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ABSTRACT
In CIDR 2009, we presented a collection of requirements
for SciDB, a DBMS that would meet the needs of scientific
users. These included a nested-array data model, science-
specific operations such as regrid, and support for uncer-
tainty, lineage, and named versions. In this paper, we
present an overview of SciDB’s key features and outline a
demonstration of the first version of SciDB on data and op-
erations from one of our lighthouse users, the Large Synoptic
Survey Telescope (LSST).

1. INTRODUCTION & BACKGROUND
The XLDB-1 workshop [2] in October 2007 brought to-

gether a collection of big science and commercial Internet
users with extreme data base requirements. The users com-
plained about the inadequacy of current commercial DBMS
offerings. Although the DBMS community has been working
on science data bases for years and has even built prototypes
(e.g. Sequoia 2000 with Postgres [6], Paradise [5], and ex-
tensions to MonetDB [10]), some of which are successfully
being used today (e.g., the Sloan Digital Sky Survey [19]),
all these systems still lack important features to meet the
needs of increasingly data rich sciences.

To address this shortcoming, a collection of science users
and DBMS researchers met at Asilomar in March 2008 to
define requirements for a new type of scientific DBMS. The
results were presented at the XLDB-2 workshop [3] in Octo-
ber 2008, and the reaction from science users was extremely
positive. These ideas, presented at CIDR 2009 [18], included
the following constructs: (1) A nested array data model;
(2) Science-specific primitive operations, such as regrid; (3)
Provenance; (4) No-overwrite storage; (5) “In situ” data
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Figure 1: Example 2D ragged array. Each cell con-
tains two scalar attributes, a1 and a2, plus another
2D array. The MyArray instance has been enhanced
with an extra coordinate system.

(i.e., the DBMS should process data without requiring that
it be loaded); (6) Named versions; and (7) Uncertainty.

In late 2008, the project embarked on building SciDB1,
a new science-oriented DBMS, embodying these ideas. At
VLDB 2009, we will demonstrate version 1 of SciDB
on imagery from the Large Synoptic Survey Telescope
(LSST) [11], showing queries that find space objects (e.g.,
galaxies) and a visualization of query results.

The rest of this paper is organized as follows. In Section 2,
we briefly discuss SciDB’s data model and query facilities,
followed, in Section 3 by other capabilities. Section 4 dis-
cusses novel aspects of our implementation. Section 5 de-
scribes our VLDB demonstration.

2. DATA MODEL & QUERY FACILITIES

2.1 Data Model
Arrays are a natural data model for a significant sub-

set of science users (specifically astronomy, oceanography,
fusion, remote sensing, climate modeling, and seismology).
Seemingly, biology and genomics users want graphs and se-
quences. They will be happy with neither a table nor an
array data model. Chemistry users are in the same situ-
ation. Lastly, users with solid modeling applications want
a mesh data model [9] and will be unhappy with tables or
arrays. The net result is that one size will not fit all, and
science users will need a mix of specialized DBMSs.

Our project uses an array data model, primarily because
it makes a considerable subset of the community happy and
is easier to build than a mesh model. We support a multi-

1http://scidb.org



dimensional, nested array model with array cells contain-
ing records, which in turn can contain components that are
multi-dimensional arrays.

Specifically, basic arrays can have any number of named
dimensions as illustrated in Figure 1. Each dimension has
contiguous integer values between 1 and N (the high-water-
mark). Each combination of dimension values defines a cell.
Every cell has the same data type(s) for its value(s), which
are one or more scalar values, and/or one or more arrays. It
is acceptable to create a basic array, which is unbounded in
one or more dimensions.

SciDB will support Postgres-style user-defined func-
tions [16] (methods, UDFs), which must be coded in C++,
the implementation language of SciDB. As in Postgres,
UDFs can internally run queries and call other UDFs. We
will also support user-defined aggregates and table func-
tions, again Postgres-style.

UDFs can serve to enhance arrays: any function that ac-
cepts integer arguments can be applied to the dimensions of
an array to produce an array with a new coordinate system,
formed by transposition, scaling, translation, or other trans-
forms of the original arrays dimensions. These new arrays
can be indexed by their enhanced dimensions. Some arrays
are irregular, i.e., they do not have integer dimensions, and
some are defined in a particular co-ordinate system (e.g.,
Mercator geometry). Enhancing arrays with more complex
UDFs can support both types of coordinate spaces. When
dimensions have ragged edges (e.g., in a 2D array, each row
has a different number of columns), we can enhance a basic
array with a shape function. A shape function is a UDF that
specifies the outline or dimensionality of a ragged array.

To support irregular and ragged arrays, a sophisticated
storage manager is required. As noted in Section 4, our
initial prototype does not include all of these features.

2.2 SciDB Operators
SciDB is novel in that it has no built-in operators. Instead

all operators are UDFs; some are provided with the initial
system and the remainder are provided separately using the
extension facility.

2.2.1 Structural Operators
The first operator category creates new arrays based

purely on the structure of their inputs. In other words, these
operators are data-agnostic. The simplest example here is
an operator that we call Subsample. Subsample takes two
inputs, an array A and a predicate over the dimensions of A,
which defines a subslab of the array. The output will always
have the same number of dimensions as the input, but will
generally have a smaller number of dimension values.

Other structural operators include add dimension, remove
dimension, concatenate, and cross product.

2.2.2 Content-Dependent Operators
The next category involves operators whose result de-

pends on the data that is stored in the input array. A simple
example of this kind of operator is Filter. Filter takes an ar-
ray A and a predicate over the data values that are stored in
the cells of A. It returns an array with the same dimensions
as A, with the original cell value if the predicate evaluates
to true, and with NULL if the predicate evaluates to false.

Other examples of data-dependent operators include Ap-
ply UDF and Project.

2.2.3 Operators with Both Structural and Content-
Dependent Forms

Some operators come in both structural and data-
dependant forms. The principal example is Join. Join can
be performed either on indices or data values (or possibly
both). In the case of a Join on an m-dimensional array and
an n-dimensional array that involves only k index attributes
from each of the arrays in the join predicate, the result will
be an (m+n−2k)-dimensional array with concatenated cell
tuples wherever the predicate is true.

For a Join on an m-dimensional and an n-dimensional ar-
rays that involves only data attributes in the join predicate,
the result will be an (m + n)-dimensional array with con-
catenated cell tuples wherever the predicate was true.

3. OTHER SCIDB FEATURES

3.1 No Overwrite
Most scientists are adamant about not discarding any

data. If a data item is shown to be wrong, they want to
add the replacement value and the time of the replacement,
retaining the old value for provenance (lineage) purposes. As
such, they require a no-overwrite storage manager, in con-
trast to most commercial systems today, which overwrite
the old value with a new one.

Postgres [16] contained a no-overwrite storage manager
for tables. In SciDB, no-overwrite is even easier to support.
Specifically, arrays can be optionally declared as updatable.
All arrays can be loaded with new values. Afterwards, cells
in an updatable array can receive new values. To support
this concept, a history dimension must be added to every
updatable array. Our design supports delta compression to
minimize the amount of space required for historical data.

3.2 Grid Orientation
LSST expects to manage over 100 PB of data (55 PB of

raw data, and an equally large catalog of astronomical ob-
jects and their detections). A DBMS for LSST data must
thus run on a cloud (grid) of shared-nothing [15] comput-
ers. Conventional DBMSs such as Teradata, Netezza, DB2,
and Vertica have used this architecture for years, employing
horizontal partitioning of tables as in Gamma [4].

It would be easier to use a fixed partitioning scheme in
SciDB. However, there will be a class of applications that
cannot be load-balanced using such a tactic. These include
ragged and irregular arrays as noted earlier, and applications
where data ingest is not uniform over time. Hence, in SciDB
we allow the partitioning to change over time: e.g., a first
partitioning scheme is used for time less than T and a second
partitioning scheme for time greater than T.

3.3 “In Situ” Data
A common complain from scientists is “I am looking for-

ward to getting something done, but I am still trying to load
my data”. Put differently, the overhead of loading data is
high and may dominate the value received from using the
DBMS. As such, SciDB must be able to operate on in situ
data, without requiring a load process. Our approach to this
issue is to define a self-describing data format and then write
adaptors to various popular external formats, for example
HDF-5 [12] or NetCDF [13]. If an adaptor exists for the
user’s data or if he is willing to put it in the SciDB format
above, then he can use SciDB without a load stage.



3.4 Integration of the Cooking Process
Most scientific data comes from instruments observing a

physical process of some sort. For example, in remote sens-
ing applications, imagery is collected from satellite or air-
borne observation. Such sensor readings enter a cooking
process whereby raw information is transformed into fin-
ished information. Cooking entails converting sensor data
into standard types, correcting for calibration information,
correcting for cloud cover, etc. SciDB will naturally sup-
port cooking inside the DBMS, by simply loading the raw
data and then using UDFs and data manipulation opera-
tions to perform the cooking process. Of course, users can
still perform external cooking, if they desire.

3.5 Named Versions
A requirement of most science users is the concept of

named versions. With named versions, a scientist can make
application-specific changes to a small portion of an array,
retaining the rest of the array unchanged. Clearly, one wants
to support versions without paying the cost of a copy for un-
changed data. In SciDB, versions are stored as a delta off
their parents and thus consume essentially no space, until
application-specific updates are applied.

3.6 Provenance
A universal requirement from scientists is repeatability

of data derivation. Scientists wish to be able to recreate
any array A, by remembering how it was derived. For a
sequence of processing steps inside SciDB, one merely needs
to record a log of the commands that were run to create A.
The search requirements for this log are then: (1) For a given
data element D, find the collection of processing steps that
created it from input data. (2) For a given data element
D, find all the downstream data elements whose value is
impacted by the value of D.

Recording the log is straightforward. The hard part is to
create a provenance query language and an efficient imple-
mentation. Although one could use Trio [1] as an exemplar,
we are concerned about the space cost of recording item-level
derivations. In earlier work [18], we presented an alternate
proposal that required minimal additional space. However,
to support the search functionality noted above, this so-
lution requires running non-trivial queries. An interesting
research issue is to find a solution that can easily morph
between a minimal storage solution and the Trio solution.

3.7 Uncertainty
Essentially all scientific data is imprecise, and without

exception science researchers have requested a DBMS that
supports uncertain data elements. Of course, current com-
mercial RDBMSs are oriented toward business users, where
there is a much smaller need for this feature. Hence, com-
mercial products do not support uncertainty.

In talking with many science users, there was near univer-
sal consensus on requirements in this area. They requested
a simple model of uncertainty: normal distributions for data
elements. In effect, they requested error bars (standard de-
viations) and an executor that would perform interval arith-
metic when combining uncertain elements.

Hence, SciDB will support uncertain x for any data type
x that is available in the engine. Of course, this requires two
values for any data element (value and error), rather than
one. However, every effort will be made to effectively code

data elements in an array, so that arrays with the same error
bounds for all values will require negligible extra space.

There is another implication of uncertain data, exempli-
fied by the data base design for the Pan-STARRS [14] tele-
scope project. Since observation of objects entails some er-
ror, the Pan-STARRS DBAs have identified the maximum
possible error, P. To ensure that joins can be performed
without moving data elements, they have grid partitions
overlap by P. In this way, Pan-STARRS can implement un-
certain join without moving objects between nodes.

More generally, SciDB will allow an array to be reparti-
tioned across grid nodes, such that the partitions overlap.
The mechanism to support this functionality is to run a UDF
at each site that holds array values. This UDF operates on
array indexes and maps them to a collection of sites.

3.8 Open Source
It appears impossible to get any traction in the science

community unless the DBMS is open source. The main rea-
sons why the scientific community dislikes closed-source soft-
ware include (a) a need for multi-decade support required
by large science projects, (b) an inability to recompile the
entire software stack at will and (c) difficulties with main-
taining closed-source software within large collaborations
encompassing tens or even hundreds of institutions. As such,
SciDB is an open source project. Because the science com-
munity wants a commercial strength DBMS, a non-profit
foundation (SciDB, Inc.) has been organized to manage the
development of the code.

4. VERSION 1 OF SCIDB
We demonstrate the first version of SciDB at this year’s

VLDB. SciDB Version 1 implements basic arrays as defined
in Section 2 along with a large collection of operators, all
supported by a general purpose UDF framework. Moreover,
Version 1 includes a well-developed local storage manager,
which organizes each local array into a collection of rectan-
gular buckets, defined by a stride in each dimension. Hence,
within a node an array partition is divided into variable size
rectangular buckets. An R-tree [8] keeps track of the size of
the various buckets.

Optimization of the storage management layer includes
deciding when to change the partitioning criteria between
sites and when to merge disk buckets into larger ones.

It is clear that compression must be an integral part of any
science DBMS. We compress each storage block individually
with a scheme that best suits its data as well as the user’s
requirements. Blocks are compressed when written and de-
compressed when accessed. An executor that operates on
compressed data will be worked on in the future. We choose
a compression scheme for each block individually, based on
an objective function that takes into account encoding time,
decoding time, and compression ratio.

We currently support several lossless algorithms including
Null Suppression, Run-Length Encoding, Lempel-Ziv, Delta
Encoding and Adaptive Huffman. We also added our own
multidimensional extensions for Run-Length Encoding and
Adaptive Huffman. Null Suppression has been generalized
to subtract out a background pattern, a likely occurrence in
scientific data such as LSST data.

Version 1 has two mechanisms to pass data between op-
erators. If both operators act on array cells, one at a time,
then the system can use conventional relational pipelining.



When UDFs operate on whole arrays, results are passed via
the storage system, rather than by pipelining.

The optimizer in Version 1 is quite primitive. A SciDB
parse tree contains a collection of operators in a tree struc-
ture. Many of these operations do not commute. Hence,
our ability to optimize is limited to paths between non-
commuting operators. Our goal is to parallelize as many
UDFs as possible. Operators that can be pipelined are triv-
ial to parallelize. Others, for example picking stars out of
raw telescope imagery, deal with an array as a whole. How-
ever, they can be parallelized by noting the maximum size
of a star and then overlapping partitions by this amount.
Hence, we have implemented a version of the exchange op-
erator [7] that will produce overlapping partitions.

To simplify application development, SciDB Version 1 also
includes advanced C++ language bindings similar in spirit
to LINQ2 : application developers access SciDB arrays as
if they were local array objects. They express queries by
invoking methods on these objects. Queries are evaluated
lazily when applications access query results.

5. DEMONSTRATION
To focus attention on the needs of science users, we have

written a science benchmark [17] that abstracts the require-
ments of LSST and is similar to the needs in other science
domains. This benchmark records raw astronomy data in
the form of images output by a telescope. A function is
then used to extract astronomy objects (stars, galaxies, and
others) from images. Such observations have a variety of un-
certain data elements, including a center position, a radius,
and spectral properties. Cooking raw data into observations
is a time consuming operation that should be parallelized.
Successive imagery of the same sky co-ordinates will yield
successive raw imagery and cooked observations. The last
step of the cooking process is to group observations into ones
that represent the same object at different points in time.

The benchmark includes this cooking process along with
9 queries posed on raw and cooked data that mimic what
LSST users might ask of a DBMS: e.g., query 2 requires re-
griding raw data within a time range such that grid cells col-
lapse 10::3. Then an interpolation UDF is run on “new” and
“old” observations to find the ones that have been “lost”.
The easiest query in the benchmark filters observations using
a predicate, while the hardest one requires computing the
trajectory of an observation group and finding pairs of tra-
jectories that come within a certain distance of each other.

We demonstrate a multi-site SciDB system storing the
above benchmark LSST data as basic arrays. Cooking is
done inside the DBMS using UDFs for the two cooking
stages. The executor includes parallel operators for 15 com-
mon operations, and is smart enough to run all 9 queries.

Besides running the benchmark queries and cooking pro-
cess, our demonstration includes a visualization of several
terabytes of LSST space imagery and objects (e.g., galaxies,
planets, etc) and allows users to pose a collection of ad-hoc
queries over those objects: find galaxies in this region of the
sky and show me objects moving faster than velocity V. Our
visualization includes the ability to pan through space and
time with interactive response rates. These operations are
implemented as queries against our prototype, demonstrat-
ing the performance of the SciDB engine.

2http://msdn.microsoft.com/en-us/vbasic/aa904594.aspx

We also show the queries and application code to elicit
feedback from potential users about what additional features
they would like to see added to the system.

6. CONCLUSION
This paper has sketched the capabilities of SciDB and

indicated which ones are operational in Version 1. The sys-
tem is being constructed in stages by a distributed team of
developers at SLAC, NIISI RAS, MIT, Portland State U.,
Brown U., the U. of Washington, and the U. of Wisconsin.
Over the next two years, we expect to have an increasingly
sophisticated open-source system for the science community.
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