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ABSTRACT  
Data Integration engines increasingly need to provide 
sophisticated processing options for XML data. In the past, it was 
adequate for these engines to support basic shredding and XML 
generation capabilities.  However, with the steady growth of XML 
in applications and databases, integration platforms need to 
provide more direct operations on XML as well as improve the 
scalability and efficiency of these operations.  In this paper, we 
describe a robust and comprehensive framework for performing 
Extract-Transform-Load (ETL) of XML. This includes (i) full 
computational model and engine capabilities to perform these 
operations in an ETL flow, (ii) an approach to pushing down 
XML operations into a database engine capable of supporting 
XML processing, and (iii) methods to apply partitioning 
techniques to provide scalable, parallel processing for large XML 
documents. We describe experimental results showing the 
effectiveness of these techniques. 

1. INTRODUCTION 
XML was introduced in the mid-1990’s as a simple and extensible 
data mark-up language. It gained immediate foothold as a data 
interchange format.  Over time, gaining from a wide variety of 
research, XML has become a valuable data format within and 
across enterprises for representing data in persistent and transient 
applications. There is an illustrious body of research in XML 
processing dealing with parsing, transformation, database 
processing, indexing, and search. Database and application 
vendors have made use of this research resulting in a support for 
XML as a first class data type in databases such as DB2 [9], 
Oracle [10], and SQL Server [11] as well as in many application 
languages such as Java, C++, and scripting languages. Hence, it is 
only natural that data integration engines should provide efficient 
and scalable techniques for XML processing. 

Data Integration engines such as IBM’s Information Server, 
Informatica’s PowerCenter, etc., provide the capabilities to 
Extract-Transform-Load (ETL) from various data sources into 
various data targets.  For XML, these ETL engines currently 

provide rudimentary capabilities to perform XPath based 
transformations into tuple formats or vice-versa.  However, with 
the steady progress of XML adoption, there is a need for data 
integration engines to provide fast, scalable “next-generation” 
XML handling capabilities.  While there is a wealth of literature 
in various areas of XML processing, surprisingly, there has been 
limited work on the topic of XML data integration. The initial 
work in this area has focused on algorithms to shred XML into a 
natural relational schema. The body of work on XML Stylesheet 
Transformation (XSLT) can be considered as peripherally related 
to our topic [1]. There is also quite a bit of work on XML query 
processing which we consider to provide some relevant 
foundational basis for our topic [8, 9].  However, there are still a 
lot of open issues that need to be addressed to enable “next 
generation” XML data integration.  In this paper we present the 
XPEDIA (XML ProcEssing for Data IntegrAtion) system which 
addresses some of these issues. 

1.1 XPEDIA System 
Data integration over relational data is a well studied topic.  
However, in an XML world, data integration is radically different 
due to the hierarchical nature of the data.  Hence techniques 
which have been developed for relational world cannot be directly 
applied to XML data.  The XPEDIA system is one of the first 
systems to incorporate techniques for efficiently supporting XML 
data integration.  We now outline some of the key features and 
challenges addressed by XPEDIA. 

Computational Model: The computational model used to 
represent ETL processes over relational data assumes data in the 
form of rows consisting of multiple columns.  Such computational 
models represent each XML document as a single row consisting 
of a single column.  Such a simplified representation of XML data 
is a major handicap in supporting complex XML operations.  
Hence there is a need for a technique to handle complex data 
transformation flows, while maintaining the easy of specification 
inherent in the relational computational model. 

First Class Data Type: Most of the data integration engines 
available in the market today, treat XML as a CLOB (string of 
characters).  However, the key for efficient handling of XML data 
is to treat it as a first class data object during transformation.  
Such a representation enables XPEDIA to support operations such 
as equi-hierarchical-join, xml-aggregate, etc., which are 
specialized operators for dealing with XML data (details in 
Section 3).  These operators allow users to easily define intricate 
XML transformation flows, which hitherto were not possible. 

ELT Support:  If the source (or target in some cases) of an ETL 
flow is a database that supports XML processing, XPEDIA 
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applies rewriting techniques to transform parts of the ETL job 
flow into SQL/XML queries in order to push some significant 
processing into the database. This is called ELT (Extract, Load, 
Transform) and is a valuable technique to gain efficiency and 
performance by leveraging the database’s capabilities.   

Scalability: The size of a row/tuple in relational data is seldom 
larger than a few Kb’s.  However, we have observed from several 
customers that XML inputs for data integration tend to be large, 
aggregated inputs comprised of many smaller objects.  Thus we 
need specialized techniques for handling large (> 2-3 GB) XML 
documents.  XPEDIA uses a novel single-pass partitioning and 
parallel processing technique for XML objects.  The hierarchical 
nature of the XML data presents some unique challenges for 
executing a single transformation job comprising of a series of 
operators in a parallel execution environment.  In this paper we 
present various approaches supported by XPEDIA for partitioning 
input XML objects in order to perform the rest of the processing 
using parallel streams before combining the results.  We also 
provide experimental results for all of these techniques to show 
the scalability and performance that can be obtained. 

1.2 Contributions  
The research contributions of our work can be summarized as 
follows: 

o We propose a computational model for ETL applications on 
XML data.  The new model is specifically tailored to handle 
hierarchical XML data and treats XML as a first class data 
type.   

o XPEDIA is the first system that supports query rewriting 
techniques to convert an ETL flow into an ELT flow over 
XML data. 

o We present novel parallel processing techniques for handling 
large XML documents.  We believe that our single pass 
techniques are the first attempt at supporting efficient 
parallelism in ETL flows over XML data. 

o We present experimental results that validate both our 
techniques and our results show that we achieve significant 
improvement in performance for a typical ETL flow. 

Paper Organization: Section 2 introduces our computational 
model and also gives an overview of the various operators 
supported by the model.  We present a sample ETL flow using the 
operators of our computation model in Section 3.  The techniques 
for supporting ELT over XML data are summarized in Section 4.  
Section 5 presents the parallel processing techniques used by 
XPEDIA for handling large XML documents.  The experimental 
validation of XPEDIA is outlined in Section 6.  The related work 
is summarized in Section 7 and Section 8 concludes the paper. 

2. COMPUTATION MODEL 
A computational model is used to express ETL processes that 
move and transform data from sources to targets.  Many ETL tools 
use the dataflow computational model to describe these processes.  
In the dataflow model, processes are expressed via a directed flow 
graph where the vertices of the graph are operators and the edges 
represent the flow of data.  The operators in a dataflow model can 
perform one or more of the following operations: (i) read data 
from sources (ii) write data to targets and (iii) perform 

transformations on input data to produce new output data.  The 
algorithm of an operator is defined by the operator type.  For 
example, a join operator uses the join algorithm for joining the 
input data.   

Existing dataflow based ETL engines assume relational data 
model for the data that flows between the operators, i.e., records 
that flow between two operators consist of “rows” having multiple 
columns.  In order to handle XML data these engines consider 
each XML document to be a single row with one (XML) column.  
However, as is obvious, such an over-simplified representation is 
a major handicap in supporting complex operations over XML 
data.  Hence, XPEDIA uses a new computational model which 
extends the relational dataflow model to support hierarchical data.  
Such an extension, as we explain next, requires a major shift in 
the representation methodology.   

XPEDIA uses a dataflow model consisting of operators and 
edges.  However, the key difference from the existing dataflow 
models is that the data that flows between two operators is an 
ordered list of XML documents that comply with a single XML 
schema element definition [2].  Notice that each document could 
itself be multi-dimensional or in XML terminology the document 
could have multiple repeated elements with maxOccurs > 1 or 
maxOccurs=“unbounded”. For example, consider an XML 
document with root node “High_Value_Customers” which in turn 
has 100 “Customer” child nodes.  In this document if we map 
“Customer” node to a row in the relational world then the XML 
document will map to a table consisting of 100 rows.  In such a 
setup the XML document would represent two dimensional data.  
In order to capture this multi-dimensional nature of the XML 
data, each XML document in our computational model consists of 
multiple “Vectors” – one for each repeating element type.   In the 
“High_Value_Customers” example, the document will consist of 
one Vector (of size 100) as it has one repeating element of 
“Customer” type.   

The concept of vector also makes a difference in the way data is 
handled by an operator.  In our data flow model, operators (except 
the source operator which simply reads data from the source) 
iterate through the list of objects (XML documents) in their input 
data.  As each object (document) can consist of multiple sub-
vectors, the operators can also iterate through a sub-vector of the 
input data.  The iterated vector is defined as the “scope” vector of 
the operator.  For each scope instance, the operator processes the 
input data that is contained in the scope instance and produces a 
result that is also contained in the scope instance. For example, in 
the “High_Value_Customers” example the scope of an operator 
will be “/High_Value_Customers/Customer”.  An operator will 
treat each “Customer” sub-tree below the root independently of 
the other “Customer” sub-trees.  Hence operators are not allowed 
to maintain state between instances of the scope vector.  Thus 
each scope instance (i.e., each “Customer” sub-tree) can be 
thought of as being similar to a row in the relational world.  The 
concept of vector and scope help us to support a rich set of 
operators over XML data and also help us to support 
parallelization of the ETL flow (details in Section 5). 

Another key difference from relational data flow systems is that 
our computational model only supports linear sub-graphs.  
Relational dataflow systems, on the other hand, typically allow 
parts of the data to be separated and processed in different sub-
graphs (of the ETL flow).  In an XML world, this would map to 



splitting the contents of a vector (of a single XML document) to 
different sub-graphs and then merging them into one or more 
vectors.  As this can get quite complicated, our computational 
model only allows linear graphs thereby simplifying the job 
design process and increasing its usability.  In order to 
compensate for the restriction of the model into a linear graph, 
each operator in our model produces a result that also contains its 
initial input.  We then employ runtime optimizations, graph 
rewrites and dead field elimination to optimize the XPEDIA ETL 
flows by removing false dependencies and eliminating the transfer 
of data that is no longer needed downstream. 

Thus the computational model of XPEDIA incorporates a radical 
shift in the representation methodology by including support for 
hierarchical XML data due to the use of features such as Scope, 
Vector and linear sub-graphs.  Using these concepts, Figure 1 
describes an operator’s algorithm in our computational model in 
terms of an XQuery update statement. 

 

Figure 1: Operator Algorithm 

op_alg in the above figure stands for the operator algorithm that 
accesses the data contained in $scope and produces a result only 
using this data.  We explain next a sample set of specialized 
operators supported by our model for handling XML data. 

2.1 XML Operators 
Filter Operator:   The filter operator can filter one of the vectors 
contained within the scope instance and produce a new vector 
which will contain only instances that passes the filter predicate.  
The following SQL/XML clause illustrates the Filter operator 
algorithm: 

 

Project Operator: The project operator iterates over a single 
vector in its input and produces a new vector that is based on a set 
of select expressions.  The set of select expressions allows the 
user to modify the input by removing an element or a sub tree, 
renaming an element, or enriching the document with a new 
attribute by computing a scalar expression. The following 
SQL/XML clause illustrates the Project operator algorithm: 

 

Aggregate Operator: The aggregate operator can produce 
statistics by aggregating one of the vectors contained in the scope 

instance.  Similar to a database aggregation, the aggregate 
operator takes a set of aggregation functions and a group by 
clause which defines the key aggregation columns. The result of 
the aggregate operator is a new vector with a summary record for 
each unique key that is found in the input vector. Notice that the 
aggregation restarts for each scope item. The following 
SQL/XML clause illustrates the Aggregate operator algorithm: 

 

Equi-Hierarchical-Join Operator:  The equi-hierarchical-join 
operator performs an equality based join between two vectors that 
are contained within the scope instance.  Similar to a relational 
equi-join, the join operator takes a set of equality predicates 
between attributes from one vector and attributes of the second 
vector.  The result of the join consists of two nested vectors, 
where each instance of the input left vector contains all the 
matching instances of the right input vector.  The following 
SQL/XML clause illustrates the Equi-Join operator algorithm:  

 

Read Table Operator: The Read Table operator reads all the 
rows of a single table and outputs either relational tuples or an 
XML document.  This operator takes as a parameter a SQL or 
SQL/XML query which executes on the input table to generate 
the required output. 

Write Table Operator:  The Write Table operator is used for 
writing relational or XML data to a table.  For each instance of the 
scope vector present in the input, the operator creates a new 
record in the output table.   

OutputStage Operator: The OutputStage operator transforms a 
relational input into an XML Document.  This operator has been 
included due to legacy support issues.  The operator takes as input 
a mapping from each relational attribute present in the input to an 
XPath in the output XML document (which is to be created).  One 
of the XPaths is designated as the repetition path.  This is used to 
decide the structure of the XML document.  An example of the 
function of OutputStage is given in Figure 2.  In this example, the 
mapping from relational attribute to XPath is as follows: (1) 

Let $Scope be the scope vector path 
Let $left_vector, $right_vector be the paths to 
the joined vectors 
Let $left_key1, $left_key2 be the paths to the 
left vector join columns 
Let $right_key1, $right_key2 be the paths to 
the right vector join columns 
 
Select ($scope//$rightVector.*) insert into 
$scope//$leftVector.*  
From ( $scope//$aggr_vector)) 
Where  $scope//$left_vector/$left_key1 = 
$scope//$right_vector/$right_key1 AND 
       $scope//$left_vector/$left_key2 = 
$scope//$right_vector/$right_key2  

Let $Scope be the scope vector path 
Let $aggr_vector be the path to the aggregated 
vector 
Let $Key1, $Key2 be the paths to the key 
aggregation columns 
Let $cost be a path to an attribute of 
aggregated vector 
 
Select $Key1, $Key2, Avg($cost) as avg_cost, 
count(*) cnt_rcd, … 
From ( $scope//$aggr_vector)) 
Group by Key1, Key2 

Let $scope be the scope vector path 
Let $child_vector be the path to the aggregated 
vector 
Select  a, b,  (a || b) as ab 
From ( $scope//$child_vector)) 

       

Let $scope be the scope vector path 
Let $child_vector be the path to the aggregated 
vector 
Select  * From ( $scope//$ child_vector)) 
Where  $scope//$child_vector/$key1 > 5  

Let $input be the set of input documents the 
operator is processing 
Let $scope_path be the operator scope path 
for $currentDoc in collection($input) 
return  
 for $scope in $currentDoc//$scope_path 
  return ( 
   insert node<Result>{op_alg($scope)}</Result>  
        as last into $scope) 



Department � /Company/Country/Dept (2) Project � 
/Company/Country/Employee/PName and (3) Emp ID � 
/Company/Country/Employee/EInfo/EmpID.  The EmpID node is 
designated as the repetition output path.  The OutputStage 
operator makes use of the repetition path to decide the structure of 
the output XML document.  The repetition path works by 
comparing values between input rows. The following rules apply:  

Rule 1: A change in an input column value triggers the closing of 
at least one element and the opening of at least one element. 

Rule 2: When a single input column value changes, the repetition 
path applies as follows: Every opened element is closed up to and 
including the first element that is part of the repetition path. E.g., 
Let the repetition path be: /w/x/y/z and let the XPath of the 
affected column be: /w/x/y/a/b. Then the y element is closed and 
new elements are opened, down to the last element of the XPath 
expression of the column for which the value has changed. 

Rule 3: When more than one column changes values, elements are 
closed and opened, starting with closest to the root element. 

 Figure 2: Functioning of OutputStage 

 

Figure 3: Typical ETL Flows 

3. TYPICAL ETL SCENARIO WITH XML 
Figure 3 shows three sample ETL flows. In these flows, there are 
two sources and targets, one of which is relational and the other is 
XML. Each flow consists of a series of operators which transform 
the input data.  Flow 1 converts XML data to relational format, 

Flow 2 converts XML data to XML and flow 3 converts relational 
data to XML format. 

In this section, we describe the Flow 1 in detail.  The ETL process 
shown in Flow 1 reads a set of XML documents that are stored in 
a database, transforms the documents and eventually writes them 
to the target relational database. The source table contains a single 
XML column that holds the source document content.  All source 
documents conform to the “Company” element which is described 
in Figure 4. We now enunciate each step of the flow in detail. 

Step 1:  The Read_XML_Table operator simply reads the XML 
documents from the database and outputs it to the next operator. 

 

Figure 4: Output of Read_XML_Table operator 

 
Figure 5: Equi-Hierarchical Join operator 

Step 2:  The Equi-Hierarchical Join operator (Figure 5) has the 
following parameters: {scope: Company/Country,  left vector : 
Department,  right vector: Employee, join key : 
Department/DeptCode = Employee/DeptCode, result= 
Dept2//Emp2 }.  For each “Country” sub-tree in the input XML 
document, the operator finds the set of employees working in each 
department (in that country) and creates a new element named 

 Output: 

<element name="Company" type=”Company’ maxOccurs=”unbounded” >          
  <complexType >     <sequence> 
       <element name="Country" maxOccurs="unbounded">              
        <complexType>   <sequence> 
            <element name="CountryName"/> 
            <element name="CountryCode"/> 
            <element  name="Departments" type="tns:Department" maxOccurs="unbounded"/> 
            <element  name="Employee" type="tns:Employee" maxOccurs="unbounded" />   
            <!--  THIS IS THE JOIN PRODUCT BEGINNING--!> 
             <element  name="Dept2" maxOccurs="unbounded”> 
              <complexType>   <sequence> 
                 <element  name="DeptName" type="string" /> 
                 <element  name="DeptCode" type="string" /> 
                <element name="ManagerID" type="string"/> 
                <!--  EMPLOYEE IS NESTED WITHIN THE DEPTARTMENT--!> 
                    <element  name="Employee" type="tns:Employee" maxOccurs="unbounded" />   
                <!--  JOIN PRODUCT ENDS HERE--!> 
               …  (definition closed) 
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“Dept2” (for each department) which has the list of all employees 
working in that department.  

Step 3:  The Aggregation operator has the following parameters: 
{scope: Dept2, aggregated vector= Dept2/Employee, aggregate 
key: Dept2/DeptCode, aggregate function 
=sum(Dept2/Employee/salary)  result= Dept2/totalSalary }.  The 
operator finds the total salary of all the employees in a department 
and adds it to the XML document as “totalSalary”. 

 

Step 4:  The final operator Shredder writes the totalSalary in the 
modified XML document to the relational database.  The 
attributes of the operator are: {scope: Dept2vector, 
totalSalary=/Company/Country/Dept2/totalSalary}. 

Notice that in each step of the above ETL flow, for each scope 
instance (i.e., each “country” node) the output includes the entire 
input data (in that “country” node) along with the result of the 
transformation applied to the data within the scope (i.e., the 
“country” sub-tree).  XPEDIA also supports other optimizations 
such as false-dependency elimination via linear graph to acyclic 
graph rewrite, dead field elimination via usage analysis and 
streaming large document with a bracket model.  Details are 
omitted due to lack of space.  We present next, the ELT feature of 
XPEDIA. 

4. ELT OPTIMIZATION IN XPEDIA 
Recent times have seen a proliferation of databases with native 
XML support.  Databases such as DB2 9, Oracle 11g and SQL 
Server 2005 store XML documents in native format and have 
inbuilt XQuery and SQL/XML query engines.  Another important 
feature of these databases is that they allow users to define 
indexes on XML documents.  If part of the processing involved in 
the ETL job is executed inside the database engine, then it can 
make use of the XML indexes to significantly reduce job 
execution time.  Thus the goal of ELT is to delegate some part of 
the ETL job to the database engine. This is accomplished by 
generating a SQL/XML query which does the same job as one or 
more steps in the ETL flow.  For example, the flow 1 from XML 
data source to RDBMS in Figure 3 can be represented by a single 
SQL/XML query.  Hence the modified job would have a single 
Read Table operator which will directly output the relational 
tuples which are then fed to the Write Table operator.   

Another advantage of ELT is the reduction of the size of the data 
that needs to be moved between the source and the target.  This is 
especially true when the job involves reading XML data and 

transforming it to a relational format (E.g. flow 1 in Figure 3).  
Notice that the size of the source XML document (which consists 
of a plethora of XML tags) will be significantly larger than the 
relational tuples generated in output.  While converting an ETL 
job (which reads XML data and shreds it to relational format) to 
an ELT flow, XPEDIA tries to push maximum possible 
processing inside the database engine.  This helps to significantly 
reduce the I/O costs which contribute a significant percentage of 
the overall execution time. 

Thus, converting an ETL job into an ELT flow can provide 
significant advantage and requires us to do the following tasks:  

1. Rewrite the ETL flow in terms of simpler operators. 

2. Convert each operator into a SQL/XML query. 

3. Merge the SQL/XML queries of adjacent operators into a 
single SQL/XML query. 

4. Convert the merged SQL/XML queries to an ELT job 
definition which can be executed on XPEDIA. 

We explain each of the above steps in the following sections. 

4.1 Rewriting ETL Flow Using Simpler 
Operators  
Most of the operators in XPEDIA can be directly converted to a 
SQL/XML query.  However, some of the operators like 
OutputStage are quite complex.  Hence it is difficult to generate 
the SQL/XML queries directly for such operators.  We overcome 
this problem by rewriting the complex operators using a simpler 
set of new operators. In this section, we describe the algorithm 
used for converting the OutputStage operator into a sequence of 
simpler operators, namely (i) XMLIZE and (ii) Sibling Group-By.  

XMLIZE Operator: The XMLIZE operator converts relational 
tuples into a flat XML document.  The schema of a “flat” XML 
document is very similar to the relational schema and is given in 
Figure 6.  As the output of this operator is a flat XML document, 
we need to perform various operations on the output to get the 
XML document in the desired hierarchical format.  This requires 
the use of a special operator which is explained next. 

 

Figure 6: “Flat” XML Document schema 

Sibling Group-By Operator: The Sibling Group-By operator is a 
special operator which is required to convert the flat XML 
document into a hierarchical format.  The Sibling Group-By 
operator, as the name suggests, does a group-by only amongst 
immediate siblings present within the scope instance, which 
allows us to nest the input data.  Given a set-valued element ‘s’ 
and a set of group-by attributes within s (which have to be atomic-

<?xml version="1.0" encoding="ISO-8859-1" ?>                
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">             
<xs:element name="root"> 
 <xs:complexType> 
   <xs:element name="row"> 
    <xs:complexType> 
     <xs:sequence> 
      <xs:element name="empID" type="xs:string" maxOccurs=”1”/> 
      <xs:element name="deptID" type="xs:string" maxOccurs=”1”/> 
      <xs:element name="name" type="xs:string" maxOccurs=”1”/> 
      <xs:element name="salary" type="xs:string" maxOccurs=”1”/> 
     </xs:sequence> 
    </xs:complexType> 
   </xs:element> 
 </xs:complexType> 
</xs:element> 
</xs:schema> 

Output: 

<element name="Company" type=”Company’ maxOccurs=”unbounded” >         
  <complexType >     <sequence> 
       <element name="Country" maxOccurs="unbounded">              
        <complexType>   <sequence> 
            <element name="CountryName"/> 
            <element name="CountryCode"/> 
            <element  name="Departments" type="tns:Department" maxOccurs="unbounded"/> 
            <element  name="Employee" type="tns:Employee" maxOccurs="unbounded" />   
             <!--  THIS IS THE JOIN PRODUCT BEGINNING--!> 
             <element  name="Dept2" maxOccurs="unbounded”> 
              <complexType>   <sequence> 
                 <element  name="DeptName" type="string" /> 
                 <element  name="DeptCode" type="string" /> 
                <element name="ManagerID" type="string"/> 
                <!--  EMPLOYEE IS NESTED WITHIN THE DEPTARTMENT--!> 
                    <element  name="Employee" type="tns:Employee" maxOccurs="unbounded" />   
                <!--  JOIN PRODUCT ENDS HERE--!> 
                <!--  AGGREGATION RESULT INSERTED HERE--!> 
                <element name="totalSalary" type="double"/> 
   …  (definition closed) 

 



valued elements) it groups all “contiguous” tuples in s by the 
values of the group-by attributes. Thus s is replaced in the output 
by a set that contains: a) the group-by attributes and b) for each 
contiguous value for them a nested set with all the contiguous 
tuples in s that have the same values on their group-by attributes.   

Figure 7 shows the effect of applying Sibling Group-By on a 
sample XML document.  In this example we have applied the 
Sibling Group-By on the /Company/Country/Dept node.  This 
node has two distinct values CS and EE.  Hence the Sibling 
Group-By operator creates two sub-trees – one for each distinct 
value amongst contiguous nodes. 

 

Figure 7: Sibling Group-By Operation 

Consider the example transformation given in Figure 2 which 
creates an XML document from the given relational data.  In this 
example the repetition path is “/Company/Country/Employee/ 
EInfo/EmpID”.  In order to generate the XML document 
corresponding to this example, the first step is to convert the 
relational data into XML format using the XMLIZE operator.  
After that, we repeatedly apply the Sibling Group-By operator as 
follows:  (1)  Apply the Sibling Group-By on the 
/Company/Country node with the group by node set to 
/Company/Country/Dept and the scope set to /Company.  The 
output of this operation is shown in Figure 7.  (2)  Apply the 
Sibling Group-By operator on the output of the first step.  The set 
valued attribute is /Company/Country/Employee and the group by 
attribute is set to /Company/Country/Employee/PName.  The 
output of this step gives us the required XML document which is 
shown in Figure 2.  

Thus the OutputStage operator is represented by an XMLIZE 
operator followed by a sequence of one or more Sibling Group-By 
operators.  The algorithm to convert the OutputStage operator to 
the set of simpler operators is given below. 

Step 1: Apply XMLize operator on the relational data to obtain 
flat XML document 

Step 2: For all output nodes except the repetition output node: 

o The level of an output node is the level at which its XPath 
intersects with the repetition output node’s XPath 

o Starting from the top to bottom (based on the level), apply 
Sibling Group-By for all nodes which meet at the same 
position on the repetition output node’s XPath. 

Step 3: Use Project Operator to add and drop nodes, so as to 
bring the height of all output node at correct position.   

Step 4: Use Project Operator to change names of nodes 

4.2 Query Generation and Merging:  
The XPEDIA ELT optimizer has a set of algorithms for 
generating the SQL/XML query for each operator.  As the query 
corresponding to each of the operators is fixed, the optimizer uses 
pre-built techniques/rules for merging the SQL/XML queries of 
adjacent operators.  As the set of operators is exhaustive, due to 
lack of space, in this paper we only outline the technique to 
generate the SQL/XML queries corresponding to the Sibling 
Group-By operator and also present the technique for merging the 
queries corresponding to a sequence of these operators. 

  

Figure 8: SQL/XML for Sibling Group-By 

As seen in the previous section, a typical use of the Sibling 
Group-By operator is to nest the XML document which is 
generated by the XMLIZE operator.  Notice that the unique nature 
of this operator is that it only does a group by on adjacent 
siblings.  Hence, we cannot use the “group by” clause present in 
SQL/XML as it will group together even those values which may 
not be ‘adjacent’ in the input XML document.  In order to 
circumvent this problem we generate an extra attribute in the 
input data whose value can be used by the regular “group by” 
clause of the SQL/XML query.  This means that, for the data 
shown in Figure 2, the value of the new attribute will be say 1 for 
the first two tuples ( <CS,C++,123> and <CS,C++,253> ) and 2 
for the third tuple.  Generating this attribute using SQL is a tricky 
operation.  We use the OLAP function in SQL to generate these 
attributes in a temporary table which also contains the rest of the 
attributes present in the input table.   

Once the temporary table is generated, we use the group by clause 
on the new attribute ‘J1’ to generate the desired output.  The 
sample SQL/XML query which uses a temporary table to generate 
the output corresponding to the Sibling Group-By mentioned in 
Figure 7 is shown in Figure 8. 

Notice that the query operates on a temporary table.  A major 
advantage of using the temporary table is that we can define 
indexes on the attributes of the table.  This speeds up the 
processing of any joins present in the SQL/XML query. 

Once the SQL/XML queries are generated for each of the Sibling 
Group-By operators, they can be merged with each other as well 
as the XMLIZE operator.  The XPEDIA ELT optimizer uses a set 
of rules for merging these SQL/XML queries.  In order to give a 
flavor of the merging process, we provide an example in Figure 9, 
of the merged SQL/XML query for the ETL job given in Figure 2. 
The merged SQL/XML query uses one group-by clause for each 
Sibling Group-By operator.  

select xmlelement(name "Country", xmlagg(TB3.O)) from 
         (select xmlelement(name "Department", xmlelement(name "Name", TB2.D),  
              xmlagg(TB1.SS)) from session.TBTemp TB2,   
                       (select TB4.id, TB4.D, TB4.J1, xmlelement(name "ProjEmp", 
                            xmlelement(name "PName", TB4.A),  xmlelement(name "EmpID",  
                            TB4.z))  from session.TBTemp as TB4) as TB1(ID, D,  J1, SS)  
                   where TB1.j1 = TB2.j1 and TB1.D = TB2.D and TB1.ID = TB2.ID group by  
                    TB1.J1, TB2.J1, TB1.D, TB2.D order by TB1.J1 
         ) as TB3(O) Company 
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Figure 9: Merged SQL/XML query for OutputStage 

4.3 Generating the ELT Job Definition 
Once the SQL/XML queries have been generated, the next task is 
to map them back to the XPEDIA job definition.  This is a 
straightforward process wherein the generated SQL/XML query is 
mapped to a Read TABLE operator and the rest of the stages 
remain as is. 

Using the above procedure, XPEDIA is able to take advantage of 
the native XML processing capabilities of the database engine. 
However notice that we cannot generate an ELT flow when the 
data is present in a database which does not have native XML 
support or is present in a flat file.  Even in such cases, XPEDIA 
improves the scalability by using a novel parallel processing 
technique which is explained next. 

5. PARALLEL PROCESSING OF XML 
DATA 
The size of a row/tuple in relational data is seldom larger than a 
few Kb’s.  However, we observed from several customers that 
XML inputs for data integration tend to be large aggregated inputs 
comprised of several smaller objects.  Hence XML documents of 
the order of 2-3 GBs are fairly common in practice.  In this 
section, we present a technique for parallel processing of such 
large XML documents. 

Parallelism can be achieved in two different ways namely, 
pipeline parallelism and partitioned parallelism. Pipeline 
parallelism (also know an assembly line parallelism) occurs when 
different operators work on different XML documents 
simultaneously. Such a parallelism is supported by XPEDIA and 
occurs whenever multiple operators operate on a stream of XML 
documents in serial manner.  However, this kind of parallelism 
can provide limited benefit for large XML documents as each 
operator would have to process all the documents thereby 
requiring large memory and processing power.  Unfortunately, the 
ETL processing engines available today only support pipeline 
parallelism for XML data leading to an inferior performance.  The 
key to solving the scalability problem (in the presence of large 
XML data) is the use of partitioned parallelism – a technique 
supported by XPEDIA.  Partition parallelism is achieved when 
multiple instances of the ETL job (consisting of a sequence of 
operators) are executed in parallel on different 
machines/processors with each instance working on different parts 
of the same XML document.  This reduces the size of the XML 
document (partition) that needs to be processed on each processor 
thereby improving scalability.  The key to achieving partitioned 
parallelism, as the name suggests, is the partitioning of the large 
XML document.  However, the hierarchical nature of XML makes 
the task of partitioning an inherently complex task.  We outline 
the various challenges for achieving partitioned parallelism and 
propose a technique for identifying the right type of partition in 

Section 5.1.  Once the correct partition has been identified, the 
next task is to actually generate the partitions efficiently in a 
single pass of the XML document and that too without doing a 
full parse of the document.  We present such a technique for 
generating these partitions in Section 5.2.  One of the most 
expensive operations (in terms of time) over XML documents is 
their schema validation.  We show in Section 5.3 that the schema 
validation task can also be done in parallel on multiple machines 
thereby reducing it execution time significantly. 

5.1 Identifying the Optimal Partition  
As mentioned earlier, partitioned parallelism involves the 
following tasks: (i) partitioning a large XML document into 
multiple parts, (ii) running multiple instances of an ETL job on 
multiple machines/processors, (iii) each job instance operating on 
a different partition of the XML document and (iv) finally, 
merging the output of the job instances.  In order to achieve an 
efficient parallelism, each partition should be self sufficient, i.e., 
the data required by each job instance should be contained within 
the partition available to it and no data should be shared across 
partitions.  If this is not ensured then it would necessitate 
communication between the processors or alternatively copies of 
the same data would have to be made available to multiple 
processors, which in turn would reduce the effectiveness of the 
parallel algorithm.  In order to highlight this further, we present 
an XML partitioning example. 

Example: Consider a job consisting of the first two steps of the 
ETL job outlined in Section 3.  The input to the job is an XML 
document whose schema is outlined in Figure 4.  The join 
operator in the ETL job joins the data present in the Employee 
sub-tree with the data present in the Department sub-tree.  For 
this job if we partition the XML document into two parts such 
that all the Department nodes go to the first partition and all 
Employee nodes go to the second partition then the join operator 
will require access to both the partitions.  Hence no parallelism 
would be achieved as there will be no reduction in the size of the 
data processed by each operator.  Thus the partitioning technique 
needs to ensure that the data required by an operator is contained 
within the partition available to it.   

Consider another partitioning technique, where we partition the 
data at the “/Company/Country” level.  In other words, if there are 
10 Country sub-trees below the root (Company) node, then the 
first partition will consist of an XML document rooted at 
“Company” with only the first 5 Country sub-trees where as the 
second partition will consist of the next 5 Country sub-trees.  
Recall that the scope of the join operator is “/Company/Country”.  
This means that the join operator treats each “Country” sub-tree 
independently from the rest.  In other words, it joins the 
Department and Employee data present within each sub-tree and 
not across sub-trees.  Further the join result of each sub-tree is 
also contained within that sub-tree. Hence a partitioning made at 
the level of “/Company/Country” (which is called as the partition 
node) would ensure that all the data required by each instance of 
the join operator is contained within the partition available to it. 

The above example highlights the difficulties in partitioning an 
XML document for a job consisting of a single operator. As can 
be imagined, the problem gets further exacerbated for a job 
consisting of multiple operators. We present next some key 
insights which are used by the partitioning algorithm of XPEDIA 

select xmlelement(name "Country", xmlagg(TB4.all)) from 
     (select xmlelement(name "Department", xmlelement(name "Name", TB3.D),  
         xmlagg(TB3.all)) from   
         (select D, j2, xmlelement(name "ProjEmp", xmlelement(name "PName", TB2.A),  
          xmlagg(TB2.all)) from  
              (select D, j3,j2, A, xmlelement(name "Employee", TB1.zz) from  
                     (select D,j3, j2, A, xmlagg(xmlelement(name "EmpID", Z))  
                      from session.TBTemp group by j3,j2,j1, A,D) as TB1(D,j3,j2, A,zz) 
               ) as TB2(D,j3,j2,A,all) group by TB2.j3, TB2.j2,TB2.A,  TB2.D 
          ) as TB3(D,j2, all) group by TB3.j2, TB3.D 
     ) as TB4(all) 



to find the partition node of a large XML document for a given 
ETL job. 

1. Insight 1: Operators do not preserve any state between 
instances of their scope vector. Therefore, each scope instance 
can potentially belong to a different partition.  

2. Insight 2: Some of the operators (such as Filter) perform 
stateless transformations, i.e., transformations that do not 
maintain state between vector instances.  E.g., the filter 
operator computes the filter predicate per vector instance and 
does not maintain any state across instances.  Hence if an ETL 
job consists entirely of such operators, then (irrespective of 
the scope value) each vector instance in the input can 
potentially belong to a different partition.  

3. Insight 3: Some of the operators (such as Aggregate) maintain 
state information between different instances of their input 
vectors (within a particular scope instance).  E.g., the 
Aggregate operator in the ETL job given in Section 3 finds 
the total salary for each Department within a scope instance, 
i.e., for each distinct Department in each “Country” sub-tree. 
Notice that it does not store any state information across 
different “Department” nodes within each “Country” sub-tree.  
Hence parallelism can be achieved by ensuring that all the 
Employee and Department sub-trees that share the same 
DeptCode are contained within a single partition.  Operators 
which are amenable to such partitioning are called as State 
Key Correlated operators.  In the above example, the 
Aggregate operator is state key correlated as the Employee 
sub-trees are correlated with respect to the key DeptCode. The 
Employee node is called as the correlated node for the 
operator. 

We present next an algorithm which uses these insights to find the 
best partition node for a given ETL job.  

Algorithm: Find Partition Node 

1. For each operator in the ETL job 
          1.1 Initialize a vector containing all the scope instances  
                for this operator 
2. For each operator in the ETL job 
          If the operator is stateless 
                2.1 Do nothing 
         Else if the operator is state key correlated then 
                2.2 Generate a partition for the vector using the key for 
                      the operator 
               2.3. if a vector contains sub-trees rooted at the  
                     correlation node for this operator then merge the  
                     vector with the generated partition vectors 
         Else  
               2.4  Union all the vectors that contain sub-trees rooted 
                      below the scope of the operator  

Result:  Each vector has a root that is a candidate for 
partitioning.  Output the highest root amongst all the vectors as 
the partition node(s). If there are multiple nodes at same level, 
output multiple partition nodes. 

It is possible that the partition node found by the above algorithm 
is the root of the document, i.e., no partition of the document is 
possible. In such a case we could still partition a subset of the 

operators in the ETL flow.  Extending XPEDIA to handle such 
cases is part of our future work.  

Once the partition node has been identified, XPEDIA uses the 
partition node to generate the partitions as follows:  

o Round-robin partitioning technique:  In this technique, each 
partition gets the sub-trees rooted at the partition node in a 
round robin manner.  In other words, the first instance of the 
partition node goes to the first partition; the second partition 
node instance goes to second partition and so on and so 
forth.   

o Chunking scheme: This partitioning technique generates the 
partitions based on the size of the XML document.  Given an 
XML document (of size say 4 GB) for which we have to 
generate (say 4) partitions, then this partitioning technique 
tries to generate each partition of size 1 GB.  Notice that we 
cannot generate say the 2nd partition by directly seeking to 
the 1 GB location in the XML document and then finding the 
first occurrence of the partition node.  This is because the 
encountered partition node could occur at multiple locations 
in the XML document or could be inside a CDATA section. 
Hence this technique generates the partition by iterating over 
the sub-trees rooted at the partition node (starting from the 
beginning of the file) till it reaches the 1 GB location in the 
XML file.  Thereafter the second partition starts and the sub-
trees rooted at the partition node constitute the second 
partition till we reach the beginning of the 3rd GB location in 
the XML file. The technique also ensures that each partition 
is a well formed XML document by adding the nodes from 
the document root to the partition node at the beginning of 
each partition. 

5.2 Generating the Optimal Partition  
Once the set of partition nodes and the partition strategy has been 
identified, the next task is to make the right partition available to 
each ETL job instance.  Notice that each job instance will have 
the entire XML document available to it.  The process of 
generating the partition (which is run for each job instance) 
involves the parsing of the entire XML document and producing 
the right partition for that job instance.  If we do a full parse of the 
XML document then it will not provide us any performance gain.  
Hence, as we explain next, XPEDIA uses a “shallow parsing” 
technique to generate these partitions.  

5.2.1 Shallow Parsing 
The basic idea behind shallow parsing is that it parses only those 
nodes which occur between the root node and the partition node, 
i.e., the nodes that appear in the partition node XPath.  The 
shallow parsing process ignores all the other nodes thereby 
avoiding the high cost associated with a full parse of the XML 
document.  E.g., consider a scenario where we have a 4 GB XML 
document conforming to the schema given in Figure 4.  Let the 
partition node be \Company\Country and we have to generate the 
second partition (out of the 4 partitions) using the chunking 
scheme.  In this case XPEDIA does a shallow parse of the XML 
document till it reaches the 2nd GB of the XML file.  In this 
shallow parse, XPEDIA only looks for the beginning and end of 
the “Company” and “Country” nodes.  All the other nodes are 
ignored.  Once it reaches the 2nd GB it outputs the sub-trees 
rooted at the “Country” node till it reaches the beginning of the 
3rd GB. At this point it adds a closing “Company” tag and the 2nd 



partition is thus generated as output.  This strategy helps XPEDIA 
to generate the partitions in a single pass over the input XML 
document. 

However, the process of shallow parsing can get complicated 
when there are multiple partition nodes.  Such cases are handled 
by XPEDIA by looking for the nodes that appear in the XPaths of 
all the partition nodes.  We explain the details of the shallow 
parsing algorithm used by XPEDIA with the help of the example 
given in Figure 10.  The XML document in the figure has three 
partition nodes /A/B/C/D#, /A/B/C/E#, /A/B/F#.  XPEDIA 
maintains a set called as ValidExtension for each node that 
appears in the XPath of one or more partition nodes.  The 
ValidExtension set for a node B would contain the set of all nodes 
that appear after B in any of the partition node XPaths.  Thus the 
ValidExtension for B will be the set {C, F#}.  XPEDIA also 
maintains a stack called PathStack. Whenever we encounter a 
node that is part of at least one partition node’s XPath, that node 
is pushed on to the PathStack.  If the node B is at the top of 
PathStack then the shallow parsing is done by looking for (i) the 
closure of the node B or (ii) looking for the nodes that are in the 
ValidExtension set of B.  XPEDIA ignores all the other nodes 
which helps it to avoid the high cost associated with a full parse.  
If we see the closure of the node which is at the top of the stack, 
we pop it from the PathStack. To illustrate the algorithm further, 
consider a scenario where we are at the node B in Figure 9.  In 
this case, we either push a C node, or a F# node on the stack.  All 
other nodes are ignored since they are not part of any XPath 
leading to the partition nodes.  

Whenever a partitioning node is found, if we have not reached the 
required partition in the XML document, we ignore the XML sub-
tree rooted at the partition node.  If on the other hand, we have 
reached the required partition (i.e., the 2nd GB in our earlier 
example) we output the sub-tree rooted at the partition node. 

 

Figure 10: Shallow Parsing for multiple partition nodes. 

5.2.2 Generating Balanced Partitions 
The chunking scheme mentioned earlier generates equal size 
partitions which are processed in parallel on multiple processors.  
These equal sized partitions are generated by performing a 
shallow parse of the XML document in parallel on multiple 
processors where each shallow parsing instance outputs different 
parts of the same XML document.  If we have N parallel 
processors (numbered 1 to N), notice that the Nth processor which 
will generate the last partition will have to do a shallow parse of a 
very large portion of the XML document as compared to the rest.  
Although shallow parsing is a very light weight parsing technique, 

nevertheless it still incurs some overhead.  Hence the time 
required for finishing the ETL job on each processor will be 
different as the time required for generating the partition will 
gradually increase with an increase in the processor number (due 
to an increase in the shallow parsing time).  In this section we 
outline a technique to balance the partitions such that the time 
required to generate the partitions and complete the ETL job is 
almost the same for all the processors.  The gist of the balancing 
technique used by XPEDIA is that it changes the size of each 
partition such that partition size reduces with an increase in the 
processor number.  Notice that the balancing technique is only 
required for the chunking scheme as the shallow parsing costs in 
the round robin partitioning technique is the same for all the 
partitions. 

Let the size of the input XML document be S and let the number 
of parallel processors be N. The total time required to finish the 
ETL job on a single processor (without partitioning) be tt  and let 

the time needed to shallow parse the entire document be st . By 

definition st tt > .  Let the size of the ith partition available to the 

i th processor be NiSi ≤≤1; .  Then, 

                           SS
Ni i ≥∑ ≤≤1

                                             (1) 

The summation will be marginally greater than S since each 
partition will include the nodes from the root to the partition 
node. Our goal is to ensure that each processor finishes processing 
its partition at the same time.  This means that the time required to 
generate each partition and to run the ETL job on that partition 
should be the same for each processor. This condition can be 
stated by the following set of equations: 
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In this set of equations, the first term signifies the time spent by 
each node in shallow parsing, where as the second term represents 
the actual time spent in running the ETL job on its partition. We 
have removed the denominator S, as it is common for all 
equations.  By substituting, we get the following solution for this 
set of equations 
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The above equation gives us the size of each partition which is to 
be processed on each processor. These partition sizes ensure that 
the ETL job on all the parallel processors finishes at the same time 
thereby providing us maximum parallelization.  In order to use 
Equation 3, we need to know the ratio ts/tt.  Notice that, even if we 
underestimate this ratio, it will still result in some performance 
improvement, although may not be up to the extent of the case 
when we know this ratio accurately. On the other hand if we 
overestimate this ratio, then the performance deteriorates as one 
processor would process a larger partition as compared to its 
rightful size, thereby reducing the parallelism advantage. In 
practice XPEDIA learns this ratio as follows: Typically an ETL 
job processes hundreds of XML documents.  Hence XPEDIA 
finds the value of the ratio while processing the first XML 
document and then uses it for the rest of the documents.   
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Thus this novel partition balancing technique helps XPEDIA to 
extract the maximum parallelism from the set of available parallel 
processors.  In the next section, we outline the parallel schema 
validation feature of XPEDIA. 

5.3 Parallel Schema Validation 
Schema validation of XML documents is a computationally 
intensive task that takes a large amount of time to execute.  
XPEDIA is the first system to support XML schema validation in 
parallel on multiple machines/processors which helps it to 
significantly reduce the time required for the process.  At a high 
level, XPEDIA achieves parallel schema validation by 
partitioning the XML document as mentioned in the earlier 
sections and providing a modified XML schema file to each 
parallel processor.  Each parallel processor then validates its 
partition using the provided XML schema file.  If each processor 
confirms that its partition is compliant with the input XML 
schema file, then XPEDIA guarantees that the un-partitioned 
XML document conforms to the original XML schema.  In order 
to provide this guarantee XPEDIA classifies the input XML 
schema as either being partition safe or partition unsafe.   

An XML schema is said to be partition unsafe if it uses any of the 
following XML schema indicators on the partition nodes: 
MinOccurs, MaxOccurs, All, Sequence and Choice.  The problem 
with these indicators is that it is not possible for a single partition 
to check these indicators.  Consider the example schema given in 
Figure 4.  Let there be a maxOccurs constraint on the 
/Company/Country node and let it be the partition node.  If we use 
the chunking based partitioning scheme then each partition will 
get some sub-set of the sub-trees rooted at /Company/Country.  
Hence we cannot check the maxOccurs constraint using the data 
available within a single partition.  The same holds true even in 
the case when we use a round robin partitioning scheme.  If on the 
other hand there was no such schema indicator on the partition 
node, then notice that each partition will conform to the input 
XML schema.  Hence such schema which do not have schema 
indicators on the partition node are said to be partition safe and 
we provide the original XML schema file to each of the 
processors.   

In case the schema is partition unsafe then XPEDIA uses a special 
technique for schema validation.  As mentioned earlier, the 
problem with unsafe schemas was that it was not possible to check 
the schema using the data available within a single partition.  
However, notice that the Nth (i.e., the last) processor generates its 
partition by shallow parsing the entire XML document and 
producing the last portion of the XML document as its partition.  
Recall that the shallow parsing involves the iteration over the sub-
trees rooted at the partition node.  Hence the schema validation 
for the schema indicators defined on the partition node can be 
easily done while doing the shallow parsing.  For the example 
mentioned earlier, if there was a “maxOccurs=10000” constraint 
on the /Company/Country node, then the shallow parser on the 
last processor can easily keep track of the number of Country 
nodes that it has encountered and signal an error if the number 
crosses 10000.  Even in the case of round robin based partitioning 
scheme, the last processor does a shallow parsing of the entire 
XML file and hence can easily check the schema indicator 
constraints.  Thus the schema indicator is checked during the 
shallow parsing on the Nth processor and hence these schema 
indicators are removed from the schema file that is provided as 

input to each of the processors.  Thus each processor checks the 
constraints present in the schema file except the schema indicators 
defined on the partition node which are checked by the shallow 
parser.  Thus XPEDIA handles both partition safe and partition 
unsafe schemas which helps it to significantly reduce the time 
required for schema validation.   

6. PERFORMANCE EVALUATION 
In this section we present the experimental evaluation of 
XPEDIA.  The aim of the experimental evaluation was to 
showcase the performance gain that can be achieved by using the 
two techniques presented in this paper, namely: (1) Rewriting an 
ETL job to an ELT flow when the source has native XML support 
and (2) running the ETL job in parallel on multiple processors. 
We first describe the experimental setup in the next section and 
then present the results for ELT and parallel processing of XML 
data in Section 6.2 and Section 6.3 respectively. 

6.1 Experimental setup 
We conducted two different sets of experiments one for each of 
the two scenarios mentioned above (i.e., ELT and parallel XML 
processing).  As discussed earlier, in the first scenario, we rewrote 
the ETL job definition to generate an ELT flow.   We used the 
ETL job described in Section 3.  In the original job the XML 
document was retrieved from the database, transformed by the 
different operators of the ETL job and finally shredded to 
relational format and output to the target.   In the modified ELT 
job, the transformations and shredding tasks were pushed inside 
the database engine by executing a single SQL/XML query.  The 
output of the SQL/XML query consisted of relational tuples 
which were then output to the target.  Both the original and the 
rewritten jobs were executed on IBM Information Server V 8.1 
which is an ETL engine.  These experiments were conducted on 
an Intel Xeon machine with 3.16 GHz processor and 3.75 GB 
memory.  The operating system was Windows 2003 server 
edition. The data source used to store the original XML data was 
DB2 v9.5 [13] which provides native XML support.  

In the second scenario, we conducted experiments to validate the 
performance advantage provided by our parallel processing 
techniques.  For this experiment we again used the ETL job 
described in Section 3.  We ran the job using Information Server 
v8.1 [12] running on a single machine.  We then modified the job 
by adding a shallow parsing step at the beginning of the job.  This 
modified job was also run using Information Server v8.1 which 
provides supports for executing an ETL job in parallel on multiple 
machines/processors.  The ETL job was run on a 4 CPU Intel 
Xeon Quad-core machine with each CPU having a processor 
speed of 3.16 GHz.  Thus the value of N in this case was 4 and the 
ETL job instance on each processor processed a different partition 
of the input XML document.  The overall memory in the machine 
was 4 GB and its OS was Windows 2003 server edition.  The 
XML documents used in these experiments were generated 
synthetically using the schema defined in Figure 4.     

6.2 Impact of ELT optimization  
In this section, we present the results for the experiments which 
showcase the benefit of using the ELT optimization. We 
compared the execution time for the ETL and ELT job for 
different sizes of XML documents.  The results for this 
experiment are shown in Figure 11.  The figure shows that the 
time taken by the ELT job for an XML document of size 700 MB 



is 70% less than the time taken by the ETL job.  Thus this 
experiment shows the the ELT approach is able to significantly 
reduce the job execution time by making use of the indexes 
available within the database engine.   

 

Figure 11: Comparison of ETL and ELT job execution time 

6.3 Effect of Parallelization 
In the next set of experiments, we evaluated the speedup achieved 
by the partitioning technique of XPEDIA.  Recall that XPEDIA 
supports two different partitioning schemes: Round robin based 
partitioning and chunking based partitioning.  We showcase the 
performance improvement achieved by both these techniques in 
this section.  

Round-robin scheme: In this partitioning scheme, the shallow 
parsing is done by one processor which then sends the sub-trees 
rooted at the partition node to the rest of the processors in a round 
robin manner.  We ran this experiment on 4 processors where the 
first processor did the shallow parsing of the XML document and 
it provided the sub-trees below the partition nodes to the 
remaining 3 processors. The result of this experiment for different 
XML document sizes is shown in Figure 12.  The results show 
that the round robin partitioning technique provides a speedup of 
2.7 times over the non-partitioned approach.  The results also 
show that the speedup is scalable and is not affected by the size of 
the XML document.  We also measured the time required for 
shallow parsing as a percentage of the total time required to 
execute the ETL job.  The results, shown in Figure 13, validate 
the fact that the shallow parsing overhead is constant across 
different XML document sizes. 

 

Figure 12: Performance of round robin partitioning scheme 

Chunking scheme: In the chunking scheme, each processor does 
a shallow parsing of the XML file starting from the beginning of 
the file till it reaches the start of its partition. We compared the 
execution time of the ETL job without partitioning with that of an 

ETL job running on multiple processors using the chunking based 
partitioning scheme.   

 

Figure 13: Shallow parsing overhead 

In the first set of experiments, we generated the partitions without 
using our partition balancer.  Thus, each partition in this case is of 
the same size.  As a result of this, the first processor has to do the 
least amount of shallow parsing and hence finishes it work in the 
minimum amount of time whereas the last processor has to do to 
maximum amount of shallow parsing and hence requires the 
maximum amount of time to finish the ETL job on its partition.  
Figure 14 shows the time required by the un-partitioned job as 
well as the minimum and maximum time taken by the partitioned 
job across all the processors for different XML document sizes.  
The final speed up of the job is calculated based on the finish time 
of slowest job instance.  The results show that the chunking based 
partitioning scheme without partition balancer provides a speedup 
of 2.25 times over the un-partitioned approach. 

 

Figure 14: Performance of chunking scheme without partition 
balancer 

In our second set of experiments, we used the partition balancer in 
the chunking based partitioning scheme.  In this technique each 
partition is of different size such that the overall ETL job 
execution time is almost the same across all processors. The result 
of this experiment is shown in Figure 15.  For this experiment, we 
report only the time taken by slowest job instance since the 
difference between slowest and fastest ETL job instance is very 
small. We assumed the ratio of shallow parsing to total ETL job 
execution time as 0.2 for this experiment. The results show that 
technique provides a speedup of 2.9 times over the un-partitioned 
approach.  This validates the effectiveness of the partition 
balancer which helps it to provide better performance than the 
round-robin scheme across various XML document sizes. 



 

Figure 15: Performance of chunking scheme with partition 
balancer 

In summary, our experimental results show that: 

o We can get a performance gain of up to 70% by pushing the 
processing inside the database engine. 

o Our strategy of partitioning the ETL job on multiple nodes is 
scalable and can improve the processing speed of the ETL 
job by up to 2.9 times for a 4 processor configuration. 

 

7. RELATED WORK  
There has been significant amount of work on performing 
efficient ETL processing over relational data.  However, as 
mentioned earlier, ETL processing over XML data is not a well 
studied topic.  [3] presents a system that allows users to specify 
declarative mapping specifications and generate ETL jobs.  The 
proposed system is not specific to XML but can perform XML 
mappings.  This work is complimentary to the XPEDIA system 
which incorporates significant XML specific improvements such 
as providing a XML specific computational model, providing 
support for ELT and handling large XML documents.  [4] 
presents an approach to perform XML data integration, but its 
primary focus is on data federation.  In contrast, our paper is 
focused on ETL techniques for XML data.  

Query rewriting techniques based on schema mapping constraints 
have been studied in [5].  These techniques are similar to our 
ideas for ELT processing but more general in scope.  There has 
been some work on efficient parallel processing of large XML 
documents [6, 7].  The technique presented in [6] partitions data 
based on the XML Infoset model but involves a sequential pre-
processing step. Similarly [7] describe a technique for 
parallelizing XML parsing using a pre-parsing approach.  The 
fundamental problem with all these works is that they require a 
sequential pre-parsing step which can be quite costly.  Speed of 
execution is a key requirement for ETL processing flows and 
hence techniques which need multiple passes over the XML data 
do not work in practice.  XPEDIA uses an innovative single pass 
algorithm that avoids these drawbacks resulting in improved 
scalability.  In summary, XPEDIA is one of the first systems to 
support a XML specific computation model, ELT support and 
specialized techniques for parallel processing of large XML 
documents.  

8. CONCLUSION 
In the past, data integration (or ETL) engines were only required 
to shred or generate XML documents of modest sizes. However, 
with the growing adoption of XML for data integration, we see 

significant new demands for performing complex transformation 
and processing operations on large XML documents and 
document sets. In this paper, we studied several new requirements 
for processing XML data inside data integration engines. We 
presented the XPEDIA system which has a XML specific 
computational model for performing a variety of operations in an 
ETL engine.  We also showed how a data flow of operations can 
be composed as a pipeline and executed in the ETL engine. We 
described the methodology and steps for converting an ETL flow 
for XML operations into an equivalent SQL/XML query that can 
be executed in databases capable of XML processing. This ELT 
technique is effective in pushing down the operations when the 
source or target of XML ETL flows is a database capable of 
processing SQL/XML efficiently. We then described two 
techniques (supported by XPEDIA) for partitioning large XML 
documents in order to process the XML in a parallel execution 
environment. We also proposed a technique for XML schema 
validation in parallel on multiple machines.  We did an 
experimental evaluation of XPEDIA which showed that the ELT 
and partitioning techniques are very effective in improving the 
performance of XML based ETL integration tasks.  We are 
currently working towards incorporating these techniques into 
IBM’s Information Server data integration engine. In the future, 
we expect to provide a unified set of processing options 
combining ETL, ELT and automatic parallelism for XML data 
flows. We also intend to study the parallelism topic for XML data 
flows in further detail. 
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