XPEDIA: XML Processing for Data Integration

Manish Bhide, Manoj K Agarwal

Amir Bar-Or, Sriram

Srinivas K. Mittapalli, Girish

IBM India Research Lab Padmanabhan Venkatachaliah
India IBM Software Group, IBM Software Group
{abmanish, USA India

manojkag}@in.ibm.com

ABSTRACT

Data Integration engines increasingly need to m®vi
sophisticated processing options for XML data.He past, it was
adequate for these engines to support basic simgddid XML
generation capabilities. However, with the stegiwth of XML
in applications and databases, integration plagomeed to
provide more direct operations on XML as well apiave the
scalability and efficiency of these operations. this paper, we
describe a robust and comprehensive framework éofopming
Extract-Transform-Load (ETL) of XML. This include@) full
computational model and engine capabilities to qrerf these
operations in an ETL flow, (ii) an approach to pnghdown
XML operations into a database engine capable ppauing
XML processing, and (iii) methods to apply partitiog
techniques to provide scalable, parallel proceskingarge XML
documents. We describe experimental results showtimg
effectiveness of these techniques.

1. INTRODUCTION

XML was introduced in the mid-1990’s as a simpld amtensible
data mark-up language. It gained immediate footredda data
interchange format. Over time, gaining from a widgiety of
research, XML has become a valuable data formétimwiand
across enterprises for representing data in pensisind transient
applications. There is an illustrious body of reskain XML
processing dealing with parsing, transformation,tadase
processing, indexing, and search. Database andicafph
vendors have made use of this research resultiagsumpport for
XML as a first class data type in databases sucbB2 [9],
Oracle [10], and SQL Server [11] as well as in mapplication
languages such as Java, C++, and scripting languBlgace, it is
only natural that data integration engines shoutvige efficient
and scalable techniques for XML processing.

Data Integration engines such as IBM’s InformatiServer,
Informatica’s PowerCenter, etc., provide the calas to
Extract-Transform-Load (ETL) from various data sms into
various data targets. For XML, these ETL enginesently

Permission to copy without fee all or part of thisaterial is granted

provided that the copies are not made or distribdive direct commercial

advantage, the VLDB copyright notice and the tifi¢he publication and its
date appear, and notice is given that copying ipdiynission of the Very
Large Database Endowment. To copy otherwise, oepablish, to post on

servers or to redistribute to lists, requires adad/or special permissions
from the publisher, ACM.

VLDB '09, August 24-28, 2009, Lyon, France.

Copyright 2009 VLDB Endowment, ACM 000-0-00000-00/@0/00.

{baroram,srp}@us.ibm.com

{smittapa,girish}@in.ibm.com

provide rudimentary capabilities to perform XPathtaséd
transformations into tuple formats or vice-verddowever, with
the steady progress of XML adoption, there is adnfee data
integration engines to provide fast, scalable “rgetteration”
XML handling capabilities. While there is a weadifliterature
in various areas of XML processing, surprisinghere has been
limited work on the topic of XML data integratiofthe initial
work in this area has focused on algorithms toBIL into a
natural relational schema. The body of work on XBtylesheet
Transformation (XSLT) can be considered as pergherelated
to our topic [1]. There is also quite a bit of wayk XML query
processing which we consider to provide some releva
foundational basis for our topic [8, 9]. Howevtrere are still a
lot of open issues that need to be addressed tblesrinext
generation” XML data integration. In this paper present the
XPEDIA (XML ProcEssing for Data IntegrAtigrsystem which
addresses some of these issues.

1.1 XPEDIA System

Data integration over relational data is a welldgtd topic.

However, in an XML world, data integration is raally different

due to the hierarchical nature of the data. Heteohniques
which have been developed for relational world caroe directly
applied to XML data. The XPEDIA system is one bé ffirst

systems to incorporate techniques for efficientipEorting XML

data integration. We now outline some of the kestdires and
challenges addressed by XPEDIA.

Computational Model: The computational model used to
represent ETL processes over relational data assdate in the
form of rows consisting of multiple columns. Summputational
models represent each XML document as a singlecansisting
of a single column. Such a simplified represeatatf XML data

is a major handicap in supporting complex XML opierss.
Hence there is a need for a technique to handlepleondata
transformation flows, while maintaining the easyspgcification
inherent in the relational computational model.

First Class Data Type: Most of the data integration engines
available in the market today, treat XML as a CLQing of
characters). However, the key for efficient hamgllof XML data

is to treat it as a first class data object durirapsformation.
Such a representation enables XPEDIA to supporatipas such
as equi-hierarchical-join, xml-aggregate, etc., alhi are
specialized operators for dealing with XML data téils in
Section 3). These operators allow users to edsiliyne intricate
XML transformation flows, which hitherto were naigsible.

ELT Support: If the source (or target in some cases) of an ETL
flow is a database that supports XML processing,ERRA

applies rewriting techniques to transform partstref ETL job
flow into SQL/XML queries in order to push some réfgcant
processing into the database. This is called ELfiréigt, Load,
Transform) and is a valuable technique to gainciefficy and
performance by leveraging the database’s capaisiliti

Scalability: The size of a row/tuple in relational data is eeid
larger than a few Kb’s. However, we have obserfvech several
customers that XML inputs for data integration téadbe large,
aggregated inputs comprised of many smaller objed@isus we
need specialized techniques for handling large-8>@B) XML
documents. XPEDIA uses a novel single-pass pamtitg and
parallel processing technique for XML objects. Therarchical
nature of the XML data presents some unique chgdienfor
executing a single transformation job comprisingao$eries of
operators in a parallel execution environment. this paper we
present various approaches supported by XPEDIfdditioning
input XML objects in order to perform the rest bétprocessing
using parallel streams before combining the resul¥e also
provide experimental results for all of these téghas to show
the scalability and performance that can be obthine

1.2 Contributions

The research contributions of our work can be sunzed as
follows:

0 We propose a computational model for ETL application
XML data. The new model is specifically tailoredhandle
hierarchical XML data and treats XML as a firstsdadata

type.

0 XPEDIA is the first system that supports query féng
techniques to convert an ETL flow into an ELT flawer
XML data.

0 We present novel parallel processing techniquekdodling
large XML documents. We believe that our singlesspa
techniques are the first attempt at supporting cieffit
parallelism in ETL flows over XML data.

0 We present experimental results that validate bot
techniques and our results show that we achievefisant
improvement in performance for a typical ETL flow.

Paper Organization: Section 2 introduces our computational
model and also gives an overview of the variousraipes
supported by the model. We present a sample EWL fising the
operators of our computation model in Section Be Techniques
for supporting ELT over XML data are summarizedSiection 4.
Section 5 presents the parallel processing tecksiqused by
XPEDIA for handling large XML documents. The expental
validation of XPEDIA is outlined in Section 6. Thelated work
is summarized in Section 7 and Section 8 concltidepaper.

2. COMPUTATION MODEL

A computational model is used to express ETL preegghat
move and transform data from sources to targetsnyMETL tools
use the dataflow computational model to descrilesétprocesses.
In the dataflow model, processes are expressed digected flow
graph where the vertices of the graph are operatmisthe edges
represent the flow of data. The operators in aftat model can
perform one or more of the following operationg: rgad data
from sources (ii) write data to targets and (iiierform

transformations on input data to produce new outiath. The
algorithm of an operator is defined by the operayme. For
example, a join operator uses the join algorithmjéining the
input data.

Existing dataflow based ETL engines assume relatiatata
model for the data that flows between the operaias records
that flow between two operators consist of “rowavimg multiple
columns. In order to handle XML data these engicassider
each XML document to be a single row with one (XMiojumn.
However, as is obvious, such an over-simplifiedespntation is
a major handicap in supporting complex operationsr oKML
data. Hence, XPEDIA uses a new computational madhéth
extends the relational dataflow model to suppaetdrchical data.
Such an extension, as we explain next, requiregjarnshift in
the representation methodology.

XPEDIA uses a dataflow model consisting of opematand
edges. However, the key difference from the engstilataflow
models is that the data that flows between two aipes is an
ordered list of XML documents that comply with agle XML
schema element definition [2]. Notice that eacbuwheent could
itself be multi-dimensional or in XML terminologhé¢ document
could have multiple repeated elements withxOccurs > lor
maxOccurs="“unbounded” For example, consider an XML
document with root nodeHigh_Value_Custometsvhich in turn
has 100 Customet child nodes. In this document if we map
“Customet node to a row in the relational world then the XM
document will map to a table consisting of 100 rovs such a
setup the XML document would represent two dimemsialata.
In order to capture this multi-dimensional natufettee XML
data, each XML document in our computational madelsists of
multiple “Vectors” — one for each repeating elemigpe. In the
“High_Value_Custometexample, the document will consist of
one Vector (of size 100) as it has one repeatirgneht of
“Customet type.

The concept of vector also makes a difference énvthy data is
handled by an operator. In our data flow modeérafors (except
the source operator which simply reads data froen gburce)
iterate through the list of objects (XML documerits}their input
data. As each object (document) can consist ofiphelsub-
vectors, the operators can also iterate throughbavector of the
input data. The iterated vector is defined as'sieepe” vector of
the operator. For each scope instance, the opgyaioesses the
input data that is contained in the scope instamzkeproduces a
result that is also contained in the scope instalRoeexample, in
the “High_Value_Customeisexample the scope of an operator
will be “/High_Value_Customers/Custorfier An operator will
treat each Customet sub-tree below the root independently of
the other Customet sub-trees. Hence operators are not allowed
to maintain state between instances of the scoptive Thus
each scope instance (i.e., eadBu$tomet sub-tree) can be
thought of as being similar to a row in the relatibworld. The
concept of vector and scope help us to supportcla set of
operators over XML data and also help us to support
parallelization of the ETL flow (details in Sectiéi.

Another key difference from relational data flonse®ms is that
our computational model only supports linear sudpys.
Relational dataflow systems, on the other handictyfy allow
parts of the data to be separated and processéifférent sub-
graphs (of the ETL flow). In an XML world, this witd map to

splitting the contents of a vector (of a single XMbcument) to
different sub-graphs and then merging them into onenore
vectors. As this can get quite complicated, ounmpatational
model only allows linear graphs thereby simplifyitige job

design process and increasing its usability. lmeorto

compensate for the restriction of the model intbnaar graph,
each operator in our model produces a result teat@ntains its
initial input. We then employ runtime optimizat®ngraph
rewrites and dead field elimination to optimize XEDIA ETL

flows by removing false dependencies and elimimggtire transfer
of data that is no longer needed downstream.

Thus the computational model of XPEDIA incorporagesadical
shift in the representation methodology by inclgdsupport for
hierarchical XML data due to the use of featureshsas Scope,
Vector and linear sub-graphs. Using these congcéptaire 1
describes an operator’s algorithm in our computationodel in
terms of an XQuery update statement.

Let $input be the set of input documents the
operator is processing
Let $scope_path be the operator scope path
for $currentDoc in collection($input)
return
for $scope in $currentDoc//$scope_path
return (
insert node<Result>{op_alg($scope)}</Result>
as last into $scope)

Figure 1: Operator Algorithm

op_algin the above figure stands for the operator afborithat
accesses the data containedsétopeand produces a result only
using this data. We explain next a sample setpetialized
operators supported by our model for handling XMitad

2.1 XML Operators

Filter Operator: The filter operator can filter one of the vectors

contained within the scope instance and produceva vector
which will contain only instances that passes therfpredicate.
The following SQL/XML clause illustrates the Filtemperator
algorithm:

Let $scope be the scope vector path

Let $child_vector be the path to the aggregated
vector

Select * From ($scope//$ child_vector))
Where $scope//$child_vector/$keyl > 5

Project Operator: The project operator iterates over a single

vector in its input and produces a new vector ithdgsed on a set
of select expressions. The set of select expressaiows the
user to modify the input by removing an elementacsub tree,
renaming an element, or enriching the document witmew
attribute by computing a scalar expression. Thdoviohg
SQL/XML clause illustrates the Project operatoroaittpm:

Let $scope be the scope vector path

Let $child_vector be the path to the aggregated
vector

Select a, b, (a]| b) as ab

From ($scope//$child_vector))

Aggregate Operator: The aggregate operator can produce

statistics by aggregating one of the vectors corthin the scope

instance. Similar to a database aggregation, ftpgregate
operator takes a set of aggregation functions argtoap by
clause which defines the key aggregation columhe. fEsult of
the aggregate operator is a new vector with a sugnneaord for
each unique key that is found in the input vedimtice that the
aggregation restarts for each scope item. The vidig
SQL/XML clause illustrates the Aggregate operatgoathm:

Let $Scope be the scope vector path

Let $aggr_vector be the path to the aggregated
vector

Let $Key1, $Key?2 be the paths to the key
aggregation columns

Let $cost be a path to an attribute of
aggregated vector

Select $Keyl, $Key2, Avg($cost) as avg_cost,
count(*) ent_rcd, ...

From ($scope//$aggr_vector))

Group by Keyl, Key2

Equi-Hierarchical-Join Operator: The equi-hierarchical-join
operator performs an equality based join betweenvectors that
are contained within the scope instance. Simibaa trelational
equi-join, the join operator takes a set of equafitedicates
between attributes from one vector and attributethe second
vector. The result of the join consists of two tedsvectors,
where each instance of the input left vector corstaall the
matching instances of the right input vector. Th#owing

SQL/XML clause illustrates the Equi-Join operatigoaithm:

Let $Scope be the scope vector path

Let $left_vector, $right_vector be the paths to
the joined vectors

Let $left_key1, $left_key2 be the paths to the
left vector join columns

Let $right_key1, $right_key2 be the paths to
the right vector join columns

Select ($scope//$rightVector.*) insert into

$scopel//$leftVector.*

From ($scope//$aggr_vector))

Where $scope//$left_vector/$left_keyl =

$scope//$right_vector/$right_keyl AND
$scope//$left_vector/$left_key2 =

$scope//$right vector/$right key2

Read Table Operator: The Read Table operator reads all the
rows of a single table and outputs either relafidnples or an
XML document. This operator takes as a paramet8Q&a or
SQL/XML query which executes on the input tablegenerate
the required output.

Write Table Operator: The Write Table operator is used for
writing relational or XML data to a table. For édostance of the
scope vector present in the input, the operatoatesea new
record in the output table.

OutputStage Operator: The OutputStage operator transforms a
relational input into an XML Document. This opemahas been
included due to legacy support issues. The opetaltes as input

a mapping from each relational attribute preserhéinput to an
XPath in the output XML document (which is to beated). One
of the XPaths is designated as the repetition patiis is used to
decide the structure of the XML document. An exkmgf the
function of OutputStage is given in Figure 2. histexample, the
mapping from relational attribute to XPath is adlofos: (1)

Department - /Company/Country/Dept (2) Project >
/Company/Country/Employee/PNamend (3) Emp ID >
/Company/Country/Employee/Elnfo/EmplOrhe EmpID node is
designated as the repetition output path. The @8tpge
operator makes use of the repetition path to debiestructure of
the output XML document. The repetition path workyg
comparing values between input rows. The followinigs apply:

Rule 1 A change in an input column value triggers thesiclg of
at least one element and the opening of at leasetmment.

Rule 2 When a single input column value changes, thetitmn
path applies as follows: Every opened elementdsed up to and
including the first element that is part of theetfion path. E.g.,
Let the repetition path bew/x/y/z and let the XPath of the
affected column bew/x/y/a/b Then the y element is closed and
new elements are opened, down to the last elenfeheoXPath
expression of the column for which the value hanged.

Rule 3: When more than one column changes vallersgets are
closed and opened, starting with closest to theetzment.

Department | Project Emp ID
Cs C++ 123
Cs C++ 253
EE DSP 12
/ompany

Cauntry &untry

ept ept \l/
Employee Employee

Cs EE \l/
PNameZElnfoN PName Elnfo
C++ EmplD EmpID pgp EmplD

123 254 12

Figure 2: Functioning of OutputStage

Flow 3) \ -
XML
y p y
P F: Filter
Flow 2 = .

J: Join

A: Aggregate
D fow 1 W: Write XML

XML ow,

)

»
- R: Read XML
RDB |!: Shredder
MS X: R->XML

Figure 3: Typical ETL Flows

3. TYPICAL ETL SCENARIO WITH XML
Figure 3 shows three sample ETL flows. In thesadlathere are
two sources and targets, one of which is relatianal the other is
XML. Each flow consists of a series of operatorsohtiransform
the input data. Flow 1 converts XML data to relatl format,

Flow 2 converts XML data to XML and flow 3 conver&dational
data to XML format.

In this section, we describe the Flow 1 in detdihe ETL process
shown in Flow 1 reads a set of XML documents thatstored in
a database, transforms the documents and eventudtgs them
to the target relational database. The source tabitains a single
XML column that holds the source document conteklt.source
documents conform to th&€bmpany element which is described
in Figure 4. We now enunciate each step of the ftodetail.

Step 1: The Read_XML_Table operator simply reads the XML
documents from the database and outputs it toékeaperator.

Output:

<element name="Company" type="Company’ maxOccurs="unbadintie
<element name="Company" type="Company’ />
<complexType name="Company">
<sequence>
<element name="Country" type="tns:CountnaxOccurs="unbounded"/>
</sequence>
</complexType>
<complexType name="Country">
<sequence>
<element name="CountryName"/>
<element name="CountryCode"/>
<element name="Departments" type="tnpabnent" maxOccurs="unbounded"/>
<element name="Employee" type="tns:Empd#iymaxOccurs="unbounded" />
</sequence>
</complexType>
<complexType name="Department">
<sequence>
<element name="DeptName" type="string" />
<element name="DeptCode" type="string" />
<element name="Manager|D" type="string"/>
</sequence>
</complexType>
<complexType name="Employee">
<sequence>

<element name="DeptCode" type="string" />
<element name="EmpName" type="string"/>
<element name="Empld" type="string"/>
<element name="EmpLocation" type="strirg"/
<element name="Salary" type="double"/>
</sequence>
</complexType>

Figure 4: Output of Read_XML_Table operator

Output:

<element name="Company" type="Company’ maxOccurs="unbadirele
<complexType > <sequence>
<element name="Country" maxOccurs="unbounded">
<complexType> <sequence>
<element name="CountryName"/>
<element name="CountryCode"/>
<element name="Departments" type="tnpabnent" maxOccurs="unbounded"/>
<element name="Employee" type="tns:Empd#iymaxOccurs="unbounded" />
<l-- THIS IS THE JOIN PRODUCT BEGINN®:-!>
<element name="Dept2" maxOccurs="unbounded">
<complexType> <sequence>
<element name="DeptName" type=igtri>
<element name="DeptCode" type="gtrit>
<element name="ManagerID" type="gftin
<!-- EMPLOYEE IS NESTED WITHIN THBEPTARTMENT--!>
<element name="Employee" types:Employee" maxOccurs="unbounded" /
<!-- JOIN PRODUCT ENDS HERE--!I>
... (definition closed)

Figure 5: Equi-Hierarchical Join operator
Step 2 The Equi-Hierarchical Join operator (Figure B tthe

following parameters: {scope: Company/Country, lefctor :
Department, right vector: Employee, join key :
Department/DeptCode = Employee/DeptCode, result=

Dept2//[Emp2 }. For each “Country” sub-tree in timput XML
document, the operator finds the set of employew&ing in each
department (in that country) and creates a new exlemamed

“Dept2” (for each department) which has the lisathfemployees
working in that department.

Step 3: The Aggregation operator has the following partanse
{scope: Dept2, aggregated vector= Dept2/Employegreamte
key: Dept2/DeptCode, aggregate function
=sum(Dept2/Employee/salary) result= Dept2/totaiBa}. The
operator finds the total salary of all the emplaygea department
and adds it to the XML document dstalSalary.

Output:

<element name="Company" type="Company' maxOccurs="unbadiile
<complexType > <sequence>
<element name="Country" maxOccurs="unbounded">
<complexType> <sequence>

<element name="CountryName"/>

<element name="CountryCode"/>

<element name="Departments" type="tnpabenent" maxOccurs="unbounded"/>

<element name="Employee" type="tns:EmpdtiymaxOccurs="unbounded" />

<I-- THIS IS THE JOIN PRODUCT BEGINNG--!>

<element name="Dept2" maxOccurs="unbounded”>

<complexType> <sequence>
<element name="DeptName" type=igtri>
<element name="DeptCode" type="gtrir
<element name="ManagerID" type="gttin
<l-- EMPLOYEE IS NESTED WITHIN THBEPTARTMENT--I>

<element name="Employee" types:Employee" maxOccurs="unbounded" />
<l-- JOIN PRODUCT ENDS HERE--I>
<l-- AGGREGATION RESULT INSERTEDHERE--!>
<element name="totalSalary" type="detb
... (definition closed)

Step 4 The final operator Shredder writes the totalGaia the
modified XML document to the relational databaseThe
attributes of the operator are: {scope: Dept2vector,
totalSalary=/Company/Country/Dept2/totalSalary}.

Notice that in each step of the above ETL flow, éaich scope
instance (i.e., eactcbuntry node) the output includes the entire
input data (in that ¢ountry node) along with the result of the
transformation applied to the data within the scdpe., the
“country’ sub-tree). XPEDIA also supports other optimiaas
such as false-dependency elimination via lineaplyre acyclic
graph rewrite, dead field elimination via usage lgsia and
streaming large document with a bracket model. aiBetare
omitted due to lack of space. We present nextEthe feature of
XPEDIA.

4. ELT OPTIMIZATION IN XPEDIA

Recent times have seen a proliferation of databasbsnative
XML support. Databases such as DB2 9, Oracle IihSQL
Server 2005 store XML documents in native formad dmave
inbuilt XQuery and SQL/XML query engines. Anotheportant
feature of these databases is that they allow userdefine
indexes on XML documents. If part of the procegsivolved in
the ETL job is executed inside the database engies it can
make use of the XML indexes to significantly redujmdb

execution time. Thus the goal of ELT is to delegsame part of
the ETL job to the database engine. This is accisimed by
generating a SQL/XML query which does the samegslone or
more steps in the ETL flow. For example, the flbirom XML

data source to RDBMS in Figure 3 can be represdnasingle
SQL/XML query. Hence the modified job would havesiagle

Read Table operator which will directly output thelational

tuples which are then fed to the Write Table operat

Another advantage of ELT is the reduction of tiee 9f the data
that needs to be moved between the source andrtet.t This is
especially true when the job involves reading XMatal and

transforming it to a relational format (E.g. flowid Figure 3).
Notice that the size of the source XML documenti¢htconsists
of a plethora of XML tags) will be significantly riger than the
relational tuples generated in output. While coting an ETL
job (which reads XML data and shreds it to relaiciormat) to
an ELT flow, XPEDIA tries to push maximum possible
processing inside the database engine. This belgignificantly
reduce the I/0O costs which contribute a significaetcentage of
the overall execution time.

Thus, converting an ETL job into an ELT flow canoyide
significant advantage and requires us to do tHeviahg tasks:

1. Rewrite the ETL flow in terms of simpler operators.
2. Convert each operator into a SQL/XML query.

3. Merge the SQL/XML queries of adjacent operator® iat
single SQL/XML query.

4. Convert the merged SQL/XML queries to an ELT job
definition which can be executed on XPEDIA.

We explain each of the above steps in the follovgiections.

4.1 Rewriting ETL Flow Using Simpler

Operators

Most of the operators in XPEDIA can be directly certed to a
SQL/XML query. However, some of the operators like
OutputStage are quite complex. Hence it is diffita generate
the SQL/XML queries directly for such operators.e \bvercome
this problem by rewriting the complex operatorsngsa simpler
set of new operators. In this section, we descifilee algorithm
used for converting the OutputStage operator inseguence of
simpler operators, namely (i) XMLIZE and (ii) Sibj Group-By.

XMLIZE Operator: The XMLIZE operator converts relational
tuples into a flat XML document. The schema offlat™ XML
document is very similar to the relational schemd B given in
Figure 6. As the output of this operator is a KML document,
we need to perform various operations on the outpuget the
XML document in the desired hierarchical formathisTrequires
the use of a special operator which is explained. ne

<?xml version="1.0" encoding="1SO-8859-1" 7>
<xs:schema xmins:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="root">
<xs:complexType>
<xs:element name="row">
<xs:complexType>
<xs:sequence>
<xs:element name="empID" type="xs:string" max@ss"1"/>
<xs:element name="deptID" type="xs:string" max@ss"1"/>
<xs:element name="name" type="xs:string" max@s<"1"/>
<xs:element name="salary" type="xs:string" mex@s="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 6: “Flat” XML Document schema

Sibling Group-By Operator: The Sibling Group-By operator is a
special operator which is required to convert the XML
document into a hierarchical format. The Siblingo@-By
operator, as the name suggests, does a group-gyaomngst
immediate siblings present within the scope ingamwhich
allows us to nest the input data. Given a setedilelements
and a set of group-by attributes witlsi(which have to be atomic-

valued elements) it groups all “contiguous” tuplass by the
values of the group-by attributes. Thais replaced in the output
by a set that contains: a) the group-by attribated b) for each
contiguous value for them a nested set with all ¢cbetiguous
tuples ins that have the same values on their group-by ategh

Figure 7 shows the effect of applying Sibling Gre@yp on a
sample XML document. In this example we have agplhe
Sibling Group-By on theCompany/Country/Dephode. This
node has two distinct values CS and EE. HenceSibéng
Group-By operator creates two sub-trees — one doh alistinct
value amongst contiguous nodes.

Company

N T

ZDept \T/umx ept gl;m ZDeptg{);m'&]

PName EmpID PName EmpID PName EmpID

CSs W Cs W EE Z W

G 123 Cr 254 psp 12
Sibling Group-By:
Scope Node: /Company
Set valued Attribute: /Company/Country
Group By Attribute: Company/Cuntry/Dep
Company
/ ountry

Hou nti
ZDept \l/ W\ ZDept

Employee Employee Employee
cs v EE \4
PName EmpID PName EmpID PName EmplD

A N4 \V 4 V%

C++ 123 C++ 254 DSP 12

Figure 7: Sibling Group-By Operation

Consider the example transformation given in FigRrevhich
creates an XML document from the given relatiorethd In this
example the repetition path igCompany/Country/Employee/
EInfo/EmpID. In order to generate the XML document
corresponding to this example, the first step iscémvert the
relational data into XML format using the XMLIZE emtor.
After that, we repeatedly apply the Sibling Group-&erator as
follows: (1) Apply the Sibling Group-By on the
/Company/Country node with the group by node set to
/Company/Country/Depaind the scope set t@ompany The
output of this operation is shown in Figure 7. (Zpply the
Sibling Group-By operator on the output of thetfstep. The set
valued attribute isgCompany/Country/Employesd the group by
attribute is set to/Company/Country/Employee/PNameThe
output of this step gives us the required XML doeatwhich is
shown in Figure 2.

Thus the OutputStage operator is represented bXMhIZE
operator followed by a sequence of one or morargjlibroup-By
operators. The algorithm to convert the OutputStagerator to
the set of simpler operators is given below.

Step 1 Apply XMLize operator on the relational data tbtain
flat XML document

Step 2 For all output nodes except the repetition outmde:

0 The level of an output node is the level at whishX{Path
intersects with the repetition output node’s XPath

o Starting from the top to bottom (based on the lewabply
Sibling Group-By for all nodes which meet at themea
position on the repetition output node’s XPath.

Step 3 Use Project Operator to add and drop nodes, s as
bring the height of all output node at correct posi

Step 4 Use Project Operator to change names of nodes

4.2 Query Generation and Merging:

The XPEDIA ELT optimizer has a set of algorithmsr fo
generating the SQL/XML query for each operator. tie query
corresponding to each of the operators is fixee dptimizer uses
pre-built techniques/rules for merging the SQL/XMueries of
adjacent operators. As the set of operators isuestive, due to
lack of space, in this paper we only outline thehreque to
generate the SQL/XML queries corresponding to tliglirfs
Group-By operator and also present the techniquenéging the
queries corresponding to a sequence of these operat

select xmlelement(name "Country”, xmlagg(TB3.0)) from
(select xmlelement(name "Department”, xenfeint(name "Name", TB2.D),
xmlagg(TB1.SS)) from session.TBTemp TB2,
(select TB4.id, TB4.D, TB4.J1 lefement(name "ProjEmp",
xmlelement(name "PNanieB4.A), xmlelement(name "EmplID",
TB4.z)) from sessionTeBnp as TB4) as TB1(ID, D, J1, SS)
where TB1.j1 = TB2.j1 and TB1.D = TBafbd TB1.ID = TB2.ID group by
TB1.J1, TB2.J1, TB1.D, TB2.D ordefTiB1.J1
) as TB3(0)

Figure 8: SQL/XML for Sibling Group-By

As seen in the previous section, a typical usehef $ibling

Group-By operator is to nest the XML document whiish
generated by the XMLIZE operator. Notice thatdinéque nature
of this operator is that it only does a group by adjacent
siblings. Hence, we cannot use the “group by” sfapresent in
SQL/XML as it will group together even those valwesich may
not be ‘adjacent’ in the input XML document. Inder to

circumvent this problem we generate an extra aieibin the
input data whose value can be used by the reggiaup by’

clause of the SQL/XML query. This means that, floe data
shown in Figure 2, the value of the new attribuiié ve say 1 for
the first two tuples (<CS,C++,123> and <CS,C++25%3nd 2
for the third tuple. Generating this attributengsBQL is a tricky
operation. We use the OLAP function in SQL to gateethese
attributes in a temporary table which also cont#ivesrest of the
attributes present in the input table.

Once the temporary table is generated, we usertupdy clause
on the new attributeJ1' to generate the desired output. The
sample SQL/XML query which uses a temporary tablgenerate
the output corresponding to the Sibling Group-Byntimed in
Figure 7 is shown in Figure 8.

Notice that the query operates on a temporary tal#lemajor
advantage of using the temporary table is that ae define
indexes on the attributes of the table. This speed the
processing of any joins present in the SQL/XML guer

Once the SQL/XML queries are generated for eadhefSibling

Group-By operators, they can be merged with eabbrais well

as the XMLIZE operator. The XPEDIA ELT optimizesas a set
of rules for merging these SQL/XML queries. Ineardo give a
flavor of the merging process, we provide an examplFigure 9,
of the merged SQL/XML query for the ETL job givenkigure 2.

The merged SQL/XML query uses one group-by claoseeéch

Sibling Group-By operator.

select xmlelement(name "Country", xmlagg(TB4.all)) from
(select xmlelement(name "Department", xmleleximeame “Name", TB3.D),
xmlagg(TB3.all)) from
(select D, j2, xmlelement(name "ProjEmp"Jetement(name "PName", TB2.A),
xmlagg(TB2.all)) from
(select D, j3,j2, A, xmlelement(namenrififoyee”, TB1.zz) from
(select D,j3, j2, A, xmlagg(xmkalent(name "EmpID", Z))
from session.TBTemp group by jA,j2A,D) as TB1(D,j3,j2, A,zz)
) as TB2(D,j3,j2,A,all) group by TB2.j3, TE2TB2.A, TB2.D
) as TB3(D,j2, all) group by TB3.j2, TB3.D
) as TB4(all)

Figure 9: Merged SQL/XML query for OutputStage

4.3 Generating the ELT Job Definition

Once the SQL/XML queries have been generated, ¢ketask is
to map them back to the XPEDIA job definition. Fhis a
straightforward process wherein the generated S@IL/XYuery is
mapped to a Read TABLE operator and the rest ofsthges
remain as is.

Using the above procedure, XPEDIA is able to takeaatage of
the native XML processing capabilities of the datb engine.
However notice that we cannot generate an ELT fidven the
data is present in a database which does not haive nXML
support or is present in a flat file. Even in swases, XPEDIA
improves the scalability by using a novel paralebcessing
technique which is explained next.

5. PARALLEL PROCESSING OF XML
DATA

The size of a row/tuple in relational data is seidarger than a
few Kb's. However, we observed from several custamhat
XML inputs for data integration tend to be larggegated inputs
comprised of several smaller objects. Hence XMtuhoents of
the order of 2-3 GBs are fairly common in practicén this

section, we present a technique for parallel pingsof such
large XML documents.

Parallelism can be achieved in two different waysmaly,
pipeline parallelism and partitioned parallelism.ipdbne
parallelism (also know an assembly line parallejisecurs when
different operators work on different XML documents
simultaneously. Such a parallelism is supportecKB¥DIA and
occurs whenever multiple operators operate oneastrof XML
documents in serial manner. However, this kincdbafallelism
can provide limited benefit for large XML documerds each
operator would have to process all the documentyelbly
requiring large memory and processing power. Uuofately, the
ETL processing engines available today only suppdptline
parallelism for XML data leading to an inferior fmmance. The
key to solving the scalability problem (in the prese of large
XML data) is the use of partitioned parallelism —teghnique
supported by XPEDIA. Partition parallelism is asléd when
multiple instances of the ETL job (consisting obkequence of
operators) are executed in parallel on
machines/processors with each instance workingféereht parts
of the same XML document. This reduces the sizéhefXML
document (partition) that needs to be processegbch processor
thereby improving scalability. The key to achieyipartitioned
parallelism, as the name suggests, is the paiiitipaf the large
XML document. However, the hierarchical natureXtL makes
the task of partitioning an inherently complex task/e outline
the various challenges for achieving partitionedajpaism and
propose a technique for identifying the right tygfepartition in

different

Section 5.1. Once the correct partition has beentified, the

next task is to actually generate the partitionficieftly in a

single pass of the XML document and that too withdoing a

full parse of the document. We present such anigale for

generating these partitions in Section 5.2. Onethaef most
expensive operations (in terms of time) over XMLcdments is
their schema validation. We show in Section 5& the schema
validation task can also be done in parallel ontiplel machines
thereby reducing it execution time significantly.

5.1 Identifying the Optimal Partition

As mentioned earlier, partitioned parallelism immes the
following tasks: (i) partitioning a large XML docwnt into
multiple parts, (ii) running multiple instances afi ETL job on
multiple machines/processors, (iii) each job inseaaperating on
a different partition of the XML document and (ifinally,
merging the output of the job instances. In ortdeachieve an
efficient parallelism, each partition should bef seifficient, i.e.,
the data required by each job instance should htared within
the partition available to it and no data shouldshared across
partitions. If this is not ensured then it woul@cessitate
communication between the processors or alterrgtoapies of
the same data would have to be made available thipteu
processors, which in turn would reduce the effectéss of the
parallel algorithm. In order to highlight this fher, we present
an XML partitioning example.

Example: Consider a job consisting of the first two stepshe
ETL job outlined in Section 3. The input to thé js an XML
document whose schema is outlined in Figure 4. Jtie
operator in the ETL job joins the data presenthie Employee
sub-tree with the data present in thepartmentsub-tree. For
this job if we partition the XML document into twmarts such
that all theDepartmentnodes go to the first partition and all
Employeenodes go to the second partition then the joirraipe
will require access to both the partitions. Henceparallelism
would be achieved as there will be no reductiothisize of the
data processed by each operator. Thus the paiitjidechnique
needs to ensure that the data required by an opésatontained
within the partition available to it.

Consider another partitioning technique, where \&#iton the
data at the/Company/Countfylevel. In other words, if there are
10 Country sub-trees below the roo€¢mpany node, then the
first partition will consist of an XML document rtedl at
“Company with only the first 5Country sub-trees where as the
second partition will consist of the next Gountry sub-trees.
Recall that the scope of the join operator/Bdmpany/Country
This means that the join operator treats eacbuhtry’ sub-tree
independently from the rest. In other words, iingo the
Departmentand Employeedata present within each sub-tree and
not across sub-trees. Further the join resultaahesub-tree is
also contained within that sub-tree. Hence a pamiitg made at
the level of YfCompany/Country(which is called as the partition
node) would ensure that all the data required loh éastance of
the join operator is contained within the partiterailable to it.

The above example highlights the difficulties inrtfioning an
XML document for a job consisting of a single ogeraAs can
be imagined, the problem gets further exacerbatedaf job
consisting of multiple operators. We present nexine key
insights which are used by the partitioning aldoritof XPEDIA

to find the partition node of a large XML documéot a given
ETL job.

operators in the ETL flow. Extending XPEDIA to lid& such
cases is part of our future work.

1. Insight 1: Operators do not preserve any state between Once the partition node has been identified, XPEDBes the

instances of their scope vector. Therefore, eaghesistance
can potentially belong to a different partition.

2. Insight 2: Some of the operators (such as Filter) perform
stateless transformations, i.e., transformatiorst ttho not
maintain state between vector instances. E.g., fitter
operator computes the filter predicate per veatstance and
does not maintain any state across instances. eHean ETL
job consists entirely of such operators, then gpestive of
the scope value) each vector instance in the ingart
potentially belong to a different partition.

3. Insight 3: Some of the operators (such as Aggregate) maintai
state information between different instances @frthinput
vectors (within a particular scope instance). [Eipe
Aggregate operator in the ETL job given in Sect®finds
the total salary for eachepartmentwithin a scope instance,
i.e., for each distindDepartmentin each Country sub-tree.
Notice that it does not store any state informatammoss
different “Departmernit nodes within eachCountry' sub-tree.
Hence parallelism can be achieved by ensuring alathe
Employee and Department sub-trees that share the same
DeptCodeare contained within a single partition. Operator
which are amenable to such partitioning are cale®tate
Key Correlated operators. In the above example, the
Aggregate operator is state key correlated asEimgloyee
sub-trees are correlated with respect to theDegtCode The
Employee node is called as the correlated node for the
operator.

We present next an algorithm which uses theselitsig find the
best partition node for a given ETL job.

Algorithm: Find Partition Node

1. For each operator in the ETL job
1.1 Initialize a vector containing allglscope instances
for this operator
2. For each operator in the ETL job
If the operator is stateless
2.1 Do nothing
Else if the operator is state key correththen
2.2 Generate a partition for thetgr using the key for
the operator
2.3. if a vector contains sub-treested at the
correlation node for this op#&r then merge the
vector with the generated fiam vectors
Else
2.4 Union all the vectors that cintsub-trees rooted
below the scope of the opmrat

Result: Each vector has a root that is a candidate for
partitioning. Output the highest root amongst thié vectors as
the partition node(s). If there are multiple nodsssame level,
output multiple partition nodes.

It is possible that the partition node found by #eve algorithm
is the root of the document, i.e., no partitiontteé document is
possible. In such a case we could still partitiosubset of the

partition node to generate the partitions as fodlow
o Round-robin partitioning techniqueln this technique, each

partition gets the sub-trees rooted at the pantitiode in a
round robin manner. In other words, the firstamse of the
partition node goes to the first partition; thes®t partition
node instance goes to second partition and so dnsan
forth.

o Chunking schemethis partitioning technique generates the

partitions based on the size of the XML documeaiven an
XML document (of size say 4 GB) for which we hawe t
generate (say 4) partitions, then this partitioniaghnique
tries to generate each partition of size 1 GB. i¢dothat we
cannot generate say th& dartition by directly seeking to
the 1 GB location in the XML document and then firgdthe
first occurrence of the partition node. This icdgse the
encountered partition node could occur at multipations
in the XML document or could be inside a CDATA s$ewct
Hence this technique generates the partition lvgtiteg over
the sub-trees rooted at the partition node (st@urfiiom the
beginning of the file) till it reaches the 1 GB &tion in the
XML file. Thereafter the second partition startglahe sub-
trees rooted at the partition node constitute theosd
partition till we reach the beginning of th& &B location in
the XML file. The technique also ensures that gaatition
is a well formed XML document by adding the nodesrf
the document root to the partition node at the oégg of
each partition.

5.2 Generating the Optimal Partition

Once the set of partition nodes and the partiticategy has been
identified, the next task is to make the right piar available to
each ETL job instance. Notice that each job irtawill have
the entire XML document available to it. The preseof
generating the partition (which is run for each joistance)
involves the parsing of the entire XML document andducing
the right partition for that job instance. If we d full parse of the
XML document then it will not provide us any perftance gain.
Hence, as we explain next, XPEDIA usesshadllow parsing
technique to generate these partitions.

5.2.1 Shallow Parsing

The basic idea behind shallow parsing is that is@sonly those
nodes which occur between the root node and théiparmode,
i.e., the nodes that appear in the partition nod@atk. The
shallow parsing process ignores all the other notheseby
avoiding the high cost associated with a full pavehe XML
document. E.g., consider a scenario where we Aav&B XML
document conforming to the schema given in FigurelLét the
partition node b&Company\Countrand we have to generate the
second partition (out of the 4 partitions) using tbhunking
scheme. In this case XPEDIA does a shallow pafrskeoXML
document till it reaches the"2GB of the XML file. In this
shallow parse, XPEDIA only looks for the beginniagd end of
the “Company and “Country nodes. All the other nodes are
ignored. Once it reaches thd?Z5B it outputs the sub-trees
rooted at the Country node till it reaches the beginning of the
39 GB. At this point it adds a closingCbmpany tag and the %'

partition is thus generated as output. This gisateelps XPEDIA
to generate the partitions in a single pass overitiput XML
document.

However, the process of shallow parsing can getpticated
when there are multiple partition nodes. Such sase handled
by XPEDIA by looking for the nodes that appeartia XPaths of
all the partition nodes. We explain the detailstloé shallow
parsing algorithm used by XPEDIA with the help loé texample
given in Figure 10. The XML document in the figuras three
partition nodes /A/B/C/D# [A/B/CIE# [A/B/IF# XPEDIA
maintains a set called agalidExtensionfor each node that
appears in the XPath of one or more partition nodekhe
ValidExtensiorset for a nod® would contain the set of all nodes

that appear afteB in any of the partition node XPaths. Thus the

ValidExtensionfor B will be the set €, F#. XPEDIA also
maintains a stack calleBathStack Whenever we encounter a
node that is part of at least one partition nodéPath, that node
is pushed on to th@athStack If the nodeB is at the top of
PathStack then the shallow parsing is done by fapkor (i) the
closure of the nod8 or (ii) looking for the nodes that are in the
ValidExtensionset of B. XPEDIA ignores all the other nodes
which helps it to avoid the high cost associateth i full parse.
If we see the closure of the node which is at &pedf the stack,
we pop it from thePathStack To illustrate the algorithm further,
consider a scenario where we are at the node Bgurd=9. In
this case, we either pusiCanode, or &# node on the stack. All
other nodes are ignored since they are not parngf XPath
leading to the partition nodes.

Whenever a partitioning node is found, if we havéneached the
required partition in the XML document, we ignone tXML sub-

tree rooted at the partition node. If on the othend, we have
reached the required partition (i.e., th& BB in our earlier
example) we output the sub-tree rooted at thetjmarthode.

Ignore sub-tree i
rooted at D

N f

Path Stack

Partition Node XPaths
IAIB/CID#, IA/BIC/IE#, IA/B/F#

Figure 10: Shallow Parsing for multiple partition nodes.

5.2.2 Generating Balanced Patrtitions

The chunking scheme mentioned earlier generatesl esjge
partitions which are processed in parallel on mlétiprocessors.
These equal sized partitions are generated by nparfg a
shallow parse of the XML document in parallel on Itiple
processors where each shallow parsing instanceiutlifferent
parts of the same XML document. If we have N pekal
processors (numbered 1 to N), notice that tfiephdcessor which
will generate the last partition will have to dslaallow parse of a
very large portion of the XML document as compati@the rest.
Although shallow parsing is a very light weight giag technique,

nevertheless it still incurs some overhead. Hetiee time
required for finishing the ETL job on each processdll be
different as the time required for generating tleetipon will
gradually increase with an increase in the progessmber (due
to an increase in the shallow parsing time). lis gection we
outline a technique to balance the partitions sttt the time
required to generate the partitions and completeBHL job is
almost the same for all the processors. The gi#teobalancing
technique used by XPEDIA is that it changes the sif each
partition such that partition size reduces withigerease in the
processor number. Notice that the balancing teglis only
required for the chunking scheme as the shallowipgrcosts in
the round robin partitioning technique is the saime all the
partitions.

Let the size of the input XML document be S andtet number
of parallel processors be N. The total time requie finish the

ETL job on a single processor (without partitionihg t, and let
the time needed to shallow parse the entire docuirert. By
definition t, >t. Let the size of the"ipartition available to the
i" processor beé§ 1<i < N . Then,

Docien 28 @

The summation will be marginally greater than Scesireach

partition will include the nodes from the root thet partition

node. Our goal is to ensure that each processshéa processing
its partition at the same time. This means thatithne required to
generate each partition and to run the ETL job hat partition

should be the same for each processor. This condian be
stated by the following set of equations:

0+4S =t S +1S, =t(S +S,) +tS =..=t,(). §)+tS, @
I<isN-1

In this set of equations, the first term signiftee time spent by
each node in shallow parsing, where as the seendrepresents
the actual time spent in running the ETL job onpiéstition. We
have removed the denominator S, as it is common afor
equations. By substituting, we get the followirgdusion for this
set of equations

N-i
[t S -tS), . 3
S (tt_tj (= J;L<|SN 3)

The above equation gives us the size of each ipartithich is to
be processed on each processor. These partities sisure that
the ETL job on all the parallel processors finisaethe same time
thereby providing us maximum parallelization. Irder to use
Equation 3, we need to know the ratjt,.t Notice that, even if we
underestimate this ratio, it will still result iome performance
improvement, although may not be up to the extdérthe case
when we know this ratio accurately. On the othench# we
overestimate this ratio, then the performance detges as one
processor would process a larger partition as cosdpéo its
rightful size, thereby reducing the parallelism ahage. In
practice XPEDIA learns this ratio as follows: Typily an ETL
job processes hundreds of XML documents. Hence D{RE
finds the value of the ratio while processing tliestf XML
document and then uses it for the rest of the deotsn

Thus this novel partition balancing technique hef{f*EDIA to

extract the maximum parallelism from the set ofilade parallel
processors. In the next section, we outline thellgh schema
validation feature of XPEDIA.

5.3 Parallel Schema Validation

Schema validation of XML documents is a computatign
intensive task that takes a large amount of timeexecute.
XPEDIA is the first system to support XML schemdidation in
parallel on multiple machines/processors which éelp to
significantly reduce the time required for the mes At a high
level, XPEDIA achieves parallel schema validatiorny b
partitioning the XML document as mentioned in tharlier
sections and providing a modified XML schema fie ¢ach
parallel processor. Each parallel processor thalidates its
partition using the provided XML schema file. Hah processor
confirms that its partition is compliant with th@put XML
schema file, then XPEDIA guarantees that the utitjwared
XML document conforms to the original XML schemin order
to provide this guarantee XPEDIA classifies the uinpXML
schema as either beipartition safeor partition unsafe

An XML schema is said to be partition unsafe ifises any of the
following XML schema indicators on the partition des:
MinOccurs MaxOccurs All, SequencandChoice The problem
with these indicators is that it is not possibledcsingle partition
to check these indicators. Consider the exampiersa given in
Figure 4. Let there be amaxOccurs constraint on the
/Company/Countryode and let it be the partition node. If we use
the chunking based partitioning scheme then eactitipa will
get some sub-set of the sub-trees rootefCampany/Country
Hence we cannot check timeaxOccursconstraint using the data
available within a single partition. The same Isotdie even in
the case when we use a round robin partitioningrseh If on the
other hand there was no such schema indicator @rpahtition
node, then notice that each partition will conforonthe input
XML schema. Hence such schema which do not hakensa
indicators on the partition node are said to beitgar safe and
we provide the original XML schema file to each tfe
processors.

In case the schema is partition unsafe then XPEDRESs a special
technique for schema validation. As mentioned i&arlthe
problem with unsafe schemas was that it was ndiplesto check
the schema using the data available within a simglgition.
However, notice that the\(i.e., the last) processor generates its
partition by shallow parsing the entire XML docurhesnd
producing the last portion of the XML document &spartition.
Recall that the shallow parsing involves the iierabver the sub-
trees rooted at the partition node. Hence themsahealidation
for the schema indicators defined on the partitimie can be
easily done while doing the shallow parsing. Hoe example
mentioned earlier, if there was m&xOccurs=10000"constraint
on the/Company/Countrynode, then the shallow parser on the
last processor can easily keep track of the nunalbeCountry
nodes that it has encountered and signal an drtbeinumber
crosses 10000. Even in the case of round robiadbpartitioning
scheme, the last processor does a shallow parsitigeoentire
XML file and hence can easily check the schema catdr
constraints. Thus the schema indicator is cheakathg the
shallow parsing on the 'Nprocessor and hence these schema
indicators are removed from the schema file thatrisvided as

input to each of the processors. Thus each proces®cks the
constraints present in the schema file exceptdhersa indicators
defined on the partition node which are checkedheyshallow
parser. Thus XPEDIA handles both partition safd partition

unsafe schemas which helps it to significantly oedthe time
required for schema validation.

6. PERFORMANCE EVALUATION

In this section we present the experimental eviloatof

XPEDIA. The aim of the experimental evaluation ws
showcase the performance gain that can be ach®veding the
two techniques presented in this paper, namelyR@&yriting an
ETL job to an ELT flow when the source has nativdLXsupport

and (2) running the ETL job in parallel on multigdeocessors.
We first describe the experimental setup in thet sextion and
then present the results for ELT and parallel pssicgy of XML

data in Section 6.2 and Section 6.3 respectively.

6.1 Experimental setup

We conducted two different sets of experiments fomesach of
the two scenarios mentioned above (i.e., ELT andligh XML
processing). As discussed earlier, in the firshacio, we rewrote
the ETL job definition to generate an ELT flow. eWised the
ETL job described in Section 3. In the originab jthe XML
document was retrieved from the database, transfibrby the
different operators of the ETL job and finally stided to
relational format and output to the target. Ia thodified ELT
job, the transformations and shredding tasks weshed inside
the database engine by executing a single SQL/XMéry; The
output of the SQL/XML query consisted of relationaiples
which were then output to the target. Both th@iogl and the
rewritten jobs were executed on IBM Information \&erV 8.1
which is an ETL engine. These experiments werelgoted on
an Intel Xeon machine with 3.16 GHz processor artb 5B
memory. The operating system was Windows 2003 eserv
edition. The data source used to store the origihdlL data was
DB2 v9.5 [13] which provides native XML support.

In the second scenario, we conducted experimentalidate the
performance advantage provided by our parallel gssiog
techniques. For this experiment we again usedBfe job
described in Section 3. We ran the job using mftiion Server
v8.1 [12] running on a single machine. We then fifiedi the job
by adding a shallow parsing step at the beginnfrtgejob. This
modified job was also run using Information Serv8rl which
provides supports for executing an ETL job in gatan multiple
machines/processors. The ETL job was run on a W Gfel
Xeon Quad-core machine with each CPU having a peme
speed of 3.16 GHz. Thus the value of N in thi®aaas 4 and the
ETL job instance on each processor processedexetiff partition
of the input XML document. The overall memory retmachine
was 4 GB and its OS was Windows 2003 server editidihe
XML documents used in these experiments were gtatbra
synthetically using the schema defined in Figure 4.

6.2 Impact of ELT optimization

In this section, we present the results for theeerpents which
showcase the benefit of using the ELT optimizatidve
compared the execution time for the ETL and ELT job
different sizes of XML documents. The results fthis
experiment are shown in Figure 11. The figure shdwat the
time taken by the ELT job for an XML document afesi700 MB

is 70% less than the time taken by the ETL job. usTlthis
experiment shows the the ELT approach is able doifgiantly
reduce the job execution time by making use of ithdexes
available within the database engine.

Time taken by ETL —+—
400 |Time taken by ELT —s—

Time Taken (sec)
0
8
A\
\

100 200 300 400 500 600 700
XML Document Size (MB)

Figure 11: Comparison of ETL and ELT job executiontime

6.3 Effect of Parallelization

In the next set of experiments, we evaluated tleedpp achieved
by the partitioning technique of XPEDIA. RecalathXPEDIA

supports two different partitioning schemes: Rouwalin based
partitioning and chunking based partitioning. Wwwcase the
performance improvement achieved by both theseniqubs in

this section.

Round-robin scheme: In this partitioning scheme, the shallow
parsing is done by one processor which then sdrelsub-trees
rooted at the partition node to the rest of theegssors in a round
robin manner. We ran this experiment on 4 progessbere the
first processor did the shallow parsing of the X&lihcument and
it provided the sub-trees below the partition nodes the
remaining 3 processors. The result of this expertrier different
XML document sizes is shown in Figure 12. The ltesshow
that the round robin partitioning technique progigespeedup of
2.7 times over the non-partitioned approach. Témults also
show that the speedup is scalable and is not affdxy the size of
the XML document. We also measured the time reguiior
shallow parsing as a percentage of the total tieguired to
execute the ETL job. The results, shown in Figl@e validate
the fact that the shallow parsing overhead is ershcross
different XML document sizes.

450 FUn-partitioned job performance — e
Partitioned Job Performance —— 4

Time Taken (sec)
+

200 300 400 500 600 700 800 00 1000 1100
XML Document Size (MB)

Figure 12: Performance of round robin partitioning scheme

Chunking scheme In the chunking scheme, each processor does

a shallow parsing of the XML file starting from theginning of
the file till it reaches the start of its partitiowe compared the
execution time of the ETL job without partitionimgth that of an

ETL job running on multiple processors using thardting based
partitioning scheme.

100

Shallow parsing cost —+—

80 |

60 |

a0 |

Shallow Parsing Cost (%)

20 | e— —

200 300 400 500 600 700 800 900 1000 1100
XML Document Size (MB)

Figure 13: Shallow parsing overhead

In the first set of experiments, we generated #méitppns without
using our partition balancer. Thus, each partitiothis case is of
the same size. As a result of this, the first pssor has to do the
least amount of shallow parsing and hence finishesrk in the
minimum amount of time whereas the last procesasrth do to
maximum amount of shallow parsing and hence reguite
maximum amount of time to finish the ETL job on fartition.
Figure 14 shows the time required by the un-partéd job as
well as the minimum and maximum time taken by theiponed
job across all the processors for different XML dioent sizes.
The final speed up of the job is calculated basethe finish time
of slowest job instance. The results show thatthenking based
partitioning scheme without partition balancer pdes a speedup
of 2.25 times over the un-partitioned approach.

450 [Un-partitioned job performance —+— ¥
Min time taken by node in partitioned job —e— -~
| Max time taken by node in partitioned job —— o

Time Taken (sec)
%

200 300 400 500 600 700 800 %00 1000 1100
XML Document Size (MB)

Figure 14: Performance of chunking scheme without grtition
balancer

In our second set of experiments, we used thetiparthalancer in
the chunking based partitioning scheme. In ththneue each
partition is of different size such that the overBTL job
execution time is almost the same across all psotesThe result
of this experiment is shown in Figure 15. For #mperiment, we
report only the time taken by slowest job instarsiece the
difference between slowest and fastest ETL jobaims is very
small. We assumed the ratio of shallow parsingtal tETL job
execution time as 0.2 for this experiment. The ltesshow that
technique provides a speedup of 2.9 times oveutthpartitioned
approach. This validates the effectiveness of paetition
balancer which helps it to provide better perforoathan the
round-robin scheme across various XML documenssize

450 ' Un-partitioned job perFormance — E
Chunking with partition balancer —se— -

Time Taken (sec)
+

200 300 400 500 600 700 800 00 1000 1100
XML Document Size (MB)

Figure 15: Performance of chunking scheme with paition
balancer

In summary, our experimental results show that:

0 We can get a performance gain of up to 70% by mgstiie
processing inside the database engine.

o Our strategy of partitioning the ETL job on mulgghodes is
scalable and can improve the processing speedeoETh
job by up to 2.9 times for a 4 processor configorat

7. RELATED WORK

There has been significant amount of work on periog
efficient ETL processing over relational data. Hoer, as
mentioned earlier, ETL processing over XML datanid a well
studied topic. [3] presents a system that allogarsito specify
declarative mapping specifications and generate [ebs. The
proposed system is not specific to XML but can qenf XML
mappings. This work is complimentary to the XPEDdystem
which incorporates significant XML specific impravents such
as providing a XML specific computational modeloyiding
support for ELT and handling large XML documentg4]
presents an approach to perform XML data integnathut its
primary focus is on data federation. In contrasty paper is
focused on ETL techniques for XML data.

Query rewriting techniques based on schema mapmngtraints
have been studied in [5]. These techniques ardasito our

ideas for ELT processing but more general in scopkere has
been some work on efficient parallel processindane XML

documents [6, 7]. The technique presented in Elifons data
based on the XML Infoset model but involves a setjak pre-

processing step. Similarly [7] describe a techniqim

parallelizing XML parsing using a pre-parsing agmo. The
fundamental problem with all these works is thatythequire a
sequential pre-parsing step which can be quitdycospeed of
execution is a key requirement for ETL processilggvé and
hence techniques which need multiple passes oeexhfiL data
do not work in practice. XPEDIA uses an innovatsegle pass
algorithm that avoids these drawbacks resultinginmproved

scalability. In summary, XPEDIA is one of the figystems to
support a XML specific computation model, ELT suppand

specialized techniques for parallel processing afjd XML

documents.

8. CONCLUSION

In the past, data integration (or ETL) engines wany required
to shred or generate XML documents of modest sidesvever,
with the growing adoption of XML for data integmai, we see

significant new demands for performing complex s$farmation
and processing operations on large XML documentsl an
document sets. In this paper, we studied severalreguirements
for processing XML data inside data integration ireg. We
presented the XPEDIA system which has a XML specifi
computational model for performing a variety of ggi®ns in an
ETL engine. We also showed how a data flow of afyens can
be composed as a pipeline and executed in the Bilne. We
described the methodology and steps for conveam@&TL flow
for XML operations into an equivalent SQL/XML quetfyat can
be executed in databases capable of XML proces3ing. ELT
technique is effective in pushing down the operetizvhen the
source or target of XML ETL flows is a database atde of
processing SQL/XML efficiently. We then describeavot
techniques (supported by XPEDIA) for partitionireyde XML
documents in order to process the XML in a paraddedtcution
environment. We also proposed a technique for XMhesa
validation in parallel on multiple machines. Weddan
experimental evaluation of XPEDIA which showed tteg ELT
and partitioning techniques are very effective fimpioving the
performance of XML based ETL integration tasks. \&e
currently working towards incorporating these teagbes into
IBM’s Information Server data integration engine.the future,
we expect to provide a unified set of processingioog
combining ETL, ELT and automatic parallelism for XMlata
flows. We also intend to study the parallelism ¢ojoir XML data
flows in further detail.

9. REFERENCES
[1] W3C XSLT Specificationhttp://www.w3c.org/TR/xslt

[2] W3C XML Schemawww.w3.org/XML/Schema

[3] Dessloch, S., et. al., “Orchid: Integrating Scheéviapping
and ETL", inProceedings of ICDE2008.

[4] Draper, D., Halevy, A., Weld, D.S., “The Nimble Rat
Integration System”, ifProceedings of ICDE2001.

[5] Yu, C., and Popa, L., “Constraint-based XML query
rewriting for data integration”, iSIGMOD, 2004.

[6] Kurita, H., et. al. “Efficient Query Processing foarge
XML Data in Distributed Environments”, idlst Intl. Conf.
on Advanced Networking and Applicatip907.

[7] Lu, W, Chiu, K., Pan, Y., “A Parallel Approach XL
Parsing”, inProceedings 7th IEEE/ACM Intl. Conf. on Grid
Computing 2006, pp. 223-230.

[8] Chamberlin D., “XQuery: A Query Language for XMLify
Proceeding of ACM SIGMQO2003: 682.

[9] Nicola M., Linden B., “Native XML Support in DB2
Universal Databases”, MLDB, 2005, pp. 1164-1174.

[10] Liu Z. H., Krishnaprasad M., Arora V., “Native XQuye
Processing in Oracle XMLDB", i8IGMOD, 2005.

[11] Rys M., “XML and relational database managemeriesys:
inside Microsoft SQL Server”, iBIGMOD, 2005.

[12] IBM Infosphere Information Serventtp://www-
01.ibm.com/software/data/integration/info-server

[13] IBM DB2 Database,
http://public.boulder.ibom.com/infocenter/db2luw/g9r

