
Efficient Rewriting of XPath Queries Using Query Set
Specifications

Bogdan Cautis
Telecom ParisTech

cautis@telecom-paristech.fr

Alin Deutsch
UC San Diego

deutsch@cs.ucsd.edu

Nicola Onose
UC San Diego

nicola@cs.ucsd.edu

Vasilis Vassalos
Athens Univ. of Economics and Business

vassalos@aueb.gr

ABSTRACT
We study the problem of querying XML data sources that accept
only a limited set of queries, such as sources accessible by Web ser-
vices which can implement very large (potentially infinite) families
of XPath queries. To compactly specify such families of queries
we adopt the Query Set Specifications [14], a formalism close to
context-free grammars.

We say that query Q is expressible by the specification P if it
is equivalent to some expansion of P . Q is supported by P if it
has an equivalent rewriting using some finite set of P’s expansions.
We study the complexity of expressibility and support and identify
large classes of XPath queries for which there are efficient (PTIME)
algorithms. Our study considers both the case in which the XML
nodes in the results of the queries lose their original identity and
the one in which the source exposes persistent node ids.

1. INTRODUCTION
Current Web data sources usually do not allow clients to ask ar-

bitrary queries, but instead publish as Web Services a set of queries
they are willing to answer, which we will refer to as views . Main
reasons for that are performance requirements, business model con-
siderations and access restrictions deriving from security policies.
Querying such sources involves finding one or several legal views
that can be used to answer the client query.

Of particular interest is the case when the set of views is very
large (possibly exponential in the size of the schema or even infi-
nite), precluding explicit enumeration by the source owner as well
as full comprehension by the client query developer. In such sce-
narios, recent proposals advocate the owner’s specifying the set of
legal views implicitly, using a compact representation (in the same
spirit in which a potentially infinite language is finitely specified
by a grammar). Clients are unaware of the legal views, and simply
pose their query against a logical schema exported by the source
(the same schema against which the views are defined). While this
approach provides a simpler interface to source owner and client, it
raises a technical challenge, as now the system has to automatically
identify and extract from the compact encoding a finite set of legal
views that can be used to answer the client query.

This problem has been the object of several recent studies in a

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

relational setting [9, 16, 6], but has not been addressed for sources
that publish XML data (as is the case for most current Web Ser-
vices). Since our focus is on practical algorithms, we consider
sources that make XML data available through sets of views be-
longing to an XPath fragment for which the basic building blocks
of rewriting algorithms, namely containment and equivalence, are
tractable [11]. As a formalism for compactly representing large sets
of such views, we adopt a variation of the Query Set Specification
Language(QSSL) [14], a grammar-like formalism for specifying
XPath view families (see also [12]).

Expressibility and support. As in the literature on sources ex-
porting sets of legal relational queries [16, 6], we consider two set-
tings for query answering. The first one is when the client query has
to be fully answered by asking one legal query over the source, with
no post-processing of its result. The corresponding decision prob-
lem is called expressibility [6]: we say that query q is expressible if
it is equivalent to a view published by the source. The second set-
ting is when the capabilities of the source are extended by a source
wrapper [13] that intercepts the client query, finds an equivalent
rewriting for it in terms of the views, post-processes the results lo-
cally and returns the query result to the client. The associated prob-
lem is called support [6]: given a rewriting query language LR, q is
supported by P if it has an equivalent rewriting in LR using some
finite set of legal queries supported by the source.

Expressibility and support generalize the problems of equiva-
lence and existence of a rewriting using views from the classical
case in which the set of views is explicitly listed to the case in
which this set is very large, potentially infinite, being specified im-
plicitly by a compact representation.

XPath rewriting. Earlier research [17, 10] on XPath rewriting
studied the problem of equivalently rewriting an XPath by navigat-
ing inside a single materialized XPath view. This is the only kind
of rewritings supported when the query cache can only store or can
only obtain copies of the XML elements in the query answer, and
so the original node identities are lost.

We have recently witnessed an industrial trend towards enhanc-
ing XPath queries with the ability to expose node identifiers and ex-
ploit them using intersection of node sets (via identity-based equal-
ity). This trend is supported by systems such as [3]. This de-
velopment enables for the first time multiple-view rewritings ob-
tained by intersecting several materialized view results. The single-
view rewritings considered in early XPath research have only lim-
ited benefit, as many queries with no single-view rewriting can be
rewritten using multiple views. In this paper, we consider both the
case in which the XML nodes in the results of the queries lose their
original identity (hence a rewriting can only use one view) and the
one in which the source exposes persistent node ids (and rewritings
using multiple views are possible).

EXAMPLE 1.1. Throughout this paper we consider the example

of a tourism agency that allows to find organized trips matching
user criteria. The set of allowed queries is specified by a compact
QSS encoding (to be described shortly). On the schema of views
published by the source, the client formulates a query q1, asking
for museums during a tour in whose schedule there is also a slot
for taking a walk and which is part of a guided secondary trip:

q1: doc(T)//vacation//trip/trip[guide]//tour[schedule//walk]/museum

The system analyzes the query and the specification and finds two
views that may be relevant for answering q1. These are v1, which
returns museums in secondary trips for which there is a guide:

v1: doc(T)//vacation//trip/trip[guide]//museum

and v2, which returns museums on a tour in which there has been
also scheduled a walk:

v2: doc(T)//vacation//trip//tour[schedule//walk]/museum

q1 cannot be answered just by navigating into the result of v1
or into the result of v2. The reason is that q1 needs both to en-
force that the trip has a guide and that the tour has a walk in the
schedule. v1 or v2 taken individually can enforce one of the two
conditions, but not both, and navigation down into the view does
not help either, since the output node museum is below the trip and
tour nodes. Since no other views published by the source can con-
tribute to rewriting q1, in the absence of ids, the system will reject
q1, as it is neither expressed, nor supported by the source.

However, if the views expose persistent node ids, we will show
that q1 can be rewritten as an intersection of v1 and v2.
Contributions. We study the complexity of expressibility and
support and identify large classes of XPath queries for which there
are efficient (PTIME) algorithms. For expressibility, we give a
PTIME decision procedure that works for any QSS and for any
XPath query from a large fragment allowing child and descendant
navigation and predicates. We show that support in the absence
of ids remains in PTIME, for the same XPath fragment for which
we studied expressibility. However, for this fragment, support in
the presence of ids becomes coNP-hard. This is a consequence
of previous results [5], showing that rewriting XPath using an in-
tersection of XPath views (a problem subsumed by support) is al-
ready coNP-hard. This is a major difference with respect to the
relational case, in which support and expressibility were proven
inter-reducible [6]. Since our focus is on practical algorithms, we
propose a PTIME algorithm for id-based support that is sound for
any XPath query, and becomes complete under fairly permissive
restrictions on the query, without further restricting the language of
the views. Our results are in stark contrast with previous results in
the relational setting [9, 16], where already the simple language of
conjunctive queries leads to EXPTIME completeness of expressiv-
ity and support [6], but on the other hand is closed under intersec-
tion, which poses no additional problem.

Outline of the paper. The paper is structured as follows. Sec-
tion 2 presents the language of client queries (tree patterns) and the
language of query rewriting plans (tree patterns and intersections
thereof). Section 3 describes the query set specifications (QSS).
The problem of expressibility is analyzed in Section 4. The prob-
lem of support is studied starting from Section 5, first in the absence
of persistent ids and then in their presence (Sections 6, 7, 8). QSS
and rewriting language extensions are presented in Sections 9, 10.
Section 11 discussed related work and Section 12 concludes.

2. XPATH AND TREE PATTERNS
We consider an XML document as an unranked, unordered rooted

tree tmodeled by a set of edges EDGES(t), a set of nodes NODES(t),
a distinguished root node ROOT(t) and a labeling function λt, as-
signing to each node a label from an infinite alphabet Σ.

doc(T)

museum

tour

vacation

schedule

walk

vacation

trip

trip

trip

museum

doc(T)

guide

doc(T)

vacation

trip

trip

guide

tour

walk

schedule

museum

(nm1) (nm2)

(nd2)

(ntr2)

(ntr1)

(nd1)

(nv1)

(ntr3)

(nv2)

(ng1)
(ns1)

(nw1)

(nto1)

view v2view v1

(ng2)

(nw2)
(nm3)

(nto2)

(ntr5)

(ntr4)

(nv3)

(nd3)

(ns2)

query q1

Figure 1: The tree patterns of queries v1, v2 and q1
We consider XPath queries with child / and descendant // navi-

gation, without wildcards. We call the resulting language XP, and
define its grammar as:

apath ::= doc(“name”)/rpath | doc(“name”)//rpath
rpath ::= step | rpath/rpath | rpath//rpath
step ::= label pred
pred ::= ε | [rpath] | [.//rpath]| pred pred

The sub-expressions inside brackets are called predicates.
All definitions and results of this paper extend naturally when

allowing equality with constants in predicates. For presentation
simplicity, this feature will be ignored in the core of the paper, and
is briefly discussed in Section 9.

In the following, we will prefer an alternative representation for
XML queries widely used in literature, the one of tree patterns [11]:

DEFINITION 2.1. A tree pattern p is a non empty rooted tree,
with a set of nodes NODES(p) labeled with symbols from Σ, a dis-
tinguished node called the output node OUT(p), and two types of
edges: child edges, labeled by / and descendant edges, labeled by
//. The root of p is denoted ROOT(p).

Any XP expression can be translated into a tree pattern query and
vice versa (see, for instance [11]). For a given tree pattern query p,
xpath(p) is the associated XP expression.

EXAMPLE 2.1. Figure 1 shows the tree patterns corresponding
to v1, v2 and q1 from Example 1.1. Each node has a label and a
unique node symbol, written inside parenthesis. Output nodes are
distinguished in the graphical representation by a square.

The semantics of a tree pattern can be given using embeddings:
DEFINITION 2.2. An embedding of a tree pattern p into a tree

t over Σ is a function e from NODES(p) to NODES(t) that has
the following properties: (1) e(ROOT(p)) = ROOT(t); (2) for any
n ∈ NODES(p), LABEL(e(n)) = LABEL(n); (3) for any /-edge
(n1, n2) in p, (e(n1), e(n2)) is an edge in t; (4) for any //-edge
(n1, n2) in p, there is a path from e(n1) to e(n2) in t.
The result of applying a tree pattern p to an XML tree t is the set:
{e(OUT(p))| e is an embedding of p into t }

DEFINITION 2.3. A tree pattern p1 is contained in a tree pat-
tern p2 iff for any input tree t, p1(t) ⊆ p2(t). We write this shortly
as p1 v p2. We say that p1 is equivalent to p2, and write p1 ≡ p2,
iff p1(t) = p2(t) for any input tree t.

The same notions are also used on XP expressions. A pattern p is
said minimal [1] if no pattern p′ ≡ p can have fewer nodes than p.

DEFINITION 2.4. A mapping between two tree patterns p1, p2

is a function h : NODES(p1)→ NODES(p2) satisfying properties
(2),(4) of an embedding (allowing the target to be a pattern) plus
three others: (5) for any n ∈ MBN(p1), h(n) ∈ MBN(p2); (6) for
any /-edge (n1, n2) in p1, (e(n1), e(n2)) is a /-edge in p2.

A root-mapping is a mapping that satisfies (1). An output-mapping
is a mapping h such that h(OUT(p1)) = OUT(p2). A containment
mapping denotes a mapping that is simultaneously a root-mapping
and an output-mapping.
Previous studies [1, 11] show that for two tree patterns p1 and p2,
p2 v p1 iff there is a containment mapping from p1 into p2.

For a tree pattern p, we refer to the path starting with ROOT(d)
and ending with OUT(p) as the main branch of p. We refer to the
set of nodes on this path as MBN(p). We say that a pattern is linear
if it has no side branches. By MB(p) we denote the linear pattern
that is isomorphic with the main branch of p. We call predicate
subtree of a pattern p any subtree rooted at a non-main branch node.

Intersection. We consider in this paper the extension XP∩ of XP
with respect to intersection, having a straightforward semantics. Its
grammar is obtained from that of XP by adding the following rule:

ipath ::= apath | apath ∩ ipath
By XP∩ expressions over a set of documents D we denote those
that use only apath expressions that navigate insideD’s documents.

As in [4], a code is a string of symbols from Σ, alternating with
either / or //.

DEFINITION 2.5 (INTERLEAVING). A interleaving of a finite
set of tree patterns S is any tree pattern pi produced as follows:

1. let M = ∪p∈S MBN(p),
2. choose a code i and a total onto function fi that maps M

into Σ-positions of i such that:
(a) for any n ∈M, LABEL(fi(n)) = LABEL(n)
(b) for any p ∈ S, fi(ROOT(p)) is the first symbol of i,
(c) for any p ∈ S, fi(OUT(p)) is the last symbol of i,
(d) for any /-edge (n1, n2) of any p ∈ S, i is of the form

. . . fi(n1)/fi(n2) . . . ,

(e) for any //-edge (n1, n2) of any p ∈ S, i is of the form
. . . fi(n1) . . . fi(n2)

3. build the smallest pattern pi such that:
(a) i is a code for the main branch of pi,
(b) for any n ∈ M and its image n′ in pi (via fi), if a

predicate subtree st appears below n then a copy of st
appears below n′, connected by the same kind of edge.

Two nodes n1, n2 from M are said to be collapsed if fi(n1) =
fi(n2), with fi as above. The tree patterns pi thus obtained are
called interleavings of S and we denote their set by interleave(S).

EXAMPLE 2.2. One of the interleavings of v1 and v2 from Fig-
ure 1 is q1, as v1 has a //-edge between nodes ntr2 and nm1, which
allows the tour from v2 to appear as a direct parent of museum.
Considering also unions of tree patterns, having straightforward se-
mantics, one can prove the following intersection-union duality:

LEMMA 2.1. For any set of XP queries S = {q1, . . . , qn}, the
XP∩ expression ∩iqi is equivalent to the union ∪interleave(S).
The following also holds:

LEMMA 2.2. A tree pattern is contained in a union of tree pat-
terns iff it is contained in a member of the union. A tree pattern con-
tains a union of patterns iff it contains each member of the union.

The set of interleavings of a set of patterns S may be exponentially
larger than S. Indeed, it was shown that the XP∩ fragment is not
included in XP (i.e, the union of its interleavings cannot always be
reduced to one XP query by eliminating the redundant interleavings
contained in others) and that an intersection may only be translat-
able into a union of exponentially many tree patterns (see [4]).

View-based rewriting. Given a set of views V , defined by XP
queries over a document D, by DV we denote the set of view doc-
uments {doc(v)|v ∈ V} , in which the topmost element is labeled

with the view name. Given a query r, expressed in a rewrite lan-
guage LR (e.g., XP or XP∩), over the view documents DV , we
define unfold(r) as the LR query obtained by replacing in r each
doc(v)/v with the definition of v.

Given an XP query q and a finite set of XP views V over D, we
look for an alternative plan r in LR, called a rewriting, that can be
used to answer q. We define rewritings as follows:

DEFINITION 2.6. For a given document D, an XP query q and
XP views V over D, a rewrite plan of q using V is a query r ∈ LR

over DV . If unfold(r) ≡ q, then we also say r is a rewriting for q.
According to the definition above, a rewrite plan r in XP is of the
form doc(vj)/vj , doc(vj)/vj/p or doc(vj)/vj//p.

Similarly, according to the definition of XP∩, a rewrite plan r in
XP∩ is of the form r = (

⋂
i,j uij), for each uij being of the form

doc(vj)/vj , doc(vj)/vj/pi or doc(vj)/vj//pi. Note that such a
query r is a rewriting (i.e., equivalent to q) iff
• each query unfold(uij) contains q, and
• by Lemmas 2.1 and 2.2, q contains all the tree patterns (in-

terleavings) in interleave({unfold(uij)}).
Further notation. We introduce now some additional notation,
which will be first used in Section 7 and can be skipped until then.

A /-pattern is a tree pattern having only /-edges in the main
branch. A /-predicate (resp. //-predicate) is a predicate subtree
that is connected by a /-edge (resp. //-edge) to the main branch.

We will refer to main branch nodes of a pattern p by their rank
in the main branch, i.e. a value in the range 1 to |MB(p)|, for 1
corresponding to ROOT(p) and |MB(p)| corresponding to OUT(p).
For a rank k, by p(k) we denote any pattern isomorphic with the
subtree of p rooted at the main branch node of rank k. By nodep(k)
we denote the node of rank k in the main branch of p.

A prefix p′ of a tree pattern p is any tree pattern that can be
built from p by setting ROOT(p) as ROOT(p′), setting some node
n ∈ MBN(p) as OUT(p′), and removing all the main branch nodes
descendants of n along with their predicates. A suffix p′ of a tree
pattern p is any subtree of p rooted at a node in MBN(p).

We associate a name to each predicate in a pattern p (in lexico-
graphic order). For a given predicate P , by nP we denote the main
branch node that is parent of P in q. By rP we denote P ’s position
on the main branch, i.e., the rank of the node nP . By qP we denote
the pattern formed by the node nP , as ROOT(qP), the pattern of P ,
and the edge connecting them. By rootP we denote the node of p
representing the root of P ’s pattern.

We also refer to the tokens of tree pattern p: more specifically,
the main branch of p can be partitioned by its sub-sequences sep-
arated by //-edges, and each sub-pattern corresponding to such a
sub-sequence is called a token of p. We can thus see a pattern p as
a sequence of tokens (i.e., /-patterns) p = t1//t2// . . . //tk. We
call t1, the token starting with ROOT(p), the first token of p. The
token tk, which ends by OUT(p), is called the last token of p.

3. QUERY SET SPECIFICATIONS
We consider sets of XPath queries encoded using a grammar-like

formalism, Query Set Specifications (QSS), similar to [14].
DEFINITION 3.1. A Query Set Specification (QSS) is a tuple

(F,Σ, P, S) where
• F is the set of tree fragment names
• Σ, with Σ ∩ F = ∅ is the set of element names
• S ∈ F is the start tree fragment name
• P is a collection of expansion rules of the form
f() → tf or f(X) → tf.
where f is a tree fragment name, tf is a tree fragment and X
denotes the output mark. Empty rules, of the form f → (no
tree fragment) are also allowed.

f is called the left-hand side (abbreviated as LHS) and
tf is called the right-hand side (RHS) of the rule.

A tree fragment is a labeled tree that may consist of the following:
• element nodes, labeled with symbols from Σ,
• tree fragment nodes n labeled with symbols from F ,
• edges either of child type, denoted by simple lines, or of de-

scendant type, denoted by double lines,
• the output mark X associated to one node (of either kind).

In any rule, in the RHS one unique node may have the output mark
(X) if and only if that rule has the output mark on the LHS.
As a notation convention, we serialize QSS tree fragments as XP
expressions with an output mark (X), if present.

QSS expansions. A finite expansion (in short expansion) of a
QSS P is any tree pattern p having a body obtained as follows:
• starting from a rule S(X)→ tf,
• apply on tf the following expansion step a finite number of

times until no more tree fragment names are left: for some
node n labeled by a tree fragment name f , pick a rule defin-
ing f (i.e., f is the LHS) and replace n by the RHS of that
rule; if n has the output mark, use only rules with LHS f(X).
• set the node having the output mark as OUT(p).

We say that p is generated by P . Note that the set of expansions
can be infinite if the QSS is recursive.

DEFINITION 3.2 (EXPRESSIBILITY AND SUPPORT). For an
XP query q, a QSS P , and a rewriting language LR we say that

1. q is expressible by P iff q is equivalent to an expansion of P .
2. q is supported by P in LR iff there is a finite set V of XP

queries generated by P , with corresponding view documents
DV , such that there is a rewriting of q formulated in LR that
navigates only in documents from DV .

The definition of support given above depends on the language
LR in which the rewritings can be expressed. If rewritings are
expressed in XP, then all one can do is navigate inside one view.
However, if the source exposes persistent node ids, it becomes pos-
sible to intersect of view results. In this case, one can choose LR

to be XP∩ and use several views in more complex rewritings.
EXAMPLE 3.1. The QSS P below generates queries returning

information about museums that will be visited on a guided trip or
as part of a tour in whose schedule there is also allotted time for
taking a walk. Trips that appear nested are secondary trips.

(P) f0(X)→ doc(T)//vacation//f1(X)

f1(X)→ trip/f1(X)

f1(X)→ trip[guide]//museum(X)

f1(X)→ trip//tour[schedule//walk]/museum(X)

It can be checked that v1 and v2 introduced before are among
the expansions of P . When considering v1 and v2 as user queries,
we can also say they are expressed by P .

Consider the following client query q2, asking for museums that
have temporary exhibitions and are visited in secondary trips:

q2: doc(T)//vacation//trip/trip[guide]//museum[temp].

q2 is obviously not expressed byP(there is no temp element node in
P). However, it is enough to filter the result of v1 by the predicate
[temp] to obtain the same result as q2, hence q2 is supported by P:

q2 ≡ doc(v1)/v1/museum[temp]
Consider the query q1 of Example 1.1. One can check that q1

cannot be answered by navigating into a single view. Suppose now
that the views expose persistent node ids. By using Lemmas 2.1,
2.2, one can check that the support of q1 is witnessed by v1 and v2:

q1 ≡ doc(v1)/v1/museum ∩ doc(v2)/v2/museum.

Intuitively, this holds because q1 is one of the interleavings of v1
and v2 and all other interleavings are contained in q1.

Normalization. For ease of presentation, we introduce first some
normalization steps on the QSS syntax. First, the set of tree frag-
ment names that have the output mark (denoted unary) is assumed
disjoint from those that do not have it (denoted boolean). Second,
we equivalently transform all rules such that, in any RHS, tree frag-
ments have depth at most 1, and the nodes of depth 1 can only be la-
beled by tree fragment names (i.e., a RHS is a tree fragment formed
by a root and possibly some tree fragment children, connected by
either /-edges or //-edges to the root). For that, we may introduce
additional tree fragment names. After normalization, for l being a
label in Σ, c1, . . . , cn, d1, . . . , dm being two (possibly empty) lists
of tree fragment names and g being a tree fragment name as well,
any non-empty rule falls into one of the following cases:

f() → l[c1(), . . . , cn(), .//d1(), . . . , .//dm()]

f(X) → l(X)[c1(), . . . , cn(), .//d1(), . . . , .//dm()]

f(X) → l[c1(), . . . , cn(), .//d1(), . . . , .//dm()]/g(X)

f(X) → l[c1(), . . . , cn(), .//d1(), . . . , .//dm()]//g(X)

For any fragment name f and rule
f(X)→ l[c1(), . . . cn, .//d1(), . . . , .//dm()] edge g(X),

by vf we denote any possible expansion of f via that rule. By
v′f we denote any pattern that can be obtained from the rule by (i)
expanding g into the empty pattern, and (ii) expanding the cis and
the gjs in some (any) possible way. Note that v′f has only one main
branch node (the root).

EXAMPLE 3.2. The result of normalizing the QSS P from Ex-
ample 3.1 is the following specification:

f0(X)→ doc(T)//f1(X), f1(X)→ vacation//f2(X)

f2(X)→ trip/f2(X), f2(X)→ trip[f7()]//f5(X)

f2(X)→ trip//f3(X), f3(X)→ tour[f4()]/f5(X)

f4()→ schedule//f6(), f5(X)→ museum(X)

f6()→ walk, f7()→ guide

4. EXPRESSIBILITY
We consider in this section the problem of expressibility: given a

query q and a QSS P encoding a set of views, decide if there exists
a view v generated by P that is equivalent to q.

Conceptually, in order to test expressibility, one has to enumer-
ate the set of views and, for each view, check its equivalence to q.
This is obviously unfeasible in our setting, since the set of views is
potentially infinite. But the following observation delivers a naïve
algorithm: only views that contain q have to be considered, and
there are only finitely many distinct (w.r.t. isomorphism) candi-
dates since containment mapping into q limits both the maximum
length of a path (by the maximal path length in q) and the set of
node labels (by the ones of q). Therefore, one can decide express-
ibility by enumerating all the candidate views and checking for
each candidate if (a) it is equivalent to q, and (b) it is indeed an
expansion of P . However, this solution has limited practical inter-
est beyond the fact that it shows decidability for our problem, since
it is non-elementary in time complexity.

Our main contribution here is to provide a PTIME decision pro-
cedure for expressibility. The intuition behind our algorithm is the
following. We do not enumerate expansions, and instead we group
views and view fragments (which are assembled by the QSS to
form a view) into equivalence classes w.r.t. their behavior in the
algorithm for checking equivalence with q. Since there are fewer
(only polynomially many) possible behaviors, manipulating such
equivalence classes instead of explicit views or fragments thereof
enables our PTIME solution.

As a compact representation for equivalence classes, we use de-
scriptors. Informally, we use two kinds of descriptors for views or
view fragments:

• mapping descriptors, which record if some expansion of a
tree fragment name maps into a subtree of q,
• equivalence descriptors, which record if some expansion of

a tree fragment name is equivalent to a subtree of q.
The rest of this section is organized as follows.

We first observe that equivalence for tree patterns is reducible to
equivalence for a different flavor of patterns, boolean tree patterns
([11]). These are tree patterns of arity 0 (no output node) that test if
evaluating a pattern over an XML document yields an empty result
or not. Following this observation, for presentation simplicity, we
solve expressibility for boolean tree patterns (Section 4.1).

Then, in Section 4.2, we show how expressibility for tree patterns
(arity 1) can be reduced to expressibility for boolean tree patterns.

4.1 Expressibility for boolean tree patterns
We study in this section expressibility for boolean tree patterns.

Their semantics, based on the same notion of embedding, can be
easily adapted from the case of arity 1: the result of applying a
boolean tree pattern p to an XML tree t is either the empty set ∅
or the set {ROOT(t)}. In the first case, we say that the result is
false, in the latter, we say it is true. Containment and equivalence
for boolean tree patterns are also based on mappings, with the only
difference that there is no output node.

In the remainder of this section all patterns (queries and views)
are boolean tree patterns. A QSS will have either rules of the form
f()→ l[c1(), . . . , cn(), .//d1(), . . . , .//dm()] or empty rules.

In order to clarify the role of descriptors and the equivalence
classes they might stand for, let us first consider how one can test
equivalence between a query q and view v. The classic approach for
checking this is dynamic programming, bottom-up, using boolean
matricesM that bookkeep mappings in both directions. M(n1, n2)
is true if the subtree rooted at n1 contains the one rooted at n2.

We prefer instead a variation on this approach, which will enable
our PTIME solution. Since wildcard is not used, equivalence be-
tween a query q and a view v translates into q and v being isomor-
phic modulo minimization. Assuming that q is already minimized,
this means that v has to be q plus some redundant branches, i.e.
• q is isomorphic to (part of) v, i.e. there is a containment

mapping ψ from q into v, and the inverse ψ−1 is a partial
mapping from v into q,
• the partial mapping ψ−1 can be completed to a containment

mapping from v into q
In the above, no two nodes of q can have the same image under
ψ. In other words, some nodes of v have an “equivalence role”,
and there must be one such node corresponding to each node of q,
while the remaining nodes are redundant and it suffices to have only
a “mapping role”. This suggests that it is enough to build bottom-
up only one matrix M , for containment from subtrees of v into
subtrees of q, if in in parallel we bookkeep in another matrix details
about equivalence between subtrees. A field in the equivalence ma-
trix, E(n1, n2), for n1 ∈ NODES(v), n2 ∈ NODES(q), indicates
that the subtree v(n1) is equivalent with the subtree q(n2).

With these two matrices, checking v ≡ q by a bottom-up pass is
straightforward, by applying the following steps until fix-point:
Assuming thatM(n1, n2) andE(n1, n2) are true for any leaf nodes
n1 ∈ NODES(v), n2 ∈ NODES(q) having the same label,
A) For each pair (n1, n2), n1 ∈ NODES(v), n2 ∈ NODES(q)

having the same label, set M(n1, n2) to true if:

1. for each /-child n of n1 there exists a /-child n′ of n2 s.t.
M(n, n′) = true,

2. for each //-child n of n1 there exists a descendant n′ of n2

s.t. M(n, n′) = true.

B) For each pair (n1, n2), n1 ∈ NODES(v), n2 ∈ NODES(q)
having the same label, set E(n1, n2) and M(n1, n2) to true if:

1. for each /-child n of n2 there exists a /-child n′ of n1 s.t.
E(n, n′) = true,

2. for each //-child n of n2 there exists a descendant n′ of n1

s.t. E(n, n′) = true,

3. for each /-child n of n1 that was not referred to at step (1),
there exists a /-child n′ of n2 s.t. M(n, n′) = true,

4. for each //-child n of n1 that was not referred to at step (2),
there exists a descendant n′ of n2 s.t. M(n, n′) = true.

We are now ready to present our PTIME algorithm for express-
ibility. We will adapt the above approach for testing equivalence,
which builds incrementally (bottom-up, one level at a time) the
mapping and equivalence details, to the setting when views are
generated by a QSS by expanding fragment names. We will use
mapping and equivalence descriptors to record for each tree frag-
ment name if some of its expansions witnesses equivalence with or
existence of mapping into a part of the query. More precisely,

DEFINITION 4.1. For a fragment name f of a QSS P , a map-
ping descriptor is a tuple map(f, n), where n ∈ NODES(q), indi-
cating that f has an expansion vf in P that contains the subtree of
q rooted at node n.

An equivalence descriptor is a tuple equiv(f, n), where n ∈
NODES(q), indicating that f has an expansion vf in P that is
equivalent with the subtree of q rooted at node n.

Note that a descriptor equiv(f, n) will also tell us where the expan-
sion it stands for maps (or not) in q. In other words, once we have
an equivalence descriptor for a fragment name expansion, we can
infer all mapping descriptors for it.

EXAMPLE 4.1. Suppose that the data source publishes a modi-
fied version of the QSS from Example 3.2, enforcing the possibility
of taking a walk on trips that contain tours. This translates into
replacing the last rule for f2 with the rule (unnormalized):

f2(X)→ trip[.//f6()]//f3(X).

A client interface generates and sends a query identical to v2 of
Example 2.1 to this source.

The proof of expressibility will consist in finding an equivalence
descriptor for the root of the tree pattern. To infer the existence
of this descriptor, we compute descriptors going bottom up in the
pattern and in the normalized QSS from Example 3.2.

We start with the leaves, for which we find d1 = equiv(f5, nm2)
and d2 = equiv(f6, nw1), d′2 = map(f6, nw1). Using d2, we can
infer the descriptor d3 = equiv(f4, ns1), which, together with the
descriptor for nm2, enables a descriptor d4 = equiv(f3, nto1).
Since nw1 is a descendant of ntr3, we can use the mapping de-
scriptor d′2 and the equivalence descriptor d4 to build a descriptor
equiv(f2, ntr3). This in turn enables a descriptor equiv(f1, nv2),
which leads to inferring a descriptor for the root: equiv(f0, nd2).

Thus we can check that expressibility holds, even if v2 is not
isomorphic to any expansion of the QSS (since it has no predicate
on the node labeled with trip).

Our algorithm for testing expressibility will mimic the two steps
(A) and (B) above, applying them instead on QSS rules and frag-
ment nodes via descriptors. Given descriptors for the fragment
names in the RHS, we will infer new descriptors for the fragment
name on the LHS. The only notable difference with respect to the
approach for checking equivalence is for steps (B.1) and (B.2). For
a fragment name f and node n ∈ NODES(q), fragment names chil-
dren of f in a rule may have several equiv descriptors, referring to
different nodes of q. We must choose one among them in a way that

does not preclude the inference of a descriptor equiv(f, n), when
one exists. For that, we will use a function tf-cover, which takes as
input a set of nodesN , a set of tree fragment names C and an array
L such that for every n ∈ N , L(n) ⊆ C. It returns true if there
is a way to pick a distinct tree fragment name from each L(n), for
all n ∈ N . This function is based on a max-flow computation and
its running time is O((|C| + |N |) ∗ |C|). We refer the reader to
the extended version of this paper [7], for the detailed definition of
tf-cover.

The computation of descriptors (algorithm findDescExpr) starts
with productions without tree fragment nodes on the RHS and con-
tinues inferring descriptors until a fixed point is reached. It runs in
polynomial time because (a) there are only polynomially many de-
scriptors (their number is proportional to the size of the QSS multi-
plied by the size of the query), and (b) each incremental, bottom-up
step for inferring a new descriptor runs in polynomial time.
Algorithm findDescExpr(q, P):
A. Start with an empty set of descriptors R.
B. For each rule f()→ (), node n ∈ NODES(q), add to R the

descriptor map(f, n).
C. For each rule f()→ l (i.e., the RHS has only one node) and

each node n ∈ NODES(q) labeled by l, add to R the descriptors
equiv(f, n) and map(f, n).

Repeat until R unchanged:
D. For each rule f()→ l[c1(), . . . , cn(), .//d1(), . . . , .//dm()],

add to R a descriptor map(f, n) if n is labeled by l and
• for each fragment name ci there exists a descriptor

map(ci, n
′) s.t. n′ is a /-child of n,

• for each fragment name dj there exists a descriptor
map(dj , n

′) s.t. n′ is a descendant of n.
E. for each rule f()→ l[c1(), . . . , cn(), .//d1(), . . . , .//dm()]:

add to R the descriptors equiv(f, n) and map(f, n) if
1. tf-cover(N1, C, L) returns true, where N1 is the set of /-

children of n,C ⊆ {c1, . . . , cn} is the set of fragment names
that have a descriptor equiv(ci, n

′) for n′ ∈ N1 and, for each
n′ ∈ N1, L(n′) ⊆ C is the set of fragments names that have
a descriptor equiv(ci, n

′).
2. tf-cover(N2, D, L) returns true, where N2 is the set of //-

children of n, D ⊆ {d1, . . . , dm} is the set of fragment
names that have a descriptor equiv(dj , n

′) for n′ ∈ N2 and,
for each n′ ∈ N2, L(n′) ⊆ D is the set of fragments names
that have a descriptor equiv(dj , n

′).
3. for each fragment name ci 6∈ C, there exists a descriptor

map(ci, n
′) s.t. n′ is a /-child of n,

4. for each fragment name dj 6∈ D there exists a descriptor
map(dj , n

′) s.t. n′ is a descendant of n.
THEOREM 4.1. A boolean tree pattern q is expressed by a QSS

P iff findDescExpr(q, P) outputs a descriptor equiv(S, ROOT(q)),
for S being the start fragment name of P . findDescExpr runs in
polynomial time in the size of the query and of the QSS.
Remark. The assumption that the input query q is minimized -
which implies that no two nodes of q can have the same image un-
der the ψ function described above - is important for our algorithm.
It allows us to avoid a bottom-up approach that might also have to
bookkeep mappings from the query into the views. This would re-
quire descriptors that pair a set of subtrees of q with an expansion,
leading to a worst-case exponentially large space for descriptors.

4.2 Expressibility for tree patterns
We now consider expressibility for standard tree pattern queries

(patterns with an output node).

It is well known from previous literature that problems such as
tree pattern containment and equivalence reduce to containment,
respectively equivalence, for boolean patterns. This is based on the
following translation: let s be a new label (from selection), for a
tree pattern p let p0 denote the boolean tree pattern obtained from
p by (i) adding a /-child labeled s below the output node of p, and
(ii) removing the output mark. From [11], for two tree patterns p
and p′, we have that p ≡ p′ iff p0 ≡ p′0.

A similar transformation can be applied for expressibility. Given
a QSS P , let P0 be the QSS obtained from P by (i) plugging a /-
child labeled s below each node having an explicit label and the
output mark, and (ii) making all rules and tree fragment names
boolean by removing their output mark. P0 generates boolean tree
patterns and, since P’s sets of unary and boolean tree fragment
names were assumed disjoint, P0’s expansions have exactly one
s-labeled node. We can prove the following:

THEOREM 4.2. A tree pattern query q is expressed by a QSS P
iff the boolean tree pattern q0 is expressed by the QSS P0.

5. SUPPORT
For the problem of support, the fact whether the source enables

persistent node ids (that are then exposed in query results) or not
has a significant impact on the rewrite plans one can build. In both
settings, with or without node ids, rewriting under an explicitly
listed set of views has been studied in previous literature. We will
now revisit them for support.

In the first setting, the identity of the nodes forming the result of
a query is not exposed in results. By consequence, the only possible
rewrite plans consist in accessing a view result and maybe navigat-
ing inside it (via query compensation). This setting was considered
in [17], and the rewriting problem was shown to be in PTIME for
XP. We study support in the absence of ids in Section 5.1. Our main
result here is that support reduces to expressibility, which allows us
to reuse the PTIME algorithm given in Section 4.

In the second setting, for which rewriting under an explicit set of
views was studied in [5], data sources expose persistent node ids.
This enables more complex rewrite plans, in which the intersection
of view results plays a crucial role. We revisit this setting, for the
support problem, in Section 6. As our general approach, we will
apply the same kind of reasoning that was used for expressibility.
We will group views into equivalence classes w.r.t. crucial tests
for support and we will manipulate classes (encoded as view de-
scriptors) instead of explicit views. This will enable us to avoid the
enumeration of a potentially large space of views and rewrite plans.

5.1 Support in the absence of ids
When persistent identifiers are not exposed, a rewrite plan con-

sist in accessing a view’s result and maybe navigating inside it, and
this navigation is called compensation. This is why expressibil-
ity and support in the absence of ids remain strongly related, as
support simply amounts to finding a candidate view v which, via
compensation, becomes equivalent with the input query.

Let us first introduce as notation for this operation the compensate
function, which performs the concatenation operation from [17], by
copying extra navigation from the query into the rewrite plan. For
a view v ∈ XP, an input query q, and a main branch rank k in
q, compensate(v, q, k) returns the query obtained by deleting the
first symbol from x= xpath(q(k)) and concatenating the rest to v.
For instance, the result of compensating v = a/b with x = b[c][d]/e
is the concatenation of a/b and [c][d]/e, i.e. a/b[c][d]/e.

We can reformulate the result from previous literature as follows:
THEOREM 5.1 ([17]). Given a set of explicit views V , a query

q can be answered by V if and only if there exists a view v and main
branch rank k in q such that compensate(v, q, k) ≡ q.

Going now to views encoded as QSS expansions, we reduce the
problem of support to expressibility, following the idea that support
amounts to expressibility by a certain “compensated” specification.

From a given QSS P , we will build a new QSS that generates,
besides P’s expansions, all their possible compensated versions
w.r.t. q. More precisely, given an input query q and a QSS P ,
let comp(P, q) denote the QSS obtained from P as follows:

For any rule yielding the output node, i.e., of the form
f(X)→ l(X)[c1(), . . . , cn(), .//d1(), . . . , .//dm()],

for each rank k in q, add a new rule, of the form (with a little
departure from the normalized QSS syntax):
f(X)→ compensate(l[c1(), . . . , cn(), .//d1(), . . . , .//dm()], q, k)

We can prove the following:
THEOREM 5.2. A query q is supported by a QSS P if and only

if it is expressed by the QSS comp(P, q).
EXAMPLE 5.1. An example of support in the absence of persis-

tent ids has already been given in Example 3.1: q2 can be rewritten
by compensating v1 with a temp predicate.

6. SUPPORT IN THE PRESENCE OF IDS
We consider in this section the problems of support in the pres-

ence of node ids, denoted in the following id-based support. First,
deciding the existence of a rewriting for an XP query under an ex-
plicit set of XP views becomes coNP-hard, as it was shown in [5].

THEOREM 6.1 ([5]). Testing if an XP query can be rewritten
using explicitly listed views, in the presence of ids, is coNP-hard.
As a corollary, it follows immediately that the same lower-bound
holds for id-based support.

COROLLARY 6.1. Id-based support for XP is coNP-hard.
Since our focus is on efficient algorithms for support, we next in-
vestigate the tightest restrictions for tractability. We consider the
fragment of extended skeletons (XPes), for which the rewriting prob-
lem was shown tractable in [5]. The restrictions imposed by the
XPes fragment on the input query were shown to be necessary for
tractability, as their relaxation leads to coNP-hardness. It is there-
fore natural to ask whether the support problem is also tractable for
input queries from this fragment. Note that one cannot do better,
i.e., obtain a decision procedure for queries outside this fragment,
since the problem of support subsumes the rewriting problem.

The remainder of this paper is thus dedicated to studying support
for extended skeletons, focusing on efficient (PTIME) solutions
that are sound in general (i.e., for any XP input query) and complete
under fairly general conditions, and this without restricting the lan-
guage of views (which remains XP). We show that id-based support
exhibits a complexity dichotomy: the sub-fragment of XPes repre-
senting queries that have at least one //-edge in the main branch,
denoted hereafter multi-token, continues to be in PTIME (Theorem
7.5), but the complementary sub-fragment that represents queries
with only /-edges in the main branch, denoted hereafter single-
token, interestingly, is NP-hard (see Theorem 8.1).

The fragment of multi-token queries is particularly useful in prac-
tice since often, for reasons such as conciseness or generality in the
presence of schema heterogeneity, one does not want to write in
a query all the navigation steps over a document (may skip some
steps by //). After defining the fragment of extended skeletons, we
consider in Section 7 support for multi-token queries and, in Sec-
tion 8, support for single-token queries.

Extended skeletons (XPes). Intuitively, this fragment limits the
use of //-edges in predicates, in a way which can be summarized as
follows: a token t of a pattern p will not have predicates that may
become redundant because of descendants of t and their respective
predicates in some interleaving p might be involved in.

Let us first introduce some additional terminology. By a //-sub-

predicate st we denote a predicate subtree whose root is connected
by a //-edge to a linear /-path l that comes from the main branch
node n to which st is associated (as in n[. . . [.//st]]). l is called
the incoming /-path of st and can be empty.

Extended skeletons are patterns having the following property:
for any main branch node n and //-subpredicate st of n, there is
no mapping (in either direction) between the code of the incoming
/-path of st and the one of the /-path following n in the main branch
(where the empty code is assumed to map in any code).

For instance, expressions such as a[b//c]/d//e or a[b//c//d]/e//d are
in XPes, while a[b//c]/b//d, a[b//c]//d, a[.//b]/c//d or a[.//b]//c are not.
XPes does not restrict in any way the usage of //-edges in the main
branch or the usage of predicates with /-edges only.

7. MULTI-TOKEN QUERIES
We consider now id-based support for XPes multi-token queries.

For presentation simplicity, we first limit the discussion to rewrite
plans that are intersections of views (no compensation before the
intersection step). General XP∩ plans, i.e., intersections of possibly
compensated views, are considered in Section 7.4.

As in the case of expressibility, we think of views as grouped into
equivalence classes w.r.t. to crucial tests for support. We manip-
ulate such classes, represented by view descriptors, instead of ex-
plicit views, avoiding the enumeration of a potentially large space
of views and plans. As a QSS constructs views by putting together
fragments, we construct view descriptors from fragment descrip-
tors, which represent equivalence classes for fragment expansions.

This section is organized as follows. In order to clarify the role
of view descriptors and the equivalence classes they stand for, we
first revisit in Section 7.1 the PTIME algorithm of [5] for deciding
if an XPes multi-token query q can be rewritten by an intersection
of explicit XP views V already known to contain q. That algo-
rithm was based on applying DAG-pattern rewrite steps towards a
tree pattern and then checking equivalence with q. We reformulate
it into an algorithm (testEquiv) that applies individual tests on the
view definitions instead. Then, in Section 7.2, we introduce equiv-
alence classes for views w.r.t. the tests of testEquiv, and view de-
scriptors as a means to represent such classes. We reformulate the
testEquiv algorithm into a new algorithm, testEquivDesc, that runs
on view descriptors instead of explicit view definitions. Finally, in
Section 7.3 we give a PTIME sound and complete algorithm for
computing descriptors for the expansions of a QSS.

7.1 Rewriting with an explicit set of views
Let the input XPes multi-token query q be of the form q =

ft//m//lt, where ft denotes the first token, lt denotes the last
token and m denotes the rest (m may be empty).

Let V = {v1, . . . , vn} denote a set of XP views such that q v vi

for each vi. Let each view vi be of the form vi = fti//mi//lti.
For an XP query v, by its extended skeleton, we denote the XPes

query obtained by pruning out all the //-subpredicates violating the
XPes condition. We can prove the following auxiliary lemma:

LEMMA 7.1. An XPes query is equivalent to an intersection of
views iff equivalent to the intersection of their extended skeletons.
By Lemma 7.1, w.l.o.g. all views are assumed hereafter from XPes.

Notation. Let ftV denote the query obtained by “combining”
the first tokens ft1, . . . , ftn as follows: start by coalescing the
roots, then continue coalescing top-down any pair of main branch
nodes that have the same parent and label. This process yields a tree
because each first token fti maps in the first token of q, ft, hence
each MB(fti) is a prefix of MB(ft). Let ltV denote the query
obtained by “combining” lt1, . . . , ltn similarly: start by coalescing
the output nodes, then continue by coalescing bottom-up any pair
of main branch nodes that have a common child and the same label.

EXAMPLE 7.1. For instance, for two views V = {v′, v′′},
v′ = doc(T)/vacation/trip[guide]//tour/museum,

v′′ = doc(T)/vacation[.//walk]//museum[gallery],
the result of combining their first tokens, respectively last tokens is

ftV = doc(T)/vacation[.//walk]/trip[guide],

ltV = tour/museum[gallery].
Given MB(ft), MB(lt), if there exists a minimal (non-empty) pre-
fix of MB(lt) that is isomorphic with a suffix of MB(ft), let MB(lt)′

denote the pattern obtained from MB(lt) by cutting out this prefix.
Then, let lq denote the linear pattern MB(ft)/MB(lt)′. If lq is un-
defined by the above, by convention it is the empty pattern.

EXAMPLE 7.2. For instance, for the query
q = doc(T)/vacation[.//walk]/tour//tour/museum,

lq is well-defined, as lq = doc(T)/vacation/tour/museum.
Given MB(ft) and MB(m), if there exists a minimal (non-empty)
suffix of MB(ft) that is isomorphic with a prefix of MB(m), let
MB(ft)m denote the pattern obtained from MB(ft) by cutting out
this suffix. If MB(ft)m is undefined by the above, by convention it
is the empty pattern. Similarly, given MB(lt) and MB(m), if there
exists a minimal (non-empty) prefix of MB(lt) that is isomorphic
with a suffix of MB(m), let MB(lt)m denote the pattern obtained
from MB(lt) by cutting out this prefix. If MB(lt)m is undefined by
the above, by convention it is the empty pattern.
We are now ready to present our reformulation of the PTIME algo-
rithm of [5], which will test that ∩V v q. By Lemma 2.2, q must
contain each possible interleaving i of the set V or, in other words,
for each i ∈ interleave(V) the following should hold:
• the first token of q can be mapped in the first token of i s.t.

the image of ROOT(q) is ROOT(i),
• the last token of q can be mapped in the last token of i s.t.

the image of OUT(q) is OUT(i),
• the images of these two tokens in i are disjoint,
• the intermediary part m (if non-empty) of q can be mapped

somewhere between these two images in i.
Algorithm 1 testEquiv(V, q)
1: let each vi = fti//mi//lti, let q = ft//m//lt
2: compute the patterns ftV , ltV , lq , MB(ft)m and MB(lt)m

3: if ftV ≡ ft and ltV ≡ lt then
4: if m is empty then for each vi ∈ V
5: if MB(vi) does not map into lq then output true
6: else (m non-empty) for each vj ∈ V
7: if vj can be seen as prefixj//m

′//suffixj s.t.
8: m′ ≡ m
9: prefixj root-maps into ft, suffixj output-maps into lt

10: MB(prefixj) does not root-map into MB(ft)m

11: MB(suffixj) does not output-map into MB(lt)m

12: then output true

THEOREM 7.1. For a multi-token XP query q and a set of XP
views V , testEquiv is a sound PTIME procedure for testing q ≡ ∩V .

For input queries from XPes we can also prove completeness:
THEOREM 7.2. For an XPes multi-token query q and a set of

XP views V , testEquiv is complete for testing q ≡ ∩V .

7.2 View descriptors
We detail now how one can perform the tests of algorithm testEquiv

even when abstracting away from the view definitions. The key
idea is that one does not need the complete definitions but only
the details used in these tests. With respect to these details, views
can be seen as grouped into equivalence classes and views from
the same class will be equally useful in the execution of the al-
gorithm. This idea will be exploited by our view descriptors. We

then reformulate testEquiv in terms of view descriptors in algorithm
testEquivDesc. More precisely, assuming we are dealing with ex-
pansions of a QSS P with start fragment name S,

For line 3 of testEquiv. For the part ftV ≡ ft: a first-token de-
scriptor will be a tuple ft(S,p), where p denotes any pattern that
can be built from a prefix of q’s first token ft by removing all its
predicates, except eventually for one. Such a descriptor indicates
that there exists an expansion v s.t. q v v and v’s first token is of
the form p, plus eventually other predicates (ignored in the descrip-
tor). These descriptors represent partitions (equivalence classes) of
the space of views containing q w.r.t. their first tokens and the pred-
icates on them. Each view belongs to at least one such class, but
may belong to several of them (for different choices of predicates).

For the part ltV ≡ lt: a last-token descriptor is a tuple lt(S,p),
where p denotes any pattern that can be built from a suffix of q’s
last token lt by removing all its predicates, except eventually for
one. Such a descriptor says that there is an expansion v s.t. q v v
and v’s last token is of the form p, plus eventually other predicates.

It is easy to see that the ft and lt view descriptors allow us to
compute the patterns ftV and ltV , provided they verify ftV ≡ ft
and ltV ≡ lt, without requiring the actual first and last tokens. The
domain of these descriptors is quadratic in the size of q.

For line 5 of testEquiv. An l-descriptor is a tuple l(S), indicating
that there exists an expansion v verifying q v v and lq 6v MB(v).
(This type of descriptor is an alias for the condition of line 5, denot-
ing a partition of the space of views in two complementary classes.)

For lines 7-11 of testEquiv. An m-descriptor is a tuple m(S),
indicating that there exists an expansion v verifying q v v and all
the conditions of lines 7-11.
We now reformulate testEquiv into an algorithm that runs on a set
of view descriptorsD, instead of the explicit views V to which they
correspond. Unsurprisingly, the new algorithm follows closely the
steps of testEquiv, since descriptors are tailored to its various tests.

Algorithm 2 testEquivDesc(D, q)
1: from all descriptors ft(S,p) ∈ D compute the pattern ftV
2: from all descriptors lt(S,p) ∈ D compute the pattern ltV
3: if ltV ≡ ft and ltV ≡ ft then
4: if m is empty then
5: if there exists a descriptor l(S) ∈ D then output true
6: else if there exists a descriptor m(S) ∈ D then output true

THEOREM 7.3. For an XP query q, a finite set of XP views V
and their corresponding descriptorsD, testEquiv(q,V) outputs true
if and only if testEquivDesc(q, D) does so.

EXAMPLE 7.3. For the query q1 in Example 1.1, ft = doc(T),
m = vacation//trip/trip[guide], lt = tour[schedule//walk]/museum.

For the QSS P from Example 3.1 and its two expansions v1
and v2, v1 can be represented by the descriptors ft(S, doc(T)),
lt(S,museum), m(S) too since v1 has the form pref1//m//suff1,
with pref1 = doc(T) and suff1 = museum. Similarly, v2 is rep-
resented by ft(S, doc(T)) and lt(S, tour[schedule//walk]/museum).

Running on these descriptors, testEquivDesc will confirm that
there exists an equivalent rewriting for q1 using {v1, v2}.

7.3 View descriptors from a QSS
We present in this section a bottom-up algorithm (findDescSupp)

that runs on a QSS P and a multi-token query q, computing the
view descriptors (w.r.t. q) for the expansions of P . Our algorithm
is sound and complete, running in polynomial time. Via Theo-
rems 7.3 and 7.1, findDescSupp delivers a sound PTIME algorithm
for support when the input queries are multi-token from XP. More-
over, via Theorems 7.3 and 7.2, it delivers a PTIME decision proce-
dure for support when the input queries are multi-token from XPes.

We will describe findDescSupp by separate subroutines, one for
each of the four kinds of view descriptors (first-token descriptors in
Section 7.3.1, last-token descriptors in Section 7.3.2, l-descriptors
in Section 7.3.3 and m-descriptors in Section 7.3.4).

Since a QSS constructs views by putting together fragments,
we construct our view descriptors via fragment descriptors, which
represent equivalence classes for fragment expansions. Intuitively,
fragment descriptors bookkeep in the bottom-up procedure certain
partial details, on the expansions of fragment names, details that
allow us to test incrementally the various conditions of testEquiv.

To better clarify our choices for fragment descriptors, let us first
detail how the tests of testEquiv can be done in incremental manner.

Mapping and equivalence tests are naturally done bottom-up,
one node at time, and this translates easily into procedures that run
on the QSS and rely on fragment descriptors. We already presented
in Section 4 how one can test in this way the existence of contain-
ment or equivalence with q or parts thereof. We will handle the
tests of lines 3, 8 and 9 in testEquiv similarly, by descriptors which
record mapping or equivalence details.

For line 5, the non-existence of a containment mapping between
linear paths needs a slightly different approach. One can test incre-
mentally if a linear path l1 is contained in a linear path l2 as follows:
• test if the last token of l2 maps in the last token of l1, such

that OUT(l1) is the image of OUT(l2). Let k denote the start
rank (the upmost node) of this mapping image.
• bottom-up, for each intermediary token t of l2, map t in the

lowest possible1 available (i.e. above k) part of l1. If no
such mapping exists, we can conclude the non-existence of a
containment mapping from l2 in l1. At each step, bookkeep
as k the start rank of that image of t in l1.
• finally, if the previous set of steps did not yield a negative

answer already, a containment mapping of l2 in l1 does not
exist if and only if the first token of l2 cannot be mapped in
l1 s.t. (i) ROOT(l1) is the image of ROOT(l2), and (ii) the
image of this first token of l2 is above the current rank k.

A similar incremental approach, advancing one token at a time, can
be used for the tests in lines 10 and 11, as we are dealing again with
linear patterns. More precisely, a bottom-up approach as above can
be used in the case of MB(suffixj) and, symmetrically, a top-down
one can be used in the case of MB(prefixj).

Note that the approach above advances one token at a time, and
not one node at a time (which would have fitted nicely with how
views are built in a QSS). This is because we need to check that
all possible partial mappings fail sooner or later to go through to a
full containment mapping (for line 5), root-mapping (for line 10),
respectively output-mapping (for line 11). And the only way to
ensure that no mapping opportunity is prematurely discarded is to
settle on a mapping image in a descriptor, the lowest possible one,
only when a token is complete (i.e., its incoming edge is //).
We are now ready to detail how view descriptors are computed in
the algorithm findDescSupp. We start by assuming that all equiv or
map descriptors are pre-computed for the boolean fragment names
(as described in Section 4). In the same style, we compute con-
tainment and equivalence descriptors for unary fragment names
(i.e. those with an output mark). More precisely, a descriptor
contain(f, n), for n ∈ MBN(q), (resp. equiv(f, n)) denotes that
some expansion vf contains (resp. is equivalent to) the suffix of q
rooted at the main branch node n. Other types of fragment descrip-
tors will be introduced next. For space reasons, examples illustrat-
ing the step-by-step computation of descriptors are given in [7].

1As we handle one token at a time, choosing the lowest available
mapping image preserves all opportunities to find containment.

7.3.1 Computing first-token descriptors
For this part, we will use prefix descriptors for fragment names:
DEFINITION 7.1. Syntax: For a unary fragment name f , a pre-

fix descriptor is a tuple pref(f, p, k), for k being a rank in the range
1 to |MB(ft)| and p denoting any pattern that can be obtained from
ft by keeping (a) a substring of the main branch, starting from rank
k, and (b) eventually, one predicate on that substring.

Semantics: There exists an expansion vf s.t. (a) vf has a con-
tainment mapping in the subtree of q rooted at the ft node of rank
k, and (b) vf has a first token which is of the form p plus additional
predicates, if any (they are ignored in the descriptor).

Step 1 of findDescSupp(q, P). Iterate the following steps:
1. For f(X)→ l[c1(), . . . cn(), .//d1(), . . . , .//dm()]//g(X),

add a prefix descriptor pref(f , l,k) for each rank k, 1 ≤
k ≤ |MB(ft)|, s.t. nodeq(k) has label l, for which we can
infer that vf contains the pattern q(k), by the following tests:
• for each fragment name ci there exists a descriptor
map(ci, n), for n being a /-child of nodeq(k),
• for each fragment name dj there exists a descriptor
map(dj , n), for n being a descendant of nodeq(k)
• there exists a containment descriptor contain(g, n) for
n being any main branch node of rank k′ > k in q.

Moreover, if for a /-predicate (resp. //-predicate) P on
nodeq(k) we have a descriptor equiv(ci, rootP) (resp.
equiv(dj , rootP)), add the descriptor pref(f , l[P],k).

2. For f(X)→ l[c1(), . . . cn(), .//d1(), . . . , .//dm()]/g(X),
given a prefix descriptor pref(g, p′, k′), add a prefix de-
scriptor pref(f , l/p′,k), for k = k′ − 1, if nodeq(k) has
label l and we can infer that vf contains q(k), as follows:
• for each fragment name ci there exists a descriptor
map(ci, n), for n being a /-child of nodeq(k),
• for each fragment name dj there exists a descriptor
map(dj , n), for n being a descendant of nodeq(k)

Moreover, if for a /-predicate (resp. //-predicate) P on
nodeq(k) we have a descriptor equiv(ci, rootP) (resp.
equiv(dj , rootP)), add also pref(f , l[P]/MB(p′),k).

3. Whenever a descriptor pref(f,p,1) is obtained, for f = S, add
ft(S,p) to the set of view descriptors.

7.3.2 Computing last-token descriptors
We use for this part two kinds of fragment descriptors: suffix

descriptors and full-suffix descriptors.
DEFINITION 7.2. Syntax: For a unary fragment name f , a suf-

fix descriptor is a tuple suff(f, p), for p denoting any pattern that
can be obtained from lt by keeping (a) a suffix of its main branch,
and (b) eventually, one predicate on that suffix.

Semantics: This descriptor says that (a) vf is a single-token
query, of the form p plus maybe other predicates (ignored by the
descriptor), and (b) vf contains the subtree of lt rooted at the main
branch node of rank |MB(lt)| − |MB(p)|+ 1.

DEFINITION 7.3. Syntax: For a unary fragment name f , a full-
suffix descriptor is a tuple fsuff(f, p, k), for k denoting a rank in q,
and p being a pattern as defined in Definition 7.2 above.

Semantics: There exists an expansion vf s.t. (a) vf has a last
token of the form p plus other predicates (if any), and (b) vf maps
in the subtree of q rooted at the main branch node of rank k.

Step 2 of findDescSupp(q, P):
We compute suffix descriptors similarly to the prefix ones. From

them, full-suffix descriptors are then computed bottom-up, by sim-
ple containment mapping checks. If a descriptor fsuff(f, p, 1) is
obtained, for f = S, we add lt(S,p) to the set of view descrip-
tors. (For the explicit steps we refer the reader to [7].)

7.3.3 Computing l-descriptors
We have seen in Section 7.3 an incremental procedure that tests

the non-existence of a containment mapping for linear patterns bottom-
up, one token at a time. To run a similar test directly on the QSS
(whose expansions are revealed one node at a time), we need ad-
ditional bookkeeping, allowing us to chose mapping images one
token at a time. For this, we record at each step in the bottom-
up process the following: (i) the current first token of vf , (ii) the
lowest possible mapping image for the rest of vf (except its first to-
ken). This allows us to settle on the lowest possible mapping (in a
descriptor) only when the token is complete (we have its incoming
edge and it is a //-edge). To this end, we use partial l-descriptors.

DEFINITION 7.4. Syntax: For a unary fragment name f , a par-
tial l-descriptor is a tuple pl[f, k1, (k2, p)], where k1 is a rank in q,
k2 is a rank in lq and p is any substring of lq .

Semantics: There exists an expansion vf s.t. (a) vf contains the
subtree of q rooted at the main branch node of rank k1, (b) the main
branch of the first token of vf is p, and (c) k2 is the start (upmost
rank) of the lowest possible output-mapping image of the rest of the
main branch of vf (i.e., except the first token, represented by p) into
lq . By convention, this rank is |lq|+ 1 when vf has only one token
(the one described by p) and is 0 when there is no such mapping.

Step 3 of findDescSupp(q, P). Iterate the following steps:
1. For rules f(X)→ l(X)[c1(), . . . cn(), .//d1(), . . . , .//dm()],

if we can infer that vf contains the subtree of q rooted at
OUT(q), add a descriptor pl[f , |MB(q)|, (|lq|+ 1, l)]

2. For f(X)→ l[. . .]/g(X), given a descriptor pl[g, k′1, (k′2, p′)],
if we can infer that vf contains the pattern q(k′1 − 1):
• if f is not the start fragment name, add the descriptor

pl[f ,k′1 − 1, (k′2, l/p
′)].

• otherwise, if there is no mapping of l/p′ into lq whose
image starts at ROOT(lq) and ends above k′2, add the
descriptor l(S) to the set of view descriptors.

3. For f(X) → l[. . .]//g(X), descriptor pl[g, k′1, (k′2, p′)],
for each rank k1, 1 ≤ k1 < k′1, s.t. we can infer that
• if f is not the start fragment name, find the lowest rank
k2, s.t. p′ has a mapping into lq whose image starts at
k2 and ends above k′2, where if k′2 = |lq| + 1 above
means at k′2 − 1; if no such value exists, set k2 to 0.
Output the descriptor pl[f ,k1, (k2, l)].
• otherwise, if there is no mapping of l//p′ into lq whose

image starts at ROOT(lq) and ends above k′2, add the
descriptor l(S) to the set of view descriptors.

7.3.4 Computing m-descriptors
For this part, we need to check that some view vj can be seen as

being of the form prefixj//m
′//suffixj , s. t. m′ ≡ m and

• prefixj root-maps into ft but MB(prefixj) cannot root-map
into MB(ft)m,
• suffixj output-maps into lt, but MB(suffixj) cannot output-

map into MB(lt)m.
Each of these aspects of an expansion is captured by a different

type of fragment descriptor. We will output a view descriptor m(S)
when a rule f(X) → l[. . .]//g(X) is available and when (via
fragment descriptors) we have that:
• g has an expansion vg that gives us the part m′//suffixj ,
• there exist views generated via that rule and vg , s.t. the part

above vg (in other words, the view obtained by expanding g
in the empty pattern) has the properties for prefixj .

We can use separate subroutines for each of these two items, and
then the overall step above will combine their individual results.

For the suffixj part, we use below m-descriptors:

DEFINITION 7.5. Syntax: For a unary fragment name f , a be-
low m-descriptors is a tuple bm[f, k1, (k2, p)], where k1 and k2

denote ranks in q, and p denotes any substring of MB(q).
Semantics: There exists an expansion vf s.t. (a) vf contains the

subtree of ft rooted at the node of rank k1, (b) p is the main branch
of the first token of vf , and (c) k2 is the start of the lowest possible
output-mapping image of the main branch of the rest of vf (besides
p) into MB(lt)m; by convention, k2 is |MB(q)| + 1 when vf has
only one token and is 0 when there is no such mapping.

Then, for the m part, we use partial m-descriptors:
DEFINITION 7.6. Syntax: For a unary fragment name f , a par-

tial m-descriptor is a tuple pm(f, k), where k is a number in the
range 1 to |MB(m)|, indicating a suffix of m.

Semantics: This descriptor says that (a) vf is of the form
m′//suffixj , s.t. m′ is equivalent with m’s suffix having k main
branch nodes, and (b) suffixj has the properties described above.

For the prefixj part, we use above m-descriptors:
DEFINITION 7.7. Syntax: For a unary fragment name f , an

above m-descriptor is a tuple am[f, k1, (k2, p)], where k1, k2 de-
note ranks in q and p is any substring of MB(q).

Semantics when p is empty (denoted hereafter ‘–’): there exists
an expansion v of the QSS s.t. (a) v is of the form rest//vf , for
vf being an expansion of f (b) rest root-maps into ft such that its
image ends at the rank k1, and (c) the end (bottommost node) of the
highest possible root-mapping image of MB(rest) into MB(ft)m

is k2; if no such mapping exists, by convention k2 is |MB(ft)m|+1.
Semantics when p 6= ‘–’: there exists an expansion v of the QSS

s.t. (a) v is of the form rest//p′/vf , for p = MB(p′), (b) rest//p′

root-maps into ft such that the image of p′ ends at the rank k1, and
(c) the end (bottommost node) of the highest possible root-mapping
image of MB(rest) into MB(ft)m is k2; by convention, if no such
mapping exists, k2 is |MB(ft)m|+ 1; when rest is empty k2 is 0.

Given a rule f(X) → l[. . .]/g(X) or f(X) → l[. . .]//g(X),
we will use an am-descriptor for f to infer one for g.

Step 4 of findDescSupp(q, P).
Below m-descriptors are computed by a similar approach (one

token at time) as the one used for partial l-descriptors. The above
m-descriptors are obtained similarly, but in top-down manner. Start-
ing from below-m descriptors, the partial m-descriptors are com-
puted bottom-up, by simple equivalence checks.

If for some fragment name g we computed both an above m-
descriptor am[g, k1, (|MB(ft)m|+1,−)] and a partial m-descriptor
pm(g, |MB(m)|), we can add a descriptor m(S) to the set of view
descriptors. (For more details we refer the reader to [7].)

We can now prove the following:

THEOREM 7.4. Given a QSS P and a multi-token query q, al-
gorithm findDescSupp is sound and complete for computing the
descriptors for P’s expansions. findDescSupp runs in polynomial
time in the size of the query and of the QSS.

By Theorems 7.4, 7.3 and 7.1, for a multi-token XP query q and
QSS P , given the descriptor set D := findDescSupp(q,P), q is
supported by P if testEquivDesc(q, D) outputs true.

Moreover, by Theorem 7.2, if q is in XPes, it is supported by P
(considering for now only rewrite plans that intersect views) if and
only if testEquivDesc(q, D) outputs true. We generalize these two
observations to support in XP∩ in the next section.

7.4 Support with compensated views
We consider in this section general XP∩ rewrite plans for sup-

port that, before performing the intersection step, might compen-
sate (some of) the views.

We show that support in this new setting can be reduced to sup-
port by rewrite plans which only intersect expansions of a QSS.
This allows us to reuse the PTIME algorithms given in Section 7
(testEquivDesc and findDescSupp) and to find strictly more rewrit-
ings, namely those that would not be feasible without compensa-
tion. Thus we obtain a sound algorithm for support on XP multi-
token queries in the rewrite language XP∩. This algorithm becomes
complete when the input query is from XPes.

Our reduction relies on the same QSS transformation, comp(P, q),
used in Section 5.1, which builds expansions with compensation.

EXAMPLE 7.4. Suppose that the QSS of the source in Exam-
ple 3.1 is modified to return the guided trips themselves instead of
the museums of those trips, by changing the third rule into ruleR3:

(R3) : f1(X)→ trip(X)[guide].

and obtaining a new QSS P2. Then, one of the expansions of P2 is:
v3: doc(T)//vacation//trip/trip[guide]

A query plan that rewrites q2 using compensated views is
doc(v3)/v3/trip/museum ∩ doc(v2)/v2/museum.

We can infer this rewriting by compensating R3 with a navigation
to a museum child, which leads to a QSS identical to P .

We can prove the following:
THEOREM 7.5. Given a QSS P and a multi-token XP query q,

let D := findDescSupp(q, comp(P, q)).
1. Algorithm testEquivDesc(q,D) is sound for support in XP∩, i.e.,
q is supported by P in XP∩ if testEquivDesc(q,D) outputs true.

2. testEquivDesc(q,D) is also complete if q belongs to XPes, i.e. q
is supported by P in XP∩ iff testEquivDesc(q,D) outputs true.

Remark. In a setting in which one needs to also find a witness
for support, this can be done by keeping at each step beside a des-
criptor one representative, an arbitrarily chosen view or view frag-
ment from that equivalence class. More details can be found in [7].

8. SINGLE-TOKEN QUERIES
We consider in this section the remaining sub-fragment of XPes,

namely single-token queries. We show that id-based support be-
comes NP-hard (Theorem 8.1). Contrast this with both id-support
for queries that have at least one //-edge in the main branch, and the
rewriting problem for single-token XPes queries under an explicit
set of views, for which PTIME decision procedures exist.

THEOREM 8.1. For an XPes single-token query q and a QSS
P , deciding if q is supported by P in XP∩ is NP-hard.
The surprising dichotomy between support for single-token and
multi-token extended skeletons is rooted in their differences on the
respective tests for equivalence with an intersection of views.

First, for the single-token case, it is easy to see that support can
hold only if some view’s main branch is equivalent to q’s /-edges
only main branch. Otherwise, one could easily exhibit interleav-
ings that do have //-edges in their main branch, hence cannot be
contained in q. With this, building interleavings amounts basically
to deciding where to collapse main branch nodes from the various
views on a linear path with /-edges only. Intuitively, it is now less
a matter of how to order main branch nodes of the views, and more
of choosing for each node a coalescing option among the few avail-
able. By consequence, a candidate interleaving i (i.e., one that is
equivalent to q and contains all other interleavings) might combine
(put under the same main branch node) predicates coming from dif-
ferent views at all levels of the main branch. When q has several
tokens, this is true only for the candidate’s first and last tokens (built
by combining in the only way possible the first and last tokens of
the views), while the section in between has to be entirely present
(isomorphic modulo minimization) in some view.

The proof of Theorem 8.1 is given in [7]. We also give there
an algorithm that decides support for XPes single-token queries in
exponential-time, i.e., the best we can hope for given the NP lower
bound. Finally, we give a sound PTIME algorithm for this problem.
For space reasons, and because the multiple-token queries are the
more widely used class, further details on single-token queries are
relegated to [7].

9. QSS WITH PARAMETERS
We consider now an extension to QSS with input parameters for

text values (denoted QSS#) and correspondingly, an extension of
XP to text conditions. We modify the grammar of XP as follows:
pred ::= ε | [rpath] | [rpath = C] | [.//rpath] | [.//rpath = C] | pred pred
where C terminals stand for text constants. Every node in an XML
tree t is now assumed to have a text value text(t), possibly empty.
The duality with tree patterns is maintained by associating to ev-
ery predicate node n in a pattern p a test of equality test(n), that
is either the empty word or a constant C. The notions of embed-
ding, mapping and containment can be adapted in straightforward
manner to take into account text equality conditions.

The definition of QSS# can be obtain from Definition 3.1 by
adding the following: “a leaf element nodes may be additionally
labeled with a parameterized equality predicate of the form = #i,
where #i is a parameter and i is an integer”.

EXAMPLE 9.1. Let us add to P from Example 3.1 the rule

f1(X)→ trip[maxprice = #1]//museum(X)

Using this rule, we can generate the view v4 that retrieves muse-
ums on trips for which the maximum price is a parameter #1:

v4: doc(T)//vacation//trip/trip[maxprice=#1]//museum

A user query q3 that asks for museums with temporary exhibi-
tions on secondary trips that cost at most $1000

q3: doc(T)//vacation//trip/trip[maxprice=1000]//museum[temp]
is then supported by the QSS, because it can be rewritten as

doc(v4)/v4/museum[temp](1000)

where parameter #1 is bound to the value in parenthesis (1000).

We can show that all the tractability and hardness results presented
in the previous sections remain valid when text conditions and pa-
rameters are added to the setting. Only minor adjustments are nec-
essary in order to reuse the same PTIME algorithms for expressibil-
ity and support (modulo the new XP syntax and the adapted defi-
nitions of mapping and containment). Given a query q, the input
QSS# will be transformed into a QSS P ′ by replacing each = #i
parameter occurrence by an explicit text equality condition = C,
for each constant C appearing in q. Further details are omitted.

10. TRACTABILITY BOUNDARIES
We consider now extensions to the rewrite language and to the

query set specifications, asking whether the efficient algorithms of
the previous sections can be adapted to deal with them.

Compensated rewriting plans. We consider in this section more
complex rewrite plans for support, beyond XP∩, taking the com-
pensation idea one step further. More precisely, we consider the
rewrite language XP∩,c which, after the intersection step, might
compensate again for equivalence with the input query. We capture
XP∩,c by adding the following rules to the grammar of XP:

ipath ::= cpath | (cpath)| (cpath)/rpath | (cpath)//rpath
cpath ::= apath | apath ∩ cpath

Revisiting Definition 2.6, a rewriting r in the language XP∩,c is
now of the form I = (

⋂
i,j uij), I/rpath or I//rpath, with each

uij being of the form doc(vj)/vj/pi or doc(vj)/vj//pi.

EXAMPLE 10.1. Consider the query q4 below that extracts the
temporary exhibitions from the data about museums visited on the
same tour trips as in query q1:
q4: doc(T)//vacation//trip/trip[guide]//tour[schedule//walk]/museum/temp

There is no rewriting of q4 using only an intersection of views
generated by P , since there is no mention of temporary exhibitions
in P . However, if we allow the intersection to be compensated, q4
can be rewritten as the intersection of v1 and v2, followed by a
one-step navigation:

(doc(v1)/v1/museum ∩ doc(v2)/v2/museum)/temp.

We prove that support in XP∩,c becomes NP-hard even for multi-
token XPes queries:

THEOREM 10.1. For a multi-token XPes query q and a QSS P ,
deciding if q is supported by P in XP∩,c is NP-hard.
The intuition behind this result is that an XP∩,c rewriting r for a
query q amounts to finding a rewriting r′ in the simpler language
XP∩ for a prefix of q and then compensating r′ with the remainder
of q. Even if q were multi-token, r′ may correspond to a prefix of
q that is in fact single-token, hence the complexity jump.

The proof of Theorem 10.1 is similar to the one of Theorem 8.1.
In [7] we also show that support in XP∩,c can be solved in exponen-
tial-time for input queries from XPes, which is optimal for practical
purposes. For space reasons, further details are omitted.

QSS with forest RHS. We consider now an extension to the
query set specifications, which allows forests of tree fragments on
the RHS, i.e., expansion rules of the form f → tf1, . . . , tfk.

We call the set specifications in this language QSS+. With this
added feature, we show that expressibility and support become NP-
hard, even for very restricted tree patterns, without //-edges.

THEOREM 10.2. Expressibility is NP-hard forQSS+, even for
XP queries and views without //-edges. Support is NP-hard for
QSS+, for XP queries and views without //-edges in predicates.

We refer the reader to [7] for further details. There, we also show
that expressibility can be solved in exponential time when views are
encoded as a QSS+.

11. RELATED WORK
XPath rewriting using only one view [17, 10] or a finite, explic-

itly given set of views [3, 2, 15, 5] was the object of several studies.
To the best of our knowledge, we are the first to address the prob-
lem of rewriting XPath queries using a compactly specified set of
views. The specifications are written in the Query Set Specifica-
tion(QSS) language [14], which was also the basis for building a
QBE-like XPath interface in a software system for managing bio-
logical data [12]. The QSS language presented in [14] has a differ-
ent syntax from the one we adopted here and in [7] we show how
that syntax can be compiled into ours.

Expressibility and support were studied in the past for relational
queries and sets of relational views specified by Datalog programs
[9, 16, 6]. The work on relational views [6] shares with our paper
the idea of grouping the views in a finite number of equivalence
classes w.r.t their behavior in a rewriting algorithm. Similar is also
the strategy of computing these classes (represented by descriptors)
bottom-up from the specification of the sets of views.

However, relational and XPath queries exhibit very different be-
haviors. For instance, support and expressibility were shown to be
inter-reducible in PTIME for relational queries and views [6], and
thus share the same complexity (EXPTIME-complete). This is no
longer the case for XP queries in the presence of node Ids: express-
ibility is in PTIME (see Section 4), while support is coNP-hard.
The PTIME results we obtain make crucial use of the tree shape of
XPath queries and require problem-specific restrictions that do not
follow from the relational work.

For implementing security policies, a complementary approach
to specifying sets of views consists in annotating the DTD of the
source with access annotations that can be used to allow/disallow
access to parts of the data [8]. The system infers one view over the
input document that conforms to the annotations and publishes the
DTD of this view. Clients are allowed to ask any queries over the
view DTD. This architecture is designed for security scenarios and
does not extend to querying sources with limited capabilities.

12. CONCLUSION
We study the problems of expressibility and support of an XPath

query by XPath views generated as expansions of a Query Set Spec-
ification. Since we focus on efficiency, we consider only PTIME
algorithms, ensuring that they are sound in general and identifying
the most permissive restrictions under which they become com-
plete. We find that for XPaths corresponding to the fragment hav-
ing child and descendant navigation and no wildcard, expressibil-
ity can be solved in PTIME. For support, the complexity analysis is
more refined, as it depends on the rewriting language. In the case in
which the XML nodes in the result of the views lose their original
identity, we are able to give a PTIME algorithm for support. If the
source exposes persistent node ids, which enable rewritings that in-
tersect several views, we show that the problem becomes NP-hard
unless fairly permissive restrictions on the user query are placed.
We present a sound PTIME algorithm that also becomes complete
under the restrictions.

13. REFERENCES
[1] S. Amer-Yahia, S. Cho, L. Lakshmanan, and D. Srivastava. Tree

pattern query minimization. VLDB J., 11(4), 2002.
[2] A. Arion, V. Benzaken, I. Manolescu, and Y. Papakonstantinou.

Structured materialized views for XML queries. In VLDB, 2007.
[3] A. Balmin, F. Özcan, K. S. Beyer, R. Cochrane, and H. Pirahesh. A

framework for using materialized XPath views in XML query
processing. In VLDB, 2004.

[4] M. Benedikt, W. Fan, and G. Kuper. Structural properties of XPath
fragments. Theor. Comput. Sci., 336(1), 2005.

[5] B. Cautis, A. Deutsch, and N. Onose. XPath rewriting using multiple
views: Achieving completeness and efficiency. In WebDB, 2008.

[6] B. Cautis, A. Deutsch, and N. Onose. Querying data sources that
export infinite sets of views. In ICDT, 2009.

[7] B. Cautis, A. Deutsch, N. Onose, and V. Vassalos. Efficient rewriting
of XPath queries using Query Set Specifications, 2009. TR
CS2009-0941, UCSD. Available from
http://db.ucsd.edu/index.jsp?pageStr=publications.

[8] W. Fan, C. Y. Chan, and M. N. Garofalakis. Secure XML querying
with security views. In SIGMOD Conference, pages 587–598, 2004.

[9] A. Y. Levy, A. Rajaraman, and J. D. Ullman. Answering queries
using limited external query processors. JCSS, 58(1), 1999.

[10] B. Mandhani and D. Suciu. Query caching and view selection for
XML databases. In VLDB, 2005.

[11] G. Miklau and D. Suciu. Containment and equivalence for a fragment
of XPath. J. ACM, 51(1), 2004.

[12] S. Newman and Z. M. Özsoyoglu. A tree-structured query interface
for querying semi-structured data. In SSDBM, pages 127–130, 2004.

[13] Y. Papakonstantinou, A. Gupta, H. Garcia-Molina, and J. D. Ullman.
A query translation scheme for rapid implementation of wrappers. In
DOOD, 1995.

[14] M. Petropoulos, A. Deutsch, and Y. Papakonstantinou. The Query
Set Specification Language (QSSL). In WebDB, pages 99–104, 2003.

[15] N. Tang, J. Yu, T. Özsu, B. Choi, and K. Wong. Multiple materialized
view selection for XPath query rewriting. In ICDE, 2008.

[16] V. Vassalos and Y. Papakonstantinou. Expressive capabilities
description languages and query rewriting algorithms. J. Log.
Program., 43(1), 2000.

[17] W. Xu and Z. M. Özsoyoglu. Rewriting XPath queries using
materialized views. In VLDB, 2005.

