
Privacy-Aware Mobile Services over Road Networks

Ting Wang
College of Computing

Georgia Institute of Technology

twang@cc.gatech.edu

Ling Liu
College of Computing

Georgia Institute of Technology

lingliu@cc.gatech.edu

ABSTRACT
Consider a mobile client who travels over roads and wishes
to receive location-based services (LBS) from untrusted ser-
vice providers. How might the user obtain such services
without exposing her private position information? Mean-
while, how could the privacy protection mechanism incur no
disincentive, e.g., excessive computation or communication
cost, for any service provider or mobile user to participate
in such a scheme? We detail this problem and present a
general model for privacy-aware mobile services. A series of
key features distinguish our solution from existing ones: a)
it adopts the network-constrained mobility model (instead
of the conventional random-waypoint model) to capture the
privacy vulnerability of mobile users; b) it regards the attack
resilience (for mobile users) and the query-processing cost
(for service providers) as two critical measures for designing
location privatization solutions, and provides corresponding
analytical models; c) it proposes a robust and scalable loca-
tion anonymization model, XStar, which best leverages the
two measures; d) it introduces multi-folded optimizations
in implementing XStar, which lead to further performance
improvement. A comprehensive experimental evaluation is
conducted to validate the analytical models and the efficacy
of XStar.

1. INTRODUCTION
With ubiquitous wireless connectivity and continued ad-

vance in mobile positioning technologies (e.g., GPS-equipped
devices, cellular phones), recent years have witnessed the ex-
plosive growth of location-based services (LBS). Examples
include location-based store finders (“Where is the nearest
gas station to my current location?”), traffic condition track-
ing (“What is the traffic condition on Highway 85 North?”),
and spatial alarms (“Remind me to drop off a letter when I
am near a post office.”). Mobile clients obtain such services
by issuing queries together with their location information to
the LBS providers. While offering everyday convenience and
business opportunities, LBS also opens the door for poten-
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tial misuse of mobile users’ private location information [17,
29]. For example, the collected location information can be
exploited to spam users with unwanted advertisements, ex-
ecute physical stalking [7, 27], or perform inference about
personal medical records by knowing users’ frequent visits
to specific clinics.

A plethora of work has been done on the anonymization
of location information for mobile users [1, 3, 6, 8, 9, 11, 15,
16, 24, 30]. Nevertheless, assuming the random-waypoint
mobility model [4, 14], wherein users can move in arbi-
trary directions at random speed, most existing solutions
fail to address the vulnerabilities of mobile users traveling
over roads, where both the user mobility and the location-
based service processing are constrained by the underlying
road networks.

More specifically, the protection enough under the random-
waypoint model might be insufficient under the network-
constrained mobility model. For example, the spatial cloak-
ing techniques [1, 8, 9, 11, 24, 30] protect users’ privacy by
blurring their exact positions with cloaked spatial areas, and
measure the amount of protection as the area size. Such
a metric, however, is inapplicable under the road network
model, for a large area might contain a single road segment,
which enables the adversary to track down the mobile user
fairly easily. Furthermore, the condition of the road net-
work, e.g., the network topology, has significant impact over
the query-evaluation and communication efficiency, which
should be a critical concern for developing location privati-
zation solutions. For instance, the complexity of computing
the network distance of two points, a most fundamental op-
eration in location-based query processing, varies consider-
ably with the underlying network structure.

In this work, we present a general framework for location
privacy protection under the network-constrained mobility
model. Compared with prior work, our framework highlights
three distinct features.

First, we argue that the protection for mobile users’ pri-
vacy should be provided along two orthogonal dimensions:
(1) location anonymity, which advocates that it should be
difficult to identify a specific user among a set of users, an
anonymous set, based on their location information; and (2)
location diversity, which promotes that it should be difficult
to link a specific user with a specific location (such as a
road segment) with high certainty. Furthermore, such pri-
vacy requirements should be customizable and supported on
a per query basis. In this following, we refer to the process
of achieving location anonymity and diversity as location
anonymization.



Second, we regard the attack resilience of the performed
protection and the processing cost of the query with anony-
mous location information (including both computation and
communication costs) as two critical measures for designing
location privatization solutions. We propose correspond-
ing analytical models. In particular, we reveal the inherent
trade-off between these two metrics through a formal study
of two basic anonymization models.

Third and most importantly, we present XStar, a novel
star-graph-based location anonymization model, to achieve
the optimal balance between high query-processing efficiency
and robust inference-attack resilience. To the best of our
knowledge, this is the first model taking account of both
measures. In implementing XStar, we introduce a suite of
optimization strategies to further enhance its performance.
Extensive experimental evaluation is conducted to validate
the analytical models and the efficacy of XStar.

The remainder of the paper will be organized as follows.
In Section 2, we introduce fundamental concepts and mod-
els, and discuss the design objective of location privatiza-
tion solutions. Section 3 describes in detail the design of
XStar. The theoretical analysis of XStar in terms of query-
processing cost and inference-attack resilience is presented
in Section 4 and Section 5. Section 6 addresses detailed
issues of implementing XStar and proposes multi-folded op-
timization strategies. The proposed solution is empirically
evaluated in Section 7. Section 8 surveys relevant litera-
tures. The paper is concluded in Section 9.

2. CONCEPTS AND MODELS
In this section, we start with introducing the concept of

road-network-aware location privacy, and then present the
model of anonymous query processing; through an analysis
of two basic anonymization models in terms of inference-
attack resilience and query-processing cost, we outline the
design objective of XStar.
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Figure 1: A road network model.

2.1 Road Network Model
In this paper, we model a road network as an un-directed

graph G = (VG, EG), with the node set VG and the edge set
EG representing road junctions and direct road links, respec-
tively. An example of the road network model is shown in
Figure 1. We use dG(n) to denote the degree of a node n with
respect to the graph G. Specifically, n is called an intersec-
tion node if dG(n) ≥ 3, an intermediate node if dG(n) = 2,
and an end node if dG(n) = 1.

To model the restriction of users’ mobility by the under-
lying road network, we introduce the concept of segment : a

segment s is a sequence of edges (n0n1, n1n2, . . ., nL−1nL)1

where {ni}
L
i=0 are all distinct, and the degrees of the nodes

satisfy dG(ni) ≥ 3 for i = 0 or L, and dG(ni) = 2 otherwise.
That is, n0 and nL are intersection or end nodes, and all
others are intermediate nodes.

Note that each edge is either a segment itself, or belongs
to a unique segment; that is, a road network can be uniquely
partitioned into a set of segments. We therefore assume the
following scenario: every mobile user registered with LBS is
moving along certain road segment, and sends her location-
based query together with her current position information
to the LBS provider, which then executes the query based
on the provided location information.

2.2 Location Privacy Model
We consider two types of privacy concerns arising in LBS

under the network-constrained mobility model, namely lo-
cation anonymity and location diversity.

The first requirement ensures the indistinguishability of
a specific mobile user among a set of users (an anonymous
set), and is usually captured by the concept of location k-
anonymity [8, 11].

Definition 1 (Location k-anonymity). A user’s re-
ported location is said to be k-anonymous, if at least (k− 1)
other active users report the same location.

Ensuring location anonymity alone (the objective of most
prior work [1, 8, 9, 11, 24]), however, does not provide suffi-
cient protection when the underlying road network is taken
into consideration. For example, in Figure 1, assume that
users u1 and u2 publish their k-anonymous location as A1

and A2, respectively. Given that A1 and A2 are of equal
size and contain identical number of active users, u1 and u2

are considered to enjoy equivalent amount of privacy pro-
tection, under the criterion of location anonymity; however,
it is much easier for the adversary to track down u1 than u2,
since u1 is associated with a single road segment n5n6, while
u2 is possibly associated with three {n5n10, n9n10, n10n11}.
Intuitively, from the adversary’s perspetive, the difficulty of
tracking a user is in proportion to the number of segments
that she is possibly associated with. This motivates us to
introduce location diversity [19] as the second dimension of
privacy measure.

Definition 2 (Segment l-diversity). A user’s pub-
lished location is said to be l-diverse, if it satisfies location
k-anonymity, and contains at least l different road segments.

In our framework, every mobile user u specifies customized
privacy requirement as (δuk, δ

u
l ) in terms of k-anonymity and

l-diversity on a per query basis. Besides, to guarantee the
quality of received services, e.g., response time, u may also
specify customized QoS requirement as maximum spatial
tolerance σu

s and temporal tolerance σu
t ; the former bounds

the expansion of the anonymous location, while the latter
specifies the tolerable delay due to the anonymization op-
eration (if a request could not be honored within σu

t , it is
typically discarded). This set of parameters (δuk, δ

u
l , σ

u
s, σ

u
t )

is called u’s service profile.
To fulfill such requirements, we introduce the operation

of location anonymization.

1Without ambiguity, we use a sequence of nodes n0 . . . nL
to denote the segment (n0n1, n1n2, . . ., nL−1nL).
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Figure 2: A framework of privacy-aware mobile service.

Definition 3 (Location Anonymization). Let q de-
note a location-based query issued by a mobile user u. Loca-
tion anonymization transforms the exact location informa-
tion associated with q to an approximate version that satis-
fies u’s service profile.

With road networks as the background context, we assume
that the anonymization operation is performed on the basis
of road segment, and an anonymous location is composed by
a set of segments. It is noted that for ease of exposition, the
factor of segment length is not discussed in this paper; han-
dling the heterogeneity of segment lengths, however, is fairly
straightforward, e.g., specify high diversity requirement for
short segments, or logically divide a long segment into a set
of short ones.

Also, we assume a trusted, third-party location anonymiza-
tion engine (LAE) that acts as a middle layer between mobile
users and LBS providers, and performs location anonymiza-
tion. It is noted that compared with alternatives, this cen-
tralized LAE architecture demonstrates a set of critical ad-
vantages. (1) It is much easier to provide security protection
and operation regulation for a single LAE than a huge num-
ber of individual LBS providers with conflicting commercial
interests. (2) With the help of LAE, one can achieve privacy
guarantees that are unachievable by client-based or peer-to-
peer architectures (e.g., [9, 30]), such as location anonymity
and diversity. (3) Moreover, this architecture has been suc-
cessfully applied in a variety of location privatization sys-
tems [1, 2, 3, 8, 11, 24].

Specifically, LAE is responsible for (1) receiving the query
and the exact position information from the mobile user; (2)
anonymizing the location information according to the user’s
privacy requirements, and relaying it to the LBS provider;
(3) extracting the exact query result from the candidate
answer returned by the service provider by properly filter-
ing false positive information (a detailed discussion in [1]);
and (4) delivering the exact answer to the client. Figure 2
sketches this framework.

2.3 Anonymous Query Processing Model
Now, we consider the processing of queries with anony-

mous location information (a set of segments). Without loss
of generality, we focus our discussion on k nearest neighbors
(k-NN) style queries, with which the user requests for the k
objects of interest with the minimum distances to her cur-
rent position, the query focal point. The distance between
two points on the road network is defined as the length of
their shortest path. The extension to other query types,
e.g., range queries, is referred to our technical report [28].

Intensive research has been directed to the query process-
ing for spatial network databases recently [5, 13, 20, 25, 26].
While the proposed approaches differ in assumptions and
techniques, we abstract two fundamental operations under-
lying these approaches to construct our model: (1) segment-

based operation, which takes the query q and a segment s
as input, and returns the set of objects on s that satisfy
the query predicate, denoted by O(q, s); and (2) node-based
operation, which takes q and a node n as input, and returns
the set of objects in the vicinity of n that satisfy the query
predicate, denoted by O(q, n).

We base our basic query processing model on the following
theorem (the proof is omitted due to the space constraint).

Theorem 1. For a k-NN query q with query focal point
p on a segment s, with ns0 and ns1 as the two ends of s, the
query result R(q, p) satisfies the following condition:

R(q, p) ⊆ O(q, s) ∪O(q, ns0) ∪O(q, ns1)

This theorem amounts to saying that the result of q must
be included in the union of the following two sets of objects:
(1) the objects of interest on s, and (2) the k nearest objects
of interest to ns0 and ns1. An example is given in Figure 1.
A user u issues a k-NN query q with k = 3 when moving on
the segment n5n6. It is clear that the exact answer R(q, p)
= {o5, o6, o7} appears in the union of O(q, n5n6) = {o5, o6},
O(q, n5) = {o1, o6, o7}, and O(q, n6) = {o5, o3, o4}.

Hence, given a query q with its focal point on a segment
s, the processing of q comprises one segment-based opera-
tion with respect to s and two node-based operations with
respect to ns0 and ns1. We now extend this model to the case
of anonymous queries involving multiple segments. We first
introduce the concept of boundary node.

Definition 4 (Boundary Node). Given a set of seg-
ments S in the road network G, the set of boundary nodes
of S, denoted by BVS, is defined as:

BVS = {n|n ∈ VS, dG(n) > dS(n)}

That is, BVS are those nodes in S that are connected to the
rest of the network. For instance, for the set of segments S
= {n2n1n4, n2n6, n2n3n8} in Figure 1, its boundary node
set is given as BVS = {n4, n6, n8}.

For a query q with associated anonymous location as a set
of segments S, the evaluation of q consists of two parts: (1)
the objects of interest on the segments of S, i.e., ∪s∈SO(q, s);
and (2) the results as q issued on the boundary nodes of S,
i.e., ∪n∈BVS

O(q, n). Formally,

R(q, S) ⊆ (∪s∈SO(q, s)) ∪ (∪n∈BVS
O(q, n))
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Figure 3: Two näıve location anonymization models.

2.4 Two Motivating Anonymization Models
The focus of this work is to develop a robust and scalable

location anonymization model. While multiple models are
available to perform location anonymization to meet users’



privacy requirements, we are interested in the optimal one
that leads to low query-processing cost and high inference-
attack resilience. Below we present two basic models, based
on random sampling and network expansion, respectively.
They achieve either extreme of the spectrum, and motivate
our star-graph-based model.

Random Sampling Given a query q issued by a user
u with service profile (δuk, δ

u
l , σ

u
s, σ

u
t ), at each iteration, this

model samples one segment at random from the spatial re-
gion as defined by σu

s and adds it to u’s anonymous loca-
tion. The process continues until both requirements (δuk, δ

u
l )

are satisfied. As an example, consider a user u in Figure 3a
with (δuk, δ

u
l ) = (5, 5). With the Random Sampling model,

four segments are randomly selected (containing four active
users {ui}

4
i=1), in addition to the original one that q is as-

sociated with, as highlighted with bold lines.

Network Expansion At the other extreme of the spec-
trum, one can perturb u’s location based on the Network

Expansion model [26]: starting from the original segment
which u is on, following Dijkstra’s algorithm, one incremen-
tally adds in neighboring segments, ordered by their net-
work distances (mid points) to u’s position. The process
halts when u’s privacy requirements are met. For example,
as shown in Figure 3b, the four segments with the minimum
network distances to u’s position are added incrementally to
form u’s anonymous location.

Discussion It is observed that under the same require-
ments (δk, δl, σs), the Random Sampling model results in
a set of segments evenly distributed over the spatial region
as defined by σs, which is essentially equivalent to issuing a
set of queries at different locations, thus incurring expensive
query-processing cost. The strength of this scheme, how-
ever, lies in its robust resilience against inference attacks
since the set of segments are selected at random.

In contrast, the Network Expansion model generates a
set of segments lying in a tightly compact structure. As will
be proved in Section 4, such structure features the minimal
query-processing cost (the number of boundary nodes grows
sub-linearly with the number of segments); the cost is fur-
ther reduced by that the expanded network is a partial result
in the query processing [26]. Nevertheless, this model suffers
low attack resilience as the expansion process follows a best-
first search paradigm, which can be potentially exploited by
an adversary to perform reverse-engineering attacks.

2.5 XSTAR In Nutshell
Motivated by the strengths and weaknesses of the above

two models, we develop XStar, a star-graph-based location
anonymization model, aiming at achieving an optimal bal-
ance between low query-processing cost and high inference-
attack resilience. Specifically, XStar achieves this balance
in two main phases. First, it groups neighboring queries into
the cloaking-star structures. The goal is to carefully choose
the set of stars that minimize the computation and commu-
nication costs. Second, it adjusts the resulted cloaking-stars,
and merges neighboring ones into the super-star structures
if necessary, to fulfill the privacy requirements of each indi-
vidual user.

Informally, in XStar, the low query-processing cost (de-
tails in Section 4) is guaranteed by the cost-aware star selec-
tion scheme, and the compact structure of the anonymous
location; meanwhile, the high attack resilience (details in
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Figure 4: Illustration of XStar model.

Section 5) is contributed by the cloaking-star based per-
turbation, and the randomness in the operation of merging
neighboring stars.

Further, in implementing XStar (details in Section 6),
we propose a suite of optimization strategies to improve its
throughput; also, we introduce sharing processing of mul-
tiple queries (MQS) for the service provider, which brings
considerable performance enhancement.

3. ANATOMY
The location anonymization operation of XStar comprises

two main phases, cloaking-star selection and super-star con-
struction. Briefly, in the first phase, a set of neighboring
queries are grouped into a cloaking-star structure returned
by a cost-aware star selection scheme; in the second phase,
the privacy requirements of individual users are imposed by
merging a set of neighboring stars into a super-star struc-
ture. The details of the two phases are presented in Sec-
tion 3.1 and Section 3.2, respectively.

3.1 Cloaking-Star Selection
We first introduce the concept of cloaking-star that serves

as the fundamental structure for location anonymization in
XStar.

Definition 5 (Cloaking-Star). For an intersection
node n in the network G, the cloaking-star φn is the subgraph
of G comprised of n and all segments adjacent to n.

By this definition, every node n with dG(n) ≥ 3 is associ-
ated with a unique star φn. For example, in the left plot
of Figure 4, the star φn5

consists of the node n5 and the
segments {n5n4, n5n6, n5n10}.

The cloaking-star structure possesses several desired prop-
erties for our purpose. (1) It preserves the locality of neigh-
boring segments; therefore, employing it as the basic unit of
anonymization is expected to lead to anonymous locations
with highly compact structures. (2) It is amenable to index-
ing, for the node identifier suffices to represent a star without
information loss; using it to represent the anonymous loca-
tion can alleviate the communication cost, and simplify the
implementation.

Given a road network G = (VG, EG), one can construct a
corresponding star network Gφ = (VGφ

, EGφ
), wherein each

node represents a star in G, and two nodes are adjacent
if their corresponding stars in G share a common segment.
The right plot of Figure 4 shows the star network corre-
sponding to the left road network. Note that in Gφ, all the
edges are of unit length. The distance between two stars
φi and φj in a road network G is defined as their network



distance in Gφ, called hop, denoted by hG(φi, φj). For ex-
ample, in Figure 4, hG(φn6

, φn10
) = 2, since their shortest

path in Gφ is composed of φn6
, φn5

, and φn10
.

A segment is marked as active if it is associated with at
least one active query. To make our model resilient against
the inference attack (Section 5) and amenable to the sharing
processing of multiple queries ( Section 6), all the queries on
the same segment share the same anonymous location.

If a star φ is chosen as the anonymous location for the
queries on certain active segment s, it is said that φ is “se-
lected”, and s is “assigned” to φ, denoted by s ← φ. Con-
sider a segment s with two ends as ns0 and ns1. If both
dG(nss) ≥ 3 and dG(nst ) ≥ 3 hold, then s is associated with
two stars φns

s
and φns

t
, e.g., φn5

and φn6
for n5n6 in Fig-

ure 4. In this case, it is to be determined to which star s
should be assigned, φns

0
or φns

1
. In a sequel, over the whole

network, one needs to select a set of stars Φ to cover all the
active segments.

To achieve low query-processing cost, it is desired to incor-
porate the cost model into this selection process. Formally,
let cost(φ) be the cost of executing a typical query with the
anonymous location as φ (as will be discussed in Section 4),
AS denote the set of current active segments in the road net-
work, and Φ be the set of selected stars, then the problem
of minimizing the overall cost can be formalized as

min
Φ

P

φ∈Φ
cost(φ)

s.t. ∀s ∈ AS,∃φ ∈ Φ, s← φ

This cost-aware segment-to-star assignment scheme aims
at finding a set of stars Φ that cover all the active segments,
with the lowest overall cost. We note that this modeling
ignores the numbers of queries on active segments for sim-
plicity; as indicated in the empirical evaluation (Section 7),
however, it has captured the essential elements of the over-
all cost of query processing at the server, especially after
introducing the machinery of sharing processing of multiple
queries (Section 6).

Unfortunately, no efficient solution exists to this optimiza-
tion problem, unless P = NP, as shown in the next theorem
(the proof is referred to our technical report [28]).

Theorem 2. Reductible from the weighted vertex cover

problem, this cloaking-star selection problem is NP-Hard.

Consequently, instead of attempting to find a global opti-
mal solution, we propose an efficient randomized algorithm
that can find high-quality approximate solutions, and is ro-
bust against inference attacks.

Specifically, the procedure of inserting a new arrival query
q associated with a segment s (InsertQuery) is outlined in
the following four cases: (1) if certain star already covers
s, the algorithm halts; (2) if both stars φns

0
and φns

1
are

already selected, yet s is not covered, one assigns s to one
of the two stars with probability in reverse proportion to
their corresponding costs; (3) if only one of φns

s
or φns

t
has

been selected, s is assigned to that star; (4) if neither φns
s

nor
φns

t
is selected, one assigns s to one of them with probability

reversely proportional to the corresponding cost.
Essentially, this algorithm ensures that an active segment

s is assigned to φns
0

with probability cost(φns
1
)/[cost(φns

0
) +

cost(φns
1
)], or φns

1
otherwise. This property guarantees that

the quality of the selected star set Φ does not deviate far
from the optimal one, as shown in the next theorem (the
proof is referred to our technical report [28]):

Theorem 3. Let costopt be the cost achieved by the opti-
mal star set. The randomized star-selection algorithm achieves
the cost costrnd satisfying E

ˆ

costrnd
˜

≤ 2 · costopt.

It is worth emphasizing that the quality of the selected
stars does not degrade with continuous insertion and dele-
tion of queries, given the fact that it makes no assumption
regarding the arrival order of the queries, which is a desired
feature in supporting real-time road-network-based LBS.

3.2 Super-Star Construction
In the previous phase, a set of stars are selected to cover

active segments, with the criterion of query-processing cost.
In this phase, we fulfill the privacy requirements of mobile
users. This objective is achieved by merging a set of neigh-
boring stars to form a super-star structure, which then serves
as the anonymous location for the queries inside.

Definition 6 (Super-Star). A set of stars {φi}
|ψ|
i=1 is

said to form a super-star ψ if the subgraph comprising {φi}
|ψ|
i=1

is connected, where |ψ| denotes the number of stars in ψ (the
cardinality of ψ).

As an example, in Figure 4, the user u1 is assigned to the
star φn5

, while u2 and u3 are assigned to φn10
. However, the

numbers of segments and active users in φn5
or φn10

alone
do not satisfy users’ privacy requirements (δul , δ

u
k ) as (5, 3),

(4, 3), and (5, 2), respectively. By merging φn5
and φn10

,
one obtains a super-star ψ that meets the requirements of
all users involved.

Recall that the service profile of a user u is specified as
a quadruplet (δuk, δ

u
l , σ

u
s, σ

u
t ), corresponding to k-anonymity,

l-diversity, spatial tolerance, and temporal tolerance. In out
setting, particularly, in a super-star ψ, σu

s is defined in terms
of the hop count between the star covering u and the furthest
star in ψ; and if a query can not be successfully anonymized
within σu

t , it is discarded.
Now, we sketch the procedure of merging stars to form

a super-star structure (MergeStar): starting from an initial
star φ, one applies a bottom-up aggregation, incrementally
adding in neighboring stars until the privacy requirements of
all users inside the super-star are satisfied, or the spatial tol-
erance of certain user is reached. More concretely, one first
checks if the star φ already satisfies the privacy requirements
of users in it; if not, one iteratively adds in neighboring ac-
tive stars if possible. At each iteration, one first identifies all
the neighboring stars whose fusion with current super-star
ψ do not violate the spatial tolerance of any user inside; if
such a star exists, one randomly picks one to merge with ψ
to form a new super-star. This expansion process iterates
until meeting the privacy requirements of all the users inside
ψ, or reports failure (all the involved queries will be pushed
back to the queue, awaiting for anonymization triggered by
new arrival queries).

4. QUERY PROCESSING COST
The cost of processing a location-based query consists of

both the query execution cost at the LBS provider, and the
communication cost of transferring the query result back
to the mobile client on the move. In this section, we es-
tablish an analytical model to compare the three location
anonymization models proposed in this paper from the per-
spective of query-processing cost.



4.1 Cost Measures
Query Execution Cost Let Cs and Cn denote the com-
putation cost (in terms of both CPU and IO) of a segment-
based operation and a node-based one, respectively. Note
that both Cs and Cn may vary from segment to segment or
from node to node, depending on the condition of the road
network (e.g., the density of objects), the predicate of each
query (e.g., the parameter k of a k-NN query), and the sys-
tem implementation (e.g., the performance of the look-up
table). In the prototype system of XStar, we set Cs and
Cn statically for a typical setting (a detail discussion in Sec-
tion 7). One direction of our ongoing research is to develop
finer granularity and dynamic cost models.

Hence, for a typical query with a set of segments S as its
anonymous location, the execution cost, costexec(S), can be
approximately estimated as follows: costexec(S) = Cn · |BVS |
+ Cs · |S|, where | · | denotes the cardinality of the set.

Communication Cost Next, we analyze the additional
communication cost incurred by the location anonymization
operation. We measure the communication cost in terms of
the length of the sent and received messages. Recall the
framework of privacy-aware mobile service in Section 2. For
given privacy requirements, i.e., a stable number of segments
in the anonymous location, the cost of sending and receiv-
ing the candidate answer becomes the dominant communi-
cation cost between the location anonymization engine and
the LBS provider.

Given a k-NN query q and a set of segments S as the
anonymous location, |R(q, S)| is estimated as: |R(q, S)| ≈
k · |BVS|+

P

s∈S |O(q, s)|, where the first component corre-
sponds to the result size of issuing a k-NN query over each
boundary node of S, and the second represents all the ob-
jects on the segments of S.

Let ρo denote the average number of objects on a segment,
and Co be the cost of sending and receiving an object. The
communication cost for an anonymous k-NN query, with S
as the anonymous location, is estimated as: costcomm(S) =
Co · [k · |BVS |+ ρo · |S|].

4.2 Cost Analysis
We now analyze the impacts of the three anonymization

models over the query processing overhead. For ease of ex-
position, we consider a uniform grid as the underlying road
network, and assume that all the static objects of interest
and active mobile users are distributed over the network
with average density of ρo and ρu per segment. Consider a
typical query q with (δk, δl) specified as location anonymity
and diversity. Its anonymous location thus comprises a set
of segments S, with |S| = max(δk/ρu, δl). It is noticed that
for fixed |S|, the size of the boundary node set |BVS | be-
comes the dominant factor in the two cost models above.
Therefore, in the following discussion, we focus on analyz-
ing |BVS| for each model.

Random Sampling With the assumptions above, the
Random Sampling model results in a set of segments S with
a boundary node set of size 2|S| in the worst case, where no
two selected segments are adjacent. Clearly, both the query
execution and communication costs grow linearly with the
number of segments |S|.

Network Expansion In contrast, the Network Expansion

model generates a set of segments S with |BVS | =
p

|S|+ 2
in the worst case. Given the fact that the cost of node-based

operation usually dominates the computation, i.e., Cn ≫ Cs,
here the execution cost grows sub-linearly, square-root-wise,
more precisely, with the cardinality of S.

XStar We have shown in Section 3.1 that the cost-aware
star selection scheme guarantees the low overall cost of the
set of cloaking-stars. Here, we concentrate our analysis on
the second phase of XStar, super-star construction.

To be attack resilient, the MergeStar operation picks neigh-
boring active stars at random, without considering any cost
metrics. However, the resulted anonymous location usually
exhibits desired properties in terms of query processing cost:
(1) the star structure preserves the locality of neighboring
segments, i.e., in a star, the number of boundary nodes is no
more than that of involved segments; (2) the star selected
at each iteration must satisfy the user-specified maximum
spatial tolerance requirement, thereby leading to a fairly
compact super-star structure.

It can be proved that the XStar model produces a super-
star ψ (with segments as |S|) with |BVS | no more than
(2|S| + 4)/3, i.e., approximately one third of that by the
Random Sampling model. Also note that this worst case oc-
curs only at the extreme condition when the stars forming ψ
lay in a chain, with probability lower than (1/4)|S|/3. In real
applications, as verified by our experiments, XStar usually
generates anonymous locations with quality comparable to
that achieved by the Network Expansion model.

5. INFERENCE ATTACK RESILIENCE
The obfuscation of the exact location information is only

a part of the story, one needs to consider the resilience of
the anonymization against the adversary’s attack: based on
her prior knowledge or understanding regarding the work-
ing anonymization model, the adversary attempts to re-
veal users’ original location through the blurred information.
We note that the attack discussed here focuses on one-shot
queries. We believe that by exploiting location information
associated with multiple queries issued by a single user, the
adversary can significantly improve her chance of pinpoint-
ing the user. Addressing privacy breach in (continuous) mul-
tiple queries is one direction of our ongoing research.

Given the anonymous location as a set of segments S, the
ideal protection is achieved if each segment is indistinguish-
able to the adversary; from her perspective, the mobile user
is associated with each segment in S with equal probability
1/|S|. However, with effective attacks, the adversary can
identify that the association between u and a specific seg-
ment s ∈ S has much higher probability than 1/|S|, thereby
revealing u’s private location with high confidence. We cap-
ture such vulnerability using the notion of Linkability :

Definition 7 (Linkability). Given a user u with ex-
act location as a segment s∗ and anonymous location as a
set of segments S. The linkability link[u← s∗|S,Kad] is the
probability that an adversary can infer u’s association with
s∗, based on S and her background knowledge Kad.

In particular, the background knowledge Kad considered
in this work includes (1) the location anonymization model,
(2) the underlying road network, and (3) the estimation
of query-processing cost for every cloaking-star (for XStar

only). Following, we present a general replay attack model,
which serves to measure the attack resilience of the three
location anonymization models.



5.1 Replay Attack
In the replay attack, for each segment s ∈ S, by re-running

the anonymization algorithm with s assumed to be the orig-
inal location, the adversary estimates the likelihood of s to
generate the anonymous location S, like[S|u← s,Kad]. Un-
der this model, the linkability is calculated as

link[u← s∗|S,Kad] =
like[S|u← s∗, Kad]

P

s∈S like[S|u← s,Kad]

Specifically, we assume that the adversary has full knowl-
edge regarding the anonymization algorithm, A(·), which
takes a segment s as input, and generates a set of seg-
ments as the anonymous location for s. Therefore, she is
able to replay the anonymization process: for each s ∈ S,
(1) run A(s), and generate a set of segments S′, with |S′|
= |S|; (2) compute the likelihood like[S, |u ← s,Kad] =
|S′ ∩ S|/|S|; and (3) select the segment s+ that leads to
the largest likelihood value as the original location, s+ =
arg maxs like[S|u← s,Kad].

5.2 Resilience Analysis
Next, we proceed to analyzing the resilience of the three

location anonymization models with respect to the replay
attack.

Random Sampling Under this model, the extra (|S| − 1)
segments are selected at random; therefore, following the
replay attack model, the adversary will find that each seg-
ment s ∈ S can generate S with identical probability, i.e.,
maxs link[u ← s|S,Kad] = 1/|S|, which implies the possible
strongest protection.

Network Expansion Under this model, the (|S|−1) extra
segments are expanded from the original one s∗, based on
their network distances to s∗. With the replay attack, the
adversary runs the network expansion algorithm for each
s ∈ S. Clearly, s∗ will generate S′ = S, i.e., the highest like-
lihood, while other segments tend to result in likelihood less
than that by s∗, therefore highlighting s∗ as the expansion
source. This is empirically verified in our experiments.

XStar Recall that given the original segment s∗, the first
phase of XStar generates a star φ covering s∗, and the sec-
ond phase expands from φ and produces a super-star ψ.

Assume that φ consists of the segments {si}
n
i=1, with the

corresponding neighboring stars as {φi}
n
i=1. According to

the design principle of the star selection scheme, the likeli-
hood that u is associated with si, given φ as u’s anonymous
location, like[φ, |u← si, Kad], is calculated as

like[φ|u← si,Kad] =
cost(φi)

cost(φ) + cost(φi)
.

Furthermore, the posterior probability prob[u ← si|φ,Kad]
is given by:

prob[u← si|φ,Kad] =
like[φ|u← si,Kad]

Pn
j=1

like[φ|u← sj ,Kad]

It is observed that the adversary can identify the association
between u and a specific segment si with high probability
only if the cost of φi and other stars are extremely biased,
i.e., cost(φi) ≫ cost(φj) for all j 6= i, which however is
unusual in real scenarios, as verified in our experiments.

Now, consider the second phase, provided the facts that
(1) ψ is generated by randomly expanding from some ini-
tial star, and (2) all the stars in ψ contain active users, and

each can initiate and lead to the construction of ψ. Without
further knowledge, from the perspective of the adversary, u
is associated with each star with identical probability. For-
mally, assume that ψ consists of the stars {φi}

m
i=1. The

probability that the adversary can infer that u belongs to φi
given ψ follows: prob[ψ|u← φi,Kad] = 1/m.

Combining the results above, we can now estimate the
linkability under the XStar model: link[u ← s∗|ψ,Kad] =
P

φ∈ψ prob[u ← s∗|φ,Kad] · prob[u ← φ|ψ,Kad], where if

s∗ 6∈ φ, prob[u← s∗|φ,Kad] = 0.
The analysis above is empirically verified in Section 7. It

is also shown that in real road networks, the XStar model
provides almost the same amount of resilience as the Random

Sampling model against the replay attack.

6. IMPLEMENTATION
In this section, we deal with the detailed issues of imple-

menting XStar in the location anonymization engine (LAE),
and propose multiple optimizations to improve its perfor-
mance. Further, we boost the throughput of the query pro-
cessing server by introducing the strategy of multiple queries
sharing processing (MQS).

6.1 Location Anonymization Engine

Algorithm 1: Location Anonymization Engine

// Qq:arrival-query queue, Hq:expiration heap
// Iφ:active-star index, Qφ:ready-star queue

while true do1

Qφ ← ∅;2

// purge of expired requests
while true do3

q ← top entry of Hq ;4

if q not expired then break;5

φ ← DeleteQuery(q);6

// φ still active
if φ ∈ Iφ then add φ to Qφ;7

// insertion of new requests
if Qq 6= ∅ then8

q ← first entry of Qq ;9

φ← InsertQuery(q);10

add φ to Qφ;11

// location anonymization
while Qφ 6= ∅ do12

φ← first entry of Qφ;13

MergeStar(φ);14

Algorithm 1 sketches the main procedure of LAE: at each
iteration, it first purges all expired requests, and pushes the
affected active stars to the ready-star queue Qφ to be pro-
cessed (line 3-7); it then pops up one new request q from the
query queue Qq, and pushes the selected star φ to Qφ (line
8-11); finally, it attempts to perform anonymization for each
star in Qφ (line 12-14).

6.2 Optimizations
Despite its simplicity, the basic version of LAE introduced

above suffers several drawbacks. (1) Each request-deletion
operation (DeleteQuery) results in a trial of anonymizing the
affected star, without checking the success condition. (2) It
attempts to anonymize the affected star immediately after
a new query is inserted (InsertQuery). It is expected that a
significant number of attempts would fail because of insuf-
ficient numbers of active users or segments to satisfy users’
privacy requirements. (3) For each request, the anonymiza-



tion process starts from the scratch in a bottom-up manner,
thereby incurring the scalability problem.

In the following, corresponding to the above drawbacks,
we present multi-folded optimizations to improve the suc-
cess rate and scalability of LAE.

Lazy Update for Deletion We propose this policy based
on the following observation: if the anonymization of a star
φ failed in a previous iteration, and no updates happen to
other stars, then φ can possibly be anonymized only if up-
dates occur to its profile parameters (δφd , δ

φ
k , σ

φ
s ), which are

defined as the maximum k-anonymity, maximum l-diversity,
and minimum spatial tolerance values associated with the
queries in φ, respectively. Therefore, on deleting a query
(DeleteQuery), one attempts to anonymize the affected star

φ only if its profile (δφd , δ
φ
k , σ

φ
s ) is updated.

Batch Insertion of Queries To improve the success rate
of the anonymization operation, at each iteration, one can
insert a batch of new queries (InsertQuery), i.e., waiting for
a period of time Tw, before beginning the anonymization
process. The parameter Tw can be adjusted to trade the av-
erage processing burden over LAE for the success rate of the
anonymization operation. Also, Tw should be set according
to users’ maximum tolerable service delay. The optimal set-
ting of Tw is discussed in Section 7.

Early Failure Detection The merging-star (MergeStar)
operation is costly in that it might fail because of insufficient
segments or active users appearing in the neighborhood of
the initial star φ. It is thus desired to maintain such sta-
tistical information, and stop the merging process early if
detecting no enough number of active users or segments.

Specifically, for each intersection node n, we maintain the
number of active users numu(n, r) and segments nums(n, r)
in the sub-network within radius r hops to n. The statistical
information for multiple r’s {ri}

h
i=0 (with r0 corresponding

to the n-centered star) can be cached in order to achieve
more effective detection, though at higher maintenance cost.

The cached information can be used in two ways. (1) On
anonymizing an initial star φ, with center node n, and pro-
file (δφl , δ

φ
k , σ

φ
s ), check if ∃i ∈ [0, h] such that (i) ri ≥ σ

φ
s , and

(ii) numu(n,Ri) < δφk or nums(n,Li) < δφl . If such i exists,
then the merging process stops as failure. (2) On adding a
new n′-centered star φ′ to the current super-star ψ, check if

∃i ∈ [0, h], such that (i) ri ≥ σφ
′

s , and (ii) numu(n
′, Ri) <

max{δφ
′

k , δ
ψ
k } or nums(n

′, Ri) < max{δφ
′

l , δ
ψ
l }. If such i ex-

ists, one can safely exclude φ′ from the candidate list for
expansion.

Note that the performance enhancement is not achieved at
the cost of compromising privacy guarantees; the optimiza-
tion strategies introduced above adhere to the hard privacy
requirements specified by users; without further informa-
tion, e.g., the arrival order of queries at LAE, the performed
optimizations offer no leverage to an adversary.

6.3 Sharing Processing Of Multiple Queries
From the perspective of anonymous query processing, XS-

tar enjoys two major advantages over conventional models.
(1) Independence of the underlying query processing tech-
niques. XStar is optimizable for any specific implementa-
tion, as discussed in Section 4, by configuring the cost func-
tion according to the adopted model, e.g., solution index-
ing [20] or network expansion [26]. (2) Capability of sharing

processing of multiple queries. It considers the possibility of
sharing processing in the location privatization operation,
by grouping queries with nearby locations together and per-
turbing their location as an entirety.

Concretely, given a set of k-NN style queries {qi}
t
i=1 shar-

ing the same anonymous location ψ, with corresponding k’s
as {ki}

t
i=1 and ki ≤ kj for i < j, one can evaluate qt once

and retrieve the top ki objects of O(qt, n) as O(qi, n) for
each n ∈ BVψ and i ∈ [1, t − 1]. This principle can also
be extended to other query types, e.g., range queries; the
details are omitted due to the space limitation.

7. EVALUATION
In this section, we perform an empirical analysis of the

location anonymization models proposed in the paper. The
experiments are designed to compare these models based on
the following three metrics. (1) Cost awareness. The pro-
tection mechanism should not incur excessive system bur-
den for either the service provider or the mobile client, in
terms of query processing and communication costs. (2)
Attack resilience. The applied protection should be robust
against malicious inference attacks; that is, it is difficult
for the adversary to penetrate the protection to identify
users’ exact positions with high certainty. (3) Operation ef-
ficiency. The anonymization operation should be computa-
tionally efficient and scalable; a location anonymization en-
gine equipped with modest computational resources should
be able to handle a large number of mobile users on contin-
uous move.

7.1 Experimental Setting
All our experiments were performed over real road maps

from areas of the United States. The first road map corre-
sponds to the highways of the entire State of California [23],
which contains 21,048 nodes and 21,693 edges; moreover,
it is associated with a real dataset of 104,771 points of in-
terest, as categorized into 62 classes, e.g., church, hospital,
airport, etc., which we used as queried objects in our sim-
ulation. The second road map corresponds to the roads in
the City of Oldenburg, which contains 6,105 nodes and 7,035
edges. Choosing these two road maps, we intend to evaluate
the performance of location anonymization models for road
networks at varying scales.

On these maps we simulated different traffic conditions
using the Network-based Generator of Moving Objects by
T. Brinkhoff2, a state-of-the-art traffic simulator. We as-
sign a same number (10,000) of moving objects to each map.
Since the two maps are of significantly different scales, we
intend to simulate both high user density (rush hour) and
low user density (non-rush hour) conditions. In each simu-
lation, we defined two classes of moving objects, with speeds
corresponding to slow (e.g., trucks) and fast (e.g., passen-
ger cars) vehicles, respectively. With a randomly assigned
probability, each vehicle generates a set of (or none) k-NN
queries during the simulation, with the parameters specified
as follows: (1) the requested number of nearest points of
interest as k; (2) the category of the points of interest as
c, e.g., church, hospital, etc.; (3) the privacy requirements
as k-anonymity (δk) and l-diversity (δl); and (4) the ser-
vice quality requirements as the spatial (σs) and temporal
tolerance (σt). The values of each query are drawn inde-

2
http://www.fh-oow.de/institute/iapg/personen/brinkhoff
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Figure 5: Query execution cost (in terms of the average execution time per query) and communication cost (in terms of the
average size of candidate result per query) with respect to varying settings of parameters δk, δl, σs, and k.

pendently following certain distributions, with parameters
listed in Table 1. After issuing a query, the vehicle waits for
some normally distributed inter-wait time γ, until the re-
quest is either answered or dropped, before issuing another
service request.

parameters k c δk δl σs σt γ

mean 5 N/A 5 5 4 10 20
deviation 1 N/A 1.5 1.5 1 2 2

Table 1: Default parameter setting for query generation.
Note: all the parameters except c follow normal distribu-
tions; c follows a uniform distribution over the interval [0,
62]; the values of σt and γ are in the unit of second.

For the location anonymization engine, we implemented
four different methods: Random Sampling (R), Network Ex-

pansion (E), basic XStar (X), and optimized XStar (X∗). For
the anonymous query processing server, two versions were
developed, one with the machinery of multiple queries shar-
ing processing (MQS), and the other without MQS. Both
the location anonymization engine and the query process-
ing server were implemented in Java. The experiments were
performed on a Linux box running 1.5Ghz CPU with 512
MB memory.

7.2 Experimental Results

Cost Awareness
In the first set of experiments, we take a close examina-
tion of the impact of the location anonymization operation
over the service performance, i.e., the query execution cost
and the communication cost, under varying setting of traffic
condition, and privacy (δk, δl) and service (σs, k) require-
ments. Specifically, in terms of the query execution cost, we
measure the average execution time of processing a query at
the server side; while in terms of the communication cost,
we measure the average number of objects returned in the
candidate result of a query; in the experiments, we use the
road map of California and its associated dataset of points
of interest in query processing.

We measure the query processing cost corresponding to
the three location anonymization models (R, E, and X repre-
sent the Random Sampling, Network Expansion and XStar

methods, respectively) in the case without multiple queries
sharing processing (MQS), and the XStar model with MQS

policy (XMQS), as the mean values of the parameters k, δl,
δk, and σs vary within the intervals of [2, 10], [3, 15], [3, 15]
and [1, 5], respectively. In each set of experiments, we fix
three parameters and vary the last one. The upper row of
Figure 5 plots the average execution time of processing an
anonymous query by the server, while the bottom row plots
the average size of the candidate result per query returned
by the server.

With respect to the anonymous query execution time, it
is observed that R-scheme incurs the highest system over-
head at the server among the three schemes and X-scheme
outperforms both R and E in most cases, which validates
our theoretical analysis regarding its superiority in terms of
the query execution cost. Note that although working ide-
ally in the homogeneous grid world (Section 4), E-scheme
ignores the heterogeneity of real road maps when selecting
extra segments, resulting in its unsatisfying performance in
real applications. Also, notice that the MQS policy improves
the query processing efficiency, and the improvement tends
to become significant as the parameters δl, δk, k, or σs in-
creases. This can be explained by the following facts. (1)
Stricter privacy requirements δl and δk cause a larger num-
ber of queries to be anonymized in batches; therefore, more
queries can be processed in groups. (2) A larger k results
in higher execution cost for each individual query, but also
offers more considerable savings for grouped queries. (3) A
large spatial tolerance σs boosts the chance for a query to
be successfully anonymized (to satisfy δk and δl) by allowing
more queries to be grouped together.

Moreover, by examining the impacts of these four param-
eters over the query execution cost, one can notice that the
parameters δk and δl have stronger influence than σs and
k for all the anonymization models. This is contributed by
the fact that stricter privacy requirements lead to anony-
mous locations of much coarser granularity (larger area),
with its impact over the query execution easily exceeding
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Figure 6: Average information entropy of anonymous locations generated by location anonymization models with respect to
δl and σs, for maps of Oldenburg and California. Note: the entropy is in unit of ban (Hart).
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Figure 7: Successful throughput with respect to δl and δk.

that exerted by the requested number of points of interest k
or spatial tolerance σs. Meanwhile, it is also interesting to
notice that the performance of X-scheme is fairly insensitive
to the parameter setting: in all four cases, its increase is the
least significant among all the anonymization models under
consideration.

With respect to the communication cost, as expected, R-
scheme generates significantly larger size of candidate result
than the others (note that the multiple queries sharing pro-
cessing does not affect the average size of candidate result;
therefore, X and X

MQS have the same size). Meanwhile, X-
scheme outperforms the other two for the cases of varying δk
and δl, though the lead is not considerable as that in terms
of the query execution time, especially for small δk and δl.
In the cases of varying σs and k, it is observed that both
R and E schemes perform slightly better than X for small
σs and k. All these phenomena are explained by the follow-
ing fact: both R and E perform segment-based perturbation,
which stop just after obtaining a sufficient number of seg-
ments; meanwhile, X performs star-based perturbation, and
the generated anonymous location may include slightly more
than enough number of segments (or nodes). This difference
exhibits significantly when these parameters are small; how-
ever, as the privacy or service quality requirements grow
higher, the inherent superiority of star-based perturbation
dominates the performance.

Attack Resilience
Now, we proceed to evaluating the resilience of the anony-
mous locations generated by different anonymization models
against malicious inference attacks. Specifically, we consider
the replay attack as described in Section 5: given a set of
segments S as the user u’s anonymous location, the adver-
sary attempts to estimate for each segment s ∈ S its proba-
bility of being associated with u. We measure the strength
of the privacy protection using the information entropy of
the distribution of such probabilistic estimation; a larger en-
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Figure 8: Successful throughput with respect to σs and σt.

tropy value indicates higher uncertainty for the adversary,
i.e., better protection. We use both the California and Old-
enburg road networks, aiming at capturing the influence of
factors such as area scale and user density.

The first set of results is illustrated in Figure 6, where we
measure the information entropy of anonymous locations,
with respect to varying δl and σs, two parameters relevant
to the spatial expansion of anonymous locations. The left
two plots correspond to the road network of Oldenburg, and
the right two that of California. First notice that the protec-
tion strengths of all the models increase as segment diversity
(δl) or spatial tolerance (σs) grows; intuitively, an anony-
mous location containing more segments tends to provide
better protection. Also, as expected, under the replay at-
tack, the protection provided by E is easy to penetrate, while
R demonstrates the best protection strength in most cases.
The performance of X is fairly stable, and its difference with
R tends to decrease as the number of segments increases. For
the case of Oldenburg road network (the leftmost plot), the
entropy corresponding to X is even higher than that pro-
vided by R under varying settings of δl. This can be ex-
plained by that for a road network with sufficient user den-
sity, and for given privacy and service quality requirements,
the anonymous location generated by a star-based perturba-
tion scheme tends to feature higher segment-diversity than
that produced by segment-based perturbation schemes, yet
without compromising query processing efficiency.

Also, note that the attack resilience discussed here focuses
on the case of one-shot query. We anticipate that by combin-
ing the location information of multiple continuous queries
issued by a particular mobile user, the adversary can poten-
tially infer more positioning information, which we consider
as a valuable research direction of our future work.

Operation Efficiency
The last set of experiments are designed to evaluate the op-
eration efficiency of various location anonymization models.
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Figure 9: Fractions of improvement contributed by the mul-
tiple optimization strategies.

In particular, we are interested in two critical measures: the
success rate of location anonymization operation, which in-
dicates the responsiveness of the model, and the average
execution time of anonymizing a query, which reflects the
scalability of the model. We incorporate the two measures
into a single metric, successful throughput (SF):

SF = query arrival rate× anonymization success rate

That is, for a given number of LBS requests, a higher suc-
cessful throughput indicates better performance of the loca-
tion anonymization engine.

In our experiments, specifically, in addition to the R, E,
and X-scheme discussed so far, we implement an optimized
version of X-schem, X

∗, which incorporates the optimiza-
tions introduced in Section 6. We measure the successful
throughput of these four models as functions of the param-
eters δk, δl, σs, and σt (the parameter k is not relevant to
query anonymization).

The result is illustrated in Figure 7 and 8. Figure 7 shows
the influence of the privacy parameters δk and δl over the
SF of anonymization. Overall, it is noticed that the perfor-
mance of all four schemes tend to decrease as the privacy
requirement becomes stronger. It is expected because (1)
larger δl and δk are harder to satisfy, leading to higher rate
of failure, and (2) moreover, even a successful attempt takes
longer execution time. The SF of X (and X

∗) is significantly
higher than that of R and E, and the gap tends to grow as the
privacy requirements become stricter. For example, even ba-
sic X-scheme maintains throughput at about 56 for δk = 15.
This can be attributed to the strategy of star-based pertur-
bation: compared with segment-based perturbation, which
involves costly distance computation for node (or segment)
pairs, the randomized star selection and merging operations
are much less costly. It is also observed that the setting of
δk has less impact than δl over SF. Keep in mind, however,
that the Oldenburg road network features high user density;
therefore, δk is easier to satisfy than δl.

Figure 8 demonstrates how the setting of spatial and tem-
poral tolerance affects the SF. Clearly, the SFs of all three
anonymization models exhibit increasing trends as the spa-
tial tolerance grows. This is expected, since a larger spatial
expansion increases the chance for a query to be successfully
anonymized. Meanwhile, interestingly, the SFs of all the
models stay fairly stable as the temporal tolerance changes.
This might be explained as follows: longer lives of queries
increase their chance to be successfully anonymized, i.e.,
a higher success rate of anonymization, but also increases
computational overhead for the anonymization engine, i.e.,
a large stack of stale queries, which exist as two factors with
countering influence over the SF.

It is also interesting to analyze the contributions by var-
ious optimization strategies to the SF of X

∗-scheme. The
space limitation precludes the possibility of a detailed anal-
ysis. Here, we take two snapshots of the fractions of improve-

ment contributed by each strategy for δk = 3 and 15, respec-
tively. For brevity, we use the following short notations: lazy
update for deletion (LU), batch insertion of queries (BI), and
early detection of failure (ED). Figure 9 shows the result,
from which we can obtain the following observations. (1)
The contribution from LU generally decreases as δl grows.
This is explained by that as the success rate of anonymiza-
tion decreases, more queries tend to be deleted, resulting in
frequent changes to the privacy profiles of the correspond-
ing stars; therefore, LU takes less effect in preventing false
update. (2) The portion of BI stays stable as the parame-
ters change. This is because the insertion of more queries
necessarily increases the average number of queries per star,
thus improving the success rate of the anonymization oper-
ation. (3) The fraction contributed by ED tends to increase
with δl. This is due to that stronger privacy requirements
bring higher failure probability for an anonymization oper-
ation, and ED can effectively counter its impact over the
performance, by avoiding unnecessary attempts.

8. RELATED WORK
Location privacy is gaining increasing interests from both

the mobile networking [3, 6, 10, 15, 16] and data manage-
ment [1, 8, 9, 11, 24, 30] communities. The former has been
focusing on anonymous routing [10, 21], MIXes in mobile
communication systems [6], source location privacy [15, 16],
and Mix Zones [2, 3]. Most existing solutions assume the
random-waypoint mobility model [14] and utilize location
hiding techniques to disable the adversary to associate a
location-based service request, be it routing or query, with
a particular network entity.

In the data management community, the research on loca-
tion privacy has been targeting extending data perturbation
techniques developed for protecting data privacy to address
location privacy concerns. Examples include spatial cloak-
ing [1, 8, 9, 11, 24, 30], false dummies [18], and landmark
objects [12]. Arguably, the most popular protection mech-
anism to date has been spatial cloaking, wherein the exact
position of a mobile user is transformed to a spatial cloak-
ing region. The criterion of transformation has been solely
based on location anonymity, and the amount of protec-
tion has been measured in terms of the regional size of the
anonymous location. Unfortunately, as we have pointed out,
under the network-constrained mobility model, most exist-
ing cloaking techniques tend to fail, because the area size
is no longer an effective and valid measure. The work [22]
considers privacy-aware query processing for road networks;
however, the adopted privacy protection model is still lim-
ited to spatial area cloaking.

Processing spatial queries over road networks has been an
emerging research topic recently [5, 13, 20, 25, 26]. Two
commonly used search paradigms have been proposed for k-
NN style queries, namely incremental network expansion [26],
and solution indexing [20]. The former gradually expands
the search from the query focal point through the edges and
reports the accessed objects during the expansion; while the
latter pre-computes and caches intermediate results, and
constructs the query answer based on the cached results.
Another line of research has been directed to continuous
nearest neighbor (CNN) query recently [13, 25], in which
both the k-NN objects and the valid scopes of the results
along a path are returned.



9. CONCLUSION
This paper presents a systematic study on the problem of

protecting location privacy under the network-constrained
mobility model. We proposed XStar, a general model for
privacy-aware mobile services over road networks. Com-
pared with prior work, XStar highlights itself with three
distinct features: it supports road-network-specific, person-
alized privacy and QoS requirements on a per request basis;
it strikes a balance between the attack resilience of the per-
formed protection and the processing cost of the anonymous
query; it scales to support a large number of mobile users
with varying service requirements, through a star-graph-
based privatization model, powered by multi-folded opti-
mizations in implementation. Extensive experiments over
real road networks have been conducted to evaluate the ef-
ficacy of the XStar model.

Our research will continue along several dimensions. First,
we plan to develop finer granularity cost models for location-
based query evaluation and communication, taking account
of dynamic traffic condition and complex road network se-
mantics. Second, we intend to study other types of infer-
ence attacks beyond the replay attack model, to evaluate
and enhance the attack resilience of XStar. Finally, we are
interested in extending the current framework to support
continuous location-based queries, which are subjected to
much more sophisticated inference attacks, compared with
one-shot queries.
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