
Preventing Bad Plans by Bounding the
Impact of Cardinality Estimation Errors

Guido Moerkotte
University of Mannheim
Mannheim, Germany

moerkotte@informatik.uni-
mannheim.de

Thomas Neumann
Max Planck Institute for

Informatics
Saarbrücken, Germany

neumann@mpi-
inf.mpg.de

Gabriele Steidl
University of Mannheim
Mannheim, Germany

steidl@math.uni-
mannheim.de

ABSTRACT
Query optimizers rely on accurate estimations of the sizes
of intermediate results. Wrong size estimations can lead to
overly expensive execution plans. We first define the q-error
to measure deviations of size estimates from actual sizes.
The q-error enables the derivation of two important results:
(1) We provide bounds such that if the q-error is smaller
than this bound, the query optimizer constructs an optimal
plan. (2) If the q-error is bounded by a number q, we show
that the cost of the produced plan is at most a factor of q4

worse than the optimal plan. Motivated by these findings,
we next show how to find the best approximation under the
q-error. These techniques can then be used to build synopsis
for size estimates. Finally, we give some experimental results
where we apply the developed techniques.

1. INTRODUCTION
Query optimization relies on accurate cost calculations;

inaccurate cost calculations may lead to (very) bad plans.
Cost calculations require two kinds of estimations: First,
size 1 estimations for intermediate results, and second, cost
estimations for algebraic operators like joins. Size estima-
tions are the input to the actual cost estimation functions.
Whereas cost functions for algebraic operators, e.g. I/O cost
estimations for different joins, are very accurate [6], typi-
cally less than three percent off the true execution times,
size estimations tend to be more error prone. Clearly, this
jeopardizes the accuracy of the cost functions. On the other
hand, it is impossible to design 100 percent accurate size
estimations in all cases. The importance of accurate size esti-
mations is underlined by investigations undertaken by Reddy
and Haritsa [17], who showed that commercial database sys-
tems are indeed very sensitive to slight changes in selectivity

1The term size is used to denote (1) the size of a relation in
number of pages or (2) the size of a relation in terms of its
cardinality. They are easily convertable into each other.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

estimates. In Sec. 3, we underpin this experimental finding
with theoretical results.

Given this database lore, some fundamental (and, from
a practical point of view, urgent) questions arise. The first
question is:

Q1 If we have to live with inaccurate size estimations, what
is the best way to measure size estimation errors?

Why is this question fundamental? The reason is that if
this question has been answered correctly, other fundamental
questions can be answered as well. These are:

Q2a How can we minimize error propagation?
This question is fundamental since it is well-known that
errors propagate exponentially through joins [9].

Q2b Are there bounds for size estimation errors such that
if the size estimation error stays within these bounds
the generated plan will still be optimal? And if such
bounds exist, how do they look like?

Q2c Assume the optimal plan for some query is P , and the
plan produced due to size estimation errors is P̂ . If a
bound for the size estimation error is known, does this
limit the cost of P̂ compared to P? That is, can we
somehow translate a size estimation error bound into
a bound on the deviation of the true execution costs of
P̂ compared to those of P?

If we have positive answers to questions Q2 a-c and are
thus convinced that our error metric is the one of choice, we
immediately will ask:

Q3 How can we minimize size estimation errors under the
devised metric?

None of these questions has been answered satisfactorily in
the literature, in particular, the state of the art in selectivity
estimation offers no bounds for the quality of the resulting
plans. We will address these questions one after the other in
this paper, starting with a suitable error metric, called q-error
(Section 2, answering Q1). The motivation for the definition
follows in Sec. 3 by answering questions Q2a-c. The answers
will suggest that minimizing the q-error is crucial. Thus, we
develop an algorithm that computes optimal approximations
under the q-error in Section 4 (answering Q3). Finally, we
show how the best approximation under the q-error can be
used to derive cardinality estimates by applying them to
single and multiple buckets (Sec. 5). The resulting synopses
are very accurate and allow us to derive bounds for the
costs of constructed plans, something that was out of reach
for previous approaches. We conclude the paper with a

discussion of related (Section 6) and future work (Section 7).
Due to space restrictions, we will not give all proofs (see
[14]).

2. DEFINING THE Q-ERROR
We now define the q-error, which is multiplicative in nature.

We first look at the approximation problem formulation of
selectivity estimation, and then study different error metrics.
We will discuss the rationale behind the q-error in Sec. 3.

LetR be a relation, A one of its attributes, and {x1, . . . , xm}
= ΠA(R) the set of distinct values of A. Then, the fre-
quency density is a set of pairs (xi, fi) with fi = |σA=xi(R)|,
1 ≤ i ≤ m.

The task is to approximate this set of pairs by a function
f̂ . Then, f̂(xi) =: f̂i gives the estimate f̂i of fi. Typically,

f̂ is a (piecewise) polynomial of degree 0 or 1.
Typically, norms are used to define the error. There-

fore, the correct values are organized into a vector ~b =

(f1, . . . , fm)T ∈ Rm and the estimates into a vector
~̂
b =

(f̂1, . . . , f̂m)T ∈ Rm. Well-known lp error metrics are based
on lp norms as in

||b− b̂||p,

where 1 ≤ p ≤ ∞ and the most common norms are

||z||2 =
p

(z1)2 + . . .+ (zm)2

||z||∞ =
m

max
i=1
|zi|

for z = (z1, . . . , zm)T ∈ Rm. While the l2 error does not give

bounds on estimates, l∞ does. Define ∆ = ||b− b̂||∞. Then

fi −∆ ≤ f̂i ≤ fi + ∆.

However, absolute error bounds are not really useful in the
context of query optimization.

For z ∈ R, we define a multiplicative error:

||z||Q =

8<: ∞ if z ≤ 0
1/z if 0 < z ≤ 1
z if 1 ≤ z

For z > 0, this is the same as saying ||z||Q = max(z, 1/z).
Thus, we treat over- and underestimates symmetrically.

For a vector z ∈ Rm, we define

||z||Q =
m

max
i=1
||zi||Q. (1)

We denote || · ||Q by lq. However, be careful: lq is not a norm.
Subadditivity (triangular inequality) is the only one of the
three properties required by a norm, which is satisfied by lq.

Let ~a and ~b be two vectors in Rm where bi > 0. Define
~a/~b = ~a

~b
= (a1/b1, . . . , an/bn)T. Then, we define the q-error

of an estimation b̂ of b as

||b̂/b||Q.

As l∞, lq produces valid, symmetric bounds for individual

estimates. Define q = ||b̂/b||Q. Then,

(1/q)fi ≤ f̂i ≤ qfi.

Note that the error bounds are symmetric and multiplicative.
The latter feature is very important, as we will see in the
next section. The q-error is rarely used in the literature. The
only exceptions are from the area of sampling [2, 5].

Let us give an example to compare the q-error with other
error metrics. Consider the data points (1,20), (2,10), and
(3,60). We first consider two approximations by a single
number. In histograms, the average frequency is used as
an approximation of the frequencies occurring in a bucket
[16]. It is well-known that the average minimizes the l2 error.

Let f̂30 be a function always returning 30, which happens to
be the average of {20, 10, 60}. For a given set of numbers

Y , define the q-middle as
√

minY ∗maxY . The q-middle
of 10, 20, 60 is

√
600. Under lq, the q-middle provides the

best approximation by a single number. Thus, the q-middle
minimizes the q-error. The q-error of the q-middle can be
directly calculated and equals (q/minY) = (maxY)/q if q

is the q-error of Y , or even simpler as
p

maxY/minY . Let

f̂√600 be the constant function returning
√

600. Next, we
consider linear functions to approximate the three data points.
Further, denote by f̂2, f̂∞, and f̂q the best approximation
of the data points by a linear function a0 + a1x under l2,
l∞, and lq. Then, the following table gives the coefficients
ai of the approximation functions and their error under l2,
l∞, and lq.

f̂30 f̂√600 f̂2 f̂q f̂∞

a0 30
√

600 -6 0 -15
a1 0 0.0 17 10 20

l2 20 33.5 14.0 17 15
l∞ 30 27.6 18.0 30 15
lq 3 2.4 2.8 2 4

The table shows us the expected: different error metrics result
in different best approximations and different approximations
result in different errors. The question is which metric is the
best for query optimization purposes.

3. WHY Q?
After defining the q-error, we now give strong evidence why

it is superior to other error metrics for selecivity estimation
purposes. We will use different cost functions C, which assign
costs to plans P . For example, we will use different join cost
functions to account for different implementations of the
join operator. All these cost functions take the sizes of the
inputs to the join operator as parameters. Thus, we have to
state precisely the size estimation we use to calculate costs.
Hence, we define the following. For a given plan P and a cost
function C, C(P) denotes the calculated costs for the plan

P if the true intermediate result sizes are used and Ĉ(P)
denotes the costs if they are calculated using estimates for
the intermediate result sizes.

Sometimes, we require that the cost function has the ASI
property (see [7, 12]). For convenience, the appendix contains
the definition of the ASI property. At other times, we will
use the real cost functions developed by Haas et al. [6]. Since
the latter have occurrences of d·e and b·c and we need the
cost functions to be continous, we eliminate all occurrences
of the these symbols. The error introduced is small. Further,
real cost functions require that a certain amount of memory
is given to each individual join. To eliminate these variables,
we introduce the fixed memory allocation scheme assumption.
It states that every join (in every plan) receives the same
amount of memory. Further, if the memory is partitioned
into different parts (e.g. input and output buffers), we further
assume that this partitioning scheme is fixed and the same

applies to all joins. Let us denote by CSMJ the so modified
cost function for the sort merge join, and by CGHJ the so
modified cost function for the Grace hash join as specified
in [6]. These cost functions are used in theorems. In the
experiments, the original cost functions with optimal memory
allocation schemes are used.

3.1 Minimizing Error Propagation
The purpose of this section is to demonstrate the multi-

plicative nature of error propagation. Nothing here is new
or surprising. Just the conclusion we draw is new. Let us
assume that the purpose of our approximation is to esti-
mate the output cardinalities of selections on relations Ri,
i.e. σpi(Ri) for i = 1, . . . , n. The results of these cardinality
estimations are then used to find the optimal order of subse-
quent joins. More specifically, assume we have to find the
optimal query execution plan for the following expression:

σp1(R1) 1 . . . 1 σpn(Rn), (2)

where we have intentionally left out all the join predicates.
Ioanidis and Christodoulakis pointed out that errors prop-
agate exponentially through joins [9]. Denote by si the
cardinality of σpi(Ri) and by ŝi its estimate. Further assume
that independence holds. We can write si as fi|Ri|, where
fi is the selectivity of pi. Denote by fi,j the selectivity of
the join predicate between Ri and Rj , if it exists. Otherwise,
we define fi,j = 1. Due to the independence assumption, the
result cardinality of joining a subset x ⊆ {R1, . . . , Rn} is

sx = (
Y
Ri∈x

fi)(
Y

Ri,Rj∈x

fi,j)(
Y
Ri∈x

|Ri|)

Denote by f̂i the estimate for the selectivity of pi and as-
sume that the join selectivities have been estimated correctly
(which, of course, is difficult in practice). Then the estimated
cardinality of the result of joining the relations in x is

ŝx = (
Y
Ri∈x

f̂i)(
Y

Ri,Rj∈x

fi,j)(
Y
Ri∈x

|Ri|)

= (
Y
Ri∈x

fi/fi)(
Y
Ri∈x

f̂i)(
Y

Ri,Rj∈x

fi,j)(
Y
Ri∈x

|Ri|)

= (
Y
Ri∈x

f̂i/fi)(
Y
Ri∈x

fi)(
Y

Ri,Rj∈x

fi,j)(
Y
Ri∈x

|Ri|)

= (
Y
Ri∈x

f̂i/fi)sx,

where some i belong to the category with f̂i/fi < 1 and

others to the one with f̂i/fi > 1. Remember that during
dynamic programming, all subsets of relations are considered.
Especially those subsets occur in which all relations belong
only to one category. Hence, building on the cancellation of
errors by mixing them from different categories is not a real
option. Instead, we should minimizeY

Ri∈x

max{fi/f̂i, f̂i/fi} =
Y
Ri∈x

|| f̂i
fi
||Q

in order to minimize errors and error propagation. This
product can be minimized by minimizing each of its factors.
Thus, we can draw the following conclusion: If we want
to minimize error propagation, we have to minimize the
multiplicative error ||f̂i/fi||Q.

3.2 Bounds for Q Which Guarantee Plan Op-
timality

We now derive bounds on the q-error such that if they
are met, the plan produced by the query optimizer using
size estimates instead of the correct sizes still has minimal
costs. Let us consider again the join expression given in
2. Denote by fi the correct selectivity of σpi and by f̂i its
estimate. If the plan generator uses the correct cardinalities,
it produces the optimal plan. Given the estimates, it might
produce another plan. The question is how far the cardinality
estimates can deviate from the true cardinalities without
affecting the optimality of the resulting plan. More formally,
denote by P the optimal plan under the correct cardinalities
f and by P̂ the optimal plan under the estimates f̂ . Then,
we can restate the above question to whether there exists a
condition on f̂ such that if this condition holds then C(P̂) =
C(P).

Let us slide in a reminder on query graphs (see [21]).
Queries can be mapped to undirected graphs, called query
graphs, as follows. The nodes in a query graph are the
relations referenced in the query. For every join predicate
between relations R and S in the query, the query graph
contains an edge between R and S. A query is called acyclic if
its query graph is acyclic. A query in relations R1, . . . , Rn is
called a chain query if its query graph is a chain, i.e. the edges
are (Ri, Ri+1) for 1 ≤ i < n. A query in relations R0, . . . , Rn
is called a star query, for all relations Ri, 1 ≤ i ≤ n, there is
an edge between R0 and Ri, and these are the only edges.
R0 is called the center relation, and the Ri, 1 ≤ i ≤ n are
called the satellite relations.

In the following theorems, we use relations Ri. These need
not be base relations but could also be selections applied
to some base relations. The mode of access, i.e. table scan
versus index-based access, is immaterial for the theorems.

First consider the following problem. Let a star query and
a cost function, which has the ASI property [7], be given.
The task is then to find an optimal left-deep tree without
any cross products. An immediate consequence of the ASI
property is that the optimal join order for a given star query
is the one which starts with the center relation followed by
the satellite relations sorted according to their rank. This
fact can be used to prove the following theorem.

Theorem 3.1. Let C be a cost function with ASI property.
For a given star query in n relations, let P be the optimal
left-deep plan without cross products under C and P̂ the
optimal left-deep plan without cross products under Ĉ. If for
all 1 ≤ k ≤ n and ri := f0,i|Ri|

||fk
f̂k
||Q < min

i 6=j

s
|| firi
fjrj
||Q =: q,

then C(P̂) = C(P).

The condition of the theorem implies the weaker condition
that for all 1 ≤ i, j ≤ n, i 6= j

|| f̂i
fi
||Q ||

f̂j
fj
||Q < || firi

fjrj
||Q =: qi,j

which is already sufficient for the proof. The important
observation is that if this condition is true, then the relative
order of the relation’s ranks remains untouched. This in turn
implies that the optimal plan remains the same (if there are

no ties). In case of ties, the costs remain the same and the
theorem trivially holds. For later use, define q := mini,jqi,j .

Whenever there are star queries, chain queries usually are
not far away.

Theorem 3.2. Let C be a cost function with ASI property.
For a given chain query in n relations, let P be the optimal
left-deep plan without cross products under C, and P̂ be the
optimal left-deep plan without cross products under Ĉ. If for
all 1 ≤ k ≤ n

|| f̂k
fk
||Q < min

i 6=j−1

s
|| fifi,i+1|Ri|
fjfj,j−1|Rj |

||Q =: q,

then C(P̂) = C(P).

Again, the proof exploits the fact that this condition im-
plies that the relative order of the relations’s ranks remains
untouched.

For tree queries, things are a little more complex. In the
following theorem, we assume that Ri′ is a relation connected
to Ri, which we denote by Ri′ −Ri.

Theorem 3.3. Let C be a cost function with ASI property.
For a given acyclic query in n relations, let P be the optimal
left-deep plan without cross products under C, and P̂ be the
optimal left-deep plan without cross products under Ĉ. If for
all 1 ≤ k ≤ n

|| f̂k
fk
||Q < min

i 6=j,Ri′−Ri,Rj′−Rj

s
|| fifi,i

′ |Ri|
fjfj,j′ |Rj |

||Q =: q,

then C(P̂) = C(P).

Again, the proof makes use of the fact that this condition
implies that the relative order according to the rank of the
relations remains untouched.

For a real cost function, we need strong assumptions to
prove a similar theorem.

Theorem 3.4. Assume independence holds and all join
selectivities are equal. For a given star query in n relations,
let P be the optimal left-deep plan without cross products
under CSMJ, and P̂ be the optimal left-deep plan without
cross products under ĈSMJ. If for all 1 ≤ i, j ≤ j, i 6= j

|| f̂i
fi
||Q ||

f̂j
fj
||Q < || fi|Ri

fj |Rj |
||Q =: q2,

then CSMJ(P̂) = CSMJ(P).

In all theorems, a bound q was established such that
if ||f̂i/fi||Q < q, this estimation error does not affect the
optimality of the plan if the costs are calculated using the
estimates of the intermediate result sizes instead of the true
intermediate result sizes. Thus, we strongly believe that
||f̂i/fi||Q is well suited to measure size estimation errors.

In the theorems, we have needed some assumptions and
idealized cost functions. So, let us give an example using
the real cost function of the Grace hash join [6]. Now, we
do not use a fixed memory allocation scheme but calculate
the optimal one using the method given in [6]. Although
this cost function is not covered by the above theorems, the
central claim still remains valid. To see this, consider a
chain query in three relations and a star query with three
satellite relations. We have successively increased the q-error

 0

 2

 4

 6

 8

 10

 12

 1 1.2 1.4 1.6 1.8 2 2.2 2.4

chain query
star query

Figure 1: q and C(P̂)/C(P)

q = maxi=1,3 ||f̂i/fi||Q for estimating the size of σp1(R1) and
σp3(R3) (in both queries). The theorems would claim that
the costs of the best plan produced under size estimation
errors equal the costs of the best plan as long as the error
does not reach a certain threshold. This is also the case here.
Figure 1 shows the increasing q-error on the estimations on
the x-axis, and the cost ratio of the plan produced by the
query optimizer under size estimation errors and the cost of
the best plan (C(P̂)/C(P)) on the y-axis. We see that for
both queries the costs of the optimal plan remain the same
as long as the q-error is limited by 1.9 (q ≤ 1.9). Beyond

that, the optimal plan P̂ under Ĉ has higher costs than the
optimal plan P under C. For the star query and q = 2.0 or
higher, C(P̂) is more than eleven times (11.11) higher than

Ĉ(P), which is very bad. For the chain query and q = 2.1

or higher, C(P̂) is more than eight times higher than Ĉ(P),
which is also very bad. For q = 2.0, the optimal plan under
Ĉ is about three times more expensive than the optimal plan
under C. We can conclude that bounding q matters because
C(P̂)/C(P) may jump badly. Increasing q further than 2.1
does not change the plan anymore.

For the star query, we see that

C(P̂)/C(P) = 11.11 = 23.46 = q3.46

and might ask whether there is a bound such that

C(P̂)/C(P) ≤ qe

for some e. Such a bound indeed exists, as we will see in the
next subsection.

In case the reader wishes to verify the results, the following
table summarizes the parameters used:

chain query star query
si 2i−1 ∗ 10111 2i−11000
fi,j 0.0042 0.02
buffer size m/2m m/10m/50m
m 1111 100
ŝ0 – s0
ŝ1 qf1|R1| qf1|R1|
ŝ2 s2 s2
ŝ3 1/qf3|R3| 1/qf3|R3|

Here, sizes are given in number of pages. The buffer sizes
are given for the first/second(/third) join. There are three
more constants in the cost formulas. They describe disk

characteristics and are chosen as in Table 1 in [6]. The values
are Ts = 9.5, Tx = 2.6, TL = 8.3.

3.3 Cost Bounds Implied by Q
As we have seen, wrong cardinality estimates can lead to

plans P̂ which are much worse than the best plan P . Now,
we show how to translate bounds on ||ŝ/s||Q into bounds on

C(P̂)/C(P), thus answering question Q2c.
Again, we use Ri for relations. These need not be base

relations but could also be selections applied to some base
relations. The mode of access, i.e. table scan versus index-
based access, is immaterial for the theorem.

Theorem 3.5. Let C = CSMJ or C = CGHJ. For a given
query in n relations, let P be the optimal plan under C, and
P̂ be the optimal plan under Ĉ. Then

C(P̂) ≤ q4C(P),

where q is defined as

q = max
x⊆X
||ŝx/sx||Q,

with X being the set of relations to be joined. That is, q is
the maximum estimation error taken over all intermediate
results.

Proof. We sketch the proof of this theorem. For two
relations R1 and R2, denote by si the size of relation Ri.
The cost function for the sort merge join developed by Haas
et al. [6] can be expressed as a polynomial of degree two in
variables s1 and s2 (see appendix). Further, all coefficients
of this polynomial are positive. Denote this polynomial
by gSMJ(s1, s2). For any q > 1, we have gSMJ(qs1, qs2) ≤
q2gSMJ(s1, s2). Let P be a plan whose join operators are all
sort merge joins. Then, the total costs C(P) are calculated
by the sum over the costs for each sort merge join in the plan.
The costs of every sort merge join are a polynomial of degree
two with two variables. These variables are the input sizes
of its two arguments. Thus, the overall cost function can be
expressed as a polynomial of degree two, with coefficients
greater than or equal to zero, and in variables sx for all
subsets x of X = {R1, . . . , Rn}, if these are the relations to
be joined in P . It follows that

C(P̂) ≤ q2Ĉ(P̂)

and

Ĉ(P) ≤ q2C(P),

if q is defined as in the theorem.
Since P̂ is the optimal plan under Ĉ, we have

Ĉ(P̂) ≤ Ĉ(P).

Concatenating the last three inequalities yields

C(P̂) ≤ q2Ĉ(P̂)

≤ q2Ĉ(P)

≤ q4C(P).

The proof for CSMJ follows the same line of reasoning.

Note that we did not need any assumption on how the
intermediate result sizes were derived. Particularly, we made
no use of the independence assumption.

It might be surprising to see that the cost deviation factor
q4 does not depend on n. Intuitively, one might expect

this factor to grow with n. However, note that q limits the
estimation error for all intermediate result sizes. Thus, q
tends to increase if n increases, as errors propagate through
joins (see Sec. 3.1).

Consider again the table at the end of Sec.2. The bound
for C(P̂)/C(P) improves from 34 = 81 over 2.54 ≈ 39 to
24 = 16 if we move from approximating the values by their
average, over q-middle to a linear function. Remember that
the frequencies in a histogram’s bucket are approximated by
their average.

4. BEST APPROXIMATION UNDER LQ

Since the q-error has such a large impact on plan opti-
mality, we now develop an algorithm for finding the best
approximation under lq. This section makes heavy use of
math. Therefore, we split it into two parts to make it more
accessible: Section 4.1 derives the characteristics of an op-
timal solution and Section 4.2 shows how to construct the
optimal solution. Note that although the math is somewhat
involved, the final algorithm is not that complex, it is shown
in Figure 2. But as the derivation of the algorithm is some-
what hard to follow without mathematical background, we
sketch a more intuitive derivation of the algorithm in Sec-
tion 4.3. It can be read instead of the proofs to understand
the algorithm.

4.1 Characterization of a Solution
Let (xi, bi) for 1 ≤ i ≤ m be a set of points with bi > 0,

which we want to approximate by a linear combination of
a given set of functions Φj , 1 ≤ j ≤ n. We measure the
deviation by applying lq. That is, we want to find the
coefficients aj such that the function

f̂(x) =

nX
j=1

ajΦj(x)

minimizes

max
i=1,...,m

max

(
bi

f̂(xi)
,
f̂(xi)

bi

)
.

Let A ∈ Rm×n be a matrix where m > n, and ~b =
(b1, . . . , bm)T be a vector in Rm where bi > 0. Then we
can state the problem as

find ~a ∈ Rn that minimizes ||A~a/~b||Q (3)

under the constraint that αT
i > 0, 1 ≤ i ≤ m, for all row

vectors αi of A.
Alternatively, we can modify A by ‘dividing’ it by ~b. Let

~b = (b1, . . . , bm)T be a vector in Rm. Define diag(~b) to be the
m×m diagonal matrix which contains the bi in its diagonal

and is zero outside the diagonal. For vectors ~b with bi > 0,

we can define ~b−1 = (1/b1, . . . , 1/bm)T.
Using these notations, we can define

A′ = diag(~b−1)A.

In the special case of univariate polynomial approximation
with f̂(x) = a1 + a2x+ . . .+ anx

n−1, the matrix A′ has the
form

A′ =

0BBB@
1/b1 x1/b1 . . . xn−1

1 /b1
1/b2 x2/b2 . . . xn−1

2 /b2
...

... . . .
...

1/bm xm/bm . . . xn−1
m /bm

1CCCA . (4)

We can solve Problem 3 if we can solve

find ~a ∈ Rnthat minimizes||A~a||Q. (5)

The following proposition ensures that a solution to this
general problem exists. Further, since ||A~a||Q is convex, the
minimum is a global one.

Proposition 4.1. Let A ∈ Rm,n such that R(A)∩Rm>0 6=
∅. Then ||A · ||Q attains its minimum.

Proof. Since R(A) ∩ Rm>0 6= ∅, there exists a ∈ R such
that levaQ(A·) is nonempty. Moreover, then levaQ(A·) is
obviously compact. Now it is well known, see [1, p. 14],
that a lower semicontinuous function which has a nonempty,
compact level set for some a ∈ R attains its minimum.

Note that lq is subadditive and convex. Further, it is lower
semi-continuous (see also [18, p. 52]). However, it is not
strictly convex. Remember that strict convexity typically
implies the uniqueness of a solution to approximation prob-
lems. Later on, we will show that under certain conditions
uniqueness still holds, although lq is not strictly convex.

We need some more notation. Let A ∈ Rm,n. We denote
by R(A) = {A~a | ~a ∈ Rn} the range of A and by N (A) =
{~a ∈ Rn | A~a = 0} the nullspace of A.

Problem (5) can be rewritten as the following constrained
minimization problem:

min
(~a,q)∈Rn×R

q subject to
1

q
≤ A~a ≤ q and q ≥ 1.

(6)
The Lagrangian of (6) is given by

L(~a, q, λ+, λ−, µ) := q

−(λ+)T(q −A~a)

−(λ−)T(A~a− 1

q
)

µ(q − 1).

Assume that R(A) ∩ Rm>0 6= ∅. Then the set {(~a, q) : 1
q
≤

A~a ≤ q and q ≥ 1} is non-empty and closed, and there
exists (~a, q), for which we have strong inequality in all condi-
tions. Then the following Karush-Kuhn-Tucker conditions

are necessary and sufficient for (~̂a, q̂) to be a minimizer of

(6), see, e.g., [20, p. 62]: there exist λ̂+, λ̂− ∈ Rm≥0 and µ̂ ≥ 0
such that

∇~aL(~̂a, q̂, λ̂+, λ̂−, µ̂) = ATλ+ −ATλ− = 0 (7)

∂

∂q
L(~̂a, q̂, λ̂+, λ̂−, µ̂) = 1−

mX
i=1

λ̂+
i

− 1

q2

mX
i=1

λ̂−i − µ = 0 (8)

and for i = 1, . . . ,m,

λ̂+
i

“
â− (Â~a)i

”
= 0, (9)

λ̂−i

„
(Â~a)i −

1

q̂

«
= 0, (10)

µ̂(q̂ − 1) = 0.

Assume that 1m 6∈ R(A), where 1m is the vector with all
components 1. Then q̂ > 1 and consequently µ̂ = 0. Fur-
thermore, it is clear that λ̂+

i and λ̂−i cannot both be positive

because the conditions q̂ = (A~̂a)i and 1
q̂

= (A~̂a)i cannot be
fulfilled at the same time, since q̂ > 1.

Setting λ̂ := λ̂+ − λ̂−, we can summarize our findings (7)
- (10) in the following theorem.

Theorem 4.1. Let A ∈ Rm,n such that R(A) ∩ Rm>0 6= ∅
and 1m 6∈ R(A). Then (̂~a, q̂) solves (6) if and only if there

exists λ̂ ∈ Rm such that

i) ATλ̂ = 0.

ii) q = q
P
λ̂i>0

λ̂i + 1
q

P
λ̂i<0

λ̂i.

iii) λ̂i = 0 if 1
q̂
< (Â~a)i < q.

iv) if λ̂i > 0 then (Â~a)i = q̂ and if λ̂i < 0 then (Â~a)i =
1/q̂.

Proof. Follows from equations (7) - (10).

Remark. We see that 1 < q̂ = (A~̂a)i implies

sign
“

(A~̂a)i − 1
”

= 1

and that 1 > 1/q̂ = (A~̂a)i implies

sign
“

(A~̂a)i − 1
”

= −1.

Hence, λ̂i
“

(A~̂a)i − 1
”
≥ 0. For our approximation problem

(3), this means that the residuum f̂(xi)−bi fulfills λ̂i (f̂(xi)−
bi) ≥ 0.

Under certain conditions, problem (5) has a unique solu-
tion, which can be simply characterized. Let us start with
some straightforward considerations in this direction. If

N (A) 6= {~0}, then we have for any minimizer ~̂a of ||A · ||Q
that ~̂a+ β, β ∈ N (A) is also a minimizer. In particular, we

have that N (A) 6= {~0} if

• m < n,

• m ≥ n and A is not of full range, i.e., rank(A) < n.

In these cases, we cannot have a unique minimizer. Further
note that if 1m ∈ R(A), then the minimum of ||A · ||Q is 1,
and the set of minimizers is given by

A+1m +N (A),

where A+ denotes the Moore-Penrose inverse of A.
In the following, we restrict our attention to the case

m > n and rank(A) = n. The following proposition considers
(n+ 1, n)–matrices.

Proposition 4.2. Let A ∈ Rn+1,n such thatR(A)∩Rn+1
>0 6=

∅, 1m 6∈ R(A) and rank(A) = n. Then ||A · ||Q has a

unique minimizer if and only if the Lagrange multipliers λ̂i,
i = 1, . . . , n+ 1 are not zero.

Proof. 1. W.l.o.g. let the first n rows of A be linearly
independent. Let xi := (Aα)i, i = 1, . . . , n+ 1. Further, let

Ã := A|{1,...,n} be the restriction of A to its first n rows and

x̃ := (x1, . . . , xn)T. By assumption, there exists Ã−1, and

we obtain that α = Ã−1x̃ and

xn+1 = aT
n+1α = aT

n+1Ã
−1x̃ = rT x̃, rT := aT

n+1Ã
−1,

where aT
n+1 denotes the (n + 1)-st row of A. On the other

hand, we see by Theorem 4.1 i) that

(λ̂1, . . . , λ̂n)Ã = −λn+1a
T
n+1,

(λ̂1, . . . , λ̂n) = −λ̂n+1a
T
n+1Ã

−1 = −λ̂n+1r
T. (11)

By Theorem 4.1 ii), we have that λ̂n+1 6= 0.

2. Assume now that λ̂i 6= 0 for all i = 1, . . . , n. Then r
has only non-zero components. Now minimizing Q(A·) is
equivalent to finding the minimizer of

max
˘
Q(x̃), q(rT x̃)

¯
.

Now levaQ(x̃) are the cubes with (n − 1)–faces parallel to
the coordinate planes. On the other hand, the strip

1

a
≤ rT x̃ ≤ a, a > 1, (12)

with axis rT x̃ = 1 is not parallel to a 1–face of the cube,
i.e., the unit vectors ei, i = 1, . . . , n are not tangents of the
hyperplane rT x̃ = 1, since this would imply that rT ei = 0,
which is not possible since r has no zero component. But then
the minimum â of Q(A·) is given by the smallest number
a such that one of the hyperplanes rT x̃ = a or rT x̃ =
1/a touches a vertex of levaQ(x̃). This condition uniquely
determines â and the vertex vâ and we finally obtain the
unique minimizer α̂ = Ã−1vα̂.

3. Conversely assume that at least one λ̂i is equal to zero.
Then r has a zero component and the strip (12) is parallel
to some k-face, k > 0, of levaQ(x̃) and touches this k-face
for the optimal â. Hence, the solution cannot be unique.

By spark(A), we denote the smallest number of rows of A
which are linearly dependent. In other words, any spark(A)−
1 rows of A are linearly independent. For the ’spark’ notation
we also refer to [3].

Examples. 1. We obtain for the matrix

A :=

0BB@
1 0 0
0 1 0
0 0 1
1 0 1

1CCA , rg(A) = 3, spark(A) = 3.

The matrix (m,n)–matrix A in (4) is the product of the
diagonal matrix diag (1/bi)

m
i=1 with positive diagonal entries

and a Vandermonde matrix. Hence, it can easily be seen that
spark(A) = n+1. If an (m,n)–matrixA has spark(A) = n+1,
then A fulfills the Haar condition.

Proposition 4.2 can be reformulated as follows:

Corollary 4.2. Let A ∈ Rn+1,n such thatR(A)∩Rn+1
>0 6=

∅ and 1m 6∈ R(A) . Then ||A · ||Q has a unique minimizer if
and only if spark(A) = n+ 1.

Proof. Follow the lines of the proof of Proposition 4.2
and use that all components of r are nonzero if and only if
spark(A) = n+ 1.

The result can be generalized by the following theorem.

Theorem 4.3. Let A ∈ Rm,n such that R(A) ∩ Rm>0 6= ∅.
Suppose that spark(A) = n+ 1. Then ||A · ||Q has a unique
minimizer which is determined by n+ 1 rows of A, i.e., there
exists an index set J ⊂ {1, . . . ,m} of cardinality |J | = n+ 1
such that ||A · ||Q and ||A|J · ||Q have the same minimum and
the same minimizer. Here, A|J denotes the restriction of A
to the rows which are contained in the index set J . We call
such an index set J an extremal set.

Proof. Let I := {i : λ̂i 6= 0}, where λ̂i are the Lagrange
multipliers from Theorem 4.1. Then, by Theorem 4.1 iv),
we have for i ∈ I that (Aα̂)i equals â or 1/â. Assume that

|I| ≤ n. By Theorem 4.1 i), this implies ATλ̂ = A|TI λ̂ = 0,
which is not possible because spark(A) = n+ 1. Thus, |I| ≥
n+ 1. But then there exists an index set J ⊂ I of cardinality
|J | = n+ 1 such that (A|J α̂)j = â or (A|J α̂)j = 1/â for all
j ∈ J and hence, α̂ is the minimizer of Q(A|J ·), which is
unique by Proposition 4.2.

Of course the condition spark(A) = n+ 1 is not necessary
for ||A · ||Q to have a unique minimizer as the following
example shows.

Example. The matrices

A :=

0BB@
1 0
0 1
−1 1

2
−4 2

1CCA , and A :=

0BB@
1 0
0 1
−4 4
−1 1

1CCA
have both spark(A) = 2. By some following considerations,
we obtain for both problems that the minimum of ||A · ||Q
is q̂ = 2. However, in the first problem the minimizer is

uniquely determined by ~̂a = (1
2
, 2)T, while the whole line

c(1
2
, 1)T +(1−c)(3

2
, 2)T, c ∈ [0, 1] minimizes the functional in

the second case. For (1
2
, 1)T, we have sign(λ̂1, λ̂2, λ̂3, λ̂3) =

(−1, 0, 1,−1), while the pattern is (0, 1, 1,−1) for (3
2
, 2)T and

(0, 0, 1,−1) within the line bounded by these points.
By Theorem 4.3, a method for finding the minimizer of
||A · ||Q would be to compute the unique minimizers of the`
m
n+1

´
subproblems ||A|J · ||Q for all index sets J of cardi-

nality n + 1, and to take the largest minimum â and the

corresponding~̂a as minimizer of the original problem. For
our line problem, there exist

`
m
3

´
= O(m3) of these sub-

problems. Below, we give another algorithm, which is also
based on Theorem 4.3, but ensures that the value a grows
for each new choice of the subset J . Since there is only a
finite number of such subsets, we must reach a stage where
no further increase is possible and J is an extremal set. In
normed spaces, such methods are known as ascent methods,
see [22].

4.2 Approximation Algorithm
Now, we suggest a detailed algorithm (see Fig. 2) for

minimizing ||A · ||Q, where we restrict our attention to the
line problem

max
i=1,...,m

max


bi

β + αxi
,
β + αxi

bi

ff
, (13)

i.e., to the matrix A in (4) with n = 2.

Corollary 4.4. Let (xi, bi), i = 1, 2, 3 be given points
with pairwise distinct xi ∈ R and positive bi, i = 1, 2, 3.

Then the minimum q̂ and the minimizer ~̂a ∈ R2 of (13) are
given by q̂ = ||q̂1||Q and„

β̂
α̂

«
=

1

x2 − x1

„
x2 −x1

−1 1

«„
b1 q̂1
b2 q̂2

«
,

where

q̂1 :=

8>>><>>>:
q

r2
1−r1

if r1 < 0 and r2 > 0,q
1−r2
r1

if r1 > 0 and r2 < 0,q
1

r1+r2
if r1 > 0 and r2 > 0,

(14)

q̂2 :=

(
1/q̂1 if r1

r2
< 0,

x̂1 if r1
r2
> 0

and

r1 :=
b1(x2 − x3)

b3(x2 − x1)
, r2 :=

b2(x3 − x1)

b3(x2 − x1)
.

Proof. Following the proof of Proposition 4.2, we set

xi :=
1

bi
(α0 + α1pi), i = 1, 2, 3,

and obtain with x̃ = Ãα, where

Ã :=

„
1/b1 p1/b1
1/b2 p2/b2

«
, x̃ =

„
x1

x2

«
,

Ã−1 =
1

p2 − p1

„
p2b1 −p1b2
−b1 b2

«
,

that

x3 = (1/b3, p3) α = (1/b3, p3) Ã−1 x̃ = r1x1 + r2x2.

It is easy to check that

• r1 < 0, r2 > 0 if p1 < p2 < p3 or p3 < p2 < p1,

• r1 > 0, r2 > 0 if p1 < p3 < p2 or p2 < p3 < p1,

• r1 > 0, r2 < 0 if p2 < p1 < p3 or p3 < p1 < p2.

We restrict our attention to the case r1 < 0 and r2 > 0. The
other cases can be handled in a similar way. It remains to
minimize max{Q(x̃), q(r1x1+r2x2)}. The level sets levaQ(x̃)
are the cubes with (n− 1)–faces parallel to the coordinate
planes. The set {x̃ : q(r1x1 + r2x2) ≤ a} is given by the
intersection of the positive quadrant with the strip

−r1
r2
x1 +

1

ar2
≤ x2 ≤ −

r1
r2
x1 +

a

r2
, a ≥ 1 (15)

around the axis x2 = − r1
r2
x1 + 1

r2
. Note that − r1

r2
is positive

and that the strip-axis meets the x2-axis in 1
r2
> 0.

If r1 + r2 > 1, then the axis of the strip lies below (1, 1)
and the minimum of (13) is characterized by the smallest
number a > 1 such that the upper strip boundary meets the
corner (a, 1/a) of levaQ(x̃), i.e.,

1

a
= −r1

r2
a+

a

r2
⇒ a2 =

r2
1− r1

and

„
α0

α1

«
= Ã−1

„
a

1/a

«
.

If r1 + r2 = 1, then the axis of the strip contains (1, 1). Thus,

a = 1 and α̂ = Ã−1(1, 1)T.
If r1 + r2 < 1, then the axis of the strip lies above (1, 1)

and the minimum of (13) is characterized by the smallest
number a > 1 such that the lower strip boundary meets the
corner (1/a, a), i.e.,

a = −r1
r2

1

a
+

1

ar2
⇒ a2 =

1− r1
r2

and

„
α0

α1

«
= Ã−1

„
1/a
a

«
.

This completes the proof.

Algorithm. (Best line approximation with respect to lq)
Input: (xi, bi), i = 1, . . . ,m of pairwise distinct points xi ∈ R
and bi > 0
Set i1 := 1, i2 := 2 and stopsignal := −1.

While stopsignal = −1 do

1. For i = 1, . . . ,m; i 6= i1, i2 compute

r1,i :=
bi1(xi2 − xi)
bi(xi2 − xi1)

, r2,i :=
bi2(xi − xi1)

bi(xi2 − xi1)
.

2. Compute q̂j = max
i
{||x̂1(r1,i, r2,i)||Q} by (14). Let

j 6= i1, i2 be an index, where the maximum is attained
and x̂1 = x̂1(r1,j , r2,j).

3. Compute q := max
i
{||r1,ix̂1 + r2,ix̂2||Q}.

Let k be an index, where the maximum is attained.

4. If q ≤ q̂j then stopsignal = 1 and q̂ = q̂j ,„
β̂
α̂

«
=

1

xi2 − xi1

„
xi2 −xi1
−1 1

«„
bi1 q̂1
bi2/q̂1

«
,

otherwise set i1 := j and i2 := k, and return to 1.

Figure 2: Algorithm finding best linear approxima-
tion under lq.

Remark. If the points are ordered, i.e., x1 < x2 < x3

(or alternatively in descending order), then either A~̂a =

(q̂, 1/q̂, q̂)T or A~̂a = (1/q̂, q̂, 1/q̂)T. This means that λ̂ in
Theorem 4.1 has alternating signs. In other words, the
points f(x1), f(x3) lie above b1, b3 and f(x2) lies below b2
or conversely.

Later, we will show that the alternating sign condition is
true for general best polynomial approximation with respect
to lq.

Proposition 4.3. The algorithm shown in Fig. 2 com-
putes the line f(x) = β̂ + α̂x, which minimizes (13).

Proof. The algorithm computes in 1 - 2 of each step
the minimum âj and the parameter x̂1 of the unique Q-
minimizing line determined by the points (pi1 , bi1), (pi2 , bi2),
(pj , bj). By Theorem 4.3, this is also the minimizing line
for all points if a in step 3 fulfills a ≤ âj . In the other case,
there exists an index k such that q (r1,kx̂1 + r2,k/x̂1) > âj .
Now (x̂1, 1/x̂1) is the corner where the strip Sj := {(x1, x2) :
1
âj
≤ r1,jx1 + r2,jx2 ≤ âj} touches the cube levâjQ(x1, x2).

Moreover, the strips Sj and Sk := {(x1, x2) : 1
âj
≤ r1,kx1 +

r2,kx2 ≤ âj} cannot be parallel because spark(A) = 3. Thus,
Sj ∩ Sk is a parallelogram which has no common point with
levâjQ(x1, x2). This means for (x1, x2) ∈ Sj ∩Sk that either
x1 6∈ [1/âj , âj] or x2 6∈ [1/âj , âj] or both. Thus, at least one
of the minimizing lines determined by pi1 , pl, pk or pi2 , pl, pk
must have a larger minimizer than âj . Hence, the minimum of
the line computed in the next step of the algorithm is strictly
larger than the previous one. Now the number of triples of
points is finite such that this procedure terminates.

Remark. Alternatively, one can deal with ordered points
b1 < b2 < b3, which restricts the effort in (14) to q̂1 = r2

1−r1
,

but requires an ascending ordering of the points xi1 , xi2 , xj
in each step of the algorithm.

Finally, we want to generalize the remark on the signs of
the Lagrange multipliers given after Corollary 4.4. Therefore,
we need the notion of Chebyshev set.

Definition 4.5. Let X be a closed interval of R. A set of
continous functions Φ1(x), . . . ,Φn(x), Φi : X → R, is called
a Chebyshev set if every non-trivial linear combination of
these functions has at most n− 1 zeros in X.

The set of polynomials Φi(x) = xi−1, i = 1, . . . , n forms a
Chebyshev set. Thus, for polynomials (and all other Cheby-
shev sets), we have the following theorem, which guarantees
that residues have alternating signs.

Theorem 4.6. Let Φi : I → R, i = 1, . . . , n be a Cheby-
shev set and let x1 < . . . < xn+1 be points in I. Then,
for

Φ := (Φj(xi))
n+1,n
i,j=1 ,

the Lagrange multipliers λ̂i, i = 1, . . . , n+ 1 corresponding
to the minimizer of ||Φ · ||Q have alternating signs.

Proof. Let ϕT
i = (φ1(pi), . . . , φn(pi)) be the i-th row of

Φ. By Theorem 4.1 i) we obtain that

ΦT
n+1(λ̂1, . . . , λ̂n)T = −λ̂n+1ϕn+1.

Then, it follows by Cramer’s rule that

λ̂i =
1

det Φn+1
det(ϕ1, . . . , ϕi−1,−λ̂n+1ϕn+1, ϕi+1, . . . , ϕn).

= −λ̂n+1
(−1)n−idet Φi

det Φn+1
,

where the factor (−1)n−i appears since we need n − i col-
umn shifts to move ϕn+1 to the last position. Finally,
we conclude by using the theoreom from [22, p. 55] that

λ̂i = (−1)n−i+1λ̂n+1.

For our polynomial approximation problem

argmin~a∈Rn ||A~a||Q

with A ∈ Rn+1,n defined by (4) and ordered points x1 <
. . . < xn+1, we see that A = diag(1/bi)

n+1
i=1 Φ, where Φ is the

matrix belonging to the Chebyshev set Φi(x) = xi−1. Since
the bi are positive, we obtain immediately that the Lagrange
multipliers λ̂i have alternating signs. Again, this means that
f̂(xi)− bi has alternating signs.

One can also ask for an exponential function

f̂ = e
Pn

j=1 αjφj ,

which best fits a set of given points (pi, bi), i = 1, . . . ,m
with pairwise distinct pi ∈ Rd and bi > 0, i = 1, . . . ,m in
the sense of (1). Note that f̂ > 0 by definition. Since the ln
function increases strictly monotonically, this is equivalent
to minimizing

ln

max

i=1,...,m
max

(
bi

f̂(pi)
,
f̂(pi)

bi

)!
= max

i=1,...,m
max{ln bi − ln f̂(pi), ln f̂(pi)− ln bi}

= max
i=1,...,m

| ln bi −
nX
j=1

αj φj(pi)|

= ‖(ln bi)mi=1 − Φα‖∞.

Thus, it remains to find the best function
Pn
j=1 αj φj(pi)

with respect to the `∞ norm. This problem was treated in
various papers, see [22], and can be solved, e.g., by a linear
program

min
(α,a)∈Rn×R

a subject to −a ≤ Φα− (ln bi)
m
i=1 ≤ a ∧ a ≥ 0.

In our examples in Section 5, we are using f̂(x) = eα0+α1x.

4.3 Intuition behind the Algorithm
As the formal derivation of the algorithm in the previous

sections is somewhat hard to follow for those not versed
in approximation theory, we present the intuition behind
the algorithm. Note that this necessarily leaves out the
mathematical details and some arguments are hand-waving.

If we have only one or two data points, the approximation
problem is trivial, as we can fit a linear function through
one or two data points. For three data points, we can find
the best approximation analytically by solving a system of
equations (Corollary 4.4). For more than three data points,
we can solve the problem iteratively as follows. First, we pick
three arbitrary data points and solve the system of equations.
This gives us a current linear approximation. Clearly, its
q-error for the three points is a lower bound on the overall
q-error for all data points. We now steadily increase the
q-error of the approximation by exchanging one of the three
data points by another one whose deviation from the current
linear approximation is maximal. We take the one with the
maximal deviation to accelerate convergence.

The real algorithm in Figure 2 is a bit more complex,
but the intuition is the same as with the simple algorithm
sketched above: We pick two data points i1 and i2, examine
all other data points j as a possible third point in step 2,
and then find the maximum derviation k from the optimal
approximation of these points in step 3, choosing them as
new base points. We repeat this process until the error no
longer increases (step 4).

5. EXAMPLES
We now give examples how the choice of approximation

affects the q-error.

5.1 Exact Match Queries
We consider a relation R containing author information

and having an attribute A which contains the number of
citations of papers of an author. The data are taken from
a 2006 citeseer instance of the 10.000 most cited authors.
Here, we restrict our attention to those authors who have
between 256 and 512 citations. This is an arbitrary choice,
which has the advantage that it is small enough to be shown
in a figure. From R, we calculate the set of points

{(xi, fi) | xi ∈ ΠA(R), fi = |σA=xi(R)|}

which we then approximate by

Avg the average of the frequencies fi, as done in histogram
buckets [16],

Qmiddle the q-middle of the frequencies fi,

LinL2 a linear function β + αx minimizing the l2 error, as
proposed in [11],

LinQ a linear function β + αx minimizing the q-error, and

ExpQ an exponential function eβ+αx minimizing the q-error.

Fig. 3 contains the original points plotted with impulses
and three approximations. The q-errors and their powers by
four of the approximations are given in the following table.

approximation q-error q-error4

Avg 3.51 151
Qmiddle 2.77 59
LinL2 2.92 72
LinQ 2.16 22
ExpQ 2.11 20

Using the average, as done to approximate the frequencies
in a histogram’s bucket, generates very large errors. Replac-
ing it by the q-middle already reduces the maximum q-error
by 0.8. Further, note the 4th power of the q-error, which is
the error bound for the plan costs if the plan generator errs
due to size estimation errors, which with a higher q-error
becomes much more likely (see Sec.3). The difference be-
tween optimizing under l2, an approach suggested in [11],
and lq is about 0.8, which is also quite notable if we consider
the results of Sec. 3. Also, adding one more number, which
adds a storage overhead of less than 30%, by using ExpQ
instead of the q-middle reduces the q-error by 0.66. This
also reduces the factor the costs of the produced plan are
possibly higher than the costs of the best plan from 59 to 20.
The best approximations by a polynomial of degree 3/4/5
have q-errors of 1.97/1.96/1.94, resp. Note these are the
single-bucket errors when using using 12 bytes for an approx-
imation. A 320 bytes LinQ approximation of the same data
has an q-error of 1.08.

5.2 Range Queries
Let us first take a closer look at the errors. Since the q-error

does not indicate over- or underestimation, we introduce the
p-error, which is nicer to plot:

p(fi, f̂i) =


(fi/f̂i)− 1 f̂i ≤ fi
−(f̂i/fi) + 1 f̂i > fi

for a true value fi and its estimate f̂i. Adding/subtracting 1
eliminates otherwise wasted space. It should be clear that
minimizing lq is equivalent to minimizing under the absolute
value of p.

LinQ and ExpQ can not only be used to estimate the size
of σA=c(R), but also for range queries of the form σa≤A≤b.
The correct size estimate for a range query can be calculated
as

f(a, b) =
X

a≤xi≤b

fi.

Replacing fi by f̂(xi) results in estimates f̂(a, b) for f(a, b).
This approach works well for LinL2. However, as ExpQ
underestimates in most cases (see Fig. 3), we have to adjust
it in order to guarantee an average error of zero. In order
to do so, define for a given window size w W (w) = {xi|x ≥
min, xi + w ≤ max}, where min and max are the minimum
and maximum of all xi. Then, we can define the adjustment
function

g(w) = 1/kw
X

xi∈W (w)

fi/f̂(xi),

where kw = |W (w)|. Then, the average error ofX
a≤xi≤b

f̂(xi) ∗ g(b− a)

 0

 10

 20

 30

 40

 50

 300 350 400 450 500

best approximation

data
LinQ

ExpQ
LinL2

Figure 3: Original data and approximations

becomes zero. Of course, we cannot keep g, since it is as
big as the original data. Instead, we approximate (w, g(w))
by a linear function. Let ĝ be the best approximation of
(w, g(w)) under l∞. Then, for a given approximation f̂(x)
of the original data, we define the adjusted approximation

f̂(a, b) =
X

a≤xi≤b

f̂(xi) ∗ ĝ(b− a).

The following plots show for a given window size w (x-axis)
the minimum and maximum p-error (y-axis) taken over all
elements in W (w). Let us call such a representation p-cone.
Fig. 4 shows the p-cone for Avg, LinL2, and ExpQ. We
observe that for small to medium window sizes, there is a
significant improvement of the q-error if the adjusted ExpQ
approximation is used instead of the more common average
or l2-based LinL2 approximation [11]. Note that the LinL2
cone looks ’smaller’ for large window sizes because we show
the (signed) p-error and LinL2 always underestimates large
windows.

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 50 100 150 200 250

ExpQ adj
Avg

LinL2

Figure 4: P-cone for range queries

5.3 Piecewise Approximation
For selectivity estimation purposes, we usually want to

construct the best synopsis with a given space budget. We
can construct a synopsis of arbitrary size by using piecewise
approximation, i.e., partitioning the data into a suitable
number of buckets and then approximating each bucket
individually. The main problem is finding the right bucket
boundaries. However, we can find them easily by using the

characteristics of the q-error: We know that by increasing a
bucket (i.e., adding more data points), the maximum q-error
will increase montonically. Therefore, if we fix the desired
maximum error, we can greedily build bucket boundaries
using binary search such that we get maximal bucket sizes
within the given error constraint (see [15] for a more detailed
discussion of such a bucket construction strategy). By using
binary search over the error constraint, we can find the
minimum error that results in the desired number of buckets.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002

best approximation using 320 bytes

data
LinQ

LinL2
Avg

Figure 5: Original data and three piecewise approx-
imations with a space budget of 320 bytes

The result of such a piecewise approximation with a given
space budget is shown in Fig. 5. It shows the approxima-
tion of the CDF of a large data set with continues values
(TF*IDF*PageRank scores from the TREC-12 Web Track
benchmark (http://trec.nist.gov/) of all documents contain-
ing the word public) using 320 bytes of space. We constructed
the LinQ approximation as described above, the LinL2 ap-
proximation using the DP algorithm from [11], and the Avg
approximation by building an equi-depth histogram. The
LinQ approximatioin is very accurate over the whole domain
(note the logarithmic scale), while the other approaches per-
form much poorer and have some data points with very large
estimation errors.

 1

 10

 100

 1000

 10000

 100000

 500 1000 1500 2000 2500 3000

m
ax

im
um

 q
-e

rr
or

histogram size [bytes]

piecewise LinQ
V-Optimal histograms

Wavelets
Sampling

Koenig histograms
Equi-depth histograms

Figure 6: Approximation errors for different his-
togram types

We included a study of the maximum q-error for different
histogram types using the same data set in Fig. 6. The piece-
wise LinQ approximation was discussed above, V-Optimal
were proposed in [10], the Wavelet histograms we used were

introduced in [13], the Sampling technique is described in
[19], and the Koenig histograms (effectively piecewise LinL2)
were introduced in [11]. The piecewise LinQ approximations
have maximum q-errors that are orders of magnitude better
than these of the other approaches, which effectively means
that they can result in size estimations that are easily orders
of magnitude off.

6. RELATED WORK
Selectivity estimation is an important and well studied

field. A comprehensive overview of the field is given in [8].
Most of these techniques are based on histograms. They
suffer from two severe problems: they (1) make no error
guarantees and (2) give no hint at the resulting plan quality.
More precisely, the influence of the errors occurring on plan
optimality and costs has not been studied. One of the first
papers to study histograms with error guarantees is [10].
However, it constructs classical bucket histograms, which
are often not as accurate as histograms based upon function
approximation and, worse, it concentrates on l2 errors. A
more accurate approach is proposed in [11], where the authors
use piecewise linear functions as histograms and use least
squares fitting to minimize, again, l2 errors. Minimizing l2
is very popular, also among other approaches like wavelet-
based ones [13]. More recent work has studied relative and
absolute errors as error metrics (e.g., [4, 15]). These errors
can be connected more directly to the quality of the resulting
execution plans. Still, these techniques give no guarantees
for execution plan quality, and we are not aware of any other
work that gives such guarantees.

7. CONCLUSION
For size estimations, the q-error is a much more meaningful

error metric than other metrics like relative, l2 or l∞ errors.
The reason is that there is a direct connection between the
q-error and plan optimality and plan costs: Bounding the q-
error of size estimations suitably guarantees plan optimality,
and if these bounds cannot be met, the produced plan cannot
have costs higher than q4 times the costs of the optimal
plan, where q is the q-error of the size estimations. Both
results would have been impossible without using the q-error.
While this motivates its use, there have not existed any
means of minimizing it. Thus, we developed algorithms for
constructing the best linear approximation under lq and the
best piecewise approximation.

With this paper, we laid the foundations of size estimations
minimizing lq. Many areas remain for future work: size
estimations minizing the q-error for joins and projections,
updates, and query feedback. More challenging will be the
development of algorithms producing the best approximation
under lq in the multi-dimensional case. This will be very
useful to deal with correlations, which is the next challenge
we will undertake.

Acknowledgement:. We thank Simone Seeger for her help
preparing the manuscript and Günther Nürnberger for many
fruitful discussions on a first version of our approximation
algorithm.

8. REFERENCES
[1] J. F. Bonnans and A. Shapiro. Pertubation Analysis of

Optimization Problems. Springer, 2000.

[2] M. Charikar, S. Chaudhuri, R. Motwani, and
V. Narasayya. Towards estimation error guarantees for
distinct values. In PODS, pages 268–279, 2000.

[3] D. Donoho and M. Elad. Optimally sparse
representation in general (non-orthogonal) dictionaries
via `1 minimization. Proc. of the National Academy of
Sciences, 100(5), 2003.

[4] M. N. Garofalakis and A. Kumar. Wavelet synopses for
general error metrics. ACM Trans. Database Syst.,
30(4), 2005.

[5] P. Gibbons. Distinct sampling for highly-accurate
answers to distinct values queries and event reports. In
VLDB, pages 541–550, 2001.

[6] L. Haas, M. Carey, M. Livny, and A. Shukla. Seeking
the truth about ad hoc join costs. VLDB Journal, 6(3),
1997.

[7] T. Ibaraki and T. Kameda. Optimal nesting for
computing n-relational joins. ACM Trans. Database
Syst., 9(3), 1984.

[8] Y. E. Ioannidis. The history of histograms (abridged).
In VLDB, 2003.

[9] Y. E. Ioannidis and S. Christodoulakis. On the
propagation of errors in the size of join results. In
SIGMOD, 1991.

[10] H. V. Jagadish, N. Koudas, S. Muthukrishnan,
V. Poosala, K. C. Sevcik, and T. Suel. Optimal
histograms with quality guarantees. In VLDB, 1998.

[11] A. C. König and G. Weikum. Combining histograms
and parametric curve fitting for feedback-driven query
result-size estimation. In VLDB, 1999.

[12] R. Krishnamurthy, H. Boral, and C. Zaniolo.
Optimization of nonrecursive queries. In VLDB, 1986.

[13] Y. Matias, J. S. Vitter, and M. Wang. Wavelet-based
histograms for selectivity estimation. In SIGMOD,
1998.

[14] G. Moerkotte. Best approximation under a convex
paranorm. Technical Report MA-08-07, University of
Mannheim, 2008.

[15] T. Neumann and S. Michel. Smooth interpolating
histograms with error guarantees. In BNCOD, 2008.

[16] V. Poosola, Y. Ioannidis, P. Haas, and E. Shekita.
Improved histograms for selectivity estimates of range
predicates. In SIGMOD, 1996.

[17] N. Reddy and J. R. Haritsa. Analyzing plan diagrams
of database query optimizers. In VLDB, 2005.

[18] R. Rockafellar. Convex Analysis. Princeton University
Press, 1970.

[19] D. W. Scott. Multivariate Density Estimation: Theory,
practice, and visualization. Wiley, 1992.

[20] P. Spellucci. Numerische Verfahren der Nichtlinearen
Optimierung. Birkhäuser, 1993.

[21] J. Ullman. Database and Knowledge Base Systems,
volume Volume 1. Computer Science Press, 1989.

[22] G. Watson. Approximation Theory and Numerical
Methods. Addison-Wesley, 1980.

APPENDIX
A. ASI PROPERTY

The context in which the ASI property is defined can be
sketched as follows [7, 12]. Only queries whose query graph

is a tree are considered. By picking an arbitrary relation
and pointing away the edges from this relation, we derive
a precedence graph. For every relation, there exists exactly
one precedence graph. Only left-deep plans are considered.
That is, the right argument of every join operator in a plan
must be a base relation. Every left-deep plan corresponds
uniquely to a sequence of relations and vice versa. The ASI
property is defined as follows.

Definition A.1. Let A and B be two sequences and V
and U two non-empty sequences. We say that a cost func-
tion C has the adjacent sequence interchange property (ASI
property) if and only if there exists a function T and a rank
function defined for sequences S as

rank(S) =
T (S)− 1

C(S)

such that for non-empty sequences S = AUV B the following
holds:

C(AUV B) ≤ C(AV UB)⇐⇒ rank(U) ≤ rank(V)

if AUV B and AV UB satisfy the precedence constraints im-
posed by a given precedence graph.

B. COST OF SORT MERGE JOIN
We briefly present the cost function for the sort merge join

as developed by Haas et al. [6]. Thereby, we use their nota-
tion. Due to space reasons, we cannot give a full explanation.
The main point here is to show that the cost function is a
polynomial of degree two with positive coefficients. Let R1

and R2 be two relations to be joined and s1 and s2 are their
sizes.

Haas et al. introduce the following abbreviations

WS = M − I −O
RL = (2WS)/F = 2(M − I −O)/F

NRi = si/RL

MPR = M/(NR1 + NR2) = MRL/(s1 + s2),

where M (buffer size), I (input buffer size), O (output
buffer size) are constants derived from the memory allo-
cation scheme. F (fudge factor) is a constant. WS stands
for working set, RL for run length, NR for number of runs,
MPR for memory per run in the merge phase. The overall
I/O costs are calculated by

NsTs +NIOTIO +NxTx,

where Ts denotes seek time, TIO rotational delay, Tx transfer
time, Ns the number of seeks, NIO the number of I/O op-
erations, and Nx the number of pages to be transferred. In
the following, we first give the original formulation by Haas
et al. and then in the next line the transformed version:

Nx = 3(s1 + s2)

Ns = 4 + s1/MPR+ s2/MPR

= 4 + (MRL)(s1 + s2)2

NIO = s1/I + s1/O + s2/I + s2/O + s1/MPR + s2/MPR

= (I +O)/(IO)(s1 + s2) + (MRL)−1(s1 + s2)2

From the transformed part we now can see that the C is a
polynomial of degree two in variables s1 and s2 with positive
coefficients only.

