
XPEDIA: XML Processing for Data Integration
Manish Bhide, Manoj K Agarwal

IBM India Research Lab
India

{abmanish,
manojkag}@in.ibm.com

Amir Bar-Or, Sriram
Padmanabhan

IBM Software Group,
USA

{baroram,srp}@us.ibm.com

Srinivas K. Mittapalli, Girish
Venkatachaliah

IBM Software Group
India

{smittapa,girish}@in.ibm.com

ABSTRACT
Data Integration engines increasingly need to provide
sophisticated processing options for XML data. In the past, it was
adequate for these engines to support basic shredding and XML
generation capabilities. However, with the steady growth of XML
in applications and databases, integration platforms need to
provide more direct operations on XML as well as improve the
scalability and efficiency of these operations. In this paper, we
describe a robust and comprehensive framework for performing
Extract-Transform-Load (ETL) of XML. This includes (i) full
computational model and engine capabilities to perform these
operations in an ETL flow, (ii) an approach to pushing down
XML operations into a database engine capable of supporting
XML processing, and (iii) methods to apply partitioning
techniques to provide scalable, parallel processing for large XML
documents. We describe experimental results showing the
effectiveness of these techniques.

1. INTRODUCTION
XML was introduced in the mid-1990’s as a simple and extensible
data mark-up language. It gained immediate foothold as a data
interchange format. Over time, gaining from a wide variety of
research, XML has become a valuable data format within and
across enterprises for representing data in persistent and transient
applications. There is an illustrious body of research in XML
processing dealing with parsing, transformation, database
processing, indexing, and search. Database and application
vendors have made use of this research resulting in a support for
XML as a first class data type in databases such as DB2 [9],
Oracle [10], and SQL Server [11] as well as in many application
languages such as Java, C++, and scripting languages. Hence, it is
only natural that data integration engines should provide efficient
and scalable techniques for XML processing.

Data Integration engines such as IBM’s Information Server,
Informatica’s PowerCenter, etc., provide the capabilities to
Extract-Transform-Load (ETL) from various data sources into
various data targets. For XML, these ETL engines currently

provide rudimentary capabilities to perform XPath based
transformations into tuple formats or vice-versa. However, with
the steady progress of XML adoption, there is a need for data
integration engines to provide fast, scalable “next-generation”
XML handling capabilities. While there is a wealth of literature
in various areas of XML processing, surprisingly, there has been
limited work on the topic of XML data integration. The initial
work in this area has focused on algorithms to shred XML into a
natural relational schema. The body of work on XML Stylesheet
Transformation (XSLT) can be considered as peripherally related
to our topic [1]. There is also quite a bit of work on XML query
processing which we consider to provide some relevant
foundational basis for our topic [8, 9]. However, there are still a
lot of open issues that need to be addressed to enable “next
generation” XML data integration. In this paper we present the
XPEDIA (XML ProcEssing for Data IntegrAtion) system which
addresses some of these issues.

1.1 XPEDIA System
Data integration over relational data is a well studied topic.
However, in an XML world, data integration is radically different
due to the hierarchical nature of the data. Hence techniques
which have been developed for relational world cannot be directly
applied to XML data. The XPEDIA system is one of the first
systems to incorporate techniques for efficiently supporting XML
data integration. We now outline some of the key features and
challenges addressed by XPEDIA.

Computational Model: The computational model used to
represent ETL processes over relational data assumes data in the
form of rows consisting of multiple columns. Such computational
models represent each XML document as a single row consisting
of a single column. Such a simplified representation of XML data
is a major handicap in supporting complex XML operations.
Hence there is a need for a technique to handle complex data
transformation flows, while maintaining the easy of specification
inherent in the relational computational model.

First Class Data Type: Most of the data integration engines
available in the market today, treat XML as a CLOB (string of
characters). However, the key for efficient handling of XML data
is to treat it as a first class data object during transformation.
Such a representation enables XPEDIA to support operations such
as equi-hierarchical-join, xml-aggregate, etc., which are
specialized operators for dealing with XML data (details in
Section 3). These operators allow users to easily define intricate
XML transformation flows, which hitherto were not possible.

ELT Support: If the source (or target in some cases) of an ETL
flow is a database that supports XML processing, XPEDIA

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Database Endowment. To copy otherwise, or to republish, to post on
servers or to redistribute to lists, requires a fee and/or special permissions
from the publisher, ACM.
VLDB ’09, August 24-28, 2009, Lyon, France.
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

applies rewriting techniques to transform parts of the ETL job
flow into SQL/XML queries in order to push some significant
processing into the database. This is called ELT (Extract, Load,
Transform) and is a valuable technique to gain efficiency and
performance by leveraging the database’s capabilities.

Scalability: The size of a row/tuple in relational data is seldom
larger than a few Kb’s. However, we have observed from several
customers that XML inputs for data integration tend to be large,
aggregated inputs comprised of many smaller objects. Thus we
need specialized techniques for handling large (> 2-3 GB) XML
documents. XPEDIA uses a novel single-pass partitioning and
parallel processing technique for XML objects. The hierarchical
nature of the XML data presents some unique challenges for
executing a single transformation job comprising of a series of
operators in a parallel execution environment. In this paper we
present various approaches supported by XPEDIA for partitioning
input XML objects in order to perform the rest of the processing
using parallel streams before combining the results. We also
provide experimental results for all of these techniques to show
the scalability and performance that can be obtained.

1.2 Contributions
The research contributions of our work can be summarized as
follows:

o We propose a computational model for ETL applications on
XML data. The new model is specifically tailored to handle
hierarchical XML data and treats XML as a first class data
type.

o XPEDIA is the first system that supports query rewriting
techniques to convert an ETL flow into an ELT flow over
XML data.

o We present novel parallel processing techniques for handling
large XML documents. We believe that our single pass
techniques are the first attempt at supporting efficient
parallelism in ETL flows over XML data.

o We present experimental results that validate both our
techniques and our results show that we achieve significant
improvement in performance for a typical ETL flow.

Paper Organization: Section 2 introduces our computational
model and also gives an overview of the various operators
supported by the model. We present a sample ETL flow using the
operators of our computation model in Section 3. The techniques
for supporting ELT over XML data are summarized in Section 4.
Section 5 presents the parallel processing techniques used by
XPEDIA for handling large XML documents. The experimental
validation of XPEDIA is outlined in Section 6. The related work
is summarized in Section 7 and Section 8 concludes the paper.

2. COMPUTATION MODEL
A computational model is used to express ETL processes that
move and transform data from sources to targets. Many ETL tools
use the dataflow computational model to describe these processes.
In the dataflow model, processes are expressed via a directed flow
graph where the vertices of the graph are operators and the edges
represent the flow of data. The operators in a dataflow model can
perform one or more of the following operations: (i) read data
from sources (ii) write data to targets and (iii) perform

transformations on input data to produce new output data. The
algorithm of an operator is defined by the operator type. For
example, a join operator uses the join algorithm for joining the
input data.

Existing dataflow based ETL engines assume relational data
model for the data that flows between the operators, i.e., records
that flow between two operators consist of “rows” having multiple
columns. In order to handle XML data these engines consider
each XML document to be a single row with one (XML) column.
However, as is obvious, such an over-simplified representation is
a major handicap in supporting complex operations over XML
data. Hence, XPEDIA uses a new computational model which
extends the relational dataflow model to support hierarchical data.
Such an extension, as we explain next, requires a major shift in
the representation methodology.

XPEDIA uses a dataflow model consisting of operators and
edges. However, the key difference from the existing dataflow
models is that the data that flows between two operators is an
ordered list of XML documents that comply with a single XML
schema element definition [2]. Notice that each document could
itself be multi-dimensional or in XML terminology the document
could have multiple repeated elements with maxOccurs > 1 or
maxOccurs=“unbounded”. For example, consider an XML
document with root node “High_Value_Customers” which in turn
has 100 “Customer” child nodes. In this document if we map
“Customer” node to a row in the relational world then the XML
document will map to a table consisting of 100 rows. In such a
setup the XML document would represent two dimensional data.
In order to capture this multi-dimensional nature of the XML
data, each XML document in our computational model consists of
multiple “Vectors” – one for each repeating element type. In the
“High_Value_Customers” example, the document will consist of
one Vector (of size 100) as it has one repeating element of
“Customer” type.

The concept of vector also makes a difference in the way data is
handled by an operator. In our data flow model, operators (except
the source operator which simply reads data from the source)
iterate through the list of objects (XML documents) in their input
data. As each object (document) can consist of multiple sub-
vectors, the operators can also iterate through a sub-vector of the
input data. The iterated vector is defined as the “scope” vector of
the operator. For each scope instance, the operator processes the
input data that is contained in the scope instance and produces a
result that is also contained in the scope instance. For example, in
the “High_Value_Customers” example the scope of an operator
will be “/High_Value_Customers/Customer”. An operator will
treat each “Customer” sub-tree below the root independently of
the other “Customer” sub-trees. Hence operators are not allowed
to maintain state between instances of the scope vector. Thus
each scope instance (i.e., each “Customer” sub-tree) can be
thought of as being similar to a row in the relational world. The
concept of vector and scope help us to support a rich set of
operators over XML data and also help us to support
parallelization of the ETL flow (details in Section 5).

Another key difference from relational data flow systems is that
our computational model only supports linear sub-graphs.
Relational dataflow systems, on the other hand, typically allow
parts of the data to be separated and processed in different sub-
graphs (of the ETL flow). In an XML world, this would map to

splitting the contents of a vector (of a single XML document) to
different sub-graphs and then merging them into one or more
vectors. As this can get quite complicated, our computational
model only allows linear graphs thereby simplifying the job
design process and increasing its usability. In order to
compensate for the restriction of the model into a linear graph,
each operator in our model produces a result that also contains its
initial input. We then employ runtime optimizations, graph
rewrites and dead field elimination to optimize the XPEDIA ETL
flows by removing false dependencies and eliminating the transfer
of data that is no longer needed downstream.

Thus the computational model of XPEDIA incorporates a radical
shift in the representation methodology by including support for
hierarchical XML data due to the use of features such as Scope,
Vector and linear sub-graphs. Using these concepts, Figure 1
describes an operator’s algorithm in our computational model in
terms of an XQuery update statement.

Figure 1: Operator Algorithm

op_alg in the above figure stands for the operator algorithm that
accesses the data contained in $scope and produces a result only
using this data. We explain next a sample set of specialized
operators supported by our model for handling XML data.

2.1 XML Operators
Filter Operator: The filter operator can filter one of the vectors
contained within the scope instance and produce a new vector
which will contain only instances that passes the filter predicate.
The following SQL/XML clause illustrates the Filter operator
algorithm:

Project Operator: The project operator iterates over a single
vector in its input and produces a new vector that is based on a set
of select expressions. The set of select expressions allows the
user to modify the input by removing an element or a sub tree,
renaming an element, or enriching the document with a new
attribute by computing a scalar expression. The following
SQL/XML clause illustrates the Project operator algorithm:

Aggregate Operator: The aggregate operator can produce
statistics by aggregating one of the vectors contained in the scope

instance. Similar to a database aggregation, the aggregate
operator takes a set of aggregation functions and a group by
clause which defines the key aggregation columns. The result of
the aggregate operator is a new vector with a summary record for
each unique key that is found in the input vector. Notice that the
aggregation restarts for each scope item. The following
SQL/XML clause illustrates the Aggregate operator algorithm:

Equi-Hierarchical-Join Operator: The equi-hierarchical-join
operator performs an equality based join between two vectors that
are contained within the scope instance. Similar to a relational
equi-join, the join operator takes a set of equality predicates
between attributes from one vector and attributes of the second
vector. The result of the join consists of two nested vectors,
where each instance of the input left vector contains all the
matching instances of the right input vector. The following
SQL/XML clause illustrates the Equi-Join operator algorithm:

Read Table Operator: The Read Table operator reads all the
rows of a single table and outputs either relational tuples or an
XML document. This operator takes as a parameter a SQL or
SQL/XML query which executes on the input table to generate
the required output.

Write Table Operator: The Write Table operator is used for
writing relational or XML data to a table. For each instance of the
scope vector present in the input, the operator creates a new
record in the output table.

OutputStage Operator: The OutputStage operator transforms a
relational input into an XML Document. This operator has been
included due to legacy support issues. The operator takes as input
a mapping from each relational attribute present in the input to an
XPath in the output XML document (which is to be created). One
of the XPaths is designated as the repetition path. This is used to
decide the structure of the XML document. An example of the
function of OutputStage is given in Figure 2. In this example, the
mapping from relational attribute to XPath is as follows: (1)

Let $Scope be the scope vector path
Let $left_vector, $right_vector be the paths to
the joined vectors
Let $left_key1, $left_key2 be the paths to the
left vector join columns
Let $right_key1, $right_key2 be the paths to
the right vector join columns

Select ($scope//$rightVector.*) insert into
$scope//$leftVector.*
From ($scope//$aggr_vector))
Where $scope//$left_vector/$left_key1 =
$scope//$right_vector/$right_key1 AND
 $scope//$left_vector/$left_key2 =
$scope//$right_vector/$right_key2

Let $Scope be the scope vector path
Let $aggr_vector be the path to the aggregated
vector
Let $Key1, $Key2 be the paths to the key
aggregation columns
Let $cost be a path to an attribute of
aggregated vector

Select $Key1, $Key2, Avg($cost) as avg_cost,
count(*) cnt_rcd, …
From ($scope//$aggr_vector))
Group by Key1, Key2

Let $scope be the scope vector path
Let $child_vector be the path to the aggregated
vector
Select a, b, (a || b) as ab
From ($scope//$child_vector))

Let $scope be the scope vector path
Let $child_vector be the path to the aggregated
vector
Select * From ($scope//$ child_vector))
Where $scope//$child_vector/$key1 > 5

Let $input be the set of input documents the
operator is processing
Let $scope_path be the operator scope path
for $currentDoc in collection($input)
return
 for $scope in $currentDoc//$scope_path
 return (
 insert node<Result>{op_alg($scope)}</Result>
 as last into $scope)

Department � /Company/Country/Dept (2) Project �
/Company/Country/Employee/PName and (3) Emp ID �
/Company/Country/Employee/EInfo/EmpID. The EmpID node is
designated as the repetition output path. The OutputStage
operator makes use of the repetition path to decide the structure of
the output XML document. The repetition path works by
comparing values between input rows. The following rules apply:

Rule 1: A change in an input column value triggers the closing of
at least one element and the opening of at least one element.

Rule 2: When a single input column value changes, the repetition
path applies as follows: Every opened element is closed up to and
including the first element that is part of the repetition path. E.g.,
Let the repetition path be: /w/x/y/z and let the XPath of the
affected column be: /w/x/y/a/b. Then the y element is closed and
new elements are opened, down to the last element of the XPath
expression of the column for which the value has changed.

Rule 3: When more than one column changes values, elements are
closed and opened, starting with closest to the root element.

 Figure 2: Functioning of OutputStage

Figure 3: Typical ETL Flows

3. TYPICAL ETL SCENARIO WITH XML
Figure 3 shows three sample ETL flows. In these flows, there are
two sources and targets, one of which is relational and the other is
XML. Each flow consists of a series of operators which transform
the input data. Flow 1 converts XML data to relational format,

Flow 2 converts XML data to XML and flow 3 converts relational
data to XML format.

In this section, we describe the Flow 1 in detail. The ETL process
shown in Flow 1 reads a set of XML documents that are stored in
a database, transforms the documents and eventually writes them
to the target relational database. The source table contains a single
XML column that holds the source document content. All source
documents conform to the “Company” element which is described
in Figure 4. We now enunciate each step of the flow in detail.

Step 1: The Read_XML_Table operator simply reads the XML
documents from the database and outputs it to the next operator.

Figure 4: Output of Read_XML_Table operator

Figure 5: Equi-Hierarchical Join operator

Step 2: The Equi-Hierarchical Join operator (Figure 5) has the
following parameters: {scope: Company/Country, left vector :
Department, right vector: Employee, join key :
Department/DeptCode = Employee/DeptCode, result=
Dept2//Emp2 }. For each “Country” sub-tree in the input XML
document, the operator finds the set of employees working in each
department (in that country) and creates a new element named

 Output:

<element name="Company" type=”Company’ maxOccurs=”unbounded” >
 <complexType > <sequence>
 <element name="Country" maxOccurs="unbounded">
 <complexType> <sequence>
 <element name="CountryName"/>
 <element name="CountryCode"/>
 <element name="Departments" type="tns:Department" maxOccurs="unbounded"/>
 <element name="Employee" type="tns:Employee" maxOccurs="unbounded" />
 <!-- THIS IS THE JOIN PRODUCT BEGINNING--!>
 <element name="Dept2" maxOccurs="unbounded”>
 <complexType> <sequence>
 <element name="DeptName" type="string" />
 <element name="DeptCode" type="string" />
 <element name="ManagerID" type="string"/>
 <!-- EMPLOYEE IS NESTED WITHIN THE DEPTARTMENT--!>
 <element name="Employee" type="tns:Employee" maxOccurs="unbounded" />
 <!-- JOIN PRODUCT ENDS HERE--!>
 … (definition closed)

F: Filter

J: Join

A: Aggregate

W: Write XML

R: Read XML

I : Shredder

X : R -> XML

XML
Source

F A J W

J A I

XML
Target

RDB
MS

R

RDB
MS X

Flow 1

Flow 2

Flow 3

Output:

<element name="Company" type=”Company’ maxOccurs=”unbounded” />
 <element name="Company" type=”Company’ />
 <complexType name="Company">
 <sequence>
 <element name="Country" type="tns:Country" maxOccurs="unbounded"/>
 </sequence>
 </complexType>
 <complexType name="Country">
 <sequence>
 <element name="CountryName"/>
 <element name="CountryCode"/>
 <element name="Departments" type="tns:Department" maxOccurs="unbounded"/>
 <element name="Employee" type="tns:Employee" maxOccurs="unbounded" />
 </sequence>
 </complexType>
 <complexType name="Department">
 <sequence>
 <element name="DeptName" type="string" />
 <element name="DeptCode" type="string" />
 <element name="ManagerID" type="string"/>
 </sequence>
 </complexType>
 <complexType name="Employee">
 <sequence>

 <element name="DeptCode" type="string" />
 <element name="EmpName" type="string"/>
 <element name="EmpId" type="string"/>
 <element name="EmpLocation" type="string"/>
 <element name="Salary" type="double"/>
 </sequence>
 </complexType>

Project Department Emp ID

CS C++ 123

CS C++ 253

EE DSP 12

Company

Country

Employee

PName

Dept

CS

C++

 EInfo

EmpID EmpID

123 254

Country

Employee

PName

Dept

EE

DSP EmpID

12

 EInfo

“Dept2” (for each department) which has the list of all employees
working in that department.

Step 3: The Aggregation operator has the following parameters:
{scope: Dept2, aggregated vector= Dept2/Employee, aggregate
key: Dept2/DeptCode, aggregate function
=sum(Dept2/Employee/salary) result= Dept2/totalSalary }. The
operator finds the total salary of all the employees in a department
and adds it to the XML document as “totalSalary”.

Step 4: The final operator Shredder writes the totalSalary in the
modified XML document to the relational database. The
attributes of the operator are: {scope: Dept2vector,
totalSalary=/Company/Country/Dept2/totalSalary}.

Notice that in each step of the above ETL flow, for each scope
instance (i.e., each “country” node) the output includes the entire
input data (in that “country” node) along with the result of the
transformation applied to the data within the scope (i.e., the
“country” sub-tree). XPEDIA also supports other optimizations
such as false-dependency elimination via linear graph to acyclic
graph rewrite, dead field elimination via usage analysis and
streaming large document with a bracket model. Details are
omitted due to lack of space. We present next, the ELT feature of
XPEDIA.

4. ELT OPTIMIZATION IN XPEDIA
Recent times have seen a proliferation of databases with native
XML support. Databases such as DB2 9, Oracle 11g and SQL
Server 2005 store XML documents in native format and have
inbuilt XQuery and SQL/XML query engines. Another important
feature of these databases is that they allow users to define
indexes on XML documents. If part of the processing involved in
the ETL job is executed inside the database engine, then it can
make use of the XML indexes to significantly reduce job
execution time. Thus the goal of ELT is to delegate some part of
the ETL job to the database engine. This is accomplished by
generating a SQL/XML query which does the same job as one or
more steps in the ETL flow. For example, the flow 1 from XML
data source to RDBMS in Figure 3 can be represented by a single
SQL/XML query. Hence the modified job would have a single
Read Table operator which will directly output the relational
tuples which are then fed to the Write Table operator.

Another advantage of ELT is the reduction of the size of the data
that needs to be moved between the source and the target. This is
especially true when the job involves reading XML data and

transforming it to a relational format (E.g. flow 1 in Figure 3).
Notice that the size of the source XML document (which consists
of a plethora of XML tags) will be significantly larger than the
relational tuples generated in output. While converting an ETL
job (which reads XML data and shreds it to relational format) to
an ELT flow, XPEDIA tries to push maximum possible
processing inside the database engine. This helps to significantly
reduce the I/O costs which contribute a significant percentage of
the overall execution time.

Thus, converting an ETL job into an ELT flow can provide
significant advantage and requires us to do the following tasks:

1. Rewrite the ETL flow in terms of simpler operators.

2. Convert each operator into a SQL/XML query.

3. Merge the SQL/XML queries of adjacent operators into a
single SQL/XML query.

4. Convert the merged SQL/XML queries to an ELT job
definition which can be executed on XPEDIA.

We explain each of the above steps in the following sections.

4.1 Rewriting ETL Flow Using Simpler
Operators
Most of the operators in XPEDIA can be directly converted to a
SQL/XML query. However, some of the operators like
OutputStage are quite complex. Hence it is difficult to generate
the SQL/XML queries directly for such operators. We overcome
this problem by rewriting the complex operators using a simpler
set of new operators. In this section, we describe the algorithm
used for converting the OutputStage operator into a sequence of
simpler operators, namely (i) XMLIZE and (ii) Sibling Group-By.

XMLIZE Operator: The XMLIZE operator converts relational
tuples into a flat XML document. The schema of a “flat” XML
document is very similar to the relational schema and is given in
Figure 6. As the output of this operator is a flat XML document,
we need to perform various operations on the output to get the
XML document in the desired hierarchical format. This requires
the use of a special operator which is explained next.

Figure 6: “Flat” XML Document schema

Sibling Group-By Operator: The Sibling Group-By operator is a
special operator which is required to convert the flat XML
document into a hierarchical format. The Sibling Group-By
operator, as the name suggests, does a group-by only amongst
immediate siblings present within the scope instance, which
allows us to nest the input data. Given a set-valued element ‘s’
and a set of group-by attributes within s (which have to be atomic-

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="root">
 <xs:complexType>
 <xs:element name="row">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="empID" type="xs:string" maxOccurs=”1”/>
 <xs:element name="deptID" type="xs:string" maxOccurs=”1”/>
 <xs:element name="name" type="xs:string" maxOccurs=”1”/>
 <xs:element name="salary" type="xs:string" maxOccurs=”1”/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:complexType>
</xs:element>
</xs:schema>

Output:

<element name="Company" type=”Company’ maxOccurs=”unbounded” >
 <complexType > <sequence>
 <element name="Country" maxOccurs="unbounded">
 <complexType> <sequence>
 <element name="CountryName"/>
 <element name="CountryCode"/>
 <element name="Departments" type="tns:Department" maxOccurs="unbounded"/>
 <element name="Employee" type="tns:Employee" maxOccurs="unbounded" />
 <!-- THIS IS THE JOIN PRODUCT BEGINNING--!>
 <element name="Dept2" maxOccurs="unbounded”>
 <complexType> <sequence>
 <element name="DeptName" type="string" />
 <element name="DeptCode" type="string" />
 <element name="ManagerID" type="string"/>
 <!-- EMPLOYEE IS NESTED WITHIN THE DEPTARTMENT--!>
 <element name="Employee" type="tns:Employee" maxOccurs="unbounded" />
 <!-- JOIN PRODUCT ENDS HERE--!>
 <!-- AGGREGATION RESULT INSERTED HERE--!>
 <element name="totalSalary" type="double"/>
 … (definition closed)

valued elements) it groups all “contiguous” tuples in s by the
values of the group-by attributes. Thus s is replaced in the output
by a set that contains: a) the group-by attributes and b) for each
contiguous value for them a nested set with all the contiguous
tuples in s that have the same values on their group-by attributes.

Figure 7 shows the effect of applying Sibling Group-By on a
sample XML document. In this example we have applied the
Sibling Group-By on the /Company/Country/Dept node. This
node has two distinct values CS and EE. Hence the Sibling
Group-By operator creates two sub-trees – one for each distinct
value amongst contiguous nodes.

Figure 7: Sibling Group-By Operation

Consider the example transformation given in Figure 2 which
creates an XML document from the given relational data. In this
example the repetition path is “/Company/Country/Employee/
EInfo/EmpID”. In order to generate the XML document
corresponding to this example, the first step is to convert the
relational data into XML format using the XMLIZE operator.
After that, we repeatedly apply the Sibling Group-By operator as
follows: (1) Apply the Sibling Group-By on the
/Company/Country node with the group by node set to
/Company/Country/Dept and the scope set to /Company. The
output of this operation is shown in Figure 7. (2) Apply the
Sibling Group-By operator on the output of the first step. The set
valued attribute is /Company/Country/Employee and the group by
attribute is set to /Company/Country/Employee/PName. The
output of this step gives us the required XML document which is
shown in Figure 2.

Thus the OutputStage operator is represented by an XMLIZE
operator followed by a sequence of one or more Sibling Group-By
operators. The algorithm to convert the OutputStage operator to
the set of simpler operators is given below.

Step 1: Apply XMLize operator on the relational data to obtain
flat XML document

Step 2: For all output nodes except the repetition output node:

o The level of an output node is the level at which its XPath
intersects with the repetition output node’s XPath

o Starting from the top to bottom (based on the level), apply
Sibling Group-By for all nodes which meet at the same
position on the repetition output node’s XPath.

Step 3: Use Project Operator to add and drop nodes, so as to
bring the height of all output node at correct position.

Step 4: Use Project Operator to change names of nodes

4.2 Query Generation and Merging:
The XPEDIA ELT optimizer has a set of algorithms for
generating the SQL/XML query for each operator. As the query
corresponding to each of the operators is fixed, the optimizer uses
pre-built techniques/rules for merging the SQL/XML queries of
adjacent operators. As the set of operators is exhaustive, due to
lack of space, in this paper we only outline the technique to
generate the SQL/XML queries corresponding to the Sibling
Group-By operator and also present the technique for merging the
queries corresponding to a sequence of these operators.

Figure 8: SQL/XML for Sibling Group-By

As seen in the previous section, a typical use of the Sibling
Group-By operator is to nest the XML document which is
generated by the XMLIZE operator. Notice that the unique nature
of this operator is that it only does a group by on adjacent
siblings. Hence, we cannot use the “group by” clause present in
SQL/XML as it will group together even those values which may
not be ‘adjacent’ in the input XML document. In order to
circumvent this problem we generate an extra attribute in the
input data whose value can be used by the regular “group by”
clause of the SQL/XML query. This means that, for the data
shown in Figure 2, the value of the new attribute will be say 1 for
the first two tuples (<CS,C++,123> and <CS,C++,253>) and 2
for the third tuple. Generating this attribute using SQL is a tricky
operation. We use the OLAP function in SQL to generate these
attributes in a temporary table which also contains the rest of the
attributes present in the input table.

Once the temporary table is generated, we use the group by clause
on the new attribute ‘J1’ to generate the desired output. The
sample SQL/XML query which uses a temporary table to generate
the output corresponding to the Sibling Group-By mentioned in
Figure 7 is shown in Figure 8.

Notice that the query operates on a temporary table. A major
advantage of using the temporary table is that we can define
indexes on the attributes of the table. This speeds up the
processing of any joins present in the SQL/XML query.

Once the SQL/XML queries are generated for each of the Sibling
Group-By operators, they can be merged with each other as well
as the XMLIZE operator. The XPEDIA ELT optimizer uses a set
of rules for merging these SQL/XML queries. In order to give a
flavor of the merging process, we provide an example in Figure 9,
of the merged SQL/XML query for the ETL job given in Figure 2.
The merged SQL/XML query uses one group-by clause for each
Sibling Group-By operator.

select xmlelement(name "Country", xmlagg(TB3.O)) from
 (select xmlelement(name "Department", xmlelement(name "Name", TB2.D),
 xmlagg(TB1.SS)) from session.TBTemp TB2,
 (select TB4.id, TB4.D, TB4.J1, xmlelement(name "ProjEmp",
 xmlelement(name "PName", TB4.A), xmlelement(name "EmpID",
 TB4.z)) from session.TBTemp as TB4) as TB1(ID, D, J1, SS)
 where TB1.j1 = TB2.j1 and TB1.D = TB2.D and TB1.ID = TB2.ID group by
 TB1.J1, TB2.J1, TB1.D, TB2.D order by TB1.J1
) as TB3(O) Company

 Country

Dept

CS
EmpID

 Employee

PName

C++ 123

 Country

Employee

PName

Dept

EE

DSP

EmpID

12

 Employee

PName

C++ 254

EmpID

EmpID

 Country

Dept

CS

PName

C++
123

EmpID

 Country

Dept

CS

PName

C++
254

EmpID

 Country

Dept

EE

PName

DSP
12

 Company

Sibling Group-By:

Scope Node: /Company

Set valued Attribute: /Company/Country

Group By Attribute: /Company/Country/Dept

Figure 9: Merged SQL/XML query for OutputStage

4.3 Generating the ELT Job Definition
Once the SQL/XML queries have been generated, the next task is
to map them back to the XPEDIA job definition. This is a
straightforward process wherein the generated SQL/XML query is
mapped to a Read TABLE operator and the rest of the stages
remain as is.

Using the above procedure, XPEDIA is able to take advantage of
the native XML processing capabilities of the database engine.
However notice that we cannot generate an ELT flow when the
data is present in a database which does not have native XML
support or is present in a flat file. Even in such cases, XPEDIA
improves the scalability by using a novel parallel processing
technique which is explained next.

5. PARALLEL PROCESSING OF XML
DATA
The size of a row/tuple in relational data is seldom larger than a
few Kb’s. However, we observed from several customers that
XML inputs for data integration tend to be large aggregated inputs
comprised of several smaller objects. Hence XML documents of
the order of 2-3 GBs are fairly common in practice. In this
section, we present a technique for parallel processing of such
large XML documents.

Parallelism can be achieved in two different ways namely,
pipeline parallelism and partitioned parallelism. Pipeline
parallelism (also know an assembly line parallelism) occurs when
different operators work on different XML documents
simultaneously. Such a parallelism is supported by XPEDIA and
occurs whenever multiple operators operate on a stream of XML
documents in serial manner. However, this kind of parallelism
can provide limited benefit for large XML documents as each
operator would have to process all the documents thereby
requiring large memory and processing power. Unfortunately, the
ETL processing engines available today only support pipeline
parallelism for XML data leading to an inferior performance. The
key to solving the scalability problem (in the presence of large
XML data) is the use of partitioned parallelism – a technique
supported by XPEDIA. Partition parallelism is achieved when
multiple instances of the ETL job (consisting of a sequence of
operators) are executed in parallel on different
machines/processors with each instance working on different parts
of the same XML document. This reduces the size of the XML
document (partition) that needs to be processed on each processor
thereby improving scalability. The key to achieving partitioned
parallelism, as the name suggests, is the partitioning of the large
XML document. However, the hierarchical nature of XML makes
the task of partitioning an inherently complex task. We outline
the various challenges for achieving partitioned parallelism and
propose a technique for identifying the right type of partition in

Section 5.1. Once the correct partition has been identified, the
next task is to actually generate the partitions efficiently in a
single pass of the XML document and that too without doing a
full parse of the document. We present such a technique for
generating these partitions in Section 5.2. One of the most
expensive operations (in terms of time) over XML documents is
their schema validation. We show in Section 5.3 that the schema
validation task can also be done in parallel on multiple machines
thereby reducing it execution time significantly.

5.1 Identifying the Optimal Partition
As mentioned earlier, partitioned parallelism involves the
following tasks: (i) partitioning a large XML document into
multiple parts, (ii) running multiple instances of an ETL job on
multiple machines/processors, (iii) each job instance operating on
a different partition of the XML document and (iv) finally,
merging the output of the job instances. In order to achieve an
efficient parallelism, each partition should be self sufficient, i.e.,
the data required by each job instance should be contained within
the partition available to it and no data should be shared across
partitions. If this is not ensured then it would necessitate
communication between the processors or alternatively copies of
the same data would have to be made available to multiple
processors, which in turn would reduce the effectiveness of the
parallel algorithm. In order to highlight this further, we present
an XML partitioning example.

Example: Consider a job consisting of the first two steps of the
ETL job outlined in Section 3. The input to the job is an XML
document whose schema is outlined in Figure 4. The join
operator in the ETL job joins the data present in the Employee
sub-tree with the data present in the Department sub-tree. For
this job if we partition the XML document into two parts such
that all the Department nodes go to the first partition and all
Employee nodes go to the second partition then the join operator
will require access to both the partitions. Hence no parallelism
would be achieved as there will be no reduction in the size of the
data processed by each operator. Thus the partitioning technique
needs to ensure that the data required by an operator is contained
within the partition available to it.

Consider another partitioning technique, where we partition the
data at the “/Company/Country” level. In other words, if there are
10 Country sub-trees below the root (Company) node, then the
first partition will consist of an XML document rooted at
“Company” with only the first 5 Country sub-trees where as the
second partition will consist of the next 5 Country sub-trees.
Recall that the scope of the join operator is “/Company/Country”.
This means that the join operator treats each “Country” sub-tree
independently from the rest. In other words, it joins the
Department and Employee data present within each sub-tree and
not across sub-trees. Further the join result of each sub-tree is
also contained within that sub-tree. Hence a partitioning made at
the level of “/Company/Country” (which is called as the partition
node) would ensure that all the data required by each instance of
the join operator is contained within the partition available to it.

The above example highlights the difficulties in partitioning an
XML document for a job consisting of a single operator. As can
be imagined, the problem gets further exacerbated for a job
consisting of multiple operators. We present next some key
insights which are used by the partitioning algorithm of XPEDIA

select xmlelement(name "Country", xmlagg(TB4.all)) from
 (select xmlelement(name "Department", xmlelement(name "Name", TB3.D),
 xmlagg(TB3.all)) from
 (select D, j2, xmlelement(name "ProjEmp", xmlelement(name "PName", TB2.A),
 xmlagg(TB2.all)) from
 (select D, j3,j2, A, xmlelement(name "Employee", TB1.zz) from
 (select D,j3, j2, A, xmlagg(xmlelement(name "EmpID", Z))
 from session.TBTemp group by j3,j2,j1, A,D) as TB1(D,j3,j2, A,zz)
) as TB2(D,j3,j2,A,all) group by TB2.j3, TB2.j2,TB2.A, TB2.D
) as TB3(D,j2, all) group by TB3.j2, TB3.D
) as TB4(all)

to find the partition node of a large XML document for a given
ETL job.

1. Insight 1: Operators do not preserve any state between
instances of their scope vector. Therefore, each scope instance
can potentially belong to a different partition.

2. Insight 2: Some of the operators (such as Filter) perform
stateless transformations, i.e., transformations that do not
maintain state between vector instances. E.g., the filter
operator computes the filter predicate per vector instance and
does not maintain any state across instances. Hence if an ETL
job consists entirely of such operators, then (irrespective of
the scope value) each vector instance in the input can
potentially belong to a different partition.

3. Insight 3: Some of the operators (such as Aggregate) maintain
state information between different instances of their input
vectors (within a particular scope instance). E.g., the
Aggregate operator in the ETL job given in Section 3 finds
the total salary for each Department within a scope instance,
i.e., for each distinct Department in each “Country” sub-tree.
Notice that it does not store any state information across
different “Department” nodes within each “Country” sub-tree.
Hence parallelism can be achieved by ensuring that all the
Employee and Department sub-trees that share the same
DeptCode are contained within a single partition. Operators
which are amenable to such partitioning are called as State
Key Correlated operators. In the above example, the
Aggregate operator is state key correlated as the Employee
sub-trees are correlated with respect to the key DeptCode. The
Employee node is called as the correlated node for the
operator.

We present next an algorithm which uses these insights to find the
best partition node for a given ETL job.

Algorithm: Find Partition Node

1. For each operator in the ETL job
 1.1 Initialize a vector containing all the scope instances
 for this operator
2. For each operator in the ETL job
 If the operator is stateless
 2.1 Do nothing
 Else if the operator is state key correlated then
 2.2 Generate a partition for the vector using the key for
 the operator
 2.3. if a vector contains sub-trees rooted at the
 correlation node for this operator then merge the
 vector with the generated partition vectors
 Else
 2.4 Union all the vectors that contain sub-trees rooted
 below the scope of the operator

Result: Each vector has a root that is a candidate for
partitioning. Output the highest root amongst all the vectors as
the partition node(s). If there are multiple nodes at same level,
output multiple partition nodes.

It is possible that the partition node found by the above algorithm
is the root of the document, i.e., no partition of the document is
possible. In such a case we could still partition a subset of the

operators in the ETL flow. Extending XPEDIA to handle such
cases is part of our future work.

Once the partition node has been identified, XPEDIA uses the
partition node to generate the partitions as follows:

o Round-robin partitioning technique: In this technique, each
partition gets the sub-trees rooted at the partition node in a
round robin manner. In other words, the first instance of the
partition node goes to the first partition; the second partition
node instance goes to second partition and so on and so
forth.

o Chunking scheme: This partitioning technique generates the
partitions based on the size of the XML document. Given an
XML document (of size say 4 GB) for which we have to
generate (say 4) partitions, then this partitioning technique
tries to generate each partition of size 1 GB. Notice that we
cannot generate say the 2nd partition by directly seeking to
the 1 GB location in the XML document and then finding the
first occurrence of the partition node. This is because the
encountered partition node could occur at multiple locations
in the XML document or could be inside a CDATA section.
Hence this technique generates the partition by iterating over
the sub-trees rooted at the partition node (starting from the
beginning of the file) till it reaches the 1 GB location in the
XML file. Thereafter the second partition starts and the sub-
trees rooted at the partition node constitute the second
partition till we reach the beginning of the 3rd GB location in
the XML file. The technique also ensures that each partition
is a well formed XML document by adding the nodes from
the document root to the partition node at the beginning of
each partition.

5.2 Generating the Optimal Partition
Once the set of partition nodes and the partition strategy has been
identified, the next task is to make the right partition available to
each ETL job instance. Notice that each job instance will have
the entire XML document available to it. The process of
generating the partition (which is run for each job instance)
involves the parsing of the entire XML document and producing
the right partition for that job instance. If we do a full parse of the
XML document then it will not provide us any performance gain.
Hence, as we explain next, XPEDIA uses a “shallow parsing”
technique to generate these partitions.

5.2.1 Shallow Parsing
The basic idea behind shallow parsing is that it parses only those
nodes which occur between the root node and the partition node,
i.e., the nodes that appear in the partition node XPath. The
shallow parsing process ignores all the other nodes thereby
avoiding the high cost associated with a full parse of the XML
document. E.g., consider a scenario where we have a 4 GB XML
document conforming to the schema given in Figure 4. Let the
partition node be \Company\Country and we have to generate the
second partition (out of the 4 partitions) using the chunking
scheme. In this case XPEDIA does a shallow parse of the XML
document till it reaches the 2nd GB of the XML file. In this
shallow parse, XPEDIA only looks for the beginning and end of
the “Company” and “Country” nodes. All the other nodes are
ignored. Once it reaches the 2nd GB it outputs the sub-trees
rooted at the “Country” node till it reaches the beginning of the
3rd GB. At this point it adds a closing “Company” tag and the 2nd

partition is thus generated as output. This strategy helps XPEDIA
to generate the partitions in a single pass over the input XML
document.

However, the process of shallow parsing can get complicated
when there are multiple partition nodes. Such cases are handled
by XPEDIA by looking for the nodes that appear in the XPaths of
all the partition nodes. We explain the details of the shallow
parsing algorithm used by XPEDIA with the help of the example
given in Figure 10. The XML document in the figure has three
partition nodes /A/B/C/D#, /A/B/C/E#, /A/B/F#. XPEDIA
maintains a set called as ValidExtension for each node that
appears in the XPath of one or more partition nodes. The
ValidExtension set for a node B would contain the set of all nodes
that appear after B in any of the partition node XPaths. Thus the
ValidExtension for B will be the set {C, F#}. XPEDIA also
maintains a stack called PathStack. Whenever we encounter a
node that is part of at least one partition node’s XPath, that node
is pushed on to the PathStack. If the node B is at the top of
PathStack then the shallow parsing is done by looking for (i) the
closure of the node B or (ii) looking for the nodes that are in the
ValidExtension set of B. XPEDIA ignores all the other nodes
which helps it to avoid the high cost associated with a full parse.
If we see the closure of the node which is at the top of the stack,
we pop it from the PathStack. To illustrate the algorithm further,
consider a scenario where we are at the node B in Figure 9. In
this case, we either push a C node, or a F# node on the stack. All
other nodes are ignored since they are not part of any XPath
leading to the partition nodes.

Whenever a partitioning node is found, if we have not reached the
required partition in the XML document, we ignore the XML sub-
tree rooted at the partition node. If on the other hand, we have
reached the required partition (i.e., the 2nd GB in our earlier
example) we output the sub-tree rooted at the partition node.

Figure 10: Shallow Parsing for multiple partition nodes.

5.2.2 Generating Balanced Partitions
The chunking scheme mentioned earlier generates equal size
partitions which are processed in parallel on multiple processors.
These equal sized partitions are generated by performing a
shallow parse of the XML document in parallel on multiple
processors where each shallow parsing instance outputs different
parts of the same XML document. If we have N parallel
processors (numbered 1 to N), notice that the Nth processor which
will generate the last partition will have to do a shallow parse of a
very large portion of the XML document as compared to the rest.
Although shallow parsing is a very light weight parsing technique,

nevertheless it still incurs some overhead. Hence the time
required for finishing the ETL job on each processor will be
different as the time required for generating the partition will
gradually increase with an increase in the processor number (due
to an increase in the shallow parsing time). In this section we
outline a technique to balance the partitions such that the time
required to generate the partitions and complete the ETL job is
almost the same for all the processors. The gist of the balancing
technique used by XPEDIA is that it changes the size of each
partition such that partition size reduces with an increase in the
processor number. Notice that the balancing technique is only
required for the chunking scheme as the shallow parsing costs in
the round robin partitioning technique is the same for all the
partitions.

Let the size of the input XML document be S and let the number
of parallel processors be N. The total time required to finish the
ETL job on a single processor (without partitioning) be tt and let

the time needed to shallow parse the entire document be st . By

definition st tt > . Let the size of the ith partition available to the

i th processor be NiSi ≤≤1; . Then,

 SS
Ni i ≥∑ ≤≤1

 (1)

The summation will be marginally greater than S since each
partition will include the nodes from the root to the partition
node. Our goal is to ensure that each processor finishes processing
its partition at the same time. This means that the time required to
generate each partition and to run the ETL job on that partition
should be the same for each processor. This condition can be
stated by the following set of equations:

Nt
Ni

iststst StStStSStStStSt +==++=+=+ ∑
−≤≤

)(..)(0
11

321211
 (2)

In this set of equations, the first term signifies the time spent by
each node in shallow parsing, where as the second term represents
the actual time spent in running the ETL job on its partition. We
have removed the denominator S, as it is common for all
equations. By substituting, we get the following solution for this
set of equations

 Ni
tt

StSt

tt

t
S

st

st
iN

st

t
i ≤<









−
−










−
=

−

1;. 1 (3)

The above equation gives us the size of each partition which is to
be processed on each processor. These partition sizes ensure that
the ETL job on all the parallel processors finishes at the same time
thereby providing us maximum parallelization. In order to use
Equation 3, we need to know the ratio ts/tt. Notice that, even if we
underestimate this ratio, it will still result in some performance
improvement, although may not be up to the extent of the case
when we know this ratio accurately. On the other hand if we
overestimate this ratio, then the performance deteriorates as one
processor would process a larger partition as compared to its
rightful size, thereby reducing the parallelism advantage. In
practice XPEDIA learns this ratio as follows: Typically an ETL
job processes hundreds of XML documents. Hence XPEDIA
finds the value of the ratio while processing the first XML
document and then uses it for the rest of the documents.

A

B {C, F#}

C {D#, E#}

D# E#

F#

A

B D

E#
Path Stack

Partition Node XPaths

/A/B/C/D#, /A/B/C/E#, /A/B/F#

Ignore sub-tree
rooted at D

Thus this novel partition balancing technique helps XPEDIA to
extract the maximum parallelism from the set of available parallel
processors. In the next section, we outline the parallel schema
validation feature of XPEDIA.

5.3 Parallel Schema Validation
Schema validation of XML documents is a computationally
intensive task that takes a large amount of time to execute.
XPEDIA is the first system to support XML schema validation in
parallel on multiple machines/processors which helps it to
significantly reduce the time required for the process. At a high
level, XPEDIA achieves parallel schema validation by
partitioning the XML document as mentioned in the earlier
sections and providing a modified XML schema file to each
parallel processor. Each parallel processor then validates its
partition using the provided XML schema file. If each processor
confirms that its partition is compliant with the input XML
schema file, then XPEDIA guarantees that the un-partitioned
XML document conforms to the original XML schema. In order
to provide this guarantee XPEDIA classifies the input XML
schema as either being partition safe or partition unsafe.

An XML schema is said to be partition unsafe if it uses any of the
following XML schema indicators on the partition nodes:
MinOccurs, MaxOccurs, All, Sequence and Choice. The problem
with these indicators is that it is not possible for a single partition
to check these indicators. Consider the example schema given in
Figure 4. Let there be a maxOccurs constraint on the
/Company/Country node and let it be the partition node. If we use
the chunking based partitioning scheme then each partition will
get some sub-set of the sub-trees rooted at /Company/Country.
Hence we cannot check the maxOccurs constraint using the data
available within a single partition. The same holds true even in
the case when we use a round robin partitioning scheme. If on the
other hand there was no such schema indicator on the partition
node, then notice that each partition will conform to the input
XML schema. Hence such schema which do not have schema
indicators on the partition node are said to be partition safe and
we provide the original XML schema file to each of the
processors.

In case the schema is partition unsafe then XPEDIA uses a special
technique for schema validation. As mentioned earlier, the
problem with unsafe schemas was that it was not possible to check
the schema using the data available within a single partition.
However, notice that the Nth (i.e., the last) processor generates its
partition by shallow parsing the entire XML document and
producing the last portion of the XML document as its partition.
Recall that the shallow parsing involves the iteration over the sub-
trees rooted at the partition node. Hence the schema validation
for the schema indicators defined on the partition node can be
easily done while doing the shallow parsing. For the example
mentioned earlier, if there was a “maxOccurs=10000” constraint
on the /Company/Country node, then the shallow parser on the
last processor can easily keep track of the number of Country
nodes that it has encountered and signal an error if the number
crosses 10000. Even in the case of round robin based partitioning
scheme, the last processor does a shallow parsing of the entire
XML file and hence can easily check the schema indicator
constraints. Thus the schema indicator is checked during the
shallow parsing on the Nth processor and hence these schema
indicators are removed from the schema file that is provided as

input to each of the processors. Thus each processor checks the
constraints present in the schema file except the schema indicators
defined on the partition node which are checked by the shallow
parser. Thus XPEDIA handles both partition safe and partition
unsafe schemas which helps it to significantly reduce the time
required for schema validation.

6. PERFORMANCE EVALUATION
In this section we present the experimental evaluation of
XPEDIA. The aim of the experimental evaluation was to
showcase the performance gain that can be achieved by using the
two techniques presented in this paper, namely: (1) Rewriting an
ETL job to an ELT flow when the source has native XML support
and (2) running the ETL job in parallel on multiple processors.
We first describe the experimental setup in the next section and
then present the results for ELT and parallel processing of XML
data in Section 6.2 and Section 6.3 respectively.

6.1 Experimental setup
We conducted two different sets of experiments one for each of
the two scenarios mentioned above (i.e., ELT and parallel XML
processing). As discussed earlier, in the first scenario, we rewrote
the ETL job definition to generate an ELT flow. We used the
ETL job described in Section 3. In the original job the XML
document was retrieved from the database, transformed by the
different operators of the ETL job and finally shredded to
relational format and output to the target. In the modified ELT
job, the transformations and shredding tasks were pushed inside
the database engine by executing a single SQL/XML query. The
output of the SQL/XML query consisted of relational tuples
which were then output to the target. Both the original and the
rewritten jobs were executed on IBM Information Server V 8.1
which is an ETL engine. These experiments were conducted on
an Intel Xeon machine with 3.16 GHz processor and 3.75 GB
memory. The operating system was Windows 2003 server
edition. The data source used to store the original XML data was
DB2 v9.5 [13] which provides native XML support.

In the second scenario, we conducted experiments to validate the
performance advantage provided by our parallel processing
techniques. For this experiment we again used the ETL job
described in Section 3. We ran the job using Information Server
v8.1 [12] running on a single machine. We then modified the job
by adding a shallow parsing step at the beginning of the job. This
modified job was also run using Information Server v8.1 which
provides supports for executing an ETL job in parallel on multiple
machines/processors. The ETL job was run on a 4 CPU Intel
Xeon Quad-core machine with each CPU having a processor
speed of 3.16 GHz. Thus the value of N in this case was 4 and the
ETL job instance on each processor processed a different partition
of the input XML document. The overall memory in the machine
was 4 GB and its OS was Windows 2003 server edition. The
XML documents used in these experiments were generated
synthetically using the schema defined in Figure 4.

6.2 Impact of ELT optimization
In this section, we present the results for the experiments which
showcase the benefit of using the ELT optimization. We
compared the execution time for the ETL and ELT job for
different sizes of XML documents. The results for this
experiment are shown in Figure 11. The figure shows that the
time taken by the ELT job for an XML document of size 700 MB

is 70% less than the time taken by the ETL job. Thus this
experiment shows the the ELT approach is able to significantly
reduce the job execution time by making use of the indexes
available within the database engine.

Figure 11: Comparison of ETL and ELT job execution time

6.3 Effect of Parallelization
In the next set of experiments, we evaluated the speedup achieved
by the partitioning technique of XPEDIA. Recall that XPEDIA
supports two different partitioning schemes: Round robin based
partitioning and chunking based partitioning. We showcase the
performance improvement achieved by both these techniques in
this section.

Round-robin scheme: In this partitioning scheme, the shallow
parsing is done by one processor which then sends the sub-trees
rooted at the partition node to the rest of the processors in a round
robin manner. We ran this experiment on 4 processors where the
first processor did the shallow parsing of the XML document and
it provided the sub-trees below the partition nodes to the
remaining 3 processors. The result of this experiment for different
XML document sizes is shown in Figure 12. The results show
that the round robin partitioning technique provides a speedup of
2.7 times over the non-partitioned approach. The results also
show that the speedup is scalable and is not affected by the size of
the XML document. We also measured the time required for
shallow parsing as a percentage of the total time required to
execute the ETL job. The results, shown in Figure 13, validate
the fact that the shallow parsing overhead is constant across
different XML document sizes.

Figure 12: Performance of round robin partitioning scheme

Chunking scheme: In the chunking scheme, each processor does
a shallow parsing of the XML file starting from the beginning of
the file till it reaches the start of its partition. We compared the
execution time of the ETL job without partitioning with that of an

ETL job running on multiple processors using the chunking based
partitioning scheme.

Figure 13: Shallow parsing overhead

In the first set of experiments, we generated the partitions without
using our partition balancer. Thus, each partition in this case is of
the same size. As a result of this, the first processor has to do the
least amount of shallow parsing and hence finishes it work in the
minimum amount of time whereas the last processor has to do to
maximum amount of shallow parsing and hence requires the
maximum amount of time to finish the ETL job on its partition.
Figure 14 shows the time required by the un-partitioned job as
well as the minimum and maximum time taken by the partitioned
job across all the processors for different XML document sizes.
The final speed up of the job is calculated based on the finish time
of slowest job instance. The results show that the chunking based
partitioning scheme without partition balancer provides a speedup
of 2.25 times over the un-partitioned approach.

Figure 14: Performance of chunking scheme without partition
balancer

In our second set of experiments, we used the partition balancer in
the chunking based partitioning scheme. In this technique each
partition is of different size such that the overall ETL job
execution time is almost the same across all processors. The result
of this experiment is shown in Figure 15. For this experiment, we
report only the time taken by slowest job instance since the
difference between slowest and fastest ETL job instance is very
small. We assumed the ratio of shallow parsing to total ETL job
execution time as 0.2 for this experiment. The results show that
technique provides a speedup of 2.9 times over the un-partitioned
approach. This validates the effectiveness of the partition
balancer which helps it to provide better performance than the
round-robin scheme across various XML document sizes.

Figure 15: Performance of chunking scheme with partition
balancer

In summary, our experimental results show that:

o We can get a performance gain of up to 70% by pushing the
processing inside the database engine.

o Our strategy of partitioning the ETL job on multiple nodes is
scalable and can improve the processing speed of the ETL
job by up to 2.9 times for a 4 processor configuration.

7. RELATED WORK
There has been significant amount of work on performing
efficient ETL processing over relational data. However, as
mentioned earlier, ETL processing over XML data is not a well
studied topic. [3] presents a system that allows users to specify
declarative mapping specifications and generate ETL jobs. The
proposed system is not specific to XML but can perform XML
mappings. This work is complimentary to the XPEDIA system
which incorporates significant XML specific improvements such
as providing a XML specific computational model, providing
support for ELT and handling large XML documents. [4]
presents an approach to perform XML data integration, but its
primary focus is on data federation. In contrast, our paper is
focused on ETL techniques for XML data.

Query rewriting techniques based on schema mapping constraints
have been studied in [5]. These techniques are similar to our
ideas for ELT processing but more general in scope. There has
been some work on efficient parallel processing of large XML
documents [6, 7]. The technique presented in [6] partitions data
based on the XML Infoset model but involves a sequential pre-
processing step. Similarly [7] describe a technique for
parallelizing XML parsing using a pre-parsing approach. The
fundamental problem with all these works is that they require a
sequential pre-parsing step which can be quite costly. Speed of
execution is a key requirement for ETL processing flows and
hence techniques which need multiple passes over the XML data
do not work in practice. XPEDIA uses an innovative single pass
algorithm that avoids these drawbacks resulting in improved
scalability. In summary, XPEDIA is one of the first systems to
support a XML specific computation model, ELT support and
specialized techniques for parallel processing of large XML
documents.

8. CONCLUSION
In the past, data integration (or ETL) engines were only required
to shred or generate XML documents of modest sizes. However,
with the growing adoption of XML for data integration, we see

significant new demands for performing complex transformation
and processing operations on large XML documents and
document sets. In this paper, we studied several new requirements
for processing XML data inside data integration engines. We
presented the XPEDIA system which has a XML specific
computational model for performing a variety of operations in an
ETL engine. We also showed how a data flow of operations can
be composed as a pipeline and executed in the ETL engine. We
described the methodology and steps for converting an ETL flow
for XML operations into an equivalent SQL/XML query that can
be executed in databases capable of XML processing. This ELT
technique is effective in pushing down the operations when the
source or target of XML ETL flows is a database capable of
processing SQL/XML efficiently. We then described two
techniques (supported by XPEDIA) for partitioning large XML
documents in order to process the XML in a parallel execution
environment. We also proposed a technique for XML schema
validation in parallel on multiple machines. We did an
experimental evaluation of XPEDIA which showed that the ELT
and partitioning techniques are very effective in improving the
performance of XML based ETL integration tasks. We are
currently working towards incorporating these techniques into
IBM’s Information Server data integration engine. In the future,
we expect to provide a unified set of processing options
combining ETL, ELT and automatic parallelism for XML data
flows. We also intend to study the parallelism topic for XML data
flows in further detail.

9. REFERENCES
[1] W3C XSLT Specification, http://www.w3c.org/TR/xslt

[2] W3C XML Schema, www.w3.org/XML/Schema.

[3] Dessloch, S., et. al., “Orchid: Integrating Schema Mapping
and ETL”, in Proceedings of ICDE, 2008.

[4] Draper, D., Halevy, A., Weld, D.S., “The Nimble Data
Integration System”, in Proceedings of ICDE, 2001.

[5] Yu, C., and Popa, L., “Constraint-based XML query
rewriting for data integration”, in SIGMOD, 2004.

[6] Kurita, H., et. al. “Efficient Query Processing for Large
XML Data in Distributed Environments”, in 21st Intl. Conf.
on Advanced Networking and Applications, 2007.

[7] Lu, W., Chiu, K., Pan, Y., “A Parallel Approach to XML
Parsing”, in Proceedings 7th IEEE/ACM Intl. Conf. on Grid
Computing, 2006, pp. 223-230.

[8] Chamberlin D., “XQuery: A Query Language for XML”, in
Proceeding of ACM SIGMOD, 2003: 682.

[9] Nicola M., Linden B., “Native XML Support in DB2
Universal Databases”, in VLDB, 2005, pp. 1164-1174.

[10] Liu Z. H., Krishnaprasad M., Arora V., “Native XQuery
Processing in Oracle XMLDB”, in SIGMOD, 2005.

[11] Rys M., “XML and relational database management systems:
inside Microsoft SQL Server”, in SIGMOD, 2005.

[12] IBM Infosphere Information Server, http://www-
01.ibm.com/software/data/integration/info-server.

[13] IBM DB2 Database,
http://public.boulder.ibm.com/infocenter/db2luw/v9r5.

