well on both of them. For brevity, we re-
port on results from LUCE as it covers more attributes. The data
is from a network consisting of 81 nodes when the data was ac-
quired (January 2007). For the experiments based on real data, we
set the size of the network and the relative positions of the nodes to
reflect the setting during the original data collection. We also use
some synthetically generated data sets. Synthetic data is necessary
to evaluate SNAP on large networks and allows us to study extreme
cases. In these experiments we distribute the nodes randomly.

Metrics. Our intention is to capture the communication costs,
as they dominate the power consumption. In the literature, there
are two common metrics: Number of bytes transferred [24] and
number of transmissions (networking packets) [5]. We use both.
For the second metric we set the maximum packet size to 127 bytes
as used by SunSPOTs. Most of the graphs in this text are based on
the other metric: We have conducted our experiments on real data
where the size of the network is 81 nodes. For such sizes, SNAP
builds synopses that fit into a single networking packet. While this
is nice, the problem is that varying parameters has no effect on the
number of packets sent and is pointless. In contrast, the number-
of-bytes metric is well suited to show the data reduction that SNAP
achieves. This carries over to the number-of-transmissions metric,
as we will show as well. Note that the number-of-bytes metric is
independent of the maximum packet size.

0

5000

10000

0.1 0.5 1 2 5

Zero Padding

TDC

Local Transform

SNAP

Factor for max. Error

N
u

m
b

e
r

o
f

B
y
te

s

Figure 6: Comparison of integration approaches (real data)

0

4000

8000

0.1 0.5 1 2 5

Zero Padding

TDC

Local Transform

SNAP

Factor for max. Error

N
u
m

b
e
r

o
f
B

y
te

s

Figure 7: Comparison of integration approaches (synth. data)

Default setting. In each experiment we vary one parameter. If a
parameter is not varied we use the following default value: Among
the attributes of the data set, we query the node ID (no error), ambi-
ent temperature (e = 0.1◦C), surface temperature (e = 0.1◦C) and
relative humidity (e = 0.5%). These attributes were available at
all nodes in the data set. Note that querying for multiple attributes
without involving the IDs is rare in practice.

Varying error bounds. As our queries cover multiple attributes,
if we want to vary the maximum errors, we have to consider all
of the attributes. We simply multiply their default settings with
a factor, ranging from 0.1 to 5. E.g., for the ambient temperature
(default settinge = 0.1◦C), the errors range from 0.01◦C to 0.5◦C.

7.2 Comparative Experiments
Wavelet-based approaches.In a first set of experiments we ex-

amine building upon an irregular transform. We compare SNAP to
zero padding and cluster-based local transforms. The objective is
to give evidence for the following claims: (1) Zero padding results
in many, largedetail coefficients. (2) A cluster-based local trans-
form also suffers from inherent problems and thus cannot result in
small synopses: Only the data within each cluster is decorrelated –
redundancies between clusters are not removed. In addition, as the
number of nodes within a cluster is rarely a power of two, we again
need zero padding to perform local wavelet transforms, though less
than in the tree-based approach.

We compare the approaches for different maximum errors. We
expect all of them to perform better for larger error bounds. Next to
the two wavelet-based approaches and SNAP, we also measure the
performance of TDC, which is independent of the error. The results
are shown in Figure 6. They confirm our expectation. The related
approaches perform worse than a simple TDC. Recall that the costs
of the wavelet-based approaches are underestimated substantially.
In contrast, SNAP outperforms TDC by a factor of about five.

We repeated these experiments on our synthetic data, see Fig-
ure 7. They are in line with those on real data. All approaches
including TDC are slightly better due to differences in the routing
tree. For the synthetic data we placed the nodes randomly.

Model-based approaches. [11] has pointed out that model-
based approaches degrade with tighter error bounds. We want to
show that the performance of SNAP does not degrade as much.
Note that model-based approaches need updates of the model from
time to time, as otherwise all estimations would be out of bounds
after a while. Thus, they only make sense if the network is queried

0

2500

5000

0.1 0.5 1 2 5

TDC

KEN

SNAP

Factor for max. Error

N
u
m

b
e
r

o
f
B

y
te

s

Figure 8: Comparison to Ken (real data)

0

3500

7000

500 1000 1500 2000

TDC

SNAP

Optimum

0

300000

600000

500 1000 1500 2000

TDC

SNAP

Number of Nodes

Number of Nodes

N
u
m

b
e
r

o
f
B

y
te

s

N
u
m

b
e
r

o
f
P

a
c
k
e
ts

Figure 9: Scalability of SNAP (synthetic data)

continuously. We measure the performance of Ken by using a con-
tinuous query and averaging the costs. We query 40 consecutive
snapshots from the real world data set after an extensive training
phase. SNAP is executed on the same 40 snapshots, and we also
average the costs. The results are shown in Figure 8. Note that our
results for Ken are in line with those presented in [5]. Most no-
tably, if the error bounds become less than our default setting, Ken
performs similar to TDC. In contrast, even for bounds an order of
magnitude tighter (factor1

10
), SNAP still achieves a reduction of

the communication costs by factor three.

7.3 Analysis of SNAP
We now study the performance of SNAP. As the performance of

TDC is close to Ken for our default setting, and TDC is relatively
easy to handle, we use TDC as a point of comparison.

Scalability. We are interested in the performance of SNAP for
larger networks. To determine the influence of the network size
we vary the number of nodes from 500 to 2000. At the same time
we vary the area of the network to keep the node density constant.
The experiments are conducted on synthetic data as we do not have
data sets for larger networks. Intuitively, the relative savings of
SNAP over TDC should be independent of the network size. This
is because our synopsis achieves a constant compaction factor of
the data. The results in Figure 9(a) confirm this expectation. To
confirm that the data reduction carries over to the number of trans-
missions, Figure 9(b) graphs the results for this metric. Interest-
ingly, even for 2000 nodes, SNAP sends only about 2500 packets.
That is, SNAP reduces the data such that most of the nodes send
one packet. This is the optimum for the number-of-transmissions
metric, indicated by the black line.

Number of attributes. In this set of experiments we determine
the influence of the number of attributes in the query on SNAP. If
the query exceeds three attributes (plus ID), we additionally query
for solar radiation (e = 0.5 W

m2) and wind speed (e = 0.1m
s

). We
conduct the corresponding measurements on synthetic data because
not all of the nodes in our data set have available the complete set
of sensors. Intuitively, the number of attributes should not have a
major influence on the relative performance of SNAP over TDC.

0

4000

8000

1 2 3 4 5

TDC

SNAP

Number of Attributes (x Attributes + ID)

N
u

m
b

e
r

o
f
B

y
te

s

Figure 10: Influence of the number of attributes (synth. data)

0

2500

5000

0.1 0.5 1 2 5

TDC

worst case

normal case

best case

Factor for max. Error

N
u

m
b

e
r

o
f

B
y
te

s

Figure 11: SNAP: performance on extreme data (synth. data)

On the one hand, more attributes better amortize the overhead in
the detail coefficients for coding the tree structure (two STS bits).
On the other hand, this might require tradeoffs in building the struc-
ture tree – different attributes might prefer different tree structures.
Figure 10 confirms that both influences are minor. The data reduc-
tion becomes slightly better with the number of attributes as the ID,
which is included in all queries, is difficult to compress.

Heuristical vs. optimal structure tree. The following exper-
iment highlights the appropriateness of our heuristic to devise a
structure tree. We compare SNAP (which incorporates the heuris-
tic) to a modified version of SNAP that uses the optimal algorithm.
Both approaches integrate the structure tree into the routing tree.
Thus, the rough structure is the same. Our result is that the heuris-
tic performs within 5% of the optimum.

Extreme data sets.Finally, we are interested in how much the
performance of SNAP depends on spatial correlation in the data.
Therefore, we evaluate SNAP on two extreme data sets. The first
one simulates perfect correlation, i.e., each node measures the same
value on corresponding attributes. This is supposed to be the best
case for SNAP. The second data set simulates uncorrelated data as
a worst case. We set the ranges of the attributes as observed in our
real data and let each node observe a random value from the ranges
for each of the attributes. The results are shown in Figure 11. As
expected, the performance of SNAP degrades with less correlation.
However, the sensitivity is limited. SNAP performs well even on
the uncorrelated data. This also explains why we observe a similar
performance of SNAP on both real-world data sets.

8. CONCLUSIONS
This paper studies the evaluation of queries with low selectivity

in sensor networks. Prior work has addressed non-selective queries
by approximating results based on models. The solutions work well
if the accuracy requirements are loose. For more accuracy, commu-
nication costs increase quickly. This paper has presented SNAP, a
wavelet-based approach for efficient consolidation of sensor rela-
tions. SNAP constructs the synopsis during data collection incre-
mentally. As a core contribution, we have shown how to distribute
the wavelet transform and the thresholding step. We have done so
by integrating the transform into an unmodified routing tree. To ob-
tain a synopsis we have explored a design that encodes coefficients
compactly instead of discarding them. To distribute this mecha-
nism, we have proposed an approach to estimate the frequencies of
coefficients. SNAP is the first distributed solution to the threshold-

ing problem with error guarantees. It achieves a data reduction by
more than a factor of five and improves the accuracy for which data
can be efficiently consolidated by more than an order of magnitude.

Acknowledgements.This work was partially supported by the
German Research Foundation (DFG) within the Research Train-
ing Group GRK 1194 "Self-organizing Sensor-Actuator Networks"
(GRK1194) and by the Landesstiftung Baden-Württemberg as part
of Project "ZeuS". We are grateful to Björn Reuber for much help.

9. REFERENCES
[1] J. Acimovic, R. Cristescu, and B. Beferull-Lozano. Efficient

distributed multiresolution processing for data gathering in
sensor networks. InICASSP, 2005.

[2] A. R. Calderbank, I. Daubechies, W. Sweldens, and B. lock
Yeo. Wavelet transforms that map integers to integers.J.
Appl. Comput. Harmonic Anal., 5:332–369, 1998.

[3] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim.
Approximate query processing using wavelets. InVLDB,
2000.

[4] S. G. Chang and M. Vetterli. Adaptive wavelet thresholding
for image denoising and compression.IEEE Transactions on
Image Processing, 9(9):1532–1546, 2000.

[5] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong.
Approximate data collection in sensor networks using
probabilistic models. InICDE, 2006.

[6] A. Ciancio and A. Ortega. A distributed wavelet compression
algorithm for wireless multihop sensor networks using
lifting. In ICASSP, 2005.

[7] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate
aggregation techniques for sensor databases. InICDE, 2004.

[8] X. T. Dang, N. Bulusu, and W. chi Feng. Rida: A robust
information-driven data compression architecture for
irregular wireless sensor networks. InEWSN, 2007.

[9] A. Deligiannakis, M. Garofalakis, and N. Roussopoulos.
Extended wavelets for multiple measures.ACM Transactions
on Database Systems (TODS), 32(2):10, 2007.

[10] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos.
Hierarchical in-network data aggregation with quality
guarantees. InEDBT, 2004.

[11] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks. InVLDB, 2004.

[12] M. Garofalakis and P. B. Gibbons. Wavelet synopses with
error guarantees. InACM SIGMOD, 2002.

[13] M. Garofalakis and A. Kumar. Deterministic wavelet
thresholding for maximum-error metrics. InPODS, 2004.

[14] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss.
Surfing wavelets on streams: One-pass summaries for
approximate aggregate queries. InVLDB, 2001.

[15] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and
S. Madden. Distributed regression: an efficient framework
for modeling sensor network data. InIPSN, 2004.

[16] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek.
Beyond average: Toward sophisticated sensing with queries.
In IPSN, 2003.

[17] J. M. Hellerstein and W. Wang. Optimization of in-network
data reduction. InDMSN Workshop, 2004.

[18] D. A. Huffman. A method for the construction of
minimum-redundancy codes.Proc. Inst. Radio Eng.,
40(9):1098–1101, 1952.

[19] http://db.csail.mit.edu/labdata/labdata.html.

[20] A. Jain, E. Y. Chang, and Y.-F. Wang. Adaptive stream
resource management using kalman filters. InSIGMOD,
2004.

[21] A. K. Jain and R. C. Dubes.Algorithms for clustering data.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.

[22] P. Karras and N. Mamoulis. One-pass wavelet synopses for
maximum-error metrics. InVLDB, 2005.

[23] Y. Kotidis. Snapshot queries: Towards data-centric sensor
networks. InICDE, 2005.

[24] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: A Tiny AGgregation service for ad-hoc sensor
networks. InOSDI, 2002.

[25] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
The design of an acquisitional query processor for sensor
networks. InSIGMOD, 2003.

[26] D. W. Marquardt. An algorithm for least-squares estimation
of nonlinear parameters.SIAM Journal on Applied
Mathematics, 11(2):431–441, June 1963.

[27] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based
histograms for selectivity estimation. InSIGMOD, 1998.

[28] Y. Matias, J. S. Vitter, and M. Wang. Dynamic maintenance
of wavelet-based histograms. InVLDB, 2000.

[29] A. Moffat, R. M. Neal, and I. H. Witten. Arithmetic coding
revisited.ACM Trans. Inf. Syst., 16(3):256–294, 1998.

[30] F. Murtagh. The haar wavelet transform of a dendrogram.
Journal of Classification, 24(1):3–32, 2007.

[31] C. Olston, B. T. Loo, and J. Widom. Adaptive precision
setting for cached approximate values. InSIGMOD, 2001.

[32] Sensinet enables fda-compliant temperature monitoring and
data collection. http://www.sensicast.com/uploadedFiles/CS-
Pharma.10.06_casestudy.pdf.

[33] D. Sacharidis, A. Deligiannakis, and T. K. Sellis.
Hierarchically compressed wavelet synopses.VLDBJ,
18:203–231, 2009.

[34] W. Scheufele and G. Moerkotte. On the complexity of
generating optimal plans with cross products (extended
abstract). InACM PODS, 1997.

[35] http://sensorscope.epfl.ch/index.php/Environmental_Data.
[36] E. J. Stollnitz, T. D. Derose, and D. H. Salesin.Wavelets for

computer graphics: theory and applications. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1996.

[37] D. Tulone and S. Madden. An energy-efficient querying
framework in sensor networks for detecting node similarities.
In ACM MSWiM symposium, 2006.

[38] D. Tulone and S. Madden. Paq: time series forecasting for
approximate query answering in sensor networks. InEWSN,
2006.

[39] J. S. Vitter and M. Wang. Approximate computation of
multidimensional aggregates of sparse data using wavelets.
In ACM SIGMOD, 1999.

[40] R. S. Wagner, R. G. Baraniuk, S. Du, D. B. Johnson, and
A. Cohen. An architecture for distributed wavelet analysis
and processing in sensor networks. InIPSN, 2006.

[41] J. Werb. Making sense of the sensor network value chain.
http://www.sensicast.com/uploadedFiles/Resource_Center/
Making_Sense_of_the_Sensor_Network_Value_Chain.pdf.

[42] Y. Yao and J. Gehrke. Query processing for sensor networks.
In CIDR, 2003.

[43] S. Zhou, Y. Lin, J. Wang, J. Zhang, and J. Ouyang.
Compressing spatial and temporal correlated data in wireless
sensor networks based on ring topology. InWAIM, 2006.

