
Streams on Wires — A Query Compiler for FPGAs

Rene Mueller
rene.mueller@inf.ethz.ch

Jens Teubner
jens.teubner@inf.ethz.ch

Gustavo Alonso
alonso@inf.ethz.ch

Systems Group, Department of Computer Science, ETH Zurich, Switzerland

ABSTRACT
Taking advantage of many-core, heterogeneous hardware for
data processing tasks is a difficult problem. In this paper, we
consider the use of FPGAs for data stream processing as co-
processors in many-core architectures. We present Glacier,
a component library and compositional compiler that trans-
forms continuous queries into logic circuits by composing
library components on an operator-level basis. In the pa-
per we consider selection, aggregation, grouping, as well as
windowing operators, and discuss their design as modular
elements.

We also show how significant performance improvements
can be achieved by inserting the FPGA into the system’s
data path (e.g., between the network interface and the host
CPU). Our experiments show that queries on the FPGA
can process streams at more than one million tuples per
second and that they can do this directly from the network,
removing much of the overhead of transferring the data to
a conventional CPU.

1. INTRODUCTION
The current trends in hardware architecture towards many-

core, heterogeneous machines open up interesting opportuni-
ties and difficult challenges for conventional data processing
engines. While some of the known problems do not go away
and even become more acute (the memory wall or the I/O
bottleneck), new complex problems arise such as how to ex-
ploit the parallelism of many-core architectures; how to deal
with heterogeneous cores; or the increasing intra-host com-
munication overhead. An example of how future machines
may look like is the Cell Broadband Engine which provides
eight specialized “synergistic processing units” (SPUs) next
to a general-purpose CPU. Similarly, hardware vendors have
already announced that future cores in a many-core machine
will not contain identical CPUs. Some will have floating
point units while others will not; some will provide larger
instruction sets than others; and some will just not be CPUs
at all.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

The Avalanche project at ETH Zurich addresses the chal-
lenging questions raised by these scenarios. In Avalanche,
we study the impact of modern computer architectures on
data processing. As part of the efforts around Avalanche,
we assess the potential of using FPGAs as additional cores
in many-core machines and how they could be exploited for
data processing purposes.

In this paper, we report on the work we have done devel-
oping Glacier, a library of components and a basic compiler
for continuous queries implemented on top of an FPGA.
The ultimate goal of this line of work is to develop a hy-
brid data stream processing engine where an optimizer dis-
tributes query workloads across a set of CPUs (general-
purpose or specialized) and FPGA chips. In here, we focus
on how conventional streaming operators can be mapped to
circuits on an FPGA; how they can be combined into queries
over data streams; the proper system setup for the FPGA
to operate in combination with an external CPU; and the
actual performance that can be reached with the resulting
system.

The paper makes the following contributions:

1. We describe Glacier, a component library and compiler
for FPGA-based data stream processing. Besides clas-
sical streaming operators, Glacier includes specialized
building blocks needed in the FPGA context. With the
operators and specialized building blocks, we show how
Glacier can be used to produce FPGA circuits that im-
plement a wide variety of streaming queries.

2. Since FPGAs behave very differently than software, we
provide an in-depth analysis of the complexity and per-
formance of the resulting circuits. We discuss latency
and issue rates as the relevant metrics that need to be
considered by an optimizing plan generator.

3. Finally, we evaluate the end-to-end performance of an
FPGA inserted between the network and the CPU, run-
ning a query compiled with Glacier. Our results show
that the FPGA can process streams at a rate beyond one
million tuples per second, far more than the CPU could.

Our work is organized as follows. The upcoming Sec-
tion 2 motivates our work with an actual use case, before we
give technical background on FPGAs (Section 3). Section 4
describes the Glacier compiler, which is complemented by
auxiliary circuitry described in Section 5. Sections 6 and
7 describe opportunities for optimization and evaluate our
work (respectively). We discuss related work in Section 8
and wrap up in Section 9.

2. STREAMS IN SOFTWARE

2.1 Motivating Application
Our running example is based on an ongoing collabora-

tion with a Swiss bank. Their financial trading application
receives data from a set of streams with up-to-date market
information from different stock exchanges. The information
is sent via UDP broadcast messages and in small packages
(to reduce latency). The main challenge is the data rate at
which messages arrive. By the end of next year, this rate is
going to approach 3 million messages per second [15].

Traditional techniques such as load shedding [17] cannot
be applied in trading applications because of potential fi-
nancial loss. This is particularly true in peak situations,
which typically indicate a turbulent market situation. At
the same time, latency is critical and measured in units of
microseconds (µs).

To abstract from the real application, we assume an input
stream that contains a reduced set of information about each
trade handled by Eurex (the actual streams are implemented
as a compressed representation of the feature-rich FIX pro-
tocol [4]). Expressed in the syntax of StreamBase [16], the
schema of our data would read:

CREATE INPUT STREAM Trades (
Seqnr int, -- sequence number
Symbol string(4), -- valor symbol
Price int, -- stock price
Volume int) -- trade volume

To keep matters simple, we look at queries that process
a single data stream only. In particular, we disallow the
use of joins. To facilitate the allocation of resources on the
FPGA, we restrict ourselves to queries with a predictable
space requirement. We do allow aggregation queries and
windowing; in fact, we particularly look at such functionality
in the second half of Section 4.

These restrictions can be lifted with techniques that are
no different to those applied in software-based systems. The
necessary FPGA circuitry, however, would introduce addi-
tional complexity and only distract from the FPGA-inherent
considerations that are the main focus of this work.

2.2 Example Queries
Our first set of example queries is designed to illustrate

a hardware-based implementation for the most basic oper-
ators in stream processing. Queries Q1 and Q2 use simple
projections as well as selections and compound predicates:

SELECT Price, Volume
FROM Trades

WHERE Symbol = "UBSN"
INTO UBSTrades

(Q1)

SELECT Price, Volume
FROM Trades

WHERE Symbol = "UBSN" AND Volume > 100000
INTO LargeUBSTrades

(Q2)

Financial analytics often depend on statistical information
from the data stream. Using sliding-window and grouping
functionality, Query Q3 counts the number of trades of UBS
shares over the last 10 minutes (600 seconds) and returns
the aggregate every minute. In Query Q4, we assume the
presence of an aggregation function wsum that computes the
weighted sum over the prices seen in the last four trades

πa1,...,an(q) projection

σa(q) select tuples where field a contains true

?○a:(b1,b2)(q) arithmetic/Boolean operation a = b1 ? b2

q1 ∪ q2 union

aggb:a(q) aggregate agg using input field a,
agg ∈ {avg, count, max, min, sum}

q1 grpx|c q2(x) group output of q1 by field c, then
invoke q2 with x substituted by the group

q1 �t
x|k,l q2(x) sliding window with size k, advance by l;

apply q2 with x substituted on each wind.;
t ∈ {time, tuple}: time-, or tuple-based

q1 q2 concatenation; position-based field join

Table 1: Supported streaming algebra (a, b, c: field
names; q, qi: sub-plans; x: parameterized sub-plan
input).

of UBS stocks (similar functionality is used, e.g., to im-
plement finite-impulse response filters). Finally, Query Q5

determines the average trade prices for each stock symbol
over the last ten-minutes window:

SELECT count () AS Number
FROM Trades [SIZE 600 ADVANCE 60 TIME]

WHERE Symbol = "UBSN"
INTO NumUBSTrades

(Q3)

SELECT wsum (Price, [.5, .25, .125, .125]) AS Wprice
FROM (SELECT * FROM Trades

WHERE Symbol = "UBSN")
[SIZE 4 ADVANCE 1 TUPLES]

INTO WeightedUBSTrades

(Q4)

SELECT Symbol, avg (Price) AS AvgPrice
FROM Trades [SIZE 600 ADVANCE 60 TIME]

GROUP BY Symbol
INTO PriceAverages

(Q5)

We use these five queries in the following to demonstrate
various features as well as the compositionality of the Glacier
compiler.

2.3 Algebraic Plans
Input to our compiler is a query representation in an alge-

bra for streaming queries. Our compiler currently supports
the algebra dialect listed in Table 1, whereby operators may
be composed in an arbitrary fashion.

Our algebra uses an “assembly-style” representation that
breaks down selection, arithmetics, and predicate evaluation
into separate algebra operators. In earlier work, we found a
similar representation also suited to express, e.g., the seman-
tics of XQuery [11]. In the context of the current work, the
notation turns out to have nice correspondences to the data
flow in a hardware circuit and helps detecting opportunities
for parallel evaluation.

Figure 1 illustrates how our streaming algebra can be used
to express the semantics of Queries Q1 through Q5. Observe
how in Figure 1(a), e.g., operator =○ makes the comparison
of each input tuple with the requested stock symbol “UBSN”
explicit. Its output, the new column a, is used afterwards
to filter out non-qualifying tuples (operator σa).

The concatenate operator represents what could be
called a “join by position”. Tuples from both input streams
are combined into a wide result tuple in the order in which

UBSTrades

πPrice,Volume

σa

=○a:(Symbol,"UBSN")

Trades

(a) Query Q1

LargeUBSTrades

πPrice,Volume

σc

∧○c:(a,b)

>○b:(Volume,100000)

=○a:(Symbol,"UBSN")

Trades

(b) Query Q2

NumUBSTrades

�time
x|600,60

Trades countNumber

σa

=○a:(Symbol,"UBSN")

x

(c) Query Q3

WeightedUBSTrades

�tuple
x|4,1

σa

=○a:(Symbol,"UBSN")

Trades

wsumWPrice:(Price,[···])

x

(d) Query Q4

PriceAverages

�time
x|600,60

Trades grpy|Symbol

x avgAvgPrice:Price

y

(e) Query Q5

Figure 1: Algebraic query plans for the five example queries Q1 to Q5.

6-to-1 lookup tables 69,120
flip-flops (1-bit registers) 69,120
block RAM 296×18 kbit
25×18-bit multipliers 64
typical clock rate 100 MHz

Table 2: Xilinx XC5VLX110T characteristics.

they arrive. The operator is necessary, for instance, to evalu-
ate and return different aggregation functions over the same
input stream.

3. FPGAS FOR STREAM PROCESSING
At its very heart, every FPGA chip consists of three main

types of components. A large number of lookup tables (LUTs)
provides a programmable type of logic gates. Each lookup
table can implement an arbitrary 6 bit 7→ 1 bit function.
Lookup tables are wired through an interconnect network
that can route signals across the chip. Finally, flip-flops
(also called registers) provide 1-bit storage units that can
directly be wired into the remaining logic.

The behavior of lookup tables, the wiring of the intercon-
nect, and the initial state of the flip-flops can all be con-
figured by software. The actual configuration is typically
described using a hardware description language (such as
VHDL or Verilog) and loaded into the FPGA.

Most FPGA chips have additional functionality available
as hard-wired silicon components. Examples of this include
low-latency on-chip memory (block RAM or BRAM), hard-
ware multipliers, floating-point units, or even full-fledged
CPU cores. The hardware we used to evaluate our work,
e.g., includes 666 kByte block RAM. Table 2 shows the char-
acteristics of the FPGA we use in this paper. Configurable
I/O pins let the FPGA chip communicate with peripheral
hardware, such as external RAM, network, or storage bus
interfaces.

3.1 Content-Addressable Memory
The main advantage of using FPGAs for data process-

ing is their intrinsic parallelism. Among others, this en-
ables us to escape from the von Neumann bottleneck (also
called the memory wall) that classical computing architec-
tures struggle with. In the common von Neumann model,
memory is physically separated from the processing CPU.
Data is acquired from memory by sending the location of

a piece of data, its address, to the RAM chip, then receiv-
ing the data back. In FPGAs, flip-flop registers and block
RAM are distributed over the chip and tightly wired to the
programmable logic. In addition, lookup tables can be re-
programmed at runtime and thus be used as additional dis-
tributed memory. As such, the on-chip storage resources of
the FPGA can be accessed in a truly parallel fashion.

A particular use of this potential is the implementation
of content-addressable memory (CAM). Other than tradi-
tional memory, content-addressable memory can be accessed
by data values, rather than by explicit memory addresses.
Typically, CAMs are used to resolve a given data item to
the address it has been stored at. More generally, the func-
tionality can implement an arbitrary key-value store with
constant (typically single-cycle) lookup time.

We refer to the work of Guccione et al. [12] or documenta-
tion provided by Xilinx [18] for details on FPGA-based CAM
implementations. In Section 4.7, we use content-addressable
memory to implement lookups during ‘group by’ execution.
The access pattern in this context, frequent lookups with
rare updates, suggests the use of a CAM implementation
that is based on lookup tables. It excels with very high
lookup speeds (a fraction of a clock cycle), but has a 16-cycle
latency for updates. As an alternative, a block RAM-based
implementation would require a full cycle for lookups and
two cycles for updates.

3.2 System Setup
FPGAs can mimic arbitrary logic functionality by mere

reconfiguration. In contrast to existing special-purpose hard-
ware (such as graphics or floating-point processors), this
makes the role of an FPGA inside the overall system not
predetermined. By implementing the respective bus proto-
cols, e.g., FPGAs can be connected to memory or peripheral
buses, communicate with external devices, or any combina-
tion thereof.

Figure 2 shows the two possible configurations that are
most relevant to the goals of this paper. In the top part
of this figure (method (a)), the FPGA is directly connected
to the physical network interface, with parts of the network
controller implemented inside the FPGA fabric. After re-
ception, data from the network is directly fed into the hard-
ware implementation of a database query plan. The host
CPU only becomes involved once result items have been
produced for the user query. Using DMA, the Glacier li-
brary writes the result tuples from the FPGA into the sys-

network NIC (a)

(b)

notification

Main
Memory

CPU

notification

Main
Memory

CPU

FPGA

π

stream
data

σ �

FPGA

π σ �

query plan

query plan

stream
data

Figure 2: System Architectures: (a) Stream engine
between network interface and CPU. (b) Stream
engine as a coprocessor to the CPU.

tem main memory, then informs the host CPU about the
arrival of new data (e.g., by raising an interrupt).

Alternatively, the FPGA can also be used in a traditional
co-processor setup, as illustrated in Figure 2 (b). Here, the
CPU hands over data to the FPGA either by writing directly
into FPGA registers (so-called slave registers) or it prepares
the input data into a shared RAM region, then sends a work
request to the FPGA-based co-processor.

The architecture in Figure 2 (a) fits a pattern that is
highly common in data stream applications. Oftentimes,
rate-reducing filtering or aggregation stages precede more
complex high-level processing (done on the CPU). Even sim-
ple filter stages, fully supported by the algebra dialect we
discuss in this paper, suffice to significantly reduce the load
on the back-end CPU. In algorithmic trading, for instance,
they discard about 90 % of all input data. Only the re-
maining 10 % of the data actually hit the CPU, which sig-
nificantly increases the applied load that the system can
sustain.

3.3 Query Compilation
Figure 3 illustrates the compilation process from algebraic

plans to FPGA circuits. The input to the Glacier compiler
are algebraic plans of the kind introduced in Section 2.3.
The compiler applies compilation rules (Section 4) and op-
timization heuristics (Section 6), then emits the description
of a logic circuit that implements the input plan.

The generated circuits are expressed in VHDL hardware
description language. The VHDL code is fed to the Xilinx
synthesizer tool which creates the actual low-level, FPGA-
specific representation of the circuit (configuration of the
LUTs and the interconnect network). The output of the
synthesizer is then used to program the FPGA. In Figure 3,
the compilation of VHDL code into an FPGA configuration
follows the usual design flow in traditional FPGAs design.
Using Glacier, the creation of VHDL code can be fully au-
tomated.

4. FROM QUERIES TO CIRCUITS
Using pre-built components from the Glacier library, each

operator in Table 1 can be compiled into a hardware circuit
in a systematic way. To ensure the full compositionality of
the translation rules later in this section, every translated

query plans
algebraic

Glacier
Code
VHDL

Xilinx

circuit
on FPGA

Synthesizer

Figure 3: Compilation of abstract query plans into
hardware circuits for the FPGA.

sub-plan adheres to the same well-defined wiring interface.

4.1 Wiring Interface
As in data streaming engines, our processing model is en-

tirely push-based. Each n-bit-wide tuple is represented as
a set of n parallel wires in the FPGA fabric. On a set of
wires, a new tuple can be propagated in every cycle of the
FPGA’s system clock (i.e., 100 million tuples per second).
An additional data valid line signals the presence of a tuple
in a given clock cycle. Tuples are only considered to be part
of the data stream if their data valid flag is set to true, i.e.,
if the data valid line carries an electrical “high” signal.

In the following, we use rectangles to represent logic com-
ponents (with the exception of multiplexers, for which we
use the common trapezoid notation). Our circuits are all
clock-driven or synchronized and every operator in our li-
brary writes its output into a flip-flop register after pro-
cessing. We indicate registers as gray-shaded boxes and

q

make the data valid flag explicit as
each operator’s leftmost output. For
instance, we depict the black-box
view of a hardware implementation
for a query q as shown on the right.

We use arrows to denote the wiring between hardware
components. Wherever appropriate, we identify those lines
from a tuple bus that correspond to a specific tuple field
with a label at the respective input/output port. The label
‘∗’ stands for “all remaining fields”. We do not represent
the order of fields within a tuple. The hardware plan for the
algebra expression σa(q) can thus be illustrated as

q

&
a ∗

.

In this circuit, the logical ‘and’ gate invalidates the output
tuple whenever field a contains false.

4.1.1 Circuit Characteristics
The above circuit will compute its output in a single clock

cycle and will be ready to consume a new input tuple at
every tick of the clock. We say that its latency and issue
rate are both 1. In general, circuits may need more than one
cycle until the result of their computation can be picked up
at the operator output—they have a latency that is larger
than 1. Due to their semantics, circuits that implement
grouping or windowing cannot produce output before they
have seen the last tuple of the respective query window.
For these operators, we define latency to be the number of
clock cycles between the closing of the input window and
the generation of the first output tuple.

We define the issue rate as the number of tuples that can
be processed per clock cycle. The issue rate is always ≤ 1.

For example, an operator that can accept a tuple every five
cycles has an issue rate of 0.2.

Some operations can be pipelined. The corresponding cir-
cuits will be ready to consume new input already before
the output of the preceding tuple has been fully computed.
Their issue rate is higher than the reciprocal value of their
latency.

Latency and issue rate are important parameters to de-
termine the performance of a hardware circuit. Latency di-
rectly corresponds to the observable response time, whereas
the issue rate determines throughput.

4.1.2 Synchronization
Both properties sometimes also need to be considered dur-

ing query compilation. For instance, all compilation rules
must ensure that a generated circuit will never try to push
two tuples in successive cycles into an operator that has
an issue rate less than one. We use two types of logic
components to implement the synchronization between sub-
circuits:

FIFO queues act as short-term buffers for streams with
a varying data rate. They emit data at a predictable
rate, typically the issue rate of an upstream sub-circuit.
Note that, at runtime, the average input rate must not
exceed what is achievable with the output rate.

In most practical cases, the depth of the FIFO can be
kept very low. This not only implies a small resource
footprint, but also means that the impact on the over-
all latency is typically small.

Delay operators z−n can block data items for a fixed num-
ber of cycles n. This can be used, e.g., to properly syn-
chronize the output of slow arithmetic operators with
the remaining tuple flow (the circuit below implements
?○a:(b1,b2)(q); assume that the latency of ? is 2):

q

z−2 ?

b1 b2

z−2

a

∗
.

4.2 Selection and Projection
We saw earlier how our assembly-style selection opera-

tor σa can be cast into a hardware circuit. Compilation
Rule Sel formalizes this translation in the notation we also
use in the remainder of this work. We use the Z⇒ symbol to
indicate the “compiles to” relation and, as before, assume
that a rectangle labeled q is the circuit that results from
compiling q:

σa(q) Z⇒

q

&
a ∗

. (Sel)

Note that the resulting circuit leaves all tuples essentially
intact, but invalidates discarded tuples by setting their data
valid flag to false. This is very similar in nature to the
“selection vectors” that MonetDB/X100 [13] uses to avoid
data copying.

The logical ‘and’ gate & completes within a single cy-
cle. Therefore, the latency and the issue rate of the circuit
generated for σa are both 1.

Here, we use the projection operator πa1,...,an to discard
fields from the tuple flow. Support for field renaming (often
expressed using the π operator) is a straightforward exten-
sion of what we present here.

Discarding a field from the tuple flow simply means to
not wire the respective output ports with any inputs further
down the data path, as shown in Rule Proj:

πa1,...,an(q) Z⇒

q

a1 an

· · ·
∗ . (Proj)

This implementation for πa1,...,an has an interesting side
effect. Our compiler emits the description of a hardware cir-
cuit that is passed into a synthesizer to generate the actual
hardware configuration for the FPGA. The synthesizer op-
timizes out “dangling wires”, effectively implementing pro-
jection pushdown for free.

There is no actual work to do at runtime (though fields
are propagated into a new set of registers). Latency and
issue rate of this implementation for projection are both 1.

4.3 Arithmetics and Boolean Operations
As indicated in Table 1, we use the generic ?○a:(b1,b2) op-

erator to represent arithmetic computations, value compar-
isons or Boolean connectives in relational plans. The in-
stance

=○a:(b1,b2)(q) ,

e.g., will emit all fields in q, extended by a new field a that
contains the outcome of b1 = b2.

This semantics directly translates into an implementation
in logic (we saw a similar circuit a moment ago):

=○a:(b1,b2)(q) Z⇒

q

=
b1 b2

a

∗
. (Equals)

Most simple arithmetic or Boolean operations will run within
a single clock cycle. More complex tasks, such as multipli-
cation/division, or floating-point arithmetics, may require
additional latency. Sometimes, the actual circuit that im-
plements ? can be tuned within the trade-offs latency, is-
sue rate, and chip space consumption. If the latency of ? is
greater than one, delay operators have to be introduced to
synchronize the operator output with the remaining fields
(as shown before in Section 4.1.2).

Example. With the rules we have seen so far, we can now
translate our first example query into a hardware circuit. In
Figure 4, we illustrated the circuit that results from applying
our compilation rules to Query Q1.

The hardware circuit quite literally reflects the shape of
the algebraic plan. Each of the operators can individually
operate in a single cycle (i.e., have latency and issue rates
of one). Since all plan operators are applied sequentially,
latencies add up and the circuit in Figure 4 has an overall
latency of three. By contrast, the issue rate of a pipelined
execution plan is determined by its slowest sub-plan. Since

Trades

=
Symbol "UBSN"

a

∗
=○a:(Symbol,"UBSN")

&
a ∗

σa

Price Volume ∗
πPrice,Volume

Figure 4: Compiled hardware execution plan for
Query Q1. Latency of this circuit is 3, issue rate 1.

all sub-plans have an issue rate of one, this is also the rate
of the complete plan. 2

4.4 Union
From a data flow point of view, the task of an algebraic

union operator ∪ is to accumulate the output of several
source streams into a single output stream. Since, in our
case, all source streams operate truly in parallel, a hardware
implementation for ∪ needs to ensure proper synchroniza-
tion. We do so by buffering all input ports using FIFOs:

4-way union FIFOs

A state machine inside the union component then for-
wards tuples from the input FIFOs in a round-robin fashion
and emits them as the union result.

Though every individual input may feed into the union
component at an arbitrary tuple rate (i.e., issue rate 1), the
average rate of all input streams together must not exceed
more than one tuple per cycle, which is the maximum tu-
ple rate that the union component can forward up-stream
the data path. In terms of latency, the state machine inside
the operator requires a single cycle to process. The FIFOs
at the input, implemented using either flip-flop registers or
block RAM (a resource trade-off), add another latency cy-
cle. The overall circuit therefore has a minimum latency of
2. Depending on the input data distribution, however, the
observed latency may be higher whenever tuples queue up
in an input FIFO.

Strictly speaking, a binary union component is sufficient
to implement the algebraic ∪ operator:

q1 ∪ q2 Z⇒
2-way union

q1

∗
q2

∗ . (Union)

As we will see in the following, however, the availability of
a general, n-way union implementation eases the implemen-
tation of other functionality.

4.5 Windowing
The concept of windowing bridges the gap between stream

processing and relational-style semantics. The operation
q1 �x|k,l q2 consumes the output of its left-hand sub-plan
(q1) and slices it into a set of windows. For each window,
�x|k,l invokes a parameterized execution of the right-hand
sub-plan q2(x), with each occurrence of x replaced by the

q1 �x|k,l q2(x) Z⇒

q2

&

&

eos q2

&

&

eos q2

&

&

eos q2

&

&

eos

1 1 0 1 CSR1

q1

∗

0 0 0 1 CSR2

adv
n-way union

∗ ∗ ∗ ∗

(Wind)

Figure 5: Compilation rule for windowing operator
� (shown for an instance with at most three windows
open in parallel).

current window. Sub-plan q2 thus sees a finite input for
every execution and may, e.g., use aggregation in a seman-
tically sound manner.

Our compiler implements this semantics by wrapping q2
into a template circuit (full compilation rule shown in Fig-
ure 5). We introduce an additional input signal eos (“end of
stream”) next to the data valid. It is asserted “high” when
a window closes to notify the sub-plan that it has seen all
elements of that window. The signal typically triggers the
sub-plan to start generating output tuples.

A common use case are sliding windows, where input tu-
ples belong to several windows at the same time. Here we
can exploit the available parallelism on the FPGA chip. We
replicate the hardware plan of q2 as many times n as there
may be windows open in parallel during query execution,
plus 1. For time- and tuple-based windows, e.g., we have
that n = dk/le + 1 (where k is the window size and l is the
size of the slide). In Figure 5, we assume n = 4 (i.e., at most
three windows open in parallel). To keep matters simple, we
assume that k is a multiple of l; the extension to the general
case is straightforward.

We use the cyclic shift register CSR1 (indicated as a dashed
box in Figure 5) to keep track of window states. For every
instance of the sub-plan q2, this shift register carries the in-
formation whether the instance actively processes an open
window. Figure 5 assumes that three windows are open in
parallel, i.e., three bits are set in CSR1. Whenever the end
of a window is reached, triggering the “advance” signal adv
rotates the shift register (to the right), such that the oldest
open window is closed and a new one opened. The signal adv
may be driven either by a clock (for time-based windows) or
by a counter that implements tuple-based windows.

Parallel to advancing CSR1, we send an eos signal to the
sub-plan that processes the oldest open window. This sub-
plan will then start producing output and feed it to the up-
stream plan through a union operator. While doing so, the
sub-plan will have the 0-bit in CSR1, i.e., it will not receive
any new input while emitting tuples. To communicate the
eos signal to the correct sub-plan, we use a second shift
register CSR2, shifted in sync with CSR1. The single bit in

wsum

&

&

eos
wsum

&

&

eos
wsum

&

&

eos
wsum

&

&

eos
wsum

&

&

eos

1 0 1 1 1 CSR1

∗

0 0 1 0 0 CSR2

counter
adv

5-way union

WPrice WPrice WPrice WPrice WPrice

&
a ∗

σa

Trades

=
Symbol "UBSN"

a

∗
=○a:(Symbol,"UBSN")

Figure 6: Hardware execution plan for Query Q4.

CSR2 identifies the oldest open window.

Example. The hardware circuit that implements the sliding-
window query Q4 is shown in Figure 6. With the windowing
clause [SIZE 4 ADVANCE 1 TUPLES], at most four windows
can be open together at any point in time. Hence, we in-
stantiate five copies of the wsum sub-plan. The window type
of this query is tuple-based. The ‘counter’ component on
the left counts incoming tuples and sends the adv signal as
often as specified by the query’s ADVANCE clause (in this par-
ticular case, ADVANCE = 1 and we could simplify our circuit
by directly routing data valid to the adv line). 2

Signal processing in the windowing part of the plan is im-
plemented fully asynchronously. It fits into a single clock
cycle and is fully pipelineable. The latency of the overall
circuit thus is the latency of the inner plan plus 2 (the la-
tency of the n-way union operator). The issue rate is the
one of the inner circuit.

4.6 Aggregation
Other than the previous operators, aggregation functions

(count, min, max, avg, . . .) assume a finite input data set.
Typically, they are applied on windows. As seen in the pre-
vious section, windowing breaks a potentially infinite stream
into finite sub-streams.

In practice (and as implemented in the previous section),
tuples are streamed into a set of open windows immediately
after arrival, rather than batching them up until a window
closes. The eos signal to notifies the aggregation circuit
when a window closes or when the end of the current input
stream has been reached (for example when a finite input
from a persistent database table has been fully consumed).

Note that the window operator itself does not provide
storage for data elements. The tuples are directly forwarded
and therefore storage needs to be provided by the imple-
mentation of the aggregation function instead. This has the
advantage that each aggregation function needs to provide
storage just for the amount of state it requires, rather than
maintaining the entire window. Following [9], we classify

aggregation functions as follows:

Algebraic Aggregate Functions. We implement alge-
braic aggregate functions (i.e., ones that use a fixed amount
of state) [9] in a straightforward fashion. To implement
count, e.g., we use a standard counter component and wire
its trigger input to the data valid signal of the input stream.
Once we reach the end of the current stream, we (a) emit
the counter value to the upstream data path and (b) reset
the counter to zero to prepare for the next input stream.

In the translation rule for counta(q),

counta(q) Z⇒

q

counter

eos

rst

a

∗
, (Count)

we forward the eos signal to the data valid output register
to implement (a) and feed the same signal into the reset
input of the counter to implement (b). Note that counta

constructs a new output field without reading any particu-
lar input value. The operator emits no other field but the
aggregate (we handle grouping separately, see next). For
the algebraic aggregates we consider, count, sum, avg, min,
and max, the latency is one cycle. A tuple can be applied at
the input every clock cycle (the issue rate is 1).

Holistic Aggregate Functions. For some aggregate func-
tions, the state required is not within constant bounds. They
need to batch (parts of) their input until the aggregate can
be computed when the end of the stream is seen. The pro-
totype example for such operators are the computation of
medians or most frequent items. Our weighted sum operator
wsum behaves similarly, but needs to remember only the last
four input tuples. The use of flip-flops is a good choice to
hold such small quantities of data. Here we can use them in
a shift register mode, such that the operator buffer always
contains the last four input values.

4.7 Grouping
Semantically, a grouping expression q1 grpx|c q2 evaluates

the left-hand sub-plan q1, then routes each tuple to one of
a number of independent evaluations of the sub-plan q2(x).
The grouping column c thereby determines the target sub-
plan for every input tuple.

FPGA circuits provide excellent support for such func-
tionality. In Section 3.1, we discussed content-addressable
memory as an efficient mechanism to implement key-value
stores. Here, we use that functionality to identify the match-
ing group for an input tuple. Our CAM returns the index i
of the sub-plan that matches the given input tuple. We feed
this index into the address port of a de-multiplexer, which
will then route the signal on the data input to the ith output
line.

Once again, the data valid flag comes in handy here.
Rather than routing the entire tuple to the proper sub-plan
instance, we use the de-multiplexer only to control the data
valid flag. The actual payload is sent to all sub-plan in-
stances in parallel.

Following our earlier assumptions, we preallocate a num-
ber of sub-plan instances, depending on the number of groups
that are going to result at runtime. Typically, the sub-plan
is a simple aggregate operation with low complexity. Over-
estimating the number of groups at compile time thus rarely

q1 grpx|c q2(x) Z⇒

q2 q2 q2 q2

DEMUX

data

addr

CAM
data c

q1

∗

n-way union

∗ ∗ ∗ ∗
eos

eos

rst

(GrpBy)

Figure 7: Compilation rule to implement the ‘group
by’ operator grp.

causes a noticeable effect on the overall chip space consump-
tion.

Grouping is typically used in combination with aggrega-
tion. Although grouping by itself does not chop an infinite
stream into finite subsets, we explicitly indicate the neces-
sary routing of eos signals to the sub-plan instances. In
addition, we use the signal to clear the content-addressable
memory after each group (rst input).

Our CAM implementation is based on lookup tables with
very fast lookup performance. De-multiplexing can be pro-
cessed fully asynchronously, such that the entire routing cir-
cuit can typically be processed within a single clock cycle or
two (high-capacity CAMs and high-fanout de-multiplexers
may be more complex and require an additional wait cycle).
As discussed earlier, LUT-based CAMs have a slow write
performance, which we have to pay for whenever a group
item is seen the first time. Since this makes the issue rate of
the circuit data-dependent, we use a FIFO (not shown in the
circuit) to buffer all input. The circuit thus has a variable
latency. A hit or a miss can be determined with a latency
of one cycle. If no entry is found in the CAM, additional 16
wait cycles are necessary to insert a new entry. Thus, the
overall performance of a CAM is one cycle on a hit and 17
cycles for a miss. The latency at the output side is given by
the latency of the sub-plan plus one (for the n-way union).
The average issue rate is one if we assume that the FIFO is
large enough (i.e., at least 16 times the number of groups)
to buffer the incoming tuples during the wait cycles when
writing to the CAM.

Example. Compiling Query Q5 would yield a circuit like
the one in Figure 7, wrapped into a windowing circuit (as in
Figure 5). We omit the plan here because of its obvious com-
plexity. In the actual application, the Trades stream contains
market data of a subset of the stock indexes. With less than
a hundred different stock symbols per stream, we can easily
replicate the avg sub-circuit as demanded by Compilation
Rule GrpBy. 2

4.8 Concatenation Operator
The tuple concatenation operator is a device mainly

intended to express multiple aggregates within the same
SELECT clause. The query

SELECT min (Price), max (Price)
FROM Trades [SIZE 600 ADVANCE 60 TIME]
WHERE Symbol = "UBSN"

,

NumUBSTrades

�time
x|600,60

Trades

minPrice

σa

=○a:(Symbol,"UBSN")

x

maxPrice

for instance, could be ex-
pressed using the query plan
shown here following column
on the right. On the hard-
ware side, the semantics of
q1 q2 is straightforward to
implement. We simply di-
rect the signals from all in-
put fields to a common out-
put register set. A tuple gen-
erated this way only is meaningful if both input tuples were
valid. Hence, we use a logical ‘and’ gate to combine them:

q1 q2 Z⇒

q1 q2

&

∗ ∗
. (Concat)

Again, the ‘and’ gate easily finishes within a single cycle.
Hence, latency and issue rate are both 1.

5. AUXILIARY COMPONENTS
While the previous section provided a compositional scheme

to translate a query body into a hardware circuit, actually
running the circuit requires some glue logic that lets the
execution plan communicate with its environment. Glacier
includes such logic for commonly used setups.

5.1 Network Adapter
In a commodity computing system, the communication

between a network interface card (NIC) and its host CPU
is performed using a multi-step protocol. In a nutshell, the
network card transfers a received packet into the main mem-
ory of the host system using DMA, then informs the CPU
about the arrival by raising an interrupt. The interrupt lets
the operating system switch into kernel mode, where the
operating system does all necessary packet decoding, before
it hands the data off into user space where the payload can
finally be processed.

For latency-critical applications (such as algorithmic trad-
ing) or ones with high data volumes, such a long processing
stack may be prohibitive. Therefore, we decided to imple-
ment our own network adapter on the FPGA as a soft-core.
The soft-core directly connects to the Ethernet MAC com-
ponent of the physical network interface. From there, we
grab raw Ethernet network frames immediately when they
arrive. We implemented a small UDP/IP stack in the soft-
core. This allows us to to receive UDP datagrams without
the help of the CPU. From the decoded UDP datagrams
we can extract the data tuples and feed them to the cir-
cuit that represents the compiled execution plans. The host
CPU only gets involved for the data that remains after the
end of the query pipeline, where it is typically faced with a
significantly reduced data load due to filtering and aggrega-
tion. In Section 7, we will see how this enables us to process
data at gigabit Ethernet wire speed.

Likewise, we could use the same functionality to build a
data sink that transmits result data over the network with-
out any involvement of the host CPU.

5.2 CPU Adapter
Our system setup in Section 3.2 assumes the host CPU

as the other end of the processing pipeline. To send (result)

data to the CPU, we use a strategy that is similar to the
one used by network cards, as sketched above. We write all
data into a FIFO that is accessible by the host CPU via a
memory-mapped register. Whenever we have prepared new
data, we raise an interrupt to inform the CPU. Code in the
host’s interrupt service routine then reads out the FIFO and
hands the data over to the user program.

Two different approaches are conceivable to implement a
communication in the other direction, i.e., from the CPU to
the FPGA. Memory-mapped slave registers allow the CPU
to push data directly into an FPGA circuit by writing the
information into a special virtual memory location. While
this provides intuitive and low-latency access to the FPGA
engine, the necessary synchronization protocols incur suffi-
cient overhead to fall behind a DMA-based implementation
if data volumes become high. In this case, the data is writ-
ten into (external) memory, where logic on the FPGA picks
it up autonomously after it has received a work request from
the host CPU.

5.3 Stream De-Multiplexing
Actual implementations may depend on specialized func-

tionality that would be inefficient to express using standard
algebra components. In our use case, algorithmic trading,
input data is received as a multiplexed stream, encoded in a
compressed variant of the FIX protocol [4]. Expressed us-
ing the StreamBase syntax, the multiplex stream contains
actual streams like

CREATE INPUT STREAM NewOrderStream (
MsgType byte, -- 68: new order
ClOrdId int, -- unique order identifier
OrdType char, -- 1:market, 2:limit, 3:stop
Side char, -- 1:buy, 2:sell, 3:buy minus
TransactTime long) -- UTC Timestamp

CREATE INPUT STREAM OrderCancelRequestStream (
MsgType byte, -- 70: order cancel request
ClOrdId int, -- unique order identifier
OrigClOrdId int, -- previous order
Side char, -- 1:buy, 2:sell, 3:buy minus
TransactTime long) -- UTC Timestamp

We have implemented a stream de-multiplexer that in-
terprets the MsgType field (first field in every stream) and
dispatches the tuple to the proper plan part.

6. OPTIMIZATION HEURISTICS
In Section 4 we focused on providing a complete and fully

compositional set of compilation rules. With these rules
arbitrary stream queries can be compiled into a logic cir-
cuit. It is not surprising that “hand crafting” a specific plan
sometimes may lead to plans with lower latency and/or bet-
ter issue rate. It turns out that rather simple optimization
heuristics already suffice to make the output of our compiler
close to hand-optimized plans.

6.1 Reducing Clock Synchronization
Our compilation rules assume strict synchronization of ev-

ery operator implementation. Every operator is expected to
have its result ready after an integer number of clock cycles
(the operator’s latency). Even though simple computations
could finish in less time than a full cycle, their result is al-
ways buffered in a flip-flop register, where it waits until the
end of the clock cycle.

Example. Consider again the compiled circuit for QueryQ1

(Figure 4). As discussed earlier, this circuit requires three
clock cycles to execute. Little of that time is used for actual
processing, however. In the following timing diagram, we
illustrate when each of the three plan parts perform actual
processing (indicated as):

clock0 1 2 3 4

=○ σ π

Equality comparison takes slightly longer to evaluate than
the logical ‘and’ (which is what σ essentially does). There
is no actual work to be done for projection at all, still all
three plan parts occupy a full clock cycle each. 2

If no components inside a plan step are inherently clock
bound (such as access to clocked memory components), a
plan optimizer can trivially eliminate intermediate registers
and run (part of) a sub-plan asynchronously. Applying this
idea to the plan for Query Q1 results in the plan we use in
our actual implementation:

Trades

=
Symbol "UBSN"

& Price Volume

clock0 1 2

=○ σ

As shown in the timing diagram on the right, this sub-
plan now runs both processing steps directly in succession
and finishes within a single clock cycle.

The most apparent effect of this optimization is the reduc-
tion of latency. The plan for Query Q1 has now a latency
of one. In addition, we saved a small amount of FPGA re-
sources, primarily flip-flops that were needed for buffering
before.

6.2 Increasing Parallelism
The elimination of intermediate registers often automati-

cally leads to task parallelism. With registers removed, the
hardware circuit for Query Q2 looks as follows:

Trades

=

"UBSN"
Symbol

>

100,000
Volume

&

&

Price

Volume Price

clock
0 1 2

=○

<○
∧○

σ

In this circuit, the two value comparisons run truly in
parallel (whereas they would execute sequentially in the non-
optimized plan). In the timing diagram on the right, one can
see how we packed additional work into the same clock cycle.
In effect, Query Q2 executes in a single cycle, too.

6.3 Trading Unions For Multiplexers
When translating the windowing operator� (Rule Wind),

we used the ‘union’ circuit of Section 4.4 as a convenient tool
to merge all window outputs into a single result stream. Ex-
cept in exotic cases, only one of these outputs is actually

producing data at any point in time, and we know which
one.

We can take advantage of this knowledge by replacing the
union circuit with a multiplexer component in such cases.
As the name suggests, a multiplexer is the counterpart to
the de-multiplexer we saw in Section 4.7. Provided an index
i, it routes the signal at the ith input to its output port. In
windowing circuits, we know the index of the data-producing
sub-plan from the shift register CSR2. Using a multiplexer,
we can now feed the output of this sub-plan directly into
the output register of the windowing circuit.

As discussed in Section 4.4, the hardware circuit for union
uses FIFO queues at each of its n inputs. By using a mul-
tiplexer instead, we can free the resources occupied by the
n FIFOs. Depending on the FIFO implementation chosen,
this may free mostly flip-flop registers or block RAMs, plus
the necessary logic (LUTs) that drives the FIFOs. In addi-
tion, we save one clock cycle of latency that was originally
spent in the input FIFOs. Applied to the plan in Figure 6,
this reduces the latency from 5 to 4 (eliminating registers
on the bottom half of the plan saves another two cycles of
latency).

6.4 Group By/Windowing Unnesting
The �-grp pattern shown in the algebraic query plan for

Query Q5 (see Figure 1(e)) is a common combination in
stream processing. A straightforward application of the
Wind and GrpBy rules to this pattern will replicate the
‘group by’ circuit for each of the n sub-plan instances in
Rule Wind. The resulting query execution plan will thus
use n de-multiplexers and content-addressable memories and
route tuples independently for each group.

Typically, all windows will contain roughly the same groups,
and all CAM instances will contain roughly the same data
items. It therefore makes sense to “pull out” the individual
DEMUX/CAM pairs of the replicated sub-plans and use a
global instance of each instead. In a sense, we swap the roles
of � and grp in the algebraic plan.

The primary effect of “unnesting” the tuple dispatching
functionality of the ‘group by’ operation is a considerable
resource saving. The penalty we pay is a slight increase
in the number of groups, since the union of all groups in
individual windows is now held in a single CAM.

7. EVALUATION
Compiling stream queries into logic circuits is only mean-

ingful if the resulting circuits solve the problems that we
motivated in Section 2. This evaluation section thus focuses
on the relevant performance metrics latency and throughput
(our subject for Section 7.1). In Section 7.2, we verify that
the integration of an FPGA into the data path of a stream-
ing engine leads to an actual improvement in end-to-end
performance.

7.1 Latency and Throughput
Other than in software-based setups, the performance char-

acteristics of hardware execution plans can accurately be
derived by solely analyzing the circuit design. Thereby, the
performance of a larger circuit is determined by the perfor-
mance of its sub-plans. In the following, we first concentrate
on latency, then investigate throughput.

Latency Issue Rate

Query non-opt. opt. non-opt. opt.

Q1 3 1 1 1

Q2 5 1 1 1

Q3 5 2 1 1

Q4 5 2 1 1

Q5 6 . . . 6 + 16G 5 . . . 5 + 16G 1 1

Table 3: Latencies and issue rates for optimized
query plans of Q1–Q5.

7.1.1 Latency
We measure the latency of a hardware circuit in the num-

ber of clock cycles that occur from the time a tuple enters
the circuit until the time a result item is produced. For the
case of ‘group by’ queries, the relevant input tuple is the last
tuple of the input stream. Our FPGA is clocked at a rate
of 100 MHz. Each latency cycle thus implies an observable
latency of 10 nanoseconds.

In a sequential data flow, the latencies of all sub-plans
behave cumulatively: the overall latency of the full plan can
be obtained by summing up the latencies of all sub-plans.
Parallel circuits (such as the sub-plan instances in a ‘group
by’ plan) are determined by the latency of the slowest sub-
plan. Without applying any of the optimization techniques
of Section 6, this yields the latencies reported in Table 3
as “non-opt.” (we will discuss the details of Query Q5 in a
moment).

Non-Optimized Circuits. For the simple circuits (Queries
Q1 and Q2), the total latency corresponds to the number of
flip-flop registers along the data path. For Queries Q3 and
Q4, the union operators at the top of the plan add another
latency cycle due to their built-in FIFOs (cf. Section 4.4).

In Query Q5, the difference in read and write speed of our
content-addressable memory introduces a data dependence
of the circuit latency. Thus, Table 3 reports lower and upper
bounds for the latency at runtime. Once the circuit has
seen all possible group identifiers (and thus has filled its
CAM), no write access occurs and the circuit responds after
six cycles. By contrast, if G different new groups arrive
in succession, their group identifiers queue up in the input
FIFO of the ‘group by’ circuit and each one adds 16 cycles
for the CAM write.

After Optimization. The optimizations we described in
Section 6 reduced latency by eliminating intermediate flip-
flop registers. As listed in Table 3, this reduces latency down
to one or two clock cycles for Queries Q1–Q4. The use of
a multiplexer (cf. Section 6.3) saves one latency cycle for
Query Q5.

Observations. Table 3 reports single-digit latencies for
most queries. The latency of Query Q5 clearly tends toward
the optimum case in practice, since the arrival of a large
number of new groups right before the end of a window
is rare. With a cycle time of 10 ns, our FPGA typically
responds in less than a micro-second.

7.1.2 Throughput
The maximum throughput of a circuit is directly depen-

dent on its issue rate. With a 100 MHz clock, an issue rate

100% 100%

60%

36%

0 %

20 %

40 %

60 %

80 %

100 %

300,000 pkt/s 1,000,000 pkt/s

p
a
ck

et
s

p
ro

ce
ss

ed

data input rate

FPGA software (Linux 2.6)

Figure 8: Number of packages successfully processed
for two given input loads. The hardware implemen-
tation is able to sustain both package rates.

of 1 means that the circuit can process 100 million input
tuples per second.

All our plans are fully pipelineable. As can be seen in
Table 3, this leads to an issue rate of 1 for all five ex-
ample queries. In the upcoming section, we are going to
demonstrate how this enables us to process very high data
rates at wire speed in a network-attached configuration (Fig-
ure 2 (a)).

7.2 End-To-End Performance
A key aspect of using an FPGA for data stream processing

is that the hardware circuit can directly be hooked into an
existing data path. As already sketched in Section 3.2, we
are particularly interested in using the FPGA as a prepro-
cessor that operates between the physical network interface
and a general-purpose CPU (though the idea could be ap-
plied to other data sources, too). To verify the effectiveness
of this setup, we implemented it using an FPGA develop-
ment board, then measured the data rates it can sustain.

The biggest challenge in commodity systems is to pro-
cess network data with high package rates (as opposed to
large-sized packages). Actual application setups in soft-
ware start suffering at data rates of & 100, 000 packets/s
because of the high intra-host communication overhead for
every packet. By contrast, our query execution circuit is
directly connected to the physical network interface. The
experiments in the following show how this enables us to
process significantly higher package rates at wire speed.

Our experiments are based on a Xilinx XUPV5 develop-
ment board that ships with the FPGA mentioned in Sec-
tion 3 and includes a fast 1 GBit Ethernet interface. We
implemented the system configuration shown in Figure 2 (b)
as an embedded system by instantiating the necessary hard-
ware components as soft-cores inside the FPGA chip. Our
CPU in this setup is a Xilinx MicroBlaze CPU.

It turns out that it is fairly difficult to generate really
high package rates in a lab setting. With a NetBSD-based
packet generator, we managed to generate a maximum of
1,000,400 packets/s (all UDP traffic). Still, this was not
sufficient to saturate our hardware implementation. As il-
lustrated in Figure 8, no data was lost when processed on
the FPGA.

For comparison, we hand-crafted a light-weight network
client on top of Linux 2.6, designed to accept and process the
same input data at high speed. Yet, as shown in Figure 8,
this client was not able to sustain the load we applied. For

high package rates, it dropped more than half of all input
tuples.

Our results clearly demonstrate that our circuit can meet
the expectations we set. This makes FPGAs particularly
attractive for common application scenarios. If the FPGA
is used as a rate-reducing component in the data input path,
the remainder of the system faces only a fraction of the input
load. This significantly increases the applied load that the
system can sustain.

8. RELATED WORK
The idea of using tailor-made hardware for database pro-

cessing dates back at least to the late 1970s, when DeWitt
explored what was called a “database machine” at the time
[3]. His Direct system used specialized co-processors that
operated close to secondary storage and provided explicit
database support in its instruction set.

While enormous chip fabrication costs rendered the idea
not economical at the time, some companies started to com-
mercialize similar setups recently. Sold as “database appli-
ances”, their systems provide hardware acceleration mostly
for data warehousing workloads. Documentation about the
inner workings of any of the available systems is rare, but
it seems that some of the appliances have a lot in common
with the configurations we considered in this paper.

The Netezza Performance Server (NPS) system [2] is built
from a number of “snippet processing units” (SPUs). Each
of these snippets includes a magnetic disk, tightly coupled
with a network card, a CPU, and an FPGA. Similar to the
setup we consider, the FPGA is used to filter data close to
the data source (the disk in Netezza’s case).

The heart of Kickfire’s MySQL Analytic Appliance [14] is
its so-called “SQL Chip.” Judging from the product docu-
mentation, this chip seems to be bundled with DDR2 mem-
ory and connected to the base system via PCI Express. In
essence, this appears to coincide with the co-processor setup
that we briefly touched in Section 3.2 (cf. Figure 2).

Both systems appear to use FPGAs primarily as cus-
tomized hardware, with circuits that are geared toward very
specific (data warehousing) workloads, but are immutable at
runtime. In Avalanche, we aim at exploiting the configura-
bility of FPGAs. With Glacier, we present a compiler that
compiles queries from an arbitrary workload into a tailor-
made hardware circuit.

We share this aspect with other research projects that
use FPGAs to support arbitrary software, written in com-
modity languages. The Kiwi project [10], e.g., compiles C#
code into FPGA circuits. The main challenge in such sys-
tems is the detection of independent sub-tasks that can be
parallelized on the FPGA. Here we look at a much more
constrained source language, with obvious handles for par-
allelism. In return, we address very high data rates and
optimize our plan generation toward that.

Our processing model resembles the MonetDB/X100 sys-
tem by Héman et al. [13]. MonetDB/X100 processes data
from a column-wise storage in a pipelined fashion. We bor-
rowed their idea of selection vectors. Invalidating tuples
rather than physically deleting them avoids expensive in-
memory copy operations in MonetDB/X100. Much like Mon-
etDB/X100, our circuits favor narrow input relations/streams.
An alternative processing mode tailored to wide tuples is al-
ready on our workbench.

Our implementation of ‘group by’ takes particular advan-
tage of an FPGA-based implementation of content-address-
able memory. Bandi et al. [1] have looked at a commercial
CAM product and its potential applications in a database
context. Though such products can provide high capacity
and lookup performance, we think that the missing cou-
pling to a full database infrastructure renders the approach
hard to apply in practice. FPGAs, by contrast, provide the
flexibility to join an existing infrastructure in a seamless
fashion, even at different locations if necessary. The work
of Gold et al. [7] describes a similar approach with simi-
lar drawbacks. They suggest the use of network processors
for database processing, mainly to exploit the thread-level
parallelism inherent to network CPUs.

Others have explored various types of specialized proces-
sors for use in a database context (popular examples are
GPUTeraSort [8] or stream joins for the Cell processor [6])
and they show promising performance characteristics. Given
that specialized processors follow an architecture that is
not inherently different to the one used in general-purpose
CPUs, it is unclear, however, whether they can indeed over-
come the limitations of commodity setups.

The higher-order nature of the ‘group by’ and windowing
operators in our streaming algebra resembles the “Apply”
operator that is used inside Microsoft SQL Server and has
been discussed by Galindo-Legaria et al. [5]. Similar rewrite
rules as the ones in SQL Server may also help the Glacier
compiler to improve the quality of generated plans.

9. SUMMARY
The Glacier component library and compiler that we pre-

sented in this paper are part of the Avalanche project at
ETH Zurich. In Avalanche, we aim at building a stream-
ing engine for heterogeneous many-core architectures that
combine FPGAs and general-purpose CPUs.

We showed in this paper that Glacier provides an operator
algebra and transformation rules that can be used to convert
meaningful continuous queries into FPGA circuits. Among
others, we provide full support for aggregation, grouping,
and windowing. Since the performance characteristics of the
operators implemented as FPGA circuits are very different
from those of software operators, we provided an in-depth
analysis of the relevant performance metrics.

Our results indicate that using the FPGA as a co-processor
in an engine running on conventional CPUs can have signifi-
cant advantages. The experiments show that most operators
have very low latency and that the FPGA as a whole can
sustain a very high throughput. The setup tested in the
paper demonstrates that the FPGA can process streams at
network speed (the bottleneck is the network interface, not
the data stream processing on the FPGA), something that
cannot be done in conventional CPUs.

Future work includes adding support for window joins and
special-purpose operators like frequent item detection, as
well as integration on a hybrid stream processing engine.

Acknowledgements
The Glacier project is supported by the Enterprise Com-
puting Center of ETH Zurich (http://www.ecc.ethz.ch/).

10. REFERENCES
[1] N. Bandi, A. Metwally, D. Agrawal, and A. El

Abbadi. Fast Data Stream Algorithms Using

Associative Memories. In Proc. of the ACM SIGMOD
Int’l Conference on Management of Data, Beijing,
China, 2007.

[2] Netezza Corp. http://www.netezza.com/.

[3] D. DeWitt. DIRECT—A Multiprocessor Organization
for Supporting Relational Database Management
Systems. IEEE Trans. on Computers, c-28(6), 1979.

[4] FIX Protocol Specification.
http://fixprotocol.org/specifications.

[5] C. A. Galindo-Legaria and M. Joshi. Orthogonal
Optimization of Subqueries and Aggregation. In Proc.
of the ACM SIGMOD Int’l Conference on
Management of Data, Santa Barbara, CA, USA, 2001.

[6] B. Gedik, P. S. Yu, and R. Bordawekar. Executing
Stream Joins on the Cell Processor. In Proc. of the
33rd Int’l Conference on Very Large Databases
(VLDB), Vienna, Austria, 2007.

[7] B. T. Gold, A. Ailamaki, L. Huston, and B. Falsafi.
Accelerating Database Operations Using a Network
Processor. In Workshop on Data Management on New
Hardware (DaMoN), Baltimore, MD, USA, 2005.

[8] N. K. Govindaraju, J. Gray, R. Kumar, and
D. Manocha. GPUTeraSort: High Performance
Graphics Co-processor Sorting for Large Database
Management. In Proc. of the 2006 ACM SIGMOD
Int’l Conference on Management of Data, Chicago, IL,
USA, 2006.

[9] J. Gray, A. Bosworth, A. Lyaman, and H. Pirahesh.
Data Cube: A Relational Aggregation Operator
Generalizing GROUP-BY, CROSS-TAB, and
SUB-TOTALS. In Proc. of the 12th Int’l Conference
on Data Engineering, New Orleans, LA, USA, 1996.

[10] D. Greaves and S. Singh. Kiwi: Synthesis of FPGA
Circuits from Parallel Programs. In IEEE Symposium
on Field-Programmable Custom Computing Machines
(FCCM), 2008.

[11] T. Grust and J. Teubner. Relational Algebra: Mother
Tongue—XQuery: Fluent. In Proc. of the 1st Twente
Data Management Workshop (TDM), Enschede, The
Netherlands, 2004.

[12] S. A. Guccione, D. Levi, and D. Downs. A
Reconfigurable Content Addressable Memory. In 7th
Reconfigurable Architectures Workshop (RAW 2000),
Cancún, Mexico, 2000.

[13] S. Héman, M. Zukowski, A. de Vries, and P. Boncz.
Efficient and Flexible Information Retrieval Using
MonetDB/X100. In 3rd Biennial Conf. on Innovative
Data Systems Research (CIDR), Asilomar, CA, USA,
2007.

[14] Kickfire. http://www.kickfire.com/.

[15] Options Price Reporting Authority (OPRA). Traffic
Projections 2009/2010.

[16] StreamBase Systems, Inc.
http://www.streambase.com/.

[17] N. Tatbul, U. Çetintemel, S. B. Zdonik, M. Cherniack,
and M. Stonebraker. Load Shedding in a Data Stream
Manager. In Proc. of the 29th Int’l Conference on Very
Large Databases (VLDB), Berlin, Germany, 2003.

[18] Xilinx Inc. An Overview of Multiple CAM Designs in
Virtex Family Devices. Application Note 201,
September 1999.

