
Schema-Based Independence Analysis for XML Updates

Michael Benedikt
University of Oxford

michael.benedikt@comlab.ox.ac.uk

James Cheney
University of Edinburgh

jcheney@inf.ed.ac.uk

ABSTRACT
Query-update independence analysis is the problem of determin-
ing whether an update affects the results of a query. Query-update
independence is useful for avoiding recomputation of materialized
views and may have applications to access control and concurrency
control. This paper develops static analysis techniques for query-
update independence problems involving core XQuery queries and
updates with a snapshot semantics (based on the W3C XQuery Up-
date Facility proposal). Our approach takes advantage of schema
information, in contrast to previous work on this problem. We for-
malize our approach, sketch a proof of correctness, and report on
the performance and accuracy of our implementation.

1. INTRODUCTION
In recent years query and transformation languages for XML

data have been studied extensively. The World Wide Web Con-
sortium (W3C) has developed XQuery, a standard XML query lan-
guage with a detailed formal semantics and type system [9, 14].
Most real-world data changes over time, and so it is also impor-
tant to be able to update XML documents and XML-based data.
However, query languages such as XQuery (and transformation
languages such as XSLT) are awkward for writing transformations
that update part of the data “in-place” while leaving most of the
document alone.

There have been a number of proposals and prototype imple-
mentations for XML update languages (see for example [1, 11, 16,
26]). While no clear winner has emerged so far, the W3C has intro-
duced the XQuery Update Facility [10], combining features from
several proposals. This is now supported by many XML database
implementations and appears well on its way to becoming stan-
dard. However, reasoning about updates is challenging; many ba-
sic problems, such as the typechecking and static analysis problems
for XQuery Update (and for XML updates more generally) remain
ill-understood.

One fundamental static analysis problem is that of deciding query-
update independence, or whether an update conflicts with a query [22].
Independence analysis has numerous applications, such as detect-
ing when an integrity constraint needs to be re-validated or a view

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

re-computed after an update occurs. Query-update independence
is also related to problems such as access control and concurrency
control for XML queries and updates. For example, an access con-
trol policy might specify that the result of a particular view must not
be altered. Query-update independence implies that a given update
satisfies this policy. We will not pursue these further applications
in this paper.

Obviously, we can determine at runtime whether an update im-
pacts a query: we simply run the update, then re-run the query, and
finally compare the results. However, in practice this dynamic in-
dependence testing is expensive, especially as the number of con-
straints or views grows, and it does not save us any work if our
ultimate goal is to avoid recomputation. We thus want to compare
an approach based on static analysis of independence against an
approach based on re-evaluation.

Unfortunately, as we shall show, static query-update indepen-
dence testing is undecidable in general (interreducible to query
equivalence) and Raghavachari and Shmueli [22] showed that it
is NP-hard even for XPath-based queries and updates. Therefore,
in this paper we study static analyses that conservatively approx-
imate the true results. Conservative independence analysis either
determines independence or says “unknown”.

We distinguish two application scenarios. In the first, we know
the typical updates and queries well in advance of their evaluation.
In this case, it would suffice to have an offline analysis that detects
independence; such an analysis might be fairly expensive – for ex-
ample, taking minutes or hours. If we are only concerned with what
happens for a fixed (or rarely changing) set of queries and updates,
then we can afford to perform sophisticated and time-consuming
analyses, perhaps even ones that provide exact answers (when this
is decidable). Previous work on static analysis and optimization of
XML updates has focused on such offline scenarios [2].

In the second, online scenario, we are given (perhaps a large
number of) queries expressing constraints or views, but we do not
know the updates in advance. In this case, for the analysis to be
useful, it must take (much) less time than full re-evaluation; if the
analysis takes a long time but ultimately decides that the query will
need to be re-evaluated anyway, then this could impose an unac-
ceptable delay. In this paper, we develop an analysis that is both
accurate and fast enough to be useful even for view maintenance
settings involving relatively small documents (e.g. around 1MB in
size). Of course, this can also be used for offline analysis.

Previously, Ghelli et al. [16] studied update commutativity. Our
work differs from theirs in two important respects. First, our lan-
guage is based on the emerging XQuery Update standard, whereas
theirs is based on an different update language with somewhat more
complicated semantics. Furthermore, the update commutativity
problem resembles, but is not the same as, the query-update in-

dependence problem we study. Second, our approach is based on
leveraging schema information and Ghelli et al.’s work is based on
analysis of paths read or written by the query and update, making
no assumptions on the input. Thus, our approach can take advan-
tage of knowledge of the structure of the input.

Of these differences, the second is the more significant, since
it does not appear hard to adapt Ghelli et al.’s path-based analy-
sis to handle a different update semantics; in fact, XQuery Update
1.0 is in many ways easier to analyze than their language. As we
will show, neither path- nor schema-based analysis is strictly more
precise than the other. It seems worthwhile to combine the schema-
based and path-based approaches, but in this paper we focus only
on the novel schema-based approach.

We illustrate the difference between path and schema-based anal-
ysis via the following examples. The examples refer to a common
schema S defined as follows:

S -> document [A*,B]
A -> a[(B?,C)*]
B -> b[]
C -> c[D]
D -> d[]

The schema above is a representation of an XML Schema (in fact,
a DTD) in which there are types S, A, B, C, and D, while the pro-
duction rules specify the tags and child content of each type. For
example, the first rule says that a node of type S is associated with
tag document, and the types of its children must match the reg-
ular expression A* B. Below we will assume a context in which
variable $doc points to a node of type S in the schema above.

EXAMPLE 1. Consider the XPath queryQ0 that returns all chil-
dren of the variable which are labeled b:

$doc/b

and the update U0 that deletes all d nodes with parent c, grandpar-
ent a, and great-grandparent the root:

delete $doc/a/c/d

Clearly, U0 cannot “impact” Q0, so we do not need to re-compute
Q0 when U0 is applied. This is true for any input document, and
both path-based analysis and schema-based analysis can deter-
mine this.

EXAMPLE 2. Consider the same query Q0 as in the previous
example, and the update U1 that deletes all d nodes lying below the
variable:

delete $doc//d

In this case, path-based analysis cannot ensure thatQ0 and U1 are
independent, since the query and update are not independent on an
arbitrary document. But note that the nodes returned by the query
must have type B, while the nodes deleted by U1 must be of type D,
and no B nodes lie beneath D nodes. Thus we can see thatQ0 and
U1 are independent on all documents matching the schema.

EXAMPLE 3. Consider the XQuery query Q2:

for $x in $doc/a/b
return <c>$x</c>

and the update U2 that deletes all b immediately below the vari-
able:

delete $doc/b

In this case, path-based analysis will easily determine that Q2 and
U2 are independent: it will determine that the update will delete
nodes having path document/b, while the query is concerned with
paths of the form document/a/b. But our schema-based analy-
sis will not detect independence (at least, not with respect to this
schema). The reason is that our approach uses the same type name
B to refer to both the nodes read by Q2 and those deleted by U2,
and does not employ any path or context information.

EXAMPLE 4. As a final example, we consider a query and up-
date whose independence neither path-based nor schema-based
analysis can verify. Consider Q3 that returns all of the nodes
matching $doc/a/b except those under the first a:

for $x in $doc/a[position() <> first()]/b
return <c>$x</c>

and the update U3 that deletes the b nodes under the first a:

for $x in $doc/a[position()=first()]/b
return delete nodes $x

Clearly, Q3 and U3 are independent. However, a path-based anal-
ysis like that of Ghelli et al. [16] cannot detect this because it
does not take position information into account. Since Q3 reads
from some nodes matching $doc/a/b path and U3 impacts some
nodes matching $doc/a/b, we must conservatively conclude that
they may interfere. Similarly, our schema-based analysis cannot
prove that these queries are independent either, since it will stati-
cally observe that Q3 may access nodes of type B whereas U3 may
impact nodes of type B.

This last example illustrates the inevitable trade-off between the
complexity and completeness of a static analysis. We know we
cannot have both, so it is of interest to find efficient techniques that
are incomplete but nevertheless practically useful.

In this paper, we study schema-based independence analysis for
XQuery Updates. Our approach will employ many of the ideas
used in the previous literature on XML query and update analysis
(see Section 5 for a comparison). In particular, we adapt the notion
of the “accessed nodes” of a query used in works such as [18, 6,
16]. Our version must take into account a schema, and is tailored
to the update operations available in the XQuery Update Facility
– prior notions have been either in the context of queries rather
than updates, or in a schema-less setting. While this combination
of features adds complexity to our problem, the “snapshot seman-
tics” of the XQuery Update Facility simplifies things considerably
compared to several other prior language proposals (e.g. [16]). We
feel that this simplicity allows us to isolate some of the key intu-
itions behind the notion of accessed nodes which are more difficult
to extract in the context of a complex language.

The main contributions are thus:
• We give a sound analysis that will detect when an XQuery

query and XQuery Update Facility update are independent.
Our analysis employs a powerful abstraction of XML schemas,
with the expressiveness of arbitrary tree automata, and han-
dles all XPath axes.
• We provide experimental evidence of the efficacy of our anal-

ysis, both in terms of performance and accuracy.
For ease of exposition, we consider independence analysis for a

limited “core” XQuery language that nevertheless suffices for most
of the XMark and XPathMark benchmark queries. We also leave
out XQuery Update’s “transform” query expression and “replace
value of” update operation [10]. We omit proofs and standard defi-
nitions; these are placed in the companion technical report [3].

Judgment Meaning See
σ |=S l : T
σ |=S γ : Γ

Validation Section 2, [3]

σ, γ |= q⇒ σ′, L
σ |= ω σ′

σ, γ |= u⇒ σ′, ω
σ, γ |= u σ′

Evaluation Section 2, [3]

S ` A/ax ::φ
step⇒ A′ XPath step typing Section 3, [3]

S; Γ ` q : A Type inference Section 3, Figure 1
S; Γ ` u impacts A Impacted nodes Section 3, Figure 2

S; Γ `SAC q : A Static access cover Section 3, Figure 3
S ` T u T′ Aliasing Section 3

Table 1: Judgments used in the paper

Outline. The rest of this paper is structured as follows: Section 2
reviews core query, update, and schema languages we will use.
Section 3 presents the main components of our analysis. Section 4
discusses our implementation and gives experimental results. Sec-
tion 5 discusses related and future work and Section 6 concludes.

2. BACKGROUND
In this paper we employ a number of different relations defin-

ing the semantics and static analysis of XQuery and XQuery Up-
dates. These notations are summarized in Table 1 for easy refer-
ence, along with pointers to the parts of the paper or companion
technical report where they are discussed or defined.

Stores and Dynamic Environments. Following [12] we em-
ploy a simplified data model and query language where we do not
consider node attributes. An instance σ of the data model (or sim-
ply, a store) is an ordered labeled forest, whose nodes l, l′, m (also
referred to as a locations) are either element nodes or text nodes.
An element node has a label, while a text node has an associated
string. In addition to its label or string, each node has an identifier,
which is assumed to be unique within a store.

A (dynamic) variable environment is a mapping γ taking a finite
set of expression variables to sequences of locations within a store.
We often write location sequences as L, L′, L′′.

Schemas. In this paper we employ an abstraction of XML Schema
that generalizes DTDs, corresponding in expressiveness to specifi-
cations in Relax NG [20]. Our schema formalism consists of an
alphabet Σ of element tags, a collection T of type names (or types),
a function mapping type names to elements, and a set of rules that
associate to each type name a regular expression over type names.
There is also a special type text which can appear in regular ex-
pressions, but has no associated rule. A schema may also optionally
have a subcollection of types that are designated as root types. In
[21] these are called specialized DTDs. They can also be consid-
ered a normal form for regular expression types [17]. We will use
capital letters for types and lower-case letters for tags, while using
regular expression type syntax, which combines the type name with
the regular expression. In the example from the introduction, our
type names include A, B, C, etc. while our tags will include a, b,
and c. The rule A -> a[(B?,C)*] states that type name A is
associated with tag a, and with the regular expression (B,C)* . A
DTD is a special case of our formalism where type names are the
same as tags.

A valid typing for S on a store σ is an assignment λ of nodes to
types such that a) every text node gets mapped to the special type
text, while every root node is mapped to a root type, and b) if
a node is assigned type T by λ and T -> a[e] is a rule of the
schema, then the label of the node must equal a, and there must be

a sequence of types matching the regular expression e such that the
ith child of l is assigned by λ to the ith type in the sequence. The
notion of a node l in a document satisfying or matching a type T

in a schema S (written σ |=S l : T) is that there is a typing λ that
assigns l to T.

In this paper we will use a simplification of the standard XQuery
type system that ignores node order within sequences returned by
queries. A static environment is a mapping from expression vari-
ables to sets of types in a schema S. A variable environment γ
for store σ is consistent with a static environment Γ for schema S
(written σ |=S γ : Γ) if for every variable x ∈ dom(γ), all nodes
in γ(x) match some type in Γ(x).

Queries. We will use a simple core language for XQuery ex-
pressions:

q ::= x | () | q, q′ | 〈a〉q〈/a〉 | s | x/step
| let x := q in q

′ | if q then q1 else q2

| for x ∈ q return q
′

step ::= ax :: φ | text()
ax ::= self | child | descendant

| desc− or− self | follsib | precsib
| parent | ancestor | anc− or− self

The (), 〈a〉q〈/a〉 and q, q′ and s expressions build XML values.
The constant string expression s builds the fixed text node given by
the string s. Variables and let-bindings are standard; conditionals
branch depending on whether their first argument is nonempty. The
expression x/text() retrieves any text node lying below x, while
x/ax ::φ performs an XPath step starting from x, where ax is one
of the standard XPath axes and φ is an XPath node test (either ∗ or
an element tag a). In this paper we consider only a representative
selection of the axes; it is straightforward to extend our results to
other axes. The iteration expression for x ∈ q return q′ evaluates
q, and for each node l in the result evaluates q′ with x bound to l,
concatenating the results in order. Other axes, such as following,
can be built up from these using composition.

We model the operational semantics of queries using a judge-
ment σ, γ |= q ⇒ σ′, L. Note that the input store σ may grow
during evaluation of a query, for example in evaluating expressions
of the form 〈a〉q〈/a〉 that require new nodes to be allocated; how-
ever, the values of nodes in σ are always preserved in σ′. The rules
defining this (standard) semantics are given in [3].

A selection query is one that does not use the element node con-
struction operation 〈a〉q〈/a〉 or string formation s. This restriction
implies that selection queries always return nodes already present
in the input and do not construct new nodes.

Atomic updates. We consider atomic updates of the form:

ι ::= ins(L, d, l) | del(l) | repl(l, L) | ren(l, a)

d ::= ← | → | ↓ | ↙ | ↘

Here, the direction d indicates whether to insert before (←), after
(→), or into the child list in first (↙), last (↘) or arbitrary position
(↓). Moreover, we consider sequences of atomic updates ω with the
empty sequence written ε and concatenation written ω;ω′. In [3]
we define the semantics of atomic updates as a relation σ |= ι
σ′.

Updating expressions. We now define the syntax of updating
expressions, based roughly on those of the W3C XQuery Update

proposal.

u ::= () | u, u′ | let x := q in u

| if q then u1 else u2 | for x ∈ q return u

| insert q d q0 | replace q0 with q

| rename q0 as a | delete q0

The XQuery Update proposal re-uses existing query syntax for up-
dates. The () expression is a “no-op” update, u, u′ is sequen-
tial composition, and let-bindings, conditionals, and for-loops are
also included. There are four atomic update expressions: insertion
insert q d q0, which says to insert a copy of q in position d rel-
ative to the value of q0; deletion delete q0, which says to delete
the value of q0; renaming rename q0 as a, which says to rename
the value of q0 to a; and finally replacement replace q0 with q,
which says to replace the value of q0 with a copy of q. In each
case, the target expression q0 is expected to evaluate to a single
node; if not, evaluation fails at run time (as specified by the W3C
draft [10]).

Updates have a multi-phase semantics. First, the updating ex-
pression is evaluated, resulting in a pending update list ω. We
model this phase using an update evaluation judgement σ, γ |=
u ⇒ σ′, ω. The rules for these judgements are presented in [3].
Recall that the store may grow as a result of allocation; however,
but the values of existing locations in σ do not change in this phase.
Next, ω is sanity-checked to ensure, for example, that all update tar-
gets are mutable nodes in σ and no node is the target of multiple
rename or replace instructions. We do not model the sanity check
step explicitly here. Finally, the pending updates are applied to the
store. The formal semantics for update application is given in [4].

One natural-seeming semantics for update application is simply
to apply the updates in ω in (left-to-right) order. However, this
naive semantics is not what the W3C proposal actually specifies.
In the W3C proposal [10], updates are reordered; inserts and re-
names are performed first, followed by replacements, and finally by
deletions. For the purposes of this paper, we will conservatively as-
sume that atomic updates may be performed in any order. A static
analysis that is sound with respect to this semantics will also be
sound with respect to any more restrictive semantics, including the
W3C proposal.

We use the notation σ, γ |= u σ′, for the judgement that holds
iff update expression u generates a pending update list on store σ
in context γ such that the resulting pending update list is valid, and
when applied (in some order) yields store σ′.

The sequential composition of an update u and a query q is
written u; q, and σ, γ |= u; q ⇒ σ3, L is an abbreviation for
∃σ2.σ, γ |= u σ2 ∧ σ2, γ |= q⇒ σ3, L.

We emphasize here that updates need not preserve the original
schema of a document. It is nontrivial to calculate the effect of an
update on a schema; we have also investigated this problem in a
separate paper [4].

2.1 Equivalence and Independence
A query q is independent of an update u if, intuitively, the re-

sult of applying q after u is “the same” as the result of performing
q. But what does it mean for the results to be the same? Clearly,
the nodes resulting from performing q after u should be allowed to
differ from those resulting from performing q on the original store
in inessential ways: for example, they can disagree on node identi-
fiers. We capture the precise notion of equivalence in the following
definitions.

DEFINITION 1 (VALUE EQUIVALENCE). Given stores σ, σ2 and
sequences L ⊆ dom(σ), L′ ⊆ dom(σ2), we say σ, L and σ2, L′ are

value equivalent (σ, L ∼=V σ2, L
′) provided L = l1, . . . , ln and

L′ = l′
1, . . . , l

′
n and for each i ∈ {1, . . . , n}, the subtree with root

li in σ is isomorphic to the subtree with root l′
i in σ2.

Value equivalence captures the idea that two programs return the
same XML document given the same input, even using different
node identifiers. For example, if q is a query that generates a XML
tree that is sent to an external application, then we only care about
this value, not the identities of the nodes generated by q.

DEFINITION 2 (QUERY-UPDATE INDEPENDENCE). Given store
σ and environment γ, we say that query q and update u are inde-
pendent on (σ, γ) if:

whenever σ, γ |= q L1, σ1 holds, there exist σ2, L2 satisfying
σ1, L1

∼=V σ2, L2 and σ, γ |= (u; q) L2, σ2 holds, and vice
versa.

Given a query q, and a update u, we say that they are indepen-
dent if the above holds for every σ and γ.

EXAMPLE 5. We consider some examples, written using a vari-
ant of the XML Update Facility syntax. The query:

for $x in $y/foo return 〈a〉$x〈/a〉

is independent of update

for $x in $y/bar return delete $x

because nothing the update does has an observable effect on the
result of the query. Any changes made by the update are only to
parts of the document the query does not access, so the result of the
query will not change.

A more involved example: query

for $x in $y/foo return 〈a〉$x〈/a〉

is independent of update

for $x in $y/foo return insert bar[42] after $x

because again the inserted nodes are not visible to the query.
On the other hand, query

for $x in $y/foo return 〈a〉$x〈/a〉

is not independent of update

for $x in $y//bar return insert foo[42] after $x

because for some inputs the insertion will lead to additional nodes
being visible in the result of the query.

An update is independent of a query relative to a schema if,
roughly, the results of evaluating u; q and q are value-equivalent
for all stores satisfying the schema. To make this precise, we use a
schema and static environments to constrain the stores we consider:

DEFINITION 3 (INDEPENDENCE RELATIVE TO A SCHEMA).
A query q, and update u, are independent relative to S, Γ if Defi-
nition 2 holds for every σ and every environment γ consistent with
Γ.

EXAMPLE 6. Recall query

for $x in $y/foo return 〈a〉$x〈/a〉

and update

for $x in $y//bar return insert foo[42] after $x

Although this query–update pair is not independent in general, a
schema might tell us that there are actually no immediate children
of $y with element label bar, and this query-update pair is inde-
pendent with respect to such a schema.

The query-update independence problem is undecidable for any
realistic query and update language. For example, for full XQuery
queries and XML Update facility updates, the problem is undecid-
able even when the query or update is fixed: this follows easily
from a reduction to the satisfiability problem for first order logic
over data trees.

For restricted cases independence is decidable, but at an enor-
mous cost:

THEOREM 1. For boolean XQuery queries and updates as given
by the grammar in Section 2, the Query-Update independence prob-
lem is decidable, as well as the schema-based Query-Update inde-
pendence problem. However, even for a fixed update and schema
the problem is non-elementary.

Both of these problems are proven by using a connection between
the independence problem and the equivalence problem for XUp-
date, which can in turn be analyzed using a combination of expres-
siveness results in [5], which relate XML query languages to logics,
and known results about the complexity of equivalence of logical
formulas on trees. Details are in the technical report [3].

3. STATIC ANALYSIS

3.1 Static analysis based on schemas
The intuition behind our independence analysis is similar to that

of [16]: we want to show that for any input document and variable
environment, the nodes affected by an update expression are dis-
joint from those returned or accessed by a query. There is already a
standard notion of static typing that can be used to approximate the
nodes returned by a query, and we first review a simplified static
type system for XQuery. We will then define the runtime notions
of read and updated nodes, and show how to statically approximate
these as well.

In our analysis, we abstract input documents by schemas, sets of
nodes by sets of type names, and dynamic environments by static
environments.

Static type analysis. For queries we define a typechecking judge-
ment that calculates the possible return types for nodes returned
by the query when run in static environment Γ. In our analysis
of queries we do not analyze the results of node construction; we
restrict our attention to the possible nodes returned in the input doc-
ument, where each node satisfies some type in the input schema. A
more refined analysis would create a new “external” type to repre-
sent the presence of constructed nodes in the output (analogous to
the approach taken in [16] in the context of path-based analysis).
Currently we do not make this distinction, and have a judgement
S; Γ ` q : A, where A is a set of type names in S. The rules are
simplifications of the standard XQuery typing rules, and are found
in Figure 1. These rules can be read as a (nondeterministic, partial)
function that takes a schema S, static environment Γ, and query
expression q and returns a set of types A.

The key rules with respect to previous work are those for node
construction and XPath axis steps, respectively. These rules make
use of an auxiliary judgement S ` A/ax ::φ

step⇒ A′ to model static
typechecking for XPath steps. For the purposes of the soundness
proofs, one needs only that this judgement over-approximates the
set of types of nodes that can be reached by applying the axis step
ax ::φ to a node satisfying a type name in A. Our implementation
computes exactly this set of types (see Subsection 4.1).

REMARK 1. This analysis is (intentionally) simplistic: unlike
XQuery’s static type system (or more sophisticated type systems

S; Γ ` s : ∅

S; Γ ` x : Γ(x)

S; Γ ` () : ∅

S; Γ ` q1 : A1 S; Γ ` q2 : A2

S; Γ ` q1, q2 : A1 ∪ A2

S; Γ ` q1 : A1 S; Γ ` q2 : A2

S; Γ ` if q then q1 else q2 : A1 ∪ A2

S; Γ ` q1 : A1 S; Γ, x : A1 ` q2 : A2

S; Γ ` let x := q1 in q2 : A2

S ` Γ(x)/ax ::φ
step⇒ A

S; Γ ` x/ax ::φ : A

S ` Γ(x)/desc− or− self::∗ step⇒ A
S; Γ ` x/text() : A

S; Γ ` q1 : A S; Γ, x : A ` q2 : A′

S; Γ ` for x ∈ q1 return q2 : A′

S; Γ ` 〈a〉q〈/a〉 : ∅

Figure 1: Input type inference rules

such as that of Colazzo et al. [12]), we discard the regular expres-
sion structure of the data, since all we need for independence anal-
ysis is a set of type names. Our step judgement is as refined as
possible given that we only deal with type names, but an analysis
that treated the query result as an ordered set can be much more
precise. On the other hand, our analysis does handle all XPath
steps, whereas XQuery gives the results of ancestor or sibling axis
steps the most general possible type, and Colazzo et al. do not
handle these axes.

For selection queries, the correctness of this judgement is easy
to state and prove. In the presence of node-construction, the cor-
rectness criterion is a bit subtle:

THEOREM 2 (TYPE SOUNDNESS). Suppose σ |=S γ : Γ and
S; Γ ` q : A. If σ, γ |= q ⇒ σ2, L then for every l in L such that
l ∈ dom(σ), there exists a type T ∈ A such that σ2 |=S l : T.

The proof is outlined in [3].
Update impact analysis. We next turn to the problem of stati-

cally approximating the behavior of the update. In previous work [4]
we developed a complicated analysis that approximates the set of
possible pending update lists generated by an update. However,
here we will simplify matters by approximating only a set of nodes
“impacted” by an update.

DEFINITION 4 (IMPACTED NODES). Given a store σ, we say
a node in σ is impacted by an atomic update sequence ω on σ if it
is a target of a rename or insert into command, or the parent of
a target of a delete, replace, insert before or insert after

command. Similarly, given a store σ and variable environment γ, a
node is impacted by an update expression u if it is impacted by the
atomic update sequence generated by u.

Intuitively, the impacted nodes of an update are the nodes whose
label or child sequence is changed by the update.

The impacted types for an update u schema S and static environ-
ment Γ is a set of type names A of S, provided that, in any σ, γ
consistent with S, Γ, each impacted element node of u on σ, γ sat-
isfies a type in A, and each impacted text node has a parent that
satisfies a type in A.

We use a judgement:

S; Γ ` u impacts A

to infer the impacted types. The judgement is given in Figure 2.
Note that the impact analysis judgement makes use of the query
type inference judgement in the rules for for, let, and atomic
updates.

The soundness of this judgement is stated as follows:

THEOREM 3 (IMPACT SOUNDNESS). Suppose σ |=S γ : Γ

and S; Γ ` u impacts A. If σ, γ |= u ⇒ σ2, ω then for every node
l ∈ dom(σ) that is impacted by ω, there exists a type T ∈ A such
that σ |=S l : T.

The proof follows easily from the definition of impact set, plus the
soundness of type inference. We discuss a few cases.

• let and for are handled similarly (in rules (ILet) and (IFor)),
given our set-based abstraction. The types of nodes in the in-
put store that can be returned by the query are determined,
using a call to the type-inference judgement in Figure 1. The
static context is then expanded by assigning this set of types
to the newly-bound variable x.

• Because insert into commands impact the target of the
insert, we statically approximate the impact set by the types
of these targets (in rule (IInsInto)). The types are likewise
calculated by a call to the type-inference judgement. The
same comment applies to rename (in rule (IRename)).

• insert before and insert after commands impact the
parent of the target. The types of such parents are approxi-
mated by first estimating the target types using type-inference,
and then tracing their parents in the schema using the step-
judgement (in rule (IInsSib)). The same approach is used
for replace and delete commands (in rules (IReplace)
and (IDel)).

Access Set Analysis. To determine whether an update interacts
with a query, we need an abstraction of the nodes the query “ac-
cesses” (or those on which the query “depends”). This is similar
to the concepts of the “accessed nodes” [16] or the “projection”
of a query [18]. As pointed out in both these works, the notion
of accessed nodes is subtle; we will begin by looking at the cor-
responding runtime notion. Intuitively, if the nodes accessed and
returned are disjoint from those modified by an update, this should
imply that the query and update are independent.

DEFINITION 5 (I-SIMILARITY AND N-SIMILARITY). For a set
of node identifiers I we say two stores σ and σ2 are I-similar (writ-
ten σ 'I σ2) provided that for every identifier i in I, we have

1. there are nodes l in σ and l′ in σ2 with identifier i, and these
nodes have the same label.

S; Γ ` () impacts ∅
(IEmp)

S; Γ ` u1 impacts A1 S; Γ ` u2 impacts A2

S; Γ ` u1, u2 impacts A1 ∪ A2
(ISeq)

S; Γ ` q : A S; Γ, x : A ` u impacts A′

S; Γ ` let x := q in u impacts A′ (ILet)

S; Γ ` u1 impacts A1 S; Γ ` u2 impacts A2

S; Γ ` if q then u1 else u2 impacts A1 ∪ A2
(ICond)

S; Γ ` q : A S; Γ, x : A ` q′ impacts A′

S; Γ ` for x ∈ q return q′ impacts A′ (IFor)

d ∈ {↓,↙,↘} S; Γ ` q′ : A
S; Γ ` insert q d q′ impacts A

(IInsInto)

d ∈ {←,→} S; Γ ` q′ : A S ` A/parent :: ∗ step⇒ A′

S; Γ ` insert q d q′ impacts A′ (IInsSib)

S; Γ ` q : A
S; Γ ` rename q as a impacts A (IRename)

S; Γ ` q : A S ` A/parent :: ∗ step⇒ A′

S; Γ ` replace q with q′ impacts A′ (IReplace)

S; Γ ` q : A S ` A/parent :: ∗ step⇒ A′

S; Γ ` delete q impacts A′ (IDel)

Figure 2: Update impact rules

2. if l and l′ are as above, then there is a bijection from the
children of l to the children of l′ preserving node identifiers
and sibling order.

For a set of element nodes N in σ, we say σ 'N σ2 iff σ 'I(N) σ2
where I(N) is the set of identifiers of N.

Thus if two stores are I-similar then the children and labeling of
locations in I are indistinguishable. From now on, we will gener-
ally identify a node with its identifier, and if σ 'N σ2 we will say
that the nodes in N and their children are “still in σ2”, when tech-
nically we mean that there are nodes with the same identifiers in
σ2.

Our notion of N being a set of “accessed nodes” for a query q will
be in terms of N-similarity preserving q. In the case of a selection
query, we require that the set of accessed nodes be such that: if
two stores agree on them, then the query returns the same list of
locations. In the case of general queries, we require that the list
being returned is “the same up to renaming constructed or copied
nodes”.

DEFINITION 6 (DYNAMIC ACCESS COVER). Let q be a query,
σ1 an input store, and γ an environment. Suppose σ1, γ |= q ⇒
L, σ2 with L = l1 . . . lk.

If q is a selection query, we say that N is a dynamic access cover
for q on σ, γ provide that for any σ′

1 containing all locations in γ
with σ′

1 'N σ, we have σ′
1, γ |= q⇒ L, σ′

2 for some σ′
2.

For q a general query, we say N is a dynamic access cover if
for any σ′

1 as above, we have σ′
1, γ |= q ⇒ L′, σ′

2, where L′ =
l′
1 . . . l

′
k, and there is a bijection f from the range of L to the range

of L′ such that:

• ∀i ≤ k. l′
i = f(li),

• f preserves node identifiers on σ1,

• for every node n, the isomorphism type of n within its con-
nected component is the same as the isomorphism type of
f(n) within its component.

Notice that if N is a dynamic access cover for a selection query q

on σ1, γ, and we update σ1 to get store σ2 without touching N, then
we know only that the locations in σ1 returned by q are unchanged.
However, the labels of these locations, as well as locations in the
subtrees underneath these nodes may still change. Thus for an up-
date to be independent of a query, we will need to know a bit more
than the fact that it does not update anything in an access cover.
For example if q = $doc/child::a, then an access cover for q on
σ1 would include the nodes pointed to by $doc and their children.
An update to to σ1 that changes a grandchild of $doc may not be
independent of q, even though such an update does not impact the
access cover for q.

Of course, we also want a static notion of access cover that ap-
proximates the dynamic one.

DEFINITION 7 (STATIC ACCESS COVER). Given schema S,
selection query q and static environment Γ, a Static Access Cover
is a set of type namesA from S such that whenever σ, γ is consistent
with S, Γ and D is all the elements nodes in σ that can be assigned
to a type in A in σ, then D is a Dynamic Access Cover for q on
σ, γ.

The judgement S; Γ `SAC q : A allows us to compute, given a
schema S, static environment Γ, and query q, a set of type namesA
in S that is a Static Access Cover. The rules are shown in Figure 3.
Formally, the desired correctness property is:

THEOREM 4 (ACCESS SOUNDNESS). If S; γ `SAC q : A
then A is a static access cover for q in σ.

We will explain the most interesting cases below, assuming for the
moment that q is a selection query.

• Rule (Var) The empty set of types is a static cover for a
variable access, because the empty set of nodes is a dynamic
cover. This is because if a variable x points to location l in a
store σ, and we “update σ” – change it to some σ′ that still
has location l in it – the locations returned by the query x
are the same. Renamings may change the label of l, deletes
may detach l from its parent, but the query will still return l,
which is all we require for an access cover.

• Rule (Text) The corresponding runtime claim is that given a
store σ and environment where variable x points to a location
l, if N is the set of all element descendants of l, then N forms
a dynamic access cover for x/text(). If we modify σ to get
a store σ2 N-similar to σ, then the set of element descendants
of l and their children will be the same (by the definition
of N-similarity). Hence the collection of text nodes returned
will be the same.

• Rules (Self1) - (Self2) The runtime claim for the label test
version is that given σ and variable x pointing to a location l

S; Γ `SAC x : ∅
(Var)

S; Γ `SAC () : ∅
(Empty)

S; Γ `SAC q1 : A1 S; Γ `SAC q2 : A2

S; Γ `SAC q1, q2 : A1 ∪ A2
(Concat)

S; Γ `SAC q : A S; Γ `SAC q1 : A1 S; Γ `SAC q2 : A2

S; Γ `SAC if q then q1 else q2 : A ∪A1 ∪ A2
(IfThen)

S; Γ `SAC q1 : A1 S; Γ ` q1 : A2 S; Γ, x : A2 `SAC q2 : A3

S; Γ `SAC let x := q1 in q2 : A1 ∪ A3
(Let)

S ` Γ(x)/descendant::∗ step⇒ A
S; Γ `SAC x/text() : Γ(x) ∪ A

(Text)

S; Γ `SAC x/self::a : Γ(x)
(Self1)

S; Γ `SAC x/self::∗ : ∅
(Self2)

ax sibl. axis S ` Γ(x)/ax ::∗ step⇒ A S ` Γ(x)/parent::∗ step⇒ A′

S; Γ `SAC x/ax ::a : A ∪A′ (Sib1)

ax sibl. axis S ` Γ(x)/parent::∗ step⇒ A
S; Γ `SAC x/ax ::∗ : A

(Sib2)

ax parent or ancestor axis S ` Γ(x)/ax ::∗ step⇒ A
S; Γ `SAC x/ax ::φ : A

(Up)

S ` Γ(x)/child::∗ step⇒ A
S; Γ `SAC x/child::a : Γ(x) ∪ A

(Child1)

S; Γ `SAC x/child::∗ : Γ(x)
(Child2)

S ` Γ(x)/descendant::∗ step⇒ A
S; Γ `SAC x/descendant::φ : Γ(x) ∪ A

(Desc)

S; Γ `SAC x/descendant::φ : A S; Γ `SAC x/self::φ : A′

S; Γ `SAC x/desc− or− self::φ : A ∪A′ (DOS)

S; Γ `SAC x/ancestor::φ : A S; Γ `SAC x/self::φ : A′

S; Γ `SAC x/anc− or− self::φ : A ∪A′ (AOS)

S; Γ `SAC q1 : A1 S; Γ ` q1 : A2 S; Γ, x : A2 `SAC q2 : A3

S; Γ `SAC for x ∈ q1 return q2 : A1 ∪ A3
(For)

S; Γ ` q : A S; Γ `SAC q : A′′

S ` A/desc− or− self :: ∗ step⇒ A′

S; Γ `SAC 〈a〉q〈/a〉 : A′ ∪ A′′ (EltCon)

S; Γ `SAC s : ∅
(StrCon)

Figure 3: Access Cover Algorithm

then l itself forms a dynamic access cover for x/self::a. If
σ2 is {l}-similar to σ, then the label of l in σ2 is the same,
hence the label test will return the same in σ2 as in σ. The
wildcard version self::∗ is the same as the variable case in
Rule (Var), and hence also accesses nothing.

• Rules (Sib1) - (Sib2) Consider the label-test version ax ::a
in Rule (Sib1). The runtime claim is that given σ and vari-
able x pointing to a location l then if N contains the parent of
l unioned with the set of nodes resulting from applying this
sibling axis step to l, then N is a dynamic access cover. If σ2
is N-similar to σ, then since the parent of l is in N, the collec-
tion of siblings of l will be the same in σ2 as in σ, and have
the same sibling order. Furthermore, the labels of the sib-
lings in the direction given by ax will be unchanged. Hence
the label test will return the same in σ2 as in σ.

For the wildcard version in Rule (Sib2), note that we no
longer require that the labels of the siblings remain the same.
Hence in the argument above, we do not need N to contain
the siblings.

• Rules (Child1) - (Child2) Consider the label-test version
child::a in Rule (Child1). The runtime claim is that given
σ and variable x pointing to a location l then a set N contain-
ing l and all its children, is a dynamic access cover. If σ2 is
N-similar to σ, then since l itself is in N, the set of children of
l is the same in σ2 as in σ, since N-similarity requires preser-
vation of children. Since the children of l are in N, the labels
of the children are all preserved, and hence the set of children
passing the label test is unaffected as well.

For the wildcard version, child::∗ in Rule (Child2), note
that we no longer require that the labels of children remain
the same, and hence we do not need N to contain the children.

In the discussion above, we have ignored the presence of node
construction. Node construction is a subtle issue for the schema-
based approach, since the new documents that result do not satisfy
the input schema. A fine-grained analysis would analyze the struc-
ture of the constructed nodes (e.g. inferring a new schema), and
then track navigation within them. In our approach, we do not do
such tracking, but rather assume that the constructed document is
immediately navigated in its entirety. The rule (EltCon) states that
the nodes accessed by 〈a〉q〈/a〉 are those accessed by q plus all the
non-strict descendants of nodes in the input document returned by
q. That is, when we copy a node into the new document, the result
may now be impacted by any changes below the node.

In the presence of node construction, formally what we calculate
is a set of type names A in the input document such that: for any
store σ satisfying the schema and environment γ, for any two ex-
tensions σ2, γ′ and σ3, γ′ which may have arbitrary nodes added
to variable assignments, but only nodes disconnected from those in
σ, where σ3 and σ2 agree on all nodes in A as well as all nodes
outside of σ, then the results of q on σ and σ2 are equivalent – i.e.
satisfy the conclusion of Definition 6. (Note that updates such as
node deletion can also invalidate the schema but this is irrelevant
since Theorem 4 concerns only queries).

Aliasing. To obtain a safe analysis, we need to know when two
types may or must not “alias”. We say that T and T′ may alias (with
respect to S) provided that for some σ and l ∈ dom(σ), we have
σ |=S l : T and σ |=S l : T′. There is a tractable exact algorithm
for determining non-aliasing of types T and T′: convert the schema
to a non-deterministic tree automaton A [25] in which types T and
T′ will each correspond to states. In case there are root types, these
correspond to the final states; otherwise all states are final. In the

product A2 perform reachability analysis to see if the product state
(T, T′) can be inhabited by a run that reaches a final state. A similar
analysis is done in [23]. For the purposes of this paper we assume
that we are given a procedure S ` T u T′ such that if T and T′ may
alias we have S ` T u T′.

Independence Testing. Finally, we assemble the components of
this section to give an independence test. The algorithm is summa-
rized in Algorithm 3.1. As per the preceding discussion, it is not
sound to simply test that the static access cover of the query is dis-
joint from the impact set of the update — this is necessary, but not
sufficient. We must also ensure that the update cannot modify any
of the tree structure under the nodes returned by the query. Thus,
for update u and query q to be independent, it suffices that u does
not update any type accessed by q or any type below something
returned by q. We formalize this as stating the following indepen-
dence test:

THEOREM 5. For a schema S and static environment Γ, sup-
pose that

• A is a Static Access Cover for selection query q and Γ,

• A′ is such that S; Γ ` q : A′

• A′′ is such that S ` A′/desc− or− self::∗ step⇒ A′′

• A′′′ is the set of impacted types for update u and Γ.

Then if no type in either A or A′′ aliases a type in A′′′, then u

and q are independent.

The theorem proves the soundness of Algorithm 3.1.

Algorithm 3.1 Sound Test for Independence
(Independence Test)
Input: A schema S, static environment Γ, query q, and update u
Output: yes if q and u are found to be independent on S, Γ false
otherwise

Calculate A such that S; Γ `SAC q : A using Figure 3
Calculate A′ such that S; Γ ` q : A′ using Figure 1
Calculate A′′ such that S ` A′/desc− or− self::∗ step⇒ A′′

Calculate A′′′ such that S; Γ ` u impacts A′′′ using Figure 2
If ∃T ∈ A ∪A′′. ∃T′ ∈ A′′′. S ` T u T′ then return false
Else return true

Complexity of the analysis. The most expensive step of the
static analysis is the step calculation S ` T/ax ::φ

step⇒ A′. Our
implementation uses a straightforward syntactic analysis of regu-
lar expressions to determine this relation for the sibling axes, child
axis, and parent axis. We then perform a fixed-point iteration to
handle the transitive vertical axes, resulting in a worst-case time
of O(|S|3). This relation takes at worst O(|S|2) space and can
be precomputed once and for all. The aliasing relation, which
takes at most quadratic time and space, can likewise be precom-
puted. The input type inference algorithm makes only one call
to each subformula, with the size of the context argument being
bounded linearly in the size of the schema: it thus runs in time
O(|S′| + |q|), where S′ is the size of the reachability relation pre-
computed from the schema. The update impact algorithm is like-
wise in O(|S′| + |u|). The access cover algorithm of Figure 3
runs in time O((|S′|+ |q|)2), since at most two recursive calls are
made to each subquery. The final algorithm makes only linearly
many calls to each of these components, and hence runs in time
O((|S′|+ |q|)2 + |u|) ≤ O((|S|2 + |q|)2 + |u|).

4. EXPERIMENTAL EVALUATION

4.1 Implementation
We implemented our independence analysis in OCaml. The pro-

totype currently handles the core fragment of XQuery discussed
in this paper, plus some syntactic sugar (including the following
and preceding axes, which are compositions of the basic axes in
this paper). The XMark and XPathMark queries we used can all be
translated to this fragment.

Our experiments only involved DTDs, for which alias analysis is
trivial: two type names can alias if and only if they are equal (since
each type has a unique element tag and no types can be empty in
a DTD). Therefore we used the obvious constant-time alias test
instead of the more general quadratic test that would be needed
for XML Schemas or general tree automata.

Our implementation employs a schema data structure that pre-
computes the sets of possible children, parents, following siblings,
and preceding siblings of each type name. These sets are easy to
compute once at the beginning of computation. We do not pre-
compute the other axes because these are more expensive and less
frequently needed. Instead, we compute them on-the-fly only as
needed.

4.2 Benchmarks and Experimental Setup
Our measurements were performed on an Intel Pentium D (3.0

Ghz) running Ubuntu Linux 8.10. We used the XMark random
data generator to generate test documents of sizes 1.1MB, 2.3MB,
5.7MB and 11MB. We used a standard installation of Galax 1.1 to
measure query and update processing times. Galax 1.1 supports the
W3C XQuery Update Facility 1.0 via a command-line option, and
we used this option to run the updates.

We constructed a view maintenance benchmark using all of the
XMark [24] queries and some of the XPathMark [19] queries (A1–
8 and B1–8). All of these queries operate on the XMark data,
for which there is a standard schema available (auction.dtd). The
queries exercise all of the features of our XQuery core language, in-
cluding all XPath axes, the text() node test, and element node con-
struction, as illustrated by Table 2. We also included a trivial query
Q0 = () that has no effect and a trivial update U0 = $auction that
returns the input document unmodified. We observed that Galax al-
ways fully parses its input by default and so these trivial queries and
updates can be used to determine (and adjust for) the fixed common
costs of loading data and (for updates) saving the results.

We regard all of these queries as possible materialized views on
the data, and we also used the XPathMark queries as the basis of
updates. For each XPathMark query p named Ai, Bi, we define
updates UAi or UBi respectively to be the deletion updates of the
form delete p. We only considered deletion in the experiments
because our update analysis ignores (almost) all information about
the type of update performed.

Moreover, since deletion always decreases the amount of data,
the time to perform a deletion is generally a lower bound on the
time needed to perform other kinds of updates, and similarly the
time needed to re-evaluate a query after a deletion is a lower bound
on the time needed to re-evaluate after other kinds of updates. Thus,
if our analysis is effective when used with deletion-only updates,
then it will likely be competitive with updates performing other
operations or performing a mixture of operations.

4.3 Experimental Results
Validity and Precision. For each update and query pair (U,Q),

we checked whether U and Q are (dynamically) independent with
respect to the fixed (1.1MB) document. We also checked indepen-

Table 2: Features used by queries and updates. The updates
are based on the XPathMark queries A1–A8 and B1–B8 and so
their rows are combined.

Query# child text() node descendant parent ancestor sibling
Q0

(U)A1 X
(U)A2 X X
(U)A3 X X
(U)A4 X
(U)A5 X X
(U)A6 X
(U)A7 X
(U)A8 X
(U)B1 X X
(U)B2 X X
(U)B3 X X
(U)B4 X X
(U)B5 X X X X
(U)B6 X X X X
(U)B7 X X
(U)B8 X X

Q1 X X
Q2 X X X
Q3 X X X
Q4 X X X
Q5 X X
Q6 X X
Q7 X X
Q8 X X X
Q9 X X X
Q10 X X X
Q11 X X X
Q12 X X X
Q13 X X X
Q14 X X X
Q15 X X X
Q16 X X X
Q17 X X X
Q18 X
Q19 X X X X
Q20 X X

dence statically for each such pair. Table 3 shows the results. In
Table 3, S indicates that static independence check succeeded, and
and D indicates that the query and update were dynamically inde-
pendent on the 1.1MB document.

Update evaluation time. We measured the time needed to eval-
uate each of the updates on XMark documents of varying sizes.
For each update, we measured the time needed by Galax to load
the document, perform the update, and store the updated document.
We also measured the time Galax needed just to load and store the
document without making any changes. The difference between
these two times is reported as the update processing time in Fig-
ure 4.

View maintenance. For each update, we measured the cost of
maintaining the views using independence analysis to avoid recom-
puting views that are independent of the update. We measured the
time needed to perform independence checks (tind

c) and the time
needed to recompute views that could not be certified independent
of the update (tind

r). Table 4 shows these measurements, along with
the total independence-based maintenance time, tind

m .
The “Saved” and “Save%” columns of Table 4(a) and (b) show

the total time saved (in seconds) and the percentage improvement
over the naive approach, for the 1.1MB and 2.3MB documents re-
spectively. Both figures are negative in some cases, indicating that
checking independence took (slightly) more time than was saved
through avoiding recomputation.

Table 3: Query-update independence results. “D” indicates dynamic independence on the 1.1MB document; “S” indicates static
analysis was able to verify independence. Note that the static analysis algorithm is sound but incomplete (at least on this document).

U0 UA1 UA2 UA3 UA4 UA5 UA6 UA7 UA8 UB1 UB2 UB3 UB4 UB5 UB6 UB7 UB8
Q0 DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS DS
A1 DS D D DS DS DS DS D DS DS DS DS DS DS
A2 DS D D D D D D D D D D D D
A3 DS D D D D D D D D D D D D
A4 DS DS DS DS DS D DS DS DS DS DS DS
A5 DS D D D D D D D D D D
A6 DS DS DS DS DS DS D DS DS DS D D D DS
A7 DS DS DS DS DS DS D DS DS DS D D D DS
A8 DS DS DS DS DS DS D DS DS DS D D D DS
B1 DS D DS DS DS DS D D D DS DS DS D DS
B2 DS D D D D D D D D D D D D D
B3 DS DS DS DS D D DS DS DS DS DS DS DS DS D
B4 DS DS DS DS D D DS DS DS DS DS DS DS DS D
B5 DS D D D D D D D D D D D D D
B6 DS D D D D D D D D D DS DS D DS
B7 DS D D D D D D D D D D D D D D D D
B8 DS DS DS DS D D DS DS DS DS DS DS DS DS
Q1 DS DS DS DS DS DS D DS DS DS D D D DS
Q2 DS DS DS DS D D DS DS DS DS DS DS DS DS D
Q3 DS DS DS DS D D DS DS DS DS DS DS DS DS D
Q4 DS DS DS DS D D DS DS DS DS DS D D DS DS DS D
Q5 DS DS DS DS D D DS DS DS DS DS DS DS DS DS DS DS
Q6 DS D D D D D D D D D D D D D D D D
Q7 DS D D D D D D D D D D D D D D D D
Q8 DS D D D D D D D D D D D D D
Q9 DS D DS DS D D D DS DS DS D D D DS

Q10 DS DS DS DS DS DS D D D D DS DS DS D D D DS
Q11 DS DS DS DS D D D DS D D D D D D
Q12 DS DS DS DS D D D D D D DS D D D D D D
Q13 DS DS DS DS D D D D D D DS D D D D D D
Q14 DS D D D DS DS D D D D DS DS D DS
Q15 DS D D D D D D D D D D D D D
Q16 DS D D D DS DS DS DS D DS DS DS DS DS DS
Q17 DS DS DS DS DS DS D DS DS DS D D D DS
Q18 DS DS DS DS D D DS DS DS DS DS D D DS DS DS D
Q19 DS D D D D D D D D D DS DS D DS
Q20 DS DS DS DS DS DS D D D D DS D D D D D D

.001

.01

.1

1

10

100

1000

1.1MB 2.3MB 5.7MB 11MB

Figure 4: Times needed for benchmark updates (UA1–8, UBA–
8)

4.4 Evaluation
The qualitative results in Table 3 show that there are significant

opportunities for avoiding recomputation through independence anal-
ysis. Since our test is sound, there are (as expected) no query-
update pairs in Table 3 for which static analysis predicts indepen-
dence but the query and update conflict dynamically. Concerning
completeness, it is difficult to draw conclusions. About 44% of the
query/update pairs that are dynamically independent on the 1.1MB
document are found to be statically independent — however, it is
important to note that dynamic independence on a single document
does not imply static independence, and some of the remaining
60% might conflict on a different valid document. Our analysis
was successful in identifying nontrivial independence pairs in the
presence of each of the features in Table 2. Certain kinds of queries
seem to be inherently hard for our independence analysis to deal
with; for example, queries B2, B5 and B7 involving sibling, ances-
tor and descendant axes and we were not able to prove any updates
independent of this query. This is unfortunate because these queries
are also among the most expensive.

Our experimental results show that query-update independence
analysis is both precise and fast enough to be effective for view
maintenance on the relatively small 1.1MB and 2.3MB documents.
First, we observe that static analysis for a single query–update pair
typically took under 12 milliseconds; almost all updates take longer
for the 2.3MB document (see Figure 4). This implies that query-
update independence analysis could be performed in parallel with
update application without harming latency, as long as enough cores
are available to process the independence checks in parallel with

Table 4: A comparison of naive and independence analysis-based view maintenance for (a) the 1.1MB document and (b) the 2.3MB
document. tnaive

r is the naive recomputation time. tind
r is recomputation time using static independence checks. tind

c is time to perform
independence analysis. tind

m is tind
r + tind

c . The next two columns show the amount of time saved (in seconds and as a percentage of the
naive time). Each row summarizes execution times for maintaining all 37 queries. All times are in seconds.

(a)

Upd# tnaive
r tind

r tind
c tind

m Saved Save%
U0 9.04 0.00 0.36 0.36 8.68 96%

UA1 8.90 7.32 0.39 7.71 1.19 13%
UA2 8.95 6.57 0.42 6.99 1.96 22%
UA3 8.93 6.53 0.40 6.93 2.00 22%
UA4 8.91 8.52 0.39 8.91 0.00 0%
UA5 8.94 8.65 0.39 9.04 -0.10 -1%
UA6 8.91 8.35 0.39 8.74 0.17 2%
UA7 8.88 8.50 0.39 8.89 -0.01 0%
UA8 8.95 8.60 0.39 8.99 -0.04 0%
UB1 8.90 8.59 0.38 8.97 -0.07 -1%
UB2 8.86 6.55 0.42 6.97 1.89 21%
UB3 7.89 6.06 0.39 6.45 1.44 18%
UB4 7.89 6.11 0.38 6.49 1.40 18%
UB5 8.92 8.49 0.39 8.88 0.04 0%
UB6 8.92 8.32 0.38 8.70 0.22 2%
UB7 8.96 8.39 0.41 8.80 0.16 2%
UB8 8.98 7.23 0.39 7.62 1.36 15%

(b)

Upd# tnaive
r tind

r tind
c tind

m Saved Save%
U0 27.77 0.00 0.35 0.35 27.42 99%

UA1 27.66 23.09 0.38 23.47 4.19 15%
UA2 28.21 20.69 0.42 21.11 7.10 25%
UA3 27.77 21.05 0.40 21.45 6.32 23%
UA4 27.87 27.53 0.38 27.91 -0.04 0%
UA5 27.79 27.47 0.39 27.86 -0.07 0%
UA6 27.71 27.39 0.39 27.78 -0.07 0%
UA7 27.49 27.18 0.38 27.56 -0.07 0%
UA8 27.94 27.31 0.39 27.70 0.24 1%
UB1 27.61 27.30 0.38 27.68 -0.07 0%
UB2 27.25 20.59 0.41 21.00 6.25 23%
UB3 25.05 19.95 0.38 20.33 4.72 19%
UB4 25.06 19.88 0.38 20.26 4.80 19%
UB5 27.59 27.06 0.39 27.45 0.14 1%
UB6 27.65 26.91 0.38 27.29 0.36 1%
UB7 27.96 27.48 0.41 27.89 0.07 0%
UB8 27.87 22.50 0.38 22.88 4.99 18%

the update.
Even in a sequential setting, however, our experiments show that

independence analysis is generally beneficial. In some cases, the
total time needed by independence-based maintenance was slightly
longer than the naive approach. However, the added expense of in-
dependence analysis is negligible even in comparison to the time
needed to re-compute queries on the small, 1.1MB document. In-
deed, since the static checking time is fixed, the asymptotic worst-
case overhead is zero as the size of the database increases (for
queries that take more than constant time).

Conversely, our experiments also show that the potential benefits
of static independence checking are substantial (up to 22% for the
1.1MB document), and actually increase (to a maximum of 25%
for the 2.3MB document) as the data size increases. In particular,
note that almost all of the time savings percentages in Table 4 are
slightly higher for the 2.3MB document than for the 1.1MB docu-
ment. This is again because the costs of query re-evaluation grow in
proportion to the size of the data, whereas the cost of static analysis
is dependent only on the query and update.

Galax is not the performance leader among XQuery engines;
we chose it for its support of the standard. However, for larger
documents (e.g. tens or hundreds of megabytes) the overhead of
our analysis is negligible compared with the querying times of the
faster engines. For example, only two of the 20 XMark queries can
be answered in less than 20 milliseconds for a 110MB document
by any of the engines measured in the current Qizx1 benchmarks, .

5. RELATED AND FUTURE WORK
To our knowledge, Raghavachari and Shmueli [22] were the first

to study query-update independence problems. They studied con-
flicts between read, insert and delete operations based on down-
ward XPath expressions, described special cases that are solvable in
polynomial time, and proved NP-hardness results for several XPath
fragments; however they do not present an implementation or ex-
perimental validation. In contrast, we give a sound, but incomplete

1http://www.xmlmind.com/qizx/speed.html

technique that works for general XQuery queries and updates in-
volving all XPath axes.

There is a growing literature on typechecking for XML queries.
Our set-based type system is a simplification of the standard XQuery
type system; Colazzo et al. [12] have studied more sophisticated
regular expression type systems for XML queries and Cheney [11]
extended this approach to a simple XML update language. More
recently, Benedikt and Cheney [4] have developed typechecking
techniques for W3C XQuery Update Facility 1.0 updates. Besides
being intrinsically useful, update type analysis may lead to more ac-
curate techniques for query-update or update-update independence
problems.

Static analysis problems besides typechecking have also been
studied for XML or object query/update languages. Bierman [7]
developed an effect analysis that tracks object-identifier generation
side-effects in OQL queries. Benedikt et al. [1, 2] presented offline
static analyses for optimizing updates in UpdateX, a precursor to
XQuery Update. Marian and Siméon [18] deal with the problem
of projecting an XML document on a query; this involves statically
finding the paths that may be accessed by the query. Our access
set analysis is similar to projection analysis. However, for our in-
dependence analysis we need to consider changes that may insert,
delete, replace or rename nodes, whereas projection analysis only
considers deletions. Benzaken et al. [6] investigated schema-based
projection of queries, including a more sophisticated type system
for XPath steps that may also be useful in improving the accuracy
of our independence analysis.

The closest work to ours is that of Ghelli, Rose and Siméon [16].
They study the commutativity problem for a different update lan-
guage, where side-effects can be applied immediately in the course
of evaluation. The algorithms of [16] take an approach similar to
that of [18]: they find the paths associated with nodes accessed
by the queries in the input, along with those paths modified by
the update – a sufficient condition for commutativity is that these
sets do not overlap. In contrast, while our work adapts some of
the ideas of [16] to the independence analysis setting, it is based
on schema information rather than path information. Combining
schema-based and path-based techniques is an interesting direction

for future work.
Incremental view maintenance of XQuery expressions is con-

sidered in [15, 13]. Queries are converted into an algebra, and
as queries are evaluated some metadata is recorded. Subsequent
update expressions are propagated using the metadata to avoid un-
necessary recomputation. These works deal with a simpler update
language, with no control structures; they also do not account for
the presence of schemas. Björklund et al. [8] also investigate incre-
mental maintenance for Boolean XPath queries. Our work comple-
ments, but does not replace efficient incremental view maintenance.
It may be interesting to compare static independence analysis with
efficient incremental view maintenance techniques or to develop
combined static and dynamic techniques.

6. CONCLUSIONS
Query-update independence analysis is useful for avoiding view

maintenance or recomputation costs. In this paper we have given
the (to our knowledge) first schema-based query-update indepen-
dence analysis. We have also implemented and experimentally
validated our approach, and shown that it offers significant per-
formance improvements for an online view maintenance scenario
based on typical XMark and XPathMark queries and updates us-
ing Galax. Even for a relatively small 1.1MB XMark document,
we found that the cost of independence analysis is negligible and
can lead to significant (20% − 25%) savings from avoiding query
recomputation. The costs of query and update evaluation typically
grow in proportion to the size of the data, whereas the costs of
static analysis do not, so query-update independence analysis is in-
herently scalable.

We have identified a number of possible directions for future
work. While our analysis already provides significant benefits,
there is much room for improvement of features such as descen-
dant, ancestor and sibling axes. Accuracy might be improved fur-
ther by tracking more detailed static approximations of the behavior
of the queries and updates. We also believe it would be worthwhile
to combine our approach with complementary path-based analy-
ses or incremental view maintenance techniques. Finally, it would
be of interest to test our approach using more realistic benchmarks
involving schemas, queries and updates gathered from real-world
settings.

Acknowledgment. We would like to thank Avinash Vyas and
Dinesh Venkataramanaidu for comments on an early draft of this
work. Michael Benedikt is supported in part by EPSRC EP/G004021/1
(the Engineering and Physical Sciences Research Council, UK).
James Cheney is supported by a Royal Society University Research
Fellowship and EPSRC grant EP/F028288/1.

7. REFERENCES
[1] Michael Benedikt, Angela Bonifati, Sergio Flesca, and

Avinash Vyas. Adding updates to XQuery: Semantics,
optimization, and static analysis. In Daniela Florescu and
Hamid Pirahesh, editors, XIME-P, 2005.

[2] Michael Benedikt, Angela Bonifati, Sergio Flesca, and
Avinash Vyas. Verification of tree updates for optimization.
In CAV, 2005.

[3] Michael Benedikt and James Cheney. Schema-based
independence analysis for XML updates.
http://web.comlab.ox.ac.uk/people/
Michael.Benedikt/papers/tr.pdf.

[4] Michael Benedikt and James Cheney. Types, effects, and
schema evolution for XML Updates. In DBPL, 2009.

[5] Michael Benedikt and Christoph Koch. Interpreting
tree-to-tree queries. In ICALP, 2006.

[6] Véronique Benzaken, Giuseppe Castagna, Dario Colazzo,
and Kim Nguyên. Type-based xml projection. In VLDB,
pages 271–282. VLDB Endowment, 2006.

[7] G. M. Bierman. Formal semantics and analysis of object
queries. In SIGMOD, 2003.

[8] Henrik Björklund, Wouter Gelade, Marcel Marquardt, and
Wim Martens. Incremental xpath evaluation. In Ronald
Fagin, editor, ICDT, volume 361 of ACM International
Conference Proceeding Series, pages 162–173. ACM, 2009.

[9] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela
Florescu, Jonathan Robie, and Jérôme Siméon. XQuery 1.0:
An XML query language. W3C Recommendation, January
2007. http://www.w3.org/TR/xquery.

[10] Don Chamberlin and Jonathan Robie. XQuery update facility
1.0. W3C Candidate Recommendation, August 2008.
http://www.w3.org/TR/xquery-update-10/.

[11] James Cheney. FLUX: FunctionaL Updates for XML. In
ICFP, 2008.

[12] Dario Colazzo, Giorgio Ghelli, Paolo Manghi, and Carlo
Sartiani. Static analysis for path correctness of XML queries.
J. Funct. Program., 16(4-5):621–661, 2006.

[13] Katica Dimitrova, Maged El-Sayed, and Elke A.
Rundensteiner. Order-sensitive view maintenance of
materialized XQuery views. In ER, 2003.

[14] Denise Draper, Peter Fankhauser, Mary Fernández, Ashok
Malhotra, Kristoffer Rose, Michael Rys, Jérôme Siméon, and
Philip Wadler. XQuery 1.0 and XPath 2.0 formal semantics.
W3C Recommendation, January 2007.
http://www.w3.org/TR/xquery-semantics/.

[15] J. Nathan Foster, Ravi Konuru, Jérôme Siméon, and Lionel
Villard. An algebraic approach to view maintenance for
XQuery. In PLAN-X, 2008.

[16] Giorgio Ghelli, Kristoffer Rose, and Jérôme Siméon.
Commutativity analysis for XML updates. ACM Trans.
Database Syst., 33(4):1–47, 2008.

[17] Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce.
Regular expression types for XML. ACM Trans. Program.
Lang. Syst., 27(1):46–90, 2005.

[18] Amélie Marian and Jérôme Siméon. Projecting XML
documents. In VLDB, 2003.

[19] M.Francechet. XPathMark: an XPath benchmark for XMark
generated data. In XSYM, 2005.

[20] Makoto Murata. “Relax”. http://www.xml.gr.jp/relax/.
[21] Yannis Papakonstantinou and Victor Vianu. Type inference

for views of semistructured data. In PODS, 2000.
[22] Mukund Raghavachari and Oded Shmueli. Conflicting XML

updates. In EDBT, 2006.
[23] Mukund Raghavachari and Oded Shmueli. Efficient

revalidation of XML documents. IEEE Trans. on Knowl. and
Data Eng., 19(4):554–567, 2007.

[24] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu,
and R. Busse. XMark: A Benchmark for XML Data
Management. In VLDB, 2002.

[25] Thomas Schwentick. “Automata for XML – A Survey”.
Journal of Computer and Systems Science, 73:289–315,
2007.

[26] Gargi Sur, Joachim Hammer, and Jérôme Siméon. UpdateX -
an XQuery-based language for processing updates in XML.
In PLAN-X, 2004.

