
Enabling ε-Approximate Querying in Sensor Networks∗

LIU Yu, Jianzhong Li, Hong Gao, Xiaolin Fang
Data and Knowledge Engineering Research Center

Harbin Institute of Technology, Harbin, China

{pamws,lijzh,honggao,xlforu}@hit.edu.cn

ABSTRACT
Data approximation is a popular means to support energy-efficient
query processing in sensor networks. Conventional data approxi-
mation methods require users to specify fixed error bounds a prior
to address the trade-off between result accuracy and energy effi-
ciency of queries. We argue that this can be infeasible and inef-
ficient when, as in many real-world scenarios, users are unable to
determine in advance what error bounds can lead to affordable cost
in query processing. We envision ε-approximate querying (EAQ)
to bridge the gap. EAQ is a uniform data access scheme underlying
various queries in sensor networks. It allows users or query execu-
tors to incrementally ‘refine’ previously obtained approximate data
to reach arbitrary accuracy. EAQ not only grants more flexibility to
in-network query processing, but also minimizes energy consump-
tion through communicating data upto a just-sufficient level. To en-
able the EAQ scheme, we propose a novel data shuffling algorithm.
The algorithm converts sensed datasets into special representations
called multi-version array (MVA). From prefixes of MVA, we can
recover approximate versions of the entire dataset, where all indi-
vidual data items have guaranteed error bounds. The EAQ scheme
supports efficient and flexible processing of various queries includ-
ing spatial window query, value range query, and queries with QoS
constraints. The effectiveness and efficiency of the EAQ scheme
are evaluated in a real sensor network testbed.

1. INTRODUCTION
Wireless sensor networks are unattained networks of battery-

powered sensor motes with limited sensing, computing, storage and
wireless communication capabilities. They open up new opportu-
nities to observe the physical world, and enable us to gather data
that was once difficult, expensive, or even impossible to collect [5].
Sensor networks for data-intensive applications [30, 31] introduce
exciting challenges to researchers on data engineering. A funda-
mental research problem is how to process query or obtain data
from sensor networks while minimizing energy consumption.

∗Supported in part by the National Grand Fundamental Research
973 Program of China under grant 2006CB303000, the Na-
tional Natural Science Foundation of China (NSFC) under grant
60533110, and the Joint Research Fund of NSFC and Hong Kong
Research Grant Council (RGC) under grant 60831160525.
Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

In-network data approximation is a popular means to support
energy-efficient query processing [28]. A number of approximation
methods for sensor data have been developed [3, 5, 20, 7, 14, 12].
Conventional data approximation methods depend on error bounds
to address the ‘trade-off’ between result accuracy and energy ef-
ficiency of queries. To conduct data approximation, error bounds
almost always have to be specified by users before queries are sub-
mitted into the sensor network, and there is hardly any means to
adjust the error bounds during runtime. The obstacle is that the re-
lation between result accuracy and energy efficiency of queries is
constantly changing over time, and, in many scenarios, the chang-
ing trend of the relation is not available to users a prior. In this
regard, it is impractical to depend on users to predict what error
bounds can lead to affordable cost in query processing. And the
obstacle often results in considerable and unnecessary energy con-
sumption, such as in the following scenarios.

First, specifying a fixed error bound for a continuous query may
yield different result sizes at different time. Given a seemingly
loose error bound tossed by the user, it is unpredictable whether or
when the error bound can lead to affordable result sizes.

Scenario 1 In ‘botanic monitoring’ [30], a continuous query col-
lects all light readings periodically from redwood trees, so that a
contour map image can be updated at the base station accordingly.
The query may specify a fixed error bound, say ±50 Lux, for in-
network data approximation hoping that the result sizes are afford-
ably small for long-running. At night, when light readings are be-
tween 0 and 100 Lux, the error bound can lead to high compression
ratio, which is desirable. Unfortunately, during daytime the com-
pression ratio may become unexpectedly low, for the deviations of
light values are mostly greater than the error bound. Hence, the
query incurs overwhelming energy consumption during daytime.
And the long-running cost of the query is unaffordable, for it may
shorten the network lifetime by large factors.

Second, a user may have obtained a set of approximate data, and
hopes that related queries can reuse them to avoid repetitive com-
munication. However, with existing methods, approximate data
generated for one query are not always reusable for other ones.

Scenario 2 In ‘military surveillance’, a commander requires the
disposition data of enemy troops to aid decision making. An over-
all view of the data has to be obtained first, in real-time, to learn
the general situation. Detailed views of the data are then needed
for analyzing the enemy troops and making decisions. The overall
view is always (partially) covered by detailed views. However, with
existing approximation methods, queries for the detailed views are
typically unable to reuse approximate data obtained for the over-
all view. Hence, the repetitive information has to be transmitted
multiple times, which is a substantial source of undesirable cost.

mailto:liuyu81@live.cn
mailto:lijzh@hit.edu.cn
mailto:honggao@hit.edu.cn
mailto:xlforu@gmail.com
mailto:liuyu81@live.cn

To resolve all above problems, we envision ε-approximate query-
ing (EAQ). EAQ is a uniform data access scheme allowing users or
various query executors to efficiently ‘refine’ previously obtained
approximate data to reach arbitrary accuracy. The intuitive idea is
to split the data access process into a series of iterative sub-queries,
each of which incrementally retrieves a small fraction of informa-
tion and extends the outcome of previous sub-query. All interme-
diate outcomes of sub-queries are approximate versions of the tar-
geted dataset with guaranteed error bounds. As for Scenario 2,
EAQ initially obtains a sketch of the battlefield data at minimum
cost. Then if time allowed, it invokes consecutive sub-queries to
refine the sketch and yield better versions of approximate data. In
this manner, the commander eventually obtains data that are ei-
ther sufficiently accurate for making sound decisions or having the
maximum possible accuracy for the time allowed. For one thing,
EAQ overcomes the obstacle of having to toss a sometimes irra-
tional error bound before query execution. For the other, it offers
the flexibility to query network-stored sensor data at multiple ac-
curacy levels. In addition, by selecting and communicating data
upto a just-sufficient level, EAQ can reduce both response time and
energy cost for various queries in sensor networks.

Enabling EAQ in sensor networks is non-trivial. As a uniform
data access scheme, EAQ should generate refinable approximate
data that are usable by various queries. In other words, the out-
comes of EAQ may be converted, by various query executors, to
any potential forms, such as statistics, histograms, contour maps,
frequent patterns, etc. The diversity in data utility requires that all
approximate data generated by EAQ should not deviate from the
accurate values more than an upper bound. Namely, EAQ should
always generate approximate datasets with guaranteed maximum
absolute, or L∞-norm, error bounds [20]. If otherwise approxi-
mate datasets only ensure cumulative error bounds, such as L2 or
L1-norm, then the accuracy of individual sensor readings does not
have a guarantee. Consequently, many important queries (such as
MAX and TOP-K) and useful mining tasks [12] may yield results
with unbounded errors! During EAQ-based data access, the same
collection of data may be acquired multiple times at different ac-
curacy levels. And the challenge arises in how to bound the accu-
mulated communication for obtaining multiple versions of approx-
imate data. So far as we know, no prior data approximation tech-
niques, not even transform domain methods [2] like wavelet, can
fully eliminate the redundancy among multiple versions of approx-
imate data when subject to minimizing L∞-norm errors. In sum-
mary, we identify two research problems in enabling EAQ, namely,
(i) how to produce and communicate multiple versions of approx-
imate data at an overall cost comparable to that of acquiring the
finest version alone, and (ii) how to ensure that all approximate
versions have guaranteed L∞-norm error bounds.

The core technique we develop for enabling EAQ is a novel data
shuffling algorithm. The algorithm converts a collection of sensed
data into a special representation called multi-version array (MVA).
An MVA is an equivalent representation of the original dataset, and
it takes strictly less or equal storage. Yet, given any MVA pre-
fix with three or more items, we can always recover an approxi-
mate version of the entire dataset together with an ε indicating the
guaranteed bound of maximum absolute, i.e. L∞-norm, error. To
conduct EAQ over ‘shuffled’ data, each sub-query of EAQ only re-
trieves a consecutive fragment of the MVA, which composes an ex-
tended MVA prefix when concatenated with all previous fragments.
Since coarser versions of approximations (or shorter prefixes) are
always contained in finer ones (or longer prefixes), the accumulated
cost for retrieving multiple versions of approximate data is always
bounded by that of retrieving the finest version (or the longest pre-

fix). Even in the extreme case where a user insists on obtaining
an approximate version of 100% accuracy, the cost for conducting
EAQ is still bounded by the volume of the targeted dataset, or the
length of the entire MVA. The proposed EAQ scheme can support
flexible and efficient processing of many important query types in
sensor networks, including spatial window query [32] and multi-
dimensional value range query [23, 6]. The iterative framework
of EAQ also enables queries with various QoS constraints, such as
response deadline, energy budget, etc.

The main contributions of the paper are as follows.

• We envision a uniform scheme EAQ for accessing network-
stored sensor data. EAQ allows for arbitrary-accuracy data
access through runtime refinements. It brings more flexibil-
ity to in-network query processing, and potentially reserves
energy by communicating data upto a just-sufficient level.

• To enable the EAQ scheme, a light-weight, low-order poly-
nomial, data shuffling algorithm is proposed. It converts
sensed datasets into representations called multi-version ar-
ray (MVA). Notable features of MVA include (i) MVA is a
rearrangement of the original dataset, values of data items
remain unchanged, (ii) MVA can yield multiple approximate
versions of the original dataset with guaranteed L∞-norm
error bounds, (iii) coarser versions of approximate data and
their error bounds are all embedded in finer versions.

• We present EAQ-based query processing by examples. EAQ
can enable a number of important types of queries, including
spatial window query, multi-dimensional value range query,
and queries with QoS constraints.

• Last but not least, we conduct experimental studies in a real
sensor network testbed to evaluate the proposed techniques.

The rest of this paper is organized as follows. Section 2 formu-
lates research objectives. In Section 3 and 4, we present techniques
for enabling EAQ. Section 5 describes EAQ-based query process-
ing. Results of empirical studies are shown in Section 6. Section 7
surveys related work. Finally, we draw conclusions in Section 8.

2. PROBLEM FORMULATION

2.1 Preliminaries
We consider a sensor network N , in which sensor motes are

deployed according to a regular grid in the area of interest. In
the network grid, two sensor motes can communicate directly if
they are in the same rectangular region of size (r + 1) × (r + 1),
where r ≥ 1 is the distance of one hop. The network performs
data sampling once every δ seconds. For each sampling period,
every sensor mote observes the environment and samples a data
item o =

(
h, t, v1, v2, . . . , vd

)ᵀ, where integer h is the identi-
fier of mote sh that yielded the data item, integer t is the time
stamp when the data item is sampled, and the list of normalized
values V =

(
v1, v2, . . . , vd

)
are the attributes observed by mote

sh, such as temperature, light, voltage, etc.. We assume there exists
a one-to-one mapping between sensor motes’ identifiers h and ge-
ographic locations (x, y). The identifiers h embedded in data items
are called location stamps. Data are stored in-network for answer-
ing queries until they become staled (i.e. time stamps older than a
threshold T À δ). Let tnow be the time stamp of now, the time
stamp t in data items can be normalized as t̄ = (tnow − t) / T .
The set of all data items sampled within one sampling period forms
a snapshot of networkN . We define λ-localized dataset, or dataset

for short, as being any non-empty subset of a snapshot in which all
data items are sampled by motes within λ hop(s) of each other.

Definition 1 ((λ-Localized) Dataset) LetD be a non-empty set of
data items collected in sensor networkN . D is called a λ-localized
dataset, or dataset for short, if, for any two data items ou and ov in
D, it always holds that (i) the two time stamps tu and tv are within
±δ, i.e.

∣∣t̄u − t̄v

∣∣ < δ / T , and (ii) the two sensor motes su and
sv are within λ hop(s), i.e. su and sv are in the same rectangular
region of size (λ · r + 1)× (λ · r + 1) in the network N .

Note that, every mote samples exactly one data item during each
sampling period, therefore, all location stamps in the same dataset
are guaranteed to be unique. We thus formulate the canonical form
of datasetD as vectorD=

(
oh1 ,oh2 , . . . ,ohk

)ᵀ, where data items
are subscripted with their location stamps, and are arranged in as-
cending subscripts order, i.e. hi−1 < hi (i = 2, 3, . . . , k).

2.2 EAQ Data Access Model
Given a targeted dataset D =

(
oh1 ,oh2 , . . . ,ohk

)ᵀ, the basic
functions of EAQ are (i) obtain an approximate version D̂ of dataset
D, which conceptually contains k equivalent data items, i.e. D̂ =(
ôh1 , ôh2 , . . . , ôhk

)ᵀ, but has smaller actual representation, and
(ii) refine D̂ to reach higher accuracy levels, where the accuracy is
measured with maximum absolute error, or L∞-norm,

L∞
(D̂,D)

=
k

max
i=1

∥∥ôhi − ohi

∥∥
∞=

k
max
i=1

d+2
max
j=1

∣∣θ̂j − θj

∣∣ (1)

where θj is the j th component in each data item oi ∈ D, and θ̂j is
the approximate counterpart in ôi ∈ D̂. To be precise, θj and θ̂j

can be the location stamp (j = 1), the time stamp (j = 2), or any
attribute value (j = 3, 4, . . . , d + 2) in respective data items.

We model the data access process of EAQ as a series of sub-
queries ρ1, ρ2, . . . , ρq . Each sub-query ρi retrieves a fraction ∆i of
data items from the targeted datasetD, i.e. ∆i ⊂ D, and, for all i >
1, ρi assembles ∆i with the outcome Oi−1 of previous sub-query
ρi−1 to form an extended outcome Oi, i.e. Oi = Oi−1 ∪∆i. The
sub-queries of EAQ can be called at any mote, as well as from the
base station, during query processing. Figure 1 gives an example
illustrating how EAQ is used for in-network query processing.

x

y

D

D
′

(0,0)

(1,1)

s0

sq

s
′

q

Qi

∆i

R hops

D

∆2∆1 . . .

Figure 1: Modeling the EAQ data access scheme. An ad hoc
query is propagated R hops from base station s0 to sensor
mote sq , at which it discovers one targeted dataset D (i.e. the
other is D′). sq invokes ρ1, ρ2, . . . to acquire D and obtains
∆1, ∆2, For raw data acquisition, ∆i’s are directly for-
warded to s0. Otherwise, partial query results are generated at
sq from O1,O2, . . . and then routed to s0.

Underlying the data access model of EAQ, two basic operators
are needed by sub-queries for recovering approximate datasets and
validating the accuracies of approximations. We draw specifica-
tions for the operators here, and present algorithms in Section 3.3.

Dataset Recovery (α) The dataset recovery operator α recovers
an approximate version D̂ of dataset D from the outcome O
of respective sub-query, i.e. D̂ = α

(O)
.

Error Validation (ε) The error validation operator ε validates
the accuracy of an approximate version D̂ = α

(O)
, In par-

ticular, ε
(O)

should yield the same result as L∞
(D̂,D)

, but
ε must only base on O, and nothing more from dataset D.

The cost for conducting EAQ over a particular dataset is the accu-
mulated communication of all iterations of sub-queries. If it takes q

iterations to obtain approximate version D̂, i.e. D̂ = α
(Oq

)
, then

the accumulated cost can be expressed as follows.

C(D̂)
=

q∑
i=1

C(Oi

)
=

q∑
i=1

c ·
∣∣∆i

∣∣ (2)

where ∆i ⊂ D is the fraction of data items retrieved by the ith

iteration ρi, and c is the average cost (i.e. in the unit of Joule per
data item) for accessing one data item from dataset D.

It deserves our notice that, when ∆i ∩∆j = ∅ for all i 6= j, the
cost model in Equation 2 has a minimum,

C∗(D̂)
= min

{
q∑

i=1

c ·
∣∣∆i

∣∣
}

= c ·
∣∣

q⋃
i=1

∆i

∣∣ (3)

Equation 2 suggests that different iterations of sub-queries should
retrieve non-overlapping fractions of the targeted dataset.

2.3 Research Objectives
In order for the EAQ scheme to be effective, we require that (i) it

should always be possible to improve the accuracy of an approxi-
mate version through more iterations of sub-queries, and (ii) it must
be viable to reach arbitrary accuracy with limited iterations of sub-
queries. In other words, sub-queries of EAQ should always ensure
error convergence, as defined in Definition 2.

Definition 2 (Error Convergence) Let ρi and ρj be, respectively,
the ith and j th iteration of sub-query ρ for the same data access pro-
cess. ρ is said to ensure ‘error convergence’, if (i) the outcome Oi

of ρi yields more accurate approximate version than the outcome
Oj of ρj when and only when i > j, i.e. i > j ⇐⇒ ε

(Oi

)
<

ε
(Oj

)
, and (ii) given any ε > 0, there always exists an integer

K > 0 such that, for all integers k > K, ε
(Ok

)
< ε, where Ok is

the outcome of ρk in the same data access process.

On the energy efficiency of EAQ, we concern that the accuracy
of an approximate version should worth the cost for obtaining it.
Namely, the cost for obtaining an approximate version should be
bounded, on both ends, by those for obtaining the pair of versions
having slightly looser and slightly tighter accuracies. Moreover,
as Equation 3 suggests, different iterations of sub-queries should
retrieve non-overlapping fractions of the targeted dataset. Formally,
sub-queries of EAQ should always exhibit full data reuse.

Definition 3 (Full Data Reuse) Let Oq =
⋃q

i=1 ∆i be the out-
come of the qth iteration ρq of sub-query ρ, where ∆i 6= ∅ (1 ≤
i ≤ q) and ∆i ∩ ∆j = ∅ for all i 6= j (1 ≤ i, j ≤ q). The
respective sub-query ρ is said to ensure ‘full data reuse’, if for all
ε ∈ (

ε
(Oq

)
, ε

(O1

)]
there exists outcome Ob (1 < b ≤ q) in the

same data access process, such that ε ∈ (
ε
(Ob

)
, ε

(Ob−1

)]
.

In summary, we identify the research objectives of this paper as
(i) to realize the two basic operators α and ε as specified in Sec-
tion 2.2, and (ii) to guarantee both error convergence and full data
reuse for sub-queries of EAQ according to Definition 2 and 3.

3. DATA SHUFFLING ALGORITHM

3.1 Revisiting Sensor Data
A well-known property of sensor data is the strong spatial corre-

lation [18]. The spatial correlation among sensor data are inclined
to be localized, i.e. nearby sensors within a few hops, or a distance
of tens to hundreds of meters, are likely to yield similar readings,
and vise versa. For example, in intrusion detection [1], the emer-
gence of an intruder (i.e. human or vehicle) typically only triggers
the number of sensors sufficiently close to it. Back in Section 2.1,
we presumed a one-to-one mapping between sensor motes’ identi-
fiers and coordinates. Now we propose to employ a mapping that
implicitly clusters nearby data which potentially exhibit high spa-
tial correlation. In particular, nearby sensor motes (or data items)
should be mapped to have closer identifiers (or location stamps),
and vise versa. Viable choices for the mapping include various
space-filling curves [26], like Hilbert curve, Z-curve, Peano curve,
etc. We choose Hilbert curve as an example in the following discus-
sions. In practice, the mapping can be computed using the methods
in [19]. When the identifiers of sensor motes are assigned accord-
ing to an l-order Hilbert curve, i.e. filling a 2l × 2l grid in the
network area, certain sized groups of motes with consecutive iden-
tifiers always yield λ-localized datasets (Cf. Definition 2.1).

Claim 1 Let S be a set of k motes having consecutive identifiers
S=

{
su, su+1, . . . , sv

}
. If k ≤ ∑blog2 (λ·r+1)c

i=1 4i−1 + 1, where
λ · r = 2j − 1 (j = 1, 2, . . . , l) and r is the distance of one hop,
then S always yields λ-localized datasets, otherwise it is not guar-
anteed. We may denote a dataset yielded by S with Dv

u, where u
and v are respectively the smallest and largest identifiers of sensor
motes in S , and the size of dataset Dv

u is k = v − u + 1.

Proof The proof of the claim is due to properties of Hilbert curves,
and falls beyond the topic of this paper. We thus omit the details.2

Here after, we default all datasets as being produced according to
Claim 1 in which all data items have consecutive location stamps.

In Figure 2(a), we draw the south-west 4× 4 grid of the network
area, which is filled with a 2-order Hilbert curve (i.e. the shadowed
stroke). The current snapshot of the network (i.e. t = tnow) con-
tains a dataset D =

(
o1,o2, . . . ,o7

)ᵀ, where
∣∣D

∣∣ = 7. The data
items are sampled and stored respectively by the set of sensor motes
S =

{
s1, s2, . . . , s7

}
. The scatter plot of data items in Figure 2(b)

captures the relation between location stamps h and attribute val-
ues V . Note that, for clarity of presentation, Figure 2(b) presumes
the attribute values in V as one dimensional. The techniques to be
presented are capable for handling multi-dimensional data.

x

y
1 2

34

5

6 7

8 9

10 11

12

1314

15 16

(a) network grid
h

V

o1

o2

o3

o4

o5

o6

o7

(b) dataset plot

Figure 2: (a) 4 × 4 grid in the network area filled by Hilbert
curve (the shadowed stroke), white circles represent data items
in datasetD; (b) scatter plot of datasetD in h-V space, attribute
values in V are presumed one-dimensional for clarity.

We observe two interesting properties in the canonical form of
datasets (Cf. Section 2.1). First, location stamps establish a full
order among all data items in the same dataset.

Observation 1 (Order Insensitivity) Given any permutation of a
dataset D, it is always possible to resume the canonical form of
D through sorting data items by the location stamps. With radix
sort [21], the resuming completes in O(k) time, where k =

∣∣D
∣∣.

Second, it is possible to obtain an approximate version of dataset
D from any subset of D having two or more data items.

Observation 2 (Partial Recoverability) Given an arbitrary sub-
setO of datasetD, where

∣∣O∣∣ ≥ 2, we can obtain an approximate
version D̂ of datasetD using pairwise linear approximation, i.e. for
all oh ∈ D (h = h1, h2, . . . , hk, k =

∣∣D∣∣), we can have ôh ∈ D̂,

ôh =

{
h− v

u− v
ou +

u− h

u− v
ov oh 6∈ O

oh otherwise
(4)

in which ou and ov are two data items in O having the first and
second closest location stamps u and v to h. Where it does not
cause ambiguity, we do not distinguish between an approximate
version D̂ and the subset O ⊆ D from which D̂ is constructed.

The approximation error of Equation 4 can be formulated as
εh =

∥∥ôh − oh

∥∥
∞= maxd+2

j=1

∣∣θ̂j − θj

∣∣, where θj and θ̂j are the
j th components in oh and ôh respectively. We notice that the con-
tributions of location stamps (θ1 or θ̂1) and time stamps (θ2 or θ̂2)
to the approximation error εh are always negligible, namely,

Claim 2 Let oh =
(
h, th, v1, . . . , vd

)ᵀ be a data item in dataset
D and ôh =

(
ĥ, t̂h, v̂1, . . . , v̂d

)ᵀ be the approximate version of
oh built from subset O of dataset D using Equation 4. It always
holds that h = ĥ and th ≈ t̂h, hence, εh = maxd

j=1

∣∣v̂j − vj

∣∣.
Intuitively, εh is equal to the L∞-norm distance from oh to line
segment ou ov in h-V space projected to the V-axis(es).

εh = εV
(
oh,ou ov

)
=

d
max
j=1

∣∣v̂j − vj

∣∣ (5)

Proof If oh ∈ O then ôh and oh are always identical, i.e. ĥ = h
and t̂ = t, otherwise, ôh is built from ou,ov ∈ O, thus ĥ =
h−v
u−v

u + u−h
u−v

v = h, and t̂h = h−v
u−v

tu + u−h
u−v

tv . As such,
t̂h − th = u

u−v
(tv − th) + h

u−v
(tu − tv) + v

u−v
(th − tu). Note

that ou, ov , and oh are in the same dataset D, hence
∣∣t̂h − th

∣∣ <
|u|+|v|+|h|
|u−v| δ / T . Since T À δ,

∣∣t̂h − th

∣∣ ≈ 0, thus th ≈ t̂h. 2

3.2 Data Shuffling Algorithm
According to Observation 1 and 2, any subset O of dataset D

having two or more data items can be viewed as an approximate
version of D; and by Equation 5, the error of approximation is the
maximum of all distances from data items inD\O to respective h-
V space line segments ou ov . This enlightens our thought to rank
and reorder data items inD according to their importance, or errors
incurred if otherwise omitted, to approximating the entire dataset
D. In doing so, we can obtain a special permutation π

(D)
of D

in which data items with higher ranks tend to precede those with
lower ones. Thus, any prefix of π

(D)
can yield an approximate

version of D, and the error of approximation is equal to the rank
of the first data item missing from the prefix. We next describe the
data shuffling procedure for constructing such permutation π

(D)
,

which we call multi-version array or MVA.

h

V
ε4

o1

o2

o3

o4

o5

o6

o7

(a) O2 =
(
o1,o7

)ᵀ
h

V

ε2

o1

o2

o3

o4

o5

o6

o7

(b) O3 =
(Oᵀ

2 ,o4

)ᵀ
h

V

ε6

o1

o2

o3

o4

o5

o6

o7

(c) O4 =
(Oᵀ

3 ,o2

)ᵀ
h

V

ε3

o1

o2

o3

o4

o5

o6

o7

(d) O5 =
(Oᵀ

4 ,o6

)ᵀ

Figure 3: Approximating dataset D with O2, O3, O4 and O5 respectively. Black dots are data items included in respective approx-
imate versions; white squares are current farthest data items to be included in subsequent approximate versions; and white circles
are the remaining data items in D \ Ob (b = 2, 3, 4, 5). The shadowed background strokes indicate the errors of approximation.

Consider the dataset D in Figure 2(b) for example. As an initial
step, we take the two extreme data items o1 and o7 from D and
treat the outcome O2 =

(
o1,o7

)ᵀ as a rough approximate version.
Approximating D with O2 introduces an error ε equal to the max-
imum of all distances from data items in D \ O2 to the h-V space
line segment o1 o7, i.e. ε=maxoh∈D\O2

{
εV

(
oh,o1 o7

)}
. The

farthest data item identified for this step is o4, which can be ob-
served from Figure 3(a). The emergence of o4 extends previous
outcome O2 to O3 =

(Oᵀ
2 ,o4

)ᵀ; and it divides the remaining
data items in D \ O3 into two intervals D (1 :4) =

{
o2,o3

}
and

D (4 :7)=
{
o5,o6

}
. We then separately test data items inD (1 :4)

and D (4 :7) for their closeness to respective line segments o1 o4

and o4 o7. Among all non-empty intervals, the one with the glob-
ally farthest data item is to be divided next following the exact
process as we divide D (1 :7). As Figure 3(b) shows, this step
identifies o2 as the farthest data item; and the respective interval is
D (1 :4). o2 divides D (1 :4) into two further intervals D (1 :2) =
∅ and D (2 :4) =

{
o3

}
. We repeat until either (i) all data items

from D have been selected, or (ii) the farthest data item yields
ε = 0 (i.e. like o5 from o4 o6 in Figure 3(d)). The final out-
comeO7 =

(
o1,o7,o4,o2,o6,o3,o5

)ᵀ is the multi-version array
(MVA) of dataset D, which we denote π

(D)
= O7.

Algorithm 1 generalizes the above procedure for data shuffling.
We employ a priority queue Q to manage the precedences of in-
tervals. On line 12, the PUSH(Q, e, w) operation pushes an entity
e into Q with rank w. Specifically, an entity e comes out from Q
(via the POP operation on line 14) following all entities with higher
rank values and possibly some entities with the same rank.

In Figure 4, we use a tree hierarchy to organize the intervals of
data items being divided while shuffling dataset D. Algorithm 1
can be viewed as a best-first [21] traversal of the binary tree in
Figure 4. The itinerary of traversal is depicted as dashed arrows.

o4

o2 o6

× o3 o5 ×

× × × ×

(1:7)

(1:4) (4:7)

(1:2) (2:4) (4:6) (6:7)

(2:3) (3:4)(4:5) (5:6)

l = 0

l = 1

l = 2

l = 3

o4

o2 o6

× o3 o5 ×

× × × ×

Figure 4: Intervals of data items being divided while shuffling
dataset D. Labels on nodes are the farthest data items identi-
fied from respective intervals (marked above nodes). Shadowed
nodes are data items in π

(D) \ {
o1,o7

}
. Dashed arrows indi-

cate the order by which data items are selected.

Algorithm 1 SHUFFLE DATASET TO CONSTRUCT MVA
1: procedure FINDFARTHEST(D, p, q) . D (p :q) 6= ∅
2: 〈m, ε〉 ← 〈null, 0〉
3: for each oi ∈ D (p < i < q) do
4: if εV

(
oi,op oq

) ≥ ε then
5: 〈m, ε〉 ← 〈i, εV

(
oi,op oq

)〉 . Equation 5

6: return 〈m, ε〉
7: procedure SHUFFLE(D) . D =

(
oh1 ,oh2 , . . . ,ohk

)ᵀ

8: O ← (
oh1 ,ohk

)ᵀ
. k ≥ 2

9: Q ← ()
. Q is a priority queue

10: if k > 2 then
11: 〈m1, ε1〉 ← FINDFARTHEST(D, h1, hk)
12: PUSH(Q, 〈h1, hk, m1, ε1〉, ε1)
13: while not ISEMPTY(Q) do
14: 〈p, q, m, ε〉 ← POP(Q)
15: O ← (Oᵀ,om

)ᵀ

16: if ε = 0 then
17: break
18: if exists ou ∈ D (p < u < m) then . D (p :m) 6= ∅
19: 〈mu, εu〉 ← FINDFARTHEST(D, p, m)
20: PUSH(Q, 〈p, m, mu, εu〉, εu)
21: if exists ov ∈ D (m < v < q) then . D (m :q) 6= ∅
22: 〈mv, εv〉 ← FINDFARTHEST(D, m, q)
23: PUSH(Q, 〈m, q, mv, εv〉, εv)
24: return O

Theorem 1 (Time Complexity) The time complexity for shuffling
a dataset D of k data items is O(k2) in worst case.

Proof For each level l of the tree in Figure 4, there are at most 2l

data items being added to π
(D)

. And selecting these data incurs a
total of k − 2− 2l−1 comparisons of distance. Thus for the entire
process of traversing the tree, a total of O(H k) basic operations
are performed, where H is the height of the tree. For a binary tree
with k nodes, the height H is at least

⌈
log2 (k − 1)

⌉
and at most

k, therefore the time complexity is O(k2) in worst case. 2

Theorem 2 (Space Complexity) The space complexity for shuf-
fling a dataset D of k data items is O(k).

Proof We use a priority queue to manage the non-empty intervals
to be added to π

(D)
. Not considering the two extreme data items,

there can be at most k − 2 non-empty intervals. Thus the number
of entities in the priority queue does not exceed k − 2. When the
priority queue is implemented using a maximum heap, it requires
O(k) space. Thus the space complexity is O(k). 2

3.3 Approximate Data Recovery
According to Algorithm 1, any prefix O of MVA π

(D)
is a sub-

set of the original dataset D. And by Observation 2, if prefix O
contains two or more data items, then it always yields an approxi-
mate version D̂ of the original dataset D. To be precise, for every
missing data item oh ∈ D \O, an approximate counterpart ôh can
be recovered from O using Equation 4. An interesting property of
multi-version array (MVA) is that the L∞-norm error (Cf. Equa-
tion 1) of the approximate version D̂ recovered from prefix O is
guaranteed to be bounded by the h-V space distance (Cf. Equa-
tion 5) between the first data item x not in O (i.e. x is the first data
item in the postfix π

(D) \ O of MVA π
(D)

) and the approximate
counterpart x̂ built from O using Equation 4. Formally, we have,

Theorem 3 (Recoverability and Error Bound) Suppose π
(
D

)
is

‘shuffled’ from dataset D using Algorithm 1, and
∣∣π(D)∣∣ = k.

Given any prefix O of π
(
D

)
, where

∣∣O
∣∣ = b (2 ≤ b < k), it

is guaranteed that prefix O always yields approximate version D̂
such that L∞

(D̂,D) ≤
∥∥x̂− x

∥∥
∞, where x is the (b + 1)th data

item in π
(D)

, i.e. x = π
(D)

[b + 1], and x̂ is the approximate
counterpart of x recovered from O using Equation 4.

Proof Dataset recovery is by means of Observation 2. Specifically,
for all integer h ∈ [h1, hk], where h1 and hk are respectively the
location stamps of the first and second data items in prefix O, we
recover each approximate data item ôh (h = h1, h1 + 1, . . . , hk)
using Equation 4. If oh ∈ O, i.e. oh = O[i] (i = 1, 2, . . . , b),
then Equation 4 ensures ôh = oh. Thus the approximation error∥∥ôh − oh

∥∥
∞ = 0. If oh ∈ D \ O, then Algorithm 1 ensures that

the (b+1)th data item x in π
(D)

is at least one of the farthest from
respective h-V space line segments (otherwise, the priority queue
in Algorithm 1 should not have POP’ed data item x before all data
items in D \ O \ {

x
}

). Thus for all data items oh ∈ D \ O,
we have

∥∥ôh − oh

∥∥
∞ ≤

∥∥x̂− x
∥∥
∞. In summary, for all oh ∈

D and respective ôh ∈ D̂, it is guaranteed that
∥∥ôh − oh

∥∥
∞ ≤∥∥x̂− x

∥∥
∞. In other words, L∞

(D̂,D) ≤
∥∥x̂− x

∥∥
∞. 2

The intuitive idea of Theorem 3 is to always extract MVA prefixes
of b ≥ 3 data items. In doing so, we can obtain from the prefix
(i) approximate version D̂ recovered from the initial b − 1 data
items of O, and (ii) L∞-norm error bound of D̂ computed using
the bth data item of O. Now we are able to realize the two basic
operators α and ε specified in Section 2.2. Pseudo codes are given
in Algorithm 2. The RECOVER(O) procedure on line 1 implements
operator α, and the ERROR(O) procedure on line 8 implements

Algorithm 2 RECOVER APPROXIMATE DATASET FROM MVA

1: procedure RECOVER(O) . O =
(
oh1 ,ohk ,om1 , . . .

)ᵀ

2: D̂ ← ()ᵀ
. initialize empty dataset

3: b ←
∣∣O

∣∣ . b ≥ 3
4: for h ← h1 upto hk do
5: ôh ← APPROX(O[1 :b− 1], h) . Equation 4
6: D̂ ← (D̂ᵀ, ôh

)ᵀ

7: return D̂
8: procedure ERROR(O) . O =

(
oh1 ,ohk ,om1 , . . .

)ᵀ

9: b ←
∣∣O

∣∣ . b ≥ 3

10: x ← O[b] . extract the bth data item from O
11: x̂ ← APPROX(O[1 :b− 1], LOCSTAMP(x)) . Equation 4
12: return

∥∥x̂− x
∥∥
∞

operator ε. On lines 5 and 11, APPROX(X , h) utilizes Equation 4
to recover an approximate data item ôh from MVA prefix X . On
line 11, the call to LOCSTAMP(x) returns the location stamp of x.

3.4 Discussions
In reality, raw sensor data may contain intrinsic error due to

flawed sensors, environmental noises, etc. Our philosophy is that
the data shuffling algorithm (Cf. Algorithm 1) should treat input
datasets as 100% accurate. If in case the intrinsic error in raw sen-
sor data is well understood, the proposed techniques can be even
more efficient, for data shuffling no longer needs to put all data
items into the multi-version array (MVA), but may terminate when
the approximation error drops to a level comparable to the intrin-
sic error of the input dataset. The existence of outliers [29] in raw
sensor data could affect the performance of MVA-based data ap-
proximation. We allow domain experts to deploy in-network out-
liers detector which drop abnormal data before data shuffling. The
dataset recovery operator α (Cf. Algorithm 2) automatically esti-
mates dropped data items using available ones. Besides spatial cor-
relation, sensor data may also exhibit temporal and intra-attribute
correlations [7, 9]. Our techniques can co-exist with most cutting-
edge methods for exploiting such correlations, because data shuf-
fling only rearranges the input datasets and the values of individual
sensor readings are never changed. Last but not least, pairwise
linear approximation is not the only means for recovering approx-
imate versions of datasets. Our choice is due to complexity con-
cerns, because the limited computing capability of sensor motes
calls for light-weight algorithms for frequent operations.

4. EAQ SUB-QUERY DESIGN
We consider enabling ε-approximate querying (EAQ) based on

multi-version arrays (MVA). Recall from Section 2 that EAQ de-
pends on iterations of sub-queries to obtain approximate versions
of datasets at different accuracy levels. For example, if dataset D
is available as MVA π

(D)
, sub-query ρ can be called q times to

retrieve consecutive fragments ∆1, ∆2, . . . , ∆q from π
(D)

(q =
1, 2, . . .), and the outcomes Obq =

⋃q
i=1 ∆i are MVA prefixes of

strictly increasing length, i.e.
∣∣Ob1

∣∣ <
∣∣Ob2

∣∣ < . . . <
∣∣Obq

∣∣. We
notice that the research objectives in Section 2.3, i.e. to ensure a
sub-query ρ satisfy both Definition 2 and Definition 3, are always
achieved when the outcomes of sub-query ρ are a series of MVA
prefixes having monotonically decreasing error bounds.

Claim 3 Let ρ be an EAQ sub-query, and P = 〈Ob1 ,Ob2 , . . .〉 be
the full sequence of outcomes, i.e. MVA prefixes, obtained with ρ,
where Obq =

⋃q
i=1 ∆i (q = 1, 2, . . .), ∆i 6= ∅ (i = 1, 2, . . . , q).

If ε
(Obq

)
> ε

(Obq+1

)
for all q = 1, 2, . . ., then sub-query ρ

always conforms to both Definition 2 and Definition 3.

Proof Suppose the targeted dataset isD and the respective MVA is
π
(D)

. For Definition 2, we need to prove that for sufficiently large
k, the error bound of the kth outcomeObk =

⋃k
i=1 ∆i in sequence

P can be arbitrarily small. Since ∆q 6= ∅ (q = 1, 2, . . .), the
outcomeObk is extended upon every iteration of sub-query ρ. Thus,
if k is sufficiently large, Obk ultimately grows to the length of the
entire MVA π

(D)
. Obviously, it always holds that ε

(
π
(D))

= 0.
Hence Definition 2 holds for ρ. For Definition 3, ∆k 6= ∅ ensures∣∣Obk+1

∣∣ >
∣∣Obk

∣∣ (k = 1, 2, . . . , q, q = 1, 2, . . .). By definition
of P , ε

(Obj

)
< ε

(Obi

)
if and only if

∣∣Obj

∣∣ >
∣∣Obi

∣∣, and the
series of intervals

(
ε
(Obk+1

)
, ε

(Obk

)]
(k = 1, 2, . . . , q) do not

overlap. Thus given any ε ∈ (
ε
(Obq

)
, ε

(Ob1

)]
, it must fall in

one and only one of the intervals, say,
(
ε
(Obi+1

)
, ε

(Obi

)]
and

1 <
∣∣Obi

∣∣ ≤
∣∣Obq

∣∣. Hence Definition 3 holds for sub-query ρ. 2

Given a sufficiently long multi-version array (MVA), there may
exist more than one sequences of prefixes having monotonically de-
creasing error bounds. In other words, we can design various EAQ
sub-queries for use in different scenarios. For example, to support
online analysis of sensor data across the network, we concern that
the MVA prefixes obtained by sub-queries should ‘grow’ smoothly
in length. This is to prevent communicating unnecessary details in
case coarse datasets already suffice for, say, generating graphical
visualizations for human users. Alternatively, a time critical query
may always prefer to retrieve the shortest MVA prefix that yields
an acceptable approximate version of targeted data. Following, we
present two possible designs of EAQ sub-query.

Greedy Sub-Query (ρG) Upon the ith iteration, sub-query ρG

returns the shortest non-empty MVA fragment ∆i such that
ε
(Obi

)
< ε

(Obi−1

)
where Obi = Obi−1 ∪∆i, and Obi−1

is the outcome produced by ρG for the (i− 1)th iteration.

Smooth Sub-Query (ρS) Sub-query ρS requires a precomputed
array E that contains the longest monotonically decreasing
sub-sequence of error bounds of all targeted MVA prefixes,
i.e. E = 〈εb1 , εb2 , . . .〉 where εbq = ε

(Obq

)
, εbq > εbq+1

(q = 1, 2, . . .). Upon the ith iteration, sub-query ρS returns
∆i = Obi \Obi−1 , where εbi−1 and εbi are respectively the
(i− 1)th and ith error bounds in array E .

Prototype implementations of sub-queries ρG and ρS are given
in Algorithm 3. On line 13, LONGESTDECRSUBSEQ(A) returns
the longest monotonically decreasing sub-sequence E for the ar-
ray A of tuples 〈bi, ei〉 according to the values of ei’s. The well-
known dynamic programming algorithm implements LONGEST-
DECRSUBSEQ in O(k2) time for input size

∣∣T
∣∣ = k, which is

beyond the topic of this paper and omitted to reserve space. In Al-
gorithm 3, we use the notation π

(D)
[1 :b], such as on lines 2, 5, 6,

etc., to represent the prefix of π
(D)

having b data items.

Algorithm 3 PROTOTYPES OF EAQ SUB-QUERIES

Require: π
(D)

=
(
oh1 ,ohk ,om1 ,om2 , . . . ,omk−2

)ᵀ

1: procedure GREEDYSUBQUERY(b) . b = 0 or b ≥ 3
2: ∆ ← π

(D)
[1 :3]

3: if b ≥ 3 then
4: for i ← b + 1 upto

∣∣π(D)∣∣ do
5: O ← π

(D)
[1 : i]

6: if ε
(O)

< ε
(
π
(D)

[1 :b]
)

then
7: break
8: ∆ ← O \ (π

(D)
[1 :b])

9: return ∆
Require: E ← 〈〉
10: procedure SMOOTHSUBQUERY(i) . i ≥ 1
11: if ISEMPTY(E) then
12: A ← 〈〈3, ε

(O3

)〉, 〈4, ε
(O4

)〉, . . . , 〈
∣∣π(D)∣∣, 0〉〉

13: E ← LONGESTDECRSUBSEQ(A)
14: 〈bi, εi〉 ← E [i]
15: ∆ ← Obi ← π

(
D

)
[1 :bi]

16: if i > 1 then
17: 〈bi−1, εi−1〉 ← E [i− 1]
18: ∆ ← Obi \ (π

(
D

)
[1 :bi−1])

19: return ∆

Note in Algorithm 3 that EAQ sub-queries ρG and ρS are de-
signed for iterative execution. We take ρG for example. When
called for the first time, it yieldsOb = ρG(0) = π

(D)
[1 :3], where

b =
∣∣Ob

∣∣. We then make a successive call to ρG with b as input,
and it yields ∆b′ = ρG(b) = π

(D)
[b + 1:b′], where b′ > b.

Hence, we obtain outcome Ob′ = Ob ∪∆b′ and b′ =
∣∣Ob′

∣∣. Mak-
ing further calls to ρG using the size bq of previous outcome Obq

as input, we can obtain extended outcome Obq+1 = Obq ∪∆bq+1 .
The iteration stops when the outcome suffices for users’ purpose,
or when ultimately some outcome O yields ε

(O)
= 0.

5. EAQ-BASED QUERY PROCESSING
The ε-approximate querying (EAQ) scheme promises efficient

and flexible processing of various queries. Following, we present
three examples to outline EAQ-based query processing.

5.1 Spatial Window Query
A spatial window query [32] specifies a two-dimensional rect-

angular window in the network area. Query results are the data
items from all sensor motes in the window.1 An example is shown
in Figure 5, where the spatial window W is a rectangular region
W = (0.125, 0.5) − (0.375, 0.6875) relative to the network area.
Recall from Section 3.1 that geographic locations can be mapped
to sensor motes’ identifiers using Hilbert curve. Hence, the list of
sensor motes SW in window W can be resolved at the base station
s0 or at any sensor mote sh. As Claim 1 suggests (Cf. Section 3.1),
sensor motes in SW can be divided into special groups Sv

u of sen-
sor motes that always yield λ-localized datasets. For the example
in Figure 5, there exist two such groups, i.e. SW = S76

69 ∪ S126
115 .

x

y

W

s0

sq
s
′

q

st

QW

R hops

(0,0)

(1,1)

69 70

7172

73 74

7576

115

116117118

119 120

121122

123 124 125

126

QD

Q
′

D

W

(0.125,0.5)

(0.375,0.6875)

Figure 5: EAQ-based window query processing. The query is
propagated R-hops from base station s0 to a randomly picked
mote st in window W . st then invokes separate EAQ data ac-
cess processes for obtaining each dataset stored in W .

We formulate a spatial window query QW as QW = 〈W, fP 〉,
where W is the spatial window, and fP is a preference flag. When
fP is toggled ON, users can explicitly call EAQ sub-queries to re-
fine approximate datasets available at the base station, otherwise,
the behavior of QW attempts to emulate that of conventional ad
hoc window queries [32], i.e. to return desired data items all at
once. The processing of spatial window queries is as follows.

Step 1: (s0 initiates QW) s0 randomly selects a sensor mote st in
window SW and propagates QW to st. For the example in
Figure 5, s124 is selected as st at this step.

Step 2: (st receives QW = 〈W, fP 〉) st locally resolves the list
of motes SW fromW . For each group Sv

u of motes, i.e. with
consecutive identifiers between u and v, in SW , st randomly
picks a mote sq from Sv

u and sendsQD = 〈u, v, fP 〉 to mote
sq . As in Figure 5, s124 picks s72 ∈ S76

69 and s125 ∈ S126
115

1Spatial window queries can as well return aggregational statistics
of data in the window. We focus on the non-aggregate case.

as sq , and sends two packets QD = 〈69, 76, fP 〉 and Q′D =
〈115, 126, fP 〉 to motes s72 and s125 respectively.

Step 3: (sq receives QD = 〈u, v, fP 〉) sq collects the latest data
items from all motes in Sv

u , and stores them in a local dataset
D. When data collection completes, sq converts D to MVA
π
(D)

using Algorithm 1. If fP is toggled ON, sq sends
∆1 = π

(D)
[1 :3] to s0, otherwise, sq invokes sub-query

ρS to extract consecutive fragments ∆i (i = 1, 2, . . .) from
π
(D)

, and sends all fragments to s0 one after another.

Step 4: (s0 receives ∆i from sq) s0 updates previous outcome
Oi−1 (i.e. may be ∅) to Oi = Oi−1 ∪∆i. If fP is toggled
ON and the user is not satisfactory with D̂i = α

(Oi

)
, then

s0 sends QU = 〈ρ, b〉 to sq , where ρ = ρG and b =
∣∣Oi

∣∣.
Step 5: (sq receives QU = 〈ρ, b〉) sq executes ρ(b) over the MVA

π
(D)

obtained in Step 2, and returns ∆ = ρ(b) to s0.

When fP is toggled OFF, the above process optimizes for re-
sponse time. Without EAQ, query results are available only after
the base station has received every data item in all targeted datasets.
Hence, in the conventional case, response time T (D)

for obtaining
a datasetD is maxoh∈D

{T (
oh

)}
, where T (

oh

)
is the time send-

ing data item oh from sh to s0. For EAQ-based query processing,
an approximate dataset D̂ is available at base station s0 once the
first MVA fragment ∆1 of D has arrived. Since ∆1 only contains 3
data items and can be put into one radio packet, the response time
T ∗(D̂)

= T (
∆1

)
can be much smaller than T (D)

.
When fP is toggled ON, the above process optimizes for energy

efficiency. In general, the cost of in-network query processing is
three-fold (i) the cost for query propagation, (ii) the cost for data
processing, and (iii) the cost for result reporting. Without EAQ,
QW is first sent to any mote inW and then spread acrossW . Upon
receiving QW , each mote directly sends the latest data item to the
base station s0. Hence, in the conventional case, the overall cost is
C(D)

= O(R)+O(
∣∣D

∣∣)+O(R
∣∣D

∣∣), where R À 1 is the average
number of hops between s0 and motes in W . Consider EAQ-based
query processing. Step 1 and 2 incur O(R) communication. Step 3
costs O(

∣∣D∣∣) for data collection and O(R
∣∣∆1

∣∣) = O(R) for send-
ing ∆1 to s0. Invoking Step 4 and 5 for q − 1 iterations consumes∑q

i=2 O(R
∣∣∆i

∣∣). Thus the overall cost is C∗(D̂)
= O(R) +

O(
∣∣D

∣∣) +
∑q

i=1 O(R
∣∣∆i

∣∣). Since
∑q

i=1

∣∣∆i

∣∣ ≤
∣∣π(

D
)∣∣ ≤

∣∣D
∣∣,

it always holds that C∗(D̂) ≤ C(D)
.

5.2 MVA-Index and Value Range Query
Value range query [6] is a generalized version of spatial window

query. It extends the two-dimensional spatial windowW to a multi-
dimensional range predicate Γ. Γ can have the same dimensions as
data items. For the ith dimension, Γ specifies an interval

[
Li, Ui

] ⊆[
0, 1

]
to indicate the range of interest. For example, the spatial win-

dow W in Section 5.1 can be rewritten as a range predicate ΓW =
〈 [0.125, 0.375

]
,
[
0.5, 0.6875

]
,
[
1− δ

T
, 1

]
,
[
0, 1

]
, . . . ,

[
0, 1

] 〉.
Query results are data items from across the network that fall in the
range predicate Γ, i.e. data item oh is in query results if and only if
every component θi of oh fall in the respective interval

[
Li, Ui

]
of

predicate Γ. The major challenge in processing value range queries
is on how to efficiently locate all candidate data items avoiding ex-
haustive search or flooding over the entire sensor network.

We notice that MVA prefixes of network-stored datasets can be
used to form a distributed index, which helps value range queries
to prune search space while searching data across the network. We
next describe the procedure of building the MVA-index for datasets
stored in-network. An example is shown in Figure 6.

x

y

D
v
u

I

ss

si3si2

si1

s0
(0,0)

(1,1)

113

114115

116117118

119 120

121122

123 124 125

126 127

128

D
128

113

(0.25,0.5)

(0.5,0.75)

Figure 6: Building MVA-index for datasets in-network. The
group of motes Sv

u elect ss for shuffling the latest dataset Dv
u

and generating an MVA prefix I as index entry. I is stored,
tailored and propagated by consecutive index motes si3 , si2 ,
and si1 along the route to the base station s0.

Step 1: (data shuffling) all motes in Sv
u elect a mote ss. ss then

collects all data items in Dv
u to its local storage, and converts

them to MVA π
(Dv

u

)
using Algorithm 1. For the example in

Figure 6, this step elects s120 as ss for shuffling D128
113 .

Step 2: (ss generates index entry I) ss invokes EAQ sub-query
ρG to extract a series of fragments ∆1, ∆2, . . . , ∆l+1 from
π
(Dv

u

)
, where l is the order of the Hilbert curve filling the

network area. MVA prefix I =
⋃l+1

i=1 ∆i is the index entry
to be sent to index mote si, where i =

⌊
s−1
4

⌋
+ 1.

Step 3: (si receives I =
⋃b

j=1 ∆j) index mote si stores I in lo-
cal storage. If i > 0 then si tailors I to I′ =

⋃b−1
j=1 ∆j and

sends I′ to next index mote si′ , where i′ =
⌊

i−1
4

⌋
+ 1.

The above process propagates an MVA prefix I toward the base
station. At each index mote sij (j = l, l−1, . . . , 1), the MVA prefix
is stored locally and tailored to a shorter prefix I′. The shortest
MVA prefix finally arrives at the base station s0. When index entries
are built for all datasets in the sensor network, it is guaranteed that
(i) s0 always stores the shortest MVA prefixes of all datasets, and
(ii) the (i + 1)th shortest MVA prefixes of any dataset can be found
among the groups of sensor motes S4i−1

1 (i = 1, 2, . . . , l), where l
is the order of the Hilbert curve filling the network grid.

LetQΓ = 〈Γ〉 be a value range query, where Γ is the range pred-
icate. The processing of QΓ takes the reversed route of building
MVA-index. At base station s0,QΓ first examines the shortest MVA
prefixes of all datasets in the entire network, and then lists those
possibly containing desired data. For each candidate dataset Dv

u, a
packetQΓ = 〈Γ, u, v〉 is forwarded along the series of index motes
sij of dataset Dv

u, where ij =
⌊

u−1
4j

⌋
+ 1 (j = l, l− 1, . . . , 1). At

index motes, QΓ can examine the approximate datasets recovered
from respective index entries. Chances are, at a certain index mote,
the approximate dataset D̂v

u = α
(I)

can be sufficiently accurate
forQΓ to determine whetherDv

u contains desired data items or not.
If it does, accurate data items desired can be fetched directly from
where Dv

u is stored, otherwise, QΓ can return ∅ instantly.

5.3 Queries with QoS Constraints
Many queries in sensor networks need to specify requirements

or preferences on how they should be processed. For example,
time critical applications may specify a deadline by which query
results must be available at the base station, and long running ap-
plications may, due to sustainability concerns, require a query not
to consume more energy than a preallocated budget, i.e. maximum
number of wireless radio packets. Conventionally, sensor networks

have to deploy special infrastructures, such as real time communi-
cation protocols, to support queries with QoS constraints. For EAQ-
based query processing, the iterative data access process makes it
possible for various queries to check application-specific QoS con-
straints between sub-queries. For example, a time critical window
query can always choose to obtain coarse yet instant results, and
gradually refines them as the deadline approaches. Likewise, the
energy budget of queries can also be allocated to sub-queries, so
that just-affordable results are available when the budget runs out.
In this regard, EAQ offers a uniform framework for processing var-
ious queries with virtually any potential QoS constraints.

6. EXPERIMENTAL EVALUATION
We deploy a real sensor network testbed to evaluate the effective-

ness and efficiency of proposed techniques. The evaluation consists
of two aspects of studies (i) the approximation errors of MVA, and
(ii) the energy consumption of EAQ.

6.1 Experiment Settings
The testbed for experimental evaluation is an indoor sensor net-

work consisting of 40 TelosB2 sensor motes. The query processing
system is built on TinyOS 2.1.0 [22]. The data items being col-
lected contain PAR (Photo-synthetically Active Radiation) light,
temperature, and voltage sensor readings. Placement of sensor
motes is shown in Figure 7. Of all 40 sensor motes, 36 are de-
ployed in the area of interest, one is reserved for base station, and
the remaining three compose a routing path connecting the network
area and the base station. Identifiers of sensor motes are assigned
according to a 4-order Hilbert curve, i.e. filling a 16×16 grid whose
south-west corner overlaps the network area. As can be observed in
Figure 7, the network contains three groups of motes having con-
secutive identifiers S20

1 , S36
29 , and S60

53 .

x

y

1 2

34

5

6 7

8 9

10 11

12

1314

15 16 17

18 19

20

29

3031

32

33

34 35

36

53

5455

5657

5859

60

N

(0,0)

(0.3125,0.3125)

c

b
a 0

Figure 7: Placement of sensor motes in the testbed. The net-
work area N is the south-west corner of a 16 × 16 grid filled
with a 4-order Hilbert curve. There are 36 sensor motes in the
network area, divided into three groups S20

1 , S36
29 , and S60

53 . The
circles are the base station 0 and three routers a, b, and c.

6.2 Implementation Details
Due to energy-efficiency concerns, the actual structure of data

items is not exactly the same as formulated in Section 2.1. First,
time stamps are in radio packets, not in individual data items. Sec-
ond, sensor readings are in raw ADC output format, which are 16-
bit unsigned integers, rather than normalized real numbers. The
workload contains spatial window queries having four types of win-
dow sizes 2 × 4, 4 × 2, 4 × 4 and 6 × 6. At the base station, the
query processing system decomposes all window queries into stan-
dalone data access processes over individual datasets. In particular,
2Crossbow Technology: TelosB. http://www.xbow.com/

datasets yielded by S8
1 , S16

9 , S16
1 , S20

13 , S36
29 , and S60

53 are queried by
the workload, which can have two sizes 8 and 16. For logging com-
munication statistics, each sensor mote locally maintains a set of
counters on radio packets sending and receiving. The statistics are
collected before, during and after processing any query. The cost
for obtaining statistics is not considered. Because TelosB motes do
not have positioning devices, we manually place them according to
the Hilbert curve in Figure 7. Communication is done via a reli-
able routing protocol that retransmits data upon failure, which is
developed from directed diffusion [17].

6.3 Study of Approximation Error
Concerning the well-known property that sensor data have strong

spatial correlation [18], we want to evaluate how well the correla-
tion can be exploited from MVA prefixes of various lengths. Note
that MVA is primarily used for building multiple approximate ver-
sions of data incrementally. Hence, the evaluation focuses more on
the decreasing trend of errors, rather than on error values at par-
ticular data volumes. Haar wavelet [4] and sampling are chosen
as counterparts, because they both support incremental access of
network-stored data. Sampling in itself does not support recovery
of the entire dataset, we thus employ pairwise linear approxima-
tion to build approximate datasets from sampled data items. The
error metric is L∞-norm, as formulated in Equation 1.

Figure 8 studies the relation between approximation error and the
percentage of data used for building the approximate version. We
consider different attribute types. Figure 8(a), 8(b), and 8(c) cap-
ture the cases where data items are tuples of the form o =

(
h, v

)ᵀ,
where v is either PAR light, temperature or voltage. Figure 8(d)
is for multi-dimensional data of the form o =

(
h, v1, v2, v3

)ᵀ,
where v1 is PAR light, v2 is temperature, and v3 is voltage. As

20 30 40 50 60 70 80 90 100
Data Volume (%)

0

20

40

60

80

100

120

M
a
x
im

u
m

 A
b
so

lu
te

 E
rr

o
r Sampling

 Wavelet
 MVA

(a) PAR Light

20 30 40 50 60 70 80 90 100
Data Volume (%)

0

50

100

150

200

250

300

M
a
x
im

u
m

 A
b
so

lu
te

 E
rr

o
r Sampling

 Wavelet
 MVA

(b) Temperature

20 30 40 50 60 70 80 90 100
Data Volume (%)

0

300

600

900

1200

1500

1800

M
a
x
im

u
m

 A
b
so

lu
te

 E
rr

o
r Sampling

 Wavelet
 MVA

(c) Voltage

20 30 40 50 60 70 80 90 100
Data Volume (%)

0

400

800

1200

1600

2000

2400

M
a
x
im

u
m

 A
b
so

lu
te

 E
rr

o
r Sampling

 Wavelet
 MVA

(d) Multi-Dimensional Data

Figure 8: Approximation errors of MVA for (a) PAR light, (b)
temperature, (c) voltage, and (d) multi-dimensional data, com-
pared with Haar wavelet and sampling.

Figure 8 shows, the approximation errors of MVA almost always
decrease smoothly as more data items are being used. The data re-
duction rates of MVA-based approximation are either comparable
to, or better than, Haar wavelet for all four types of data, and both
outperform sampling by large factors.

There are several factors impacting the performance of MVA-
based data approximation. We study the impacts of input dataset
size and identifiers assignment for sensor motes. For the former,

http://www.xbow.com/Products/productdetails.aspx?sid=252

we compare the performance of MVA for approximating datasets
of sizes 8 and 16. For the latter, we study the performance of MVA
when the identifiers of motes are assigned randomly, and compare
with the case when Hilbert curve is used. The impacts of the two
factors are depicted in Figure 9(a) and 9(b) respectively. Figure 9(a)

10 20 30 40 50 60 70 80 90 100
Data Volume (%)

0

20

40

60

80

100

120

140

160

180

M
a
x
im

u
m

 A
b
so

lu
te

 E
rr

o
r |D|=8

 |D|=16

(a) Dataset size

10 20 30 40 50 60 70 80 90 100
Data Volume (%)

0

100

200

300

400

500

600

700

800

900

M
a
x
im

u
m

 A
b
so

lu
te

 E
rr

o
r Random ID

 Hilbert curve ID

(b) Identifiers Assignment

Figure 9: Factors impacting the approximation errors of MVA:
(a) input dataset size, (b) assignment of motes’ identifiers.

shows that the approximation errors of smaller datasets are suffer-
ing larger deviations from the mean. Figure 9(b) shows that ran-
domly assigning motes’ identifiers also causes the approximation
errors to deviate heavily. In both cases, the decreasing trend of the
approximation errors of MVA becomes unstable.

6.4 Study of Energy Consumption
We study the energy consumption for obtaining approximate ver-

sions of datasets using EAQ. The study considers multi-dimensional
data of the form o =

(
h, v1, v2, v3

)ᵀ, where h is the location
stamp, v1 is for PAR light, v2 is for temperature, and v3 is for
voltage. Targeted datasets are stored respectively at six groups of
sensor motes, i.e. S8

1 , S16
9 , S20

13 , S36
29 , S60

53 and S16
1 . Datasets are

shuffled to MVA when being accessed for the first time. As Sec-
tion 6.2 mentions, datasets are of two sizes 8 and 16. A radio packet
can hold up to 3 data items, thus datasets of size 8 can have 3 MVA
fragments, and those of size 16 can have 6 fragments.

The same dataset is being retrieved in an average of 10 data ac-
cess processes. Within each data access process, we employ the
sub-query ρS (Cf. Section 4) to extract fragments from the MVA of
respective dataset. MVA fragments are forwarded about 4 hops be-
fore arriving at the base station, which can be much larger in some
applications. Statistics about packets sending and receiving are col-
lected for data shuffling and for each iteration of ρS . Figure 10(a)
shows the cost for obtaining MVA fragments ∆1, ∆2, ∆3 from
datasets of size 8. Figure 10(b) studies the accumulated costs for
obtaining approximate datasets D̂q = α

(⋃q
i=1 ∆i

)
(q = 1, 2, 3)

from scratch. As Figure 10 shows, the refinement costs are almost
constant, and the accumulated costs for obtaining approximate ver-

S
�

1
�

2
�

3
0

10

20

30

40

50

60

70

N
u
m

b
e
r

o
f

P
a
ck

e
ts

received (avg)
sent (avg)
received (min)
sent (min)

(a) Refinement Cost
S D̂1 D̂2 D̂3

0

20

40

60

80

100

120

140

N
u
m

b
e
r

o
f

P
a
ck

e
ts

received (avg)
sent (avg)
received (min)
sent (min)

(b) Accumulated Cost

Figure 10: Costs for obtaining datasets of size 8. (a) is the cost
of refinements, (b) is the accumulated cost for obtaining ap-
proximate versions. S̄ is the amortized cost of data shuffling.

sions are proportional to the total numbers of refinements invoked.
Moreover, the amortized cost of data shuffling is comparable to
that of one refinement. The numbers of packets sent during refine-
ments are considerably large, because the communication protocol
retransmits packets whenever failure happens. A similar study is
conducted for datasets of size 16, as Figure 11 shows.

S
�

1
�

2
�

3
�

4
�

5
�

6
0

15

30

45

60

75

90

105

120

135

150

N
u
m

b
e
r

o
f

P
a
ck

e
ts

received (avg)
sent (avg)
received (min)
sent (min)

(a) Refinement Cost
S D̂1 D̂2 D̂3 D̂4 D̂5 D̂6

0

50

100

150

200

250

300

350

400

450

N
u
m

b
e
r

o
f

P
a
ck

e
ts

received (avg)
sent (avg)
received (min)
sent (min)

(b) Accumulated Cost

Figure 11: Costs for obtaining datasets of size 16. (a) is the
cost of refinements, (b) is the accumulated cost for obtaining
approximate versions. S̄ is the amortized cost of data shuffling.

We further study the average energy consumption of individual
motes for processing one query. Figure 12 collects the long-running
per-query energy consumption of each mote in the group S16

1 . The
study in Figure 12 shows that the energy consumption at the major-
ity of sensor motes are balanced, with the exceptions of motes s7,
s8, s15, and s16. The four motes s7, s8, s15, and s16 receive more

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

10

20

30

40

50

60

70

80

N
u
m

b
e
r

o
f

P
a
ck

e
ts

received (avg)
sent (avg)

Figure 12: Average energy consumption of individual sensor
motes in group S16

1 for processing one query.

data items than others. This is because, during the experiment, the
query processing system had explicitly required these motes to re-
ceive data for an unrelated task.

6.5 Summary
Through experiments, we study the approximation error of MVA

and the energy consumption of EAQ. For the former, the experi-
ment evaluates the effectiveness of MVA for exploiting correlations
from different types of sensor data, as well as the impacting factors
for MVA-based data approximation. For the latter, experiment re-
sults show that the energy consumption of data access using EAQ
is proportional to the number of refinements invoked. Moreover,
the study on the energy balance of sensor motes shows that the
long-running energy consumption of EAQ is balanced. Due to page
limitations, we are unable to show results about EAQ-based value
range query processing. The focus of evaluation is on the cost of
building MVA-index, and on how well the search space of value
range queries can be pruned using the MVA-index.

7. RELATED WORK
To extend the lifetime of battery-powered sensor networks, a

large number of previous work, as [28] surveys, suggest not to
exhaustively retrieve raw sensor data at full-resolution. Instead,

information are being retrieved from sensor networks in one of
three forms, (i) events, (ii) aggregational statistics, and (iii) (non-
aggregate) approximations. Generating events in sensor networks
typically requires sophisticated domain knowledge to be embed-
ded in sensor motes, e.g. to infer ‘intrusion’ events from ‘vibration’
and ‘infrared motion’ sensors [1]. On the contrary, aggregations
and approximations are meant for general-purpose applications.

Aggregation combines raw sensor readings into numerical statis-
tics as data are forwarded via a tree-like topology toward the base
station. Earlier work [25] enables aggregational queries in sensor
networks as a service. In [8], the idea of approximation is in-
corporated in the processing of continuous aggregational queries,
i.e. to filter unnecessary updates while ensuring a fixed error bound.
[27] takes a further step to support (ε, δ)-approximate aggregation,
where users can specify any error bound ε and confidence δ. The
drawback shared among all aggregational queries is that numeri-
cal statistics only tell the overall condition about a region, and are
unable to provide detailed views of data.

Approximation methods for sensor data are diversified. The com-
mon principle is to exploit the inherited correlations in sensor data
while ensuring a prescribed error bound, or a high probability to
satisfy the error bound. [20] exploits temporal correlation from
the signals produced by a single sensor. SBR [7] can approxi-
mate streams produced by multiple sensors on a single mote using
base signals, which exploits both temporal and intra-attribute cor-
relations. GAMPS [12] groups multiple sensor motes so that sig-
nals within each group can be compressed jointly. BBQ [10] uses
statistical models to reduce the sensing and communication cost
for processing queries with user-specified error intervals and con-
fidence bounds. Ken [5] uses a pair of probabilistic models, one
at the base station and the other at sensor motes in-network, to re-
duce communication cost for continuously obtaining approximate
data from the sensor network. These existing techniques cannot
be used to support EAQ, because they are designed for fixed-error
data approximation, and are unable to reduce repetitive information
among multiple versions of approximate data. Transform domain
methods [2], such as Discrete Fourier Transform (DFT), Discrete
Cosine Transform (DCT) and Wavelet, can produce approximate
data at multiple accuracy levels. Unfortunately, DFT and DCT only
ensure L2-norm error bounds [12], where individual sensor read-
ings may deviate arbitrarily far from their accurate values. Wavelet
can be used in a way to minimize L∞-norm error [13]. But, unlike
when used for minimizing L2-norm [2], the accumulated cost for
obtaining q approximate versions, i.e. q sets of wavelet coefficients,
could be greater than that for obtaining any of the q versions alone.
Sampling methods can be used to incrementally obtain data from
sensor networks [24], as the proposed EAQ scheme does. However,
the full set of data usually cannot be recovered from samples with
bounded L∞-norm error. Contour map query [3] is also an impor-
tant approximation method for sensor data, but it is a standalone
query type, and previously obtained contour maps usually cannot
be used by other types of queries to produce sound results.

Choosing L∞-norm as error metric can increase the utility of
approximate data [20]. If an approximate dataset has L∞-norm er-
ror bound, then the maximum deviation from all approximate data
items to respective accurate values is bounded. This guarantees
that many important queries (such as MAX and TOP-K) and useful
mining tasks [12] can yield sound results with bounded errors. [20]
proves that L∞-norm is an upper bound of L2 and L1, namely,
both L2 and L1 norms are bounded if L∞-norm is bounded.

EAQ allows users or query executors to incrementally ‘refine’
obtained approximate data to reach arbitrary accuracy. In a way,
this can be viewed as a non-aggregate variation of online aggrega-

tion [16] for distributed environments. EAQ enables queries to pro-
duce iterative feedbacks that guide their execution, as the ones with
QoS constraints do. This resembles the spirit of adaptive query pro-
cessing [15] for traditional DBMS. To the best of our knowledge,
there is no prior work of this catalog aiming at energy-efficiency in
sensor networks, or other distributed environments.

The idea of shuffling sensor datasets is motivated by the DP line
simplification algorithm named after Douglas and Peucker [11].
Nevertheless, the proposed data shuffling algorithm exhibits three
major differences from the DP algorithm. First, the DP algorithm
lossily compresses a polygonal line to meet a predetermined error
bound, while our data shuffling algorithm derives an equivalent rep-
resentation MVA of the input dataset. Second, DP follows a divide-
and-conquer process to select most isolated vertex separately for
different segments of the polygonal line, whereas data shuffling es-
tablishes a full order among all data items. Third, DP utilizes Eu-
clidean distance to identify the most isolated vertex, whereas data
shuffling resorts to L∞-norm.

Hilbert curve [19] assigns identifiers to sensor motes, which im-
plicitly clusters sensor data with high correlations. Besides Hilbert
curve, there exist other alternatives, such as Z-curve, Peano curve,
etc., that may work reasonably well for the purpose of serializing
sensor motes [26]. These tools are considered part of the network
infrastructure, like communication protocols, and are transparent to
the main techniques proposed in this paper.

We employ spatial window query to introduce EAQ-based query
processing. [32] presents techniques to traverse the query window
without assuming underlying infrastructures. Our MVA-based in-
dex in Section 5.2 can answer both accurate and approximate value
range queries with a uniform infrastructure, whereas previous work
[23] and [6] can only support accurate value range queries using re-
spective index structures called DIM and Pool.

8. CONCLUSIONS
We propose an arbitrary-accuracy data access scheme EAQ un-

derlying various queries in sensor networks. Unlike previous meth-
ods, EAQ does not require users or query executors to specify error
bounds a prior, yet it can provide, through runtime refinements,
multiple versions of approximate data with guaranteed L∞-norm
error bounds. EAQ promises efficient and flexible processing of
various queries in sensor networks, including, but not limited to,
spatial window query, value range query and queries with QoS con-
straints, like response deadline and energy budget. We enable EAQ
with a novel data shuffling algorithm. The algorithm converts sen-
sor datasets into special representations MVA. From prefixes of an
MVA, we can always recover approximate versions of the entire
dataset, where individual data items have guaranteed error bounds.
We deploy a real sensor network testbed for experimental evalua-
tion. Experiment results show that (i) MVA can effectively exploit
correlations from sensor datasets at various accuracy levels, and
(ii) EAQ can efficiently refine obtained approximate data to reach
arbitrary accuracy, and the accumulated cost is proportional to the
number of refinements invoked. For future work, there are many
more data services, in sensor networks and in other data manage-
ment systems, that may be enabled or enhanced by the idea of EAQ.
We are particularly interested in enabling online analytical process-
ing (OLAP) for communication-constrained environments.

9. REFERENCES
[1] A. Arora, R. Ramnath, E. Ertin, P. Sinha, S. Bapat, V. Naik,

V. Kulathumani, H. Zhang, H. Cao, M. Sridharan, S. Kumar,
N. Seddon, C. Anderson, T. Herman, N. Trivedi, C. Zhang,

M. Nesterenko, R. Shah, S. S. Kulkarni, M. Aramugam,
L. Wang, M. G. Gouda, Y. ri Choi, D. E. Culler, P. Dutta,
C. Sharp, G. Tolle, M. Grimmer, B. Ferriera, and K. Parker.
ExScal: Elements of an extreme scale wireless sensor
network. In IEEE Intl. Conf. on Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages
102–108, 2005.

[2] D. Barbará, W. DuMouchel, C. Faloutsos, P. J. Haas, J. M.
Hellerstein, Y. E. Ioannidis, H. V. Jagadish, T. Johnson, R. T.
Ng, V. Poosala, K. A. Ross, and K. C. Sevcik. The New
Jersey data reduction report. IEEE Data Engineering
Bulletin, 20(4):3–45, 1997.

[3] C. Buragohain, S. Gandhi, J. Hershberger, and S. Suri.
Contour approximation in sensor networks. In Intl Conf. on
Distributed Computing in Sensor Systems (DCOSS), pages
356–371, 2006.

[4] K. Chakrabarti, M. N. Garofalakis, R. Rastogi, and K. Shim.
Approximate query processing using wavelets. In Intl. Conf.
on Very Large Data Bases (VLDB), pages 111–122, 2000.

[5] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong.
Approximate data collection in sensor networks using
probabilistic models. In IEEE Intl. Conf. on Data
Engineering (ICDE), page 48, 2006.

[6] Y.-C. Chung, I.-F. Su, and C. Lee. Supporting
multi-dimensional range query for sensor networks. In Intl.
Conf. on Distributed Computing Systems (ICDCS), page 35,
2007.

[7] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos.
Compressing historical information in sensor networks. In
ACM SIGMOD Intl. Conf. on Management of Data, pages
527–538, 2004.

[8] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos.
Hierarchical in-network data aggregation with quality
guarantees. In Intl. Conf. on Extending Database Technology
(EDBT), pages 658–675, 2004.

[9] A. Deshpande, C. Guestrin, W. Hong, and S. Madden.
Exploiting correlated attributes in acquisitional query
processing. In IEEE Intl. Conf. on Data Engineering (ICDE),
pages 143–154, 2005.

[10] A. Deshpande, C. Guestrin, S. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor
networks. In Intl. Conf. on Very Large Data Bases (VLDB),
pages 588–599, 2004.

[11] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to represent a
digitized line or its caricature. The Canadian Cartographer,
10(2):112–122, 1973.

[12] S. Gandhi, S. Nath, S. Suri, and J. Liu. GAMPS:
Compressing multi sensor data by grouping and amplitude
scaling. In ACM SIGMOD Intl. Conf. on Management of
Data, pages 171–182, 2009.

[13] M. N. Garofalakis and A. Kumar. Wavelet synopses for
general error metrics. ACM Transactions on Database
Systems, 30(4):888–928, 2005.

[14] C. Guestrin, P. Bodi, R. Thibau, M. Paski, and S. Madde.
Distributed regression: an efficient framework for modeling
sensor network data. In Information Processing in Sensor
Networks (IPSN), pages 1–10, 2004.

[15] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran,
A. Deshpande, K. Hildrum, S. Madden, V. Raman, and M. A.
Shah. Adaptive query processing: Technology in evolution.
IEEE Data Engineering Bulletin, 23(2):7–18, 2000.

[16] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In ACM SIGMOD Intl. Conf. on Management of
Data, pages 171–182, 1997.

[17] C. Intanagonwiwat, R. Govindan, D. Estrin, J. S.
Heidemann, and F. Silva. Directed diffusion for wireless
sensor networking. IEEE/ACM Transactions on Networking,
11(1):2–16, 2003.

[18] A. Jindal and K. Psounis. Modeling spatially correlated data
in sensor networks. ACM Transactions on Sensor Networks,
2(4):466–499, 2006.

[19] J. K. Lawder and P. J. H. King. Querying multi-dimensional
data indexed using the Hilbert space-filling curve. SIGMOD
Record, 30(1):19–24, 2001.

[20] I. Lazaridis and S. Mehrotra. Capturing sensor-generated
time series with quality guarantees. In IEEE Intl. Conf. on
Data Engineering (ICDE), page 429, 2003.

[21] R. C. T. Lee, S. S. Tseng, R. C. Chang, and Y. T. Tsai.
Introduction to the Design and Analysis of Algorithms: A
Strategic Approach. McGraw-Hill, 2005.

[22] P. Levis, D. Gay, V. Handziski, J. Hauer, B. Greenstein,
M. Turon, J. Hui, K. Klues, C. Sharp, R. Szewczyk, et al. T2:
A second generation OS for embedded sensor networks.
Technical report, University of California, Berkeley, 2005.

[23] X. Li, Y.-J. Kim, R. Govindan, and W. Hong.
Multi-dimensional range queries in sensor networks. In ACM
Conf. on Embedded Networked Sensor Systems (SenSys),
pages 63–75, 2003.

[24] S. Lin, B. Arai, D. Gunopulos, and G. Das. Region sampling:
Continuous adaptive sampling on sensor networks. In IEEE
Intl. Conf. on Data Engineering (ICDE), page 794, 2008.

[25] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong.
TAG: A tiny aggregation service for ad-hoc sensor networks.
In Symposium on Operating Systems Design and
Implementation (OSDI), 2002.

[26] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz.
Analysis of the clustering properties of the Hilbert
space-filling curve. IEEE Transactions on Knowledge and
Data Engineering, 13(1):124–141, 2001.

[27] C. Siyao and J. Li. Sampling based (ε, δ)-approximate
aggregation algorithm for sensor networks. In Intl. Conf. on
Distributed Computing Systems (ICDCS), 2009.

[28] A. Skordylis, N. Trigoni, and A. Guitton. A study of
approximate data management techniques for sensor
networks. In Intl. Workshop on Intelligent Solutions in
Embedded Systems (WISES), pages 1–12, 2006.

[29] S. Subramaniam, T. Palpanas, D. Papadopoulos,
V. Kalogeraki, and D. Gunopulos. Online outlier detection in
sensor data using non-parametric models. In Intl. Conf. on
Very Large Data Bases (VLDB), pages 187–198, 2006.

[30] G. Tolle, J. Polastre, R. Szewczyk, D. E. Culler, N. Turner,
K. Tu, S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and
W. Hong. A macroscope in the redwoods. In ACM Conf. on
Embedded Networked Sensor Systems (SenSys), pages
51–63, 2005.

[31] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo,
J. Johnson, M. Ruiz, and J. Lees. Deploying a wireless
sensor network on an active volcano. IEEE Internet
Computing, 10(2):18–25, 2006.

[32] Y. Xu, W.-C. Lee, J. Xu, and G. Mitchell. Processing
window queries in wireless sensor networks. In IEEE Intl.
Conf. on Data Engineering (ICDE), page 70, 2006.

	1 Introduction
	2 Problem Formulation
	2.1 Preliminaries
	2.2 EAQ Data Access Model
	2.3 Research Objectives

	3 Data Shuffling Algorithm
	3.1 Revisiting Sensor Data
	3.2 Data Shuffling Algorithm
	3.3 Approximate Data Recovery
	3.4 Discussions

	4 EAQ Sub-Query Design
	5 EAQ-Based Query Processing
	5.1 Spatial Window Query
	5.2 MVA-Index and Value Range Query
	5.3 Queries with QoS Constraints

	6 Experimental Evaluation
	6.1 Experiment Settings
	6.2 Implementation Details
	6.3 Study of Approximation Error
	6.4 Study of Energy Consumption
	6.5 Summary

	7 Related Work
	8 Conclusions
	9 References

