A Unified Approach to Ranking in Probabilistic Databases

Jian Li

Barna Saha

Amol Deshpande

{lijian, barna, amoly@cs.umd.edu
University of Maryland at College Park

ABSTRACT

The dramatic growth in the number of application domains that nat-
urally generate probabilistic, uncertain data has resulted in a need
for efficiently supporting complex querying and decision-making
over such data. In this paper, we present a unified approach to rank-
ing and top-k query processing in probabilistic databases by view-
ing it as a multi-criteria optimization problem, and by deriving a set
of features that capture the key properties of a probabilistic dataset
that dictate the ranked result. We contend that a single, specific
ranking function may not suffice for probabilistic databases, and
we instead propose two parameterized ranking functions, called
PRF* and PRF*, that generalize or can approximate many of the
previously proposed ranking functions. We present novel generat-
ing functions-based algorithms for efficiently ranking large datasets
according to these ranking functions, even if the datasets exhibit
complex correlations modeled using probabilistic and/xor trees or
Markov networks. We further propose that the parameters of the
ranking function be learned from user preferences, and we develop
an approach to learn those parameters. Finally, we present a com-
prehensive experimental study that illustrates the effectiveness of
our parameterized ranking functions, especially PRF®, at approx-
imating other ranking functions and the scalability of our proposed
algorithms for exact or approximate ranking.

1. INTRODUCTION

Recent years have seen a dramatic increase in the number of ap-
plication domains that naturally generate uncertain data and that de-
mand support for executing complex decision-support queries over
them. In part, this has been due to the increasing prevalence of ap-
plications such as information retrieval [15], data integration and
cleaning [2, 11], text analytics [23, 19], and social network analy-
sis [1], where uncertainty arises both because of noisy input data,
and because of the statistical inference typically performed on such
data. At the same time, large-scale instrumentation of nearly ev-
ery aspect of our world using sensor monitoring infrastructures has
resulted in an abundance of uncertain, noisy data [10, 5].

By their very nature, many of these applications require support
for ranking and top-k queries over large datasets. For instance,
consider a House Search application, where a user is searching for
a house using a real estate sales dataset: House(id, price, size, zip-
code, ...). Such a dataset, which may be constructed by crawling
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and combining data from multiple sources, is inherently uncertain
and noisy. In fact, the houses that the user prefers the most, are
also the most likely to be sold by now. We may denote such un-
certainty by associating with each advertisement a probability that
it is still valid. However, incorporating such uncertainties into the
returned answers is a challenge, considering the complex interplay
between the score of a house by itself, and the probability that the
advertisement is still valid.

The importance of this natural problem has led to much work on
ranking in probabilistic databases in recent years. That prior work
(which we review in more detail later) has proposed many differ-
ent functions for combining the scores and the probabilities. We
begin with a systematic exploration of these issues by recognizing
that ranking in probabilistic databases is inherently a multi-criteria
optimization problem, and by deriving a set of features, the key
properties of a probabilistic dataset that influence the ranked re-
sult. We empirically illustrate the diverse and conflicting behavior
of several natural ranking functions, and argue that a single specific
ranking function may not be appropriate to rank different uncertain
databases that we may encounter in practice. Furthermore, differ-
ent users may weigh the features differently, resulting in different
rankings over the same dataset. We then define a general and pow-
erful ranking function, called PRF, that allows us to explore the
space of possible ranking functions. We discuss its relationship to
previously proposed ranking functions, and also identify two spe-
cific parameterized ranking functions, called PRF* and PRF*°,
as being interesting. The PRF® ranking function is essentially a
linear weighted ranking function that resembles the scoring func-
tions typically used in information retrieval, web search, data in-
tegration, keyword query answering etc. [20, 26, 4, 9, 36]. We
observe that P RF' may not be suitable for ranking large datasets
due to its high running time, and instead propose PRF°, which
uses a single parameter and can effectively approximate previously
proposed ranking functions for probabilistic databases.

We then develop novel algorithms based on generating functions
to efficiently rank the tuples in a probabilistic dataset using any
PRF ranking function. Our algorithm can handle a probabilistic
dataset with arbitrary correlations; however, it is particularly effi-
cient when the probabilistic database contains only mutual exclu-
sivity and/or mutual co-existence correlations (called probabilistic
and/xor trees [31]). Our results apply to some of the previously
proposed ranking functions as well (one of our results was also in-
dependently obtained by Yi et al. [38]). Our main contributions can
be summarized as follows:

o We develop a framework for learning ranking functions over prob-
abilistic databases by identifying a set of key features and by
proposing several parameterized ranking functions.

e We present novel algorithms based on generating functions that
enable highly efficient processing of top-k queries over very large
datasets. Our key algorithm is an O(nlog(n)) algorithm for
ranking using a PRF*“ function over low-correlation datasets



(specifically, constant height probabilistic and/xor trees). The al-
gorithm runs in O(n) time if the dataset is pre-sorted by score.

e We present a polynomial time algorithm for computing the top-k
answers for a correlated dataset, where the correlations are rep-
resented using a bounded-treewidth Markov network. The algo-
rithm we present is actually for computing the probability that a
given tuple is ranked at a given position across all the possible
worlds, and is of independent interest.

e We develop a novel, DFT-based algorithm for approximating an
arbitrary weighted ranking function using a linear combination
of PRF*° functions.

e We present a comprehensive experimental study over several real
and synthetic datasets, comparing the behavior of the ranking
functions and the effectiveness of our proposed algorithms.

Outline: We begin with a brief discussion of the related work (Sec-
tion 2). In Section 3, we review our probabilistic database model
and the prior work on ranking in probabilistic databases, and pro-
pose two parameterized ranking functions. In Section 4, we present
our generating functions-based algorithms for ranking. We then
present an approach to approximate different ranking functions us-
ing our parameterized ranking functions, and to learn a ranking
function from user preferences (Section 5). We then briefly sketch
an extension of our ranking algorithms to correlated datasets where
the correlations are modeled using Markov networks (Section 6).
We conclude with an experimental study in Section 7.

2. RELATED WORK

There has been much work on managing probabilistic, uncertain,
incomplete, and/or fuzzy data in database systems (see e.g. [29, 15,
5,7, 37, 27]). With a rapid increase in the number of application
domains where uncertain data arises naturally, such as data integra-
tion, information extraction, sensor networks, pervasive computing
etc., this area has seen renewed interest in recent years [16]. This
work has spanned a range of issues from theoretical development of
data models and data languages to practical implementation issues
such as indexing techniques, and several research efforts are under-
way to build systems to manage uncertain data (e.g. MYSTIQ [7],
Trio [37], ORION [5], MayBMS [27], PrDB [34]). The approaches
can be differentiated based on whether they capture only tuple-level
uncertainty, where “existence” probabilities are attached to the tu-
ples of the database, or only attribute-level uncertainty, where (pos-
sibly continuous) probability distributions are attached to the at-
tributes, or both. The proposed approaches differ further based on
whether they consider correlations or not. Most work in proba-
bilistic databases has either assumed independence [15, 7] or has
restricted the correlations that can be modeled [29, 2]. More re-
cently, several approaches have been presented that allow repre-
sentation of arbitrary correlations [18, 34, 28].

The area of ranking and top-k query processing has also seen
much work in databases (see Ilyas et al. [22] for a survey). More re-
cently, several researchers have considered top-k query processing
in probabilistic databases. Soliman et al. [35] defined the problem
of ranking over probabilistic databases, and proposed two ranking
functions to combine tuple scores and probabilities. Yi et al. [38]
present improved algorithms for the same ranking functions. Zhang
and Chomicki [39] present a desiderata for ranking functions. Ming
Hua et al. [21] recently presented a different approach called prob-
abilistic threshold queries. Finally, Cormode et al. [6] also present
a semantics of ranking functions and a new ranking function called
expected rank. We will review these ranking functions in detail in
next section. There has also been work on top-k query processing

in probabilistic databases where the ranking is by the result tuple
probabilities (i.e., probability and score are identical) [32]. The
main challenge in that work is efficient computation of the proba-
bilities, whereas we assume that the probability and score are either
given or can be computed easily.

3. PROBLEM FORMULATION

We begin with defining our model of a probabilistic database,
called probabilistic and/xor tree [31], that allows capturing several
common types of correlations. We then review the prior work on
top-k query processing in probabilistic databases, and argue that
a single specific ranking function may not capture the intricacies
of ranking with uncertainty. We then present our parameterized
ranking functions, PRF* and PRF*.

3.1 Probabilistic Database Model

We use the prevalent possible worlds semantics for probabilistic
databases [7]. We denote a probabilistic relation with tuple uncer-
tainty by D7, where T" denotes the set of tuples (see Section 4.4 for
extensions of our algorithms to attribute uncertainty). The set of all
possible worlds is denoted by PW = {pw1, pwa, ...., pw, }. Each
tuple ¢; € T is associated with an existence probability Pr(¢;) and
a score score(t; ), computed based on a scoring function score :
T — R. Usually score(t) is computed based on the tuple attribute
values and measures the relative user preference for different tu-
ples. In a deterministic database, tuples with higher scores should
be ranked higher. We use 7p, : T — {1,...,n} U {o0} to
denote the rank of the tuple ¢ in a possible world pw according
to score. If ¢ does not appear in the possible world pw, we let
rpw(t) = 00. We say t1 ranks higher than t2 in the possible world
pw if 7pw (1) < Tpw(t2). For each tuple ¢, we define a random
variable r(¢) which denotes the rank of ¢ in Dr. In other words,
Pr(r(t) = k) is the total probability of the possible worlds where
t is ranked at position k.

Probabilistic And/Xor Tree Model: Our algorithms can handle
arbitrarily correlated relations where correlations are modeled us-
ing Markov networks (Section 6). However, in most of this pa-
per, we focus on the probabilistic and/xor tree model, introduced
in our prior work [31], that can capture only a more restricted set
of correlations, but admits highly efficient probability computation
algorithms. More specifically, an and/xor tree captures two types
of correlations: (1) mutual exclusivity (denoted ) (xor)) and (2)
mutual co-existence (D (and)). Two events satisfy the mutual co-
existence correlation if, in any possible world, either both events
occur or neither occurs. Similarly two events are mutually exclu-
sive if there is no possible world where both happen.

DEFINITION 1. A probabilistic and/xor tree T is a tree where
each leaf is a singleton tuple and each inner node has a mark, ©)
or . For each V) node u and each of its children v, there is a non-
negative value p(u,v) associated with the edge (u,v). Moreover,
we require 3, , P(u,v) < 1. Let T, be the subtree rooted at
v and vi,...,v; be v’s children. The subtree T, inductively de-
fines a random subset S,, of its leaves by the following independent
process:

e Ifvisaleaf, S, = {v}.

o Ifvisa ) node, then S :{ gﬂi :;}Zﬂii p(v;vi)

e visa® node, then S, = U; Sy,

x-tuples (which can be used to specify mutual exclusivity cor-
relations between tuples) correspond to the special case where we
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Figure 1: Example of a probabilistic database which contains automatically captured information about speeding cars. Tuple ¢2 and

ts (similarly, ¢4 and ¢5) are mutually exclusive. The corresponding and/xor tree compactly encodes these correlations.

have a tree of height 2, with a ® node as the root and only )
nodes in the second level. Figure 1 shows an example of an and/xor
tree that models the data from a traffic monitoring application [35],
where the tuples represent automatically captured traffic data. For
example, the leftmost ) node indicates ¢, is present with proba-
bility .4 and the second (V) node dictates that exactly one of ¢5 and
ts should appear. The topmost (® node tells us the random sets
derived from these (V) nodes coexist.

Probabilistic and/xor trees significantly generalize x-tuples [33,
38], block-independent disjoint tuples model, and p-or-sets [8], and
can in fact represent any finite set of arbitrary possible worlds [31].
The correlations captured by and/xor trees can be represented by
probabilistic c-tables [18] and provenance semirings [17]. How-
ever, that does not directly imply an efficient algorithm for ranking.
And/xor trees also exhibit superficial similarities to ws-trees [28],
which can also capture mutual exclusivity and coexistence between
tuples. We note that no prior work on ranking in probabilistic
databases has considered more complex correlations than x-tuples.

3.2 Ranking over Probabilistic Data: Defini-
tions and Prior Work

The interplay between probabilities and scores complicates the
semantics of ranking in probabilistic databases. This was observed
by Soliman et al. [35], who first considered this problem and pre-
sented two definitions of top-k queries in probabilistic databases.
Several other definitions of ranking have been proposed since then.
We briefly review the ranking functions we consider in this work.

e Uncertain Top-k (U-Top) [35]: Here the query returns the k-
tuple set that appears as the top-k answer in most possible
worlds (weighted by the probabilities of the worlds).

e Uncertain Rank-k (U-Rank) [35]: At each rank ¢, we return

. . - . . E- PT(1 -R Exp-R -Tt
the tuple with the maximum probability of being at the ¢’th Score (100) | U-Rank | Exp-Rank | U-Top
K . . E-Score - 0.8642 0.8902 0.0044 0.9258
rank in all possible worlds. In other words, U-Rank returns:
(t5.i= 1,2, k}, where 7 = argmaz: (Pr(r(t) = 7). PT(100) | 0.8642 - 0.3950 | 0.8647 | 0.5791
U-Rank | 0.8902 | 0.3950 - 0.8907 | 03160
e Probabilistic Threshold Top-k (PT'(h)) [21]: The original def- Exp-Rank | 0.0044 0.8647 0.8907 _ 0.9263

inition of a probabilistic threshold query asks for all tuples
with probability of being in top-h answer larger than a pre-
specified threshold, i.e., all tuples ¢ such that Pr(r(t) < h) >
threshold. For consistency with other ranking definitions, we
slightly modify the definition and instead ask for the k tuples
with the largest Pr(r(t) < h) values.

e Expected Ranks (Exp-Rank) [6]: The tuples are ranked in the
increasing order by: >° py Pr(pw)rpw(t), where 7pu ()
is defined to be |pw| if t ¢ pw.

e Expected Score (E-Score): Another natural ranking function,

also considered by [6], is simply to rank the tuples by their
expected score, Pr(t)score(t).

Normalized Kendall Distance: To compare different ranking func-
tions or criteria, we need a distance measure to evaluate the close-

ness of two top-k answers. We use the prevalent Kendall tau dis-
tance defined for comparing top-k answers for this purpose [13]. It
is also called Kemeny distance in the literature and is considered
to have many advantages over other distance metrics [12]. Let R4
and R denote two full ranked lists, and let /C; and o denote the
top-k ranked tuples in R and R respectively. Then Kendall tau
distance between K1 and K3 is defined to be:
dis(K1, K2) = Z(i,j)gP(Kl,KZ) K(i,j),

where P(K1,K2) is the set of all unordered pairs of K1 U Ko;
K(i,7) = 1if it can be inferred from K; and K that  and j
appear in opposite order in the two full ranked lists R1 and Ro,
otherwise K (i,7) = 0. Intuitively the Kendall distance measures
the number of inversions or flips between the two rankings. For
ease of comparison, we divide the Kendall distance by k? to obtain
normalized Kendall distance, which always lies in [0, 1].

A higher value of the Kendall distance indicates a larger dis-
agreement between the two top-k lists. It is easy to see that if the
Kendall distance between two top-k answers is J, then the two an-
swers must share at least 1 —+/§ fraction of tuples (so if the distance
is 0.09, then the top-k answers share at least 70%, and typically
90% or more tuples). The distance is 0 if two top-k answers are
identical and 1 if they are completely disjoint.

E-Score | PT(100) | U-Rank | Exp-Rank | U-Top
E-Score - 0.1241 0.3027 0.7992 0.2760
PT(100) | 0.1241 - 0.3324 0.9290 0.3674
U-Rank 0.3027 0.3324 - 0.9293 0.2046
Exp-Rank | 0.7992 0.9290 0.9293 - 0.9456
U-Top 0.2760 0.3674 0.2046 0.9456 -

11P-100,000 (k = 100)

U-Top 0.9258 0.5791 0.3160 0.9263 -
Syn-IND Dataset with 100,000 tuples (k = 100)

Table 1: Normalized Kendall distance between top-k answers
according to various ranking functions for two datasets

Comparing Ranking Functions: We compared the top-100 an-
swers returned by the five ranking functions with each other us-
ing the normalized Kendall distance, for two datasets with 100,000
independent tuples each (see Section 7 for a description of the
datasets). Table 1 shows the results of this experiment. As we
can see, the five ranking functions return wildly different top-k an-
swers for the two datasets, with no obvious trends. For the first
dataset, Exp-Rank behaves very differently from all other functions,
whereas for the second dataset, Exp-Rank happens to be quite close



to E-Score. However both of them deviate largely from U-Top,
PT(h) and U-Rank. The behavior of E-Score is very sensitive to
the dataset, especially the score distribution: it is close to PT'(h)
and U-Rank for the first dataset, but far away from all of them in the
second dataset (by looking into the results, it shares less than 15 tu-
ples with the Top-100 answers of the others). We observed similar
behavior for other datasets, and for datasets with correlations.

This simple experiment illustrates the issues with ranking in prob-
abilistic databases — although several of these definitions seem nat-
ural, the wildly different answers they return indicate that none of
them may be the “right” definition.

We also observe that in large datasets, Exp-Rank tends to give
very high priority to a tuple with a high probability even if it has a
low score. In our synthetic dataset Syn-IND-100,000 with expected
size ~ 50000, 2 (the tuple with 2nd highest score) has probabil-
ity approximately 0.98 and t1000 (the tuple with 1000th highest
score) has probability 0.99. The expected ranks of t2 and t1000
are approximately 10000 and 6000 respectively, and hence t1900 is
ranked above t2 even though 1000 is only slightly more probable.

3.3 Parameterized Ranking Functions

Ranking in uncertain databases is inherently a multi-criteria opti-
mization problem, and it is not always clear how to rank two tuples
that dominate each other along different axes. Consider a database
with two tuples ¢1 (score = 100, Pr(¢1) = 0.5), and ¢ (score =
50, Pr(t2) = 1.0). Even in this simple case, it is not clear whether
to rank ¢1 above t» or vice versa. This is an instance of the clas-
sic risk-reward trade-off, and the choice between these two options
largely depends on the application domain and/or user preferences.

We propose to follow the traditional approach to dealing with
such tradeoffs, by identifying a set of features, by defining a pa-
rameterized ranking function over these features, and by learning
the parameters (weights) themselves using user preferences [20, 26,
4, 9]. To achieve this, we propose a family of ranking functions, pa-
rameterized by one or more parameters, and design algorithms to
efficiently find the top-k answer according to any ranking function
from these families. Our general ranking function, PRF, directly
subsumes some of the previously proposed ranking functions, and
can also be used to approximate other ranking functions. Moreover,
the parameters can be learned from user preferences, which allows
us to adapt to different scenarios and different application domains.

Features: Although it is tempting to use the tuple probability and
the tuple score as the features, a ranking function based on just
those two will be highly sensitive to the actual values of the scores;
further, such a ranking function will be insensitive to the correla-
tions in the database, and hence cannot capture the rich interactions
between ranking and possible worlds.

Instead we propose to use the following set of features: for each
tuple ¢, we have n features, Pr(r(t) =i),i = 1,--- ,n, where n is
the number of tuples in the database. In other words, for each 7, we
use the probability that a tuple is ranked at that position across the
possible worlds as a feature. This set of features succinctly captures
the possible worlds. Further, correlations among tuples, if any, are
naturally accounted for, when computing the values of the features.
We note that, in most cases, we do not explicitly compute all the
features, and instead design algorithms that can directly compute
the value of the overall ranking function.

Ranking Functions: Next we define a general ranking function
which allows exploring the trade-offs discussed above.

DEFINITION 2. Letw : T X N — C be a weight function that
maps a tuple-rank pair to a complex number. The parameterized
ranking function (PRF), Y, : T' — C in its most general form is

defined to be:
Yo(t) = Y wlt,rpu(t)) - Pr(pw)

pw:tEpw

= Z Z w(t, ))Pr(pw A rpw (t) = 1)
= Zw(t,i) -Pr(r(t) =1).

A top-k query returns the k tuples with the highest | Y| values.

In most cases, w is a real positive function and we just need to
find the k tuples with highest Y, values. However we allow w to
be a complex function in order to approximate other functions effi-
ciently (see Section 5.1). Depending on the actual function w, we
get different ranking functions with diverse behaviors. We illustrate
some of these choices and relate them to prior ranking functions'.
‘We omit the subscript w if the context is clear.

e If w(t,i) = 1, the result is the set of k tuples with the highest
probabilities [32].

e By setting w(t, ) = score(t), we get E-Score :
Y(t) = >, uetepw SCOre(t)Pr(pw) = score(t)Pr(t)

e PRF“(h): One important class of ranking functions is when
w(t,7) = w; (i.e., independent of ¢) and w; = O0Vi > h for
some positive integer h. This forms one of prevalent classes
of ranking functions used in domains such as information re-
trieval and machine learning, with the weights typically learned
from user preferences [20, 26, 4, 9].

e Two special cases of the PRF“ function are:

1, i<h
0, otherwise
highest T, (¢) value, we have exactly the answer for PT'(h).

1. w(i) = . If we return k tuples with

1, isj

0, otherwise
see the tuple with largest T, value is the rank-j answer
in U-Rank query [35].

This allows us to compute the U-Rank answer by evaluat-
ing Yo, (t) forallt € Tandj =1,... k.

e PRF*°(a): Finally, we define PRF° to be a special case of
the PRF“ function, where w; = w(i) = o', where « is a
constant and may be a real or a complex number.

2. wi(i) = for some 1 < j < k. We can

PRF* and PRF* form the two parameterized ranking functions
that we propose in this work. Although PRF* is the more natu-
ral ranking function and has been used elsewhere, PRF® is more
suitable for ranking in probabilistic databases for various reasons.
First, the features as we have defined above are not completely ar-
bitrary, and the features Pr(r(¢) = 4) for small ¢ are clearly more
important than the ones for large ¢. Hence in most cases we would
like the weight function, w(%), to be monotonically non-increasing.
PRF* naturally captures this behavior (as long as || < 1). More
importantly, we can compute the PRF'® function in O(n log(n))
time (O(n) time if the dataset is pre-sorted by score) even for
datasets with low degrees of correlations (i.e., modeled by and/xor
trees with low heights). This makes it significantly more attractive
for ranking over large datasets.

'The definition of the U-Top introduced in [35] requires the re-
trieved k tuples belongs to a valid possible world. However, it is
not required in our definition, and hence it is not possible to simu-
late U-Top using PRF.



Furthermore, ranking by P RF'®(«), with suitably chosen «, can
approximate rankings by many other functions reasonably well even
with only real «. Finally, a linear combination of exponential func-
tions, with complex bases, is known to be very expressive in repre-
senting other functions [3]. We make use of this fact to approximate
many ranking functions by linear combinations of a small num-
ber of PRF* functions, thus significantly speeding up the running
time. We revisit this in Section 5.1.

4. RANKING ALGORITHMS

We next present an algorithm for efficiently ranking according to
a PRF function. We first present the basic idea behind our algo-
rithm assuming mutual independence, and then consider correlated
tuples with correlations represented using an and/xor tree. We then
present a very efficient algorithm for ranking using a PRF“ func-
tion, and then briefly discuss how to handle attribute uncertainty.

4.1 Assuming Tuple Independence

First we show how the P RF function can be computed in O(n?)
time for a general weight function w, and for a given set of tuples
T = {t1,...,tn}. In all our algorithms, we assume that w(¢, )
can be computed in O(1) time.

Clearly it is sufficient to compute Pr(r(t) = j) for all tuples
tand 1 < j < nin O(n?) time. Given these values, we can
directly compute the values of Y'(¢) for all tuples in O(n?) time (in
O(n) time for each tuple). Later, we will present several algorithms
which run in O(n) or O(nlog(n)) time which combine these two
steps for specific w functions.

We first sort the tuples in a non-increasing order by their score
(which is assumed to be deterministic); assume t1, . . . , t,, indicates
this sorted order. Suppose now we want to compute Pr(r(¢;) =
j). Let T; = {t1,t2,...,t;} and o; be an indicator variable that
takes value 1 if ¢; is present in a possible world, and 0 if otherwise.
Further, let o = (o1,...,0n,) denote a vector containing all the
indicator variables. Then, we can write Pr(r(¢;) = j) as follows:

Pr(r(t:;) = j)

Pr(t;) >

pw:[pwnT;_1|=j—1

> I Pre) ] (—Pr(ta)

i—1 I<i:op=1 1<i:01=0
oy o=j—1
=1

Pr(pw)

Pl’(ti)

The first equality says that tuple ¢; ranks at the jth position if
and only if ¢; and exactly j — 1 tuples from 7;_; are present in
the possible world. The second equality is obtained by rewriting
the sum to be over the indicator vector (each assignment to the in-
dicator vector corresponds to a possible world), and by exploiting
the fact that the tuples are independent of each other. The naive
method to evaluate the above formula by explicitly listing all possi-
ble worlds needs exponential time. Now, we present a polynomial
time algorithm based on generating functions.

Consider the function: F(x) = ]}, (a; +biz). The coefficient
of z¥ in F(x) is given by: 2 11=k [ip,—0 @i I 1;.5,—1 bi where
B ={B,...,0Bn) is a Boolean vector, and |3| denotes the number
of 1’s in 3. Now consider the following generating function:

Fi(x) [T (1=Pr)+Prit) - 2) | (Prti) - )

tET;

— d
= Ec]a:.

Jj=0

(.6 + 4dx)x(4zx + .6y)

(5 + .52) (4 + .62)(.6 + .4y)

T

.6 4 4x .7z + .3z A4m + GTU\(
7 S04

)

S A<

)

I A A A

Figure 2: PRF computation on and/xor trees: the left figure
corresponds to the database in Figure 1, whereas the right fig-
ure is the and/xor tree representation of the independent tuples
in Example 1.

We can see that the coefficient ¢; of 7 in the expansion of F* is
exactly the probability that ¢; is at rank j, i.e., ¢; = Pr(r(t;) = j).
We note F* contains at most ¢ + 1 nonzero terms. Hence, we can
expand F* to compute the coefficients in O(i?) time. This allows
us to compute Pr(r(t;) = ) for ¢; in O(i?) time; Y(t;), in turn,
can be written as:

Y(ti) =Y wltig)-Pr(r(t) = j) = >_wlti,j)e; (1)

J J
which can be computed in O(3?) time.

EXAMPLE 1. Consider a relation with 3 independent tuples t,
to, ts (already sorted according to the score function) with exis-
tence probabilities 0.5, 0.6, 0.4, respectively. The generating func-
tion for ts is:

F3x) = (.5 + .52)(4 + .62)(4z) = 1223 + 222 + .08z
This gives us:

Pr(r(ts) = 1) = .08, Pr(r(ts) = 2) = .2,Pr(r(t3) = 3) = .12

If we expand each F “ for 1 < ¢ < n from scratch, we need
O(n?) time for each F* and O(n®) time in total. However, the
expansion of F* can be obtained from the expansion of F*~! in
O(%) time by observing that:

Filz) = Mﬁ*(@@ ~Pr(ti) + Pr(ti)z) (@)

Pr(ti_l)
This trick gives us O(n?) time complexity for computing the values
of the ranking function for all tuples. See Algorithm 1 for the pseu-
docode. Note that O(n?) time is asymptotically optimal in general
since the computation involves at least O(n?) probabilities, namely
Pr(r(t;) =j) foralll <4i,5 <n.

Algorithm 1: IND-PRF-RANK(Dr)

1 Foz) =1,

2 fori=1tondo

Fi(@) = st 7 (@) (1= Pr(tior) + Pr(ti1)a) 5
Expand F* () in the form of 3, ¢;27 ;

T(ti) =5 wlti e

6 return k tuples with largest Y values;

wm s W

For some specific w functions, we may be able to achieve faster
running time. For PRF*“ (h) functions, we only need to expand all
F¥sup to " term since w(i) = 0 for i > h. Then, the expansion
from F'~!(x) to F*(x) only takes O(h) time. This yields an O(n-
h + nlog(n)) time algorithm. We note the above technique also
gives an O(nk + nlog(n)) time algorithm for answering the U-
Rank top-k query (all the needed probabilities can be computed



in that time), thus matching the best known upper bound by Yi et
al. [38] (the original algorithm in [35] runs in O(n?k) time).

We remark that the generating function technique can be seen as
a variant of dynamic programming in some sense; however, using
it explicitly in place of the obscure recursion formula gives us a
much cleaner view and allows us to generalize it to handle more
complicated tuple correlations. This also leads to an algorithm for
extremely efficient evaluation of P RF'® functions (Section 4.3).

4.2 Probabilistic And/Xor Trees

Next we generalize our algorithm to handle a correlated database
where the correlations can be captured using an and/xor tree. As
before, let T" = {¢1, t2, . .., tn } denote the tuples sorted in an non-

increasing order of their score function, and let 7; = {t1,t2,...,t:}.

Let 7 denote the and/xor tree that models the correlations.
Suppose now we need to compute Pr(r(¢;) = 7). Since a tuple
with a smaller score does not have any affect on the rank of ¢;, it
suffices to consider only 7;, the subtree of 7 induced by the leaf
set T; (namely, the union of all root-leaf paths with all leaves in
T;). Let Ch(v) = {v1,...,v} denote the set of v’s children.

Let p, = theCh(v).p(v, vy, ). For each node v € 7;, we define
generating function F, (z, y) inductively as follows:
o Ifvisaleaf, Fi(z,y) :{ " veT\ {tik

e Ifvisa @ node,

vp €Ch(v)

e Ifvisa @ node, Fi(z,y) = I, conw) Fo (1)

The generating function F* for 7; is the generating function of
its root. The following theorem [31] states the close relationship
between the probabilities Pr(r(t;) = j) and the coefficients of F*.

féh (1'7 y) : p(’l}7 vh)

THEOREM 1. [31] Let c; be the coefficient of the term ¥y
in the generating function F*(x,y) defined as above. We have that:

Pr(r(ti) = j) = Cj.

EXAMPLE 2. The generating function F° for the left hand side
tree in Figure 2 is (.6 + .4x)x(4x + .6y) = 2422 + 162> +
.362y +.24xy. So we get that Pr(r(t5) = 3) = .24. From Figure
1, we can also see Pr(r(ts) = 3) = Pr(pw2) + Pr(pws) = .24.
The right hand side of Figure 2 shows the probabilistic and/xor tree
and the generating function computation for Example 1.

See Algorithm 2 for the pseudocode of the algorithm.

If we expand . for each internal node v in a naive way (i.e.,
we do polynomial multiplication one by one), we can show that the
running time is O(n?) at each internal node and thus O(n?®) over-
all. If we do divide-and-conquer at each internal node and apply
FFT (Fast Fourier Transformation) for the multiplication of poly-
nomials, the running time can be improved to O(n? log®n). The
details can be found in the extended version of the paper [30].

4.3 Computing a PRF° Function

Next we present an O(n log(n)) algorithm to evaluate a PRF*®
function (the algorithm runs in linear time if the dataset is pre-
sorted by score). If w(z) = ', then we observe that:

Y(t;) = Z Pr(r(t:) = j)o’ = F'(a) 3)

This surprisingly simple relationship suggests it is not necessary to
expand the polynomials F*(z) at all; instead we can evaluate the

Algorithm 2: ANDOR-PRF-RANK(7)

T7° =0

for i=1to n do
7T, = T;—1 U the path from ¢; to the root;
F'(z,y) = GENE(T;, t:); . .
Expand F"(z, y) in the form 37 cja’ + (3=, cird ™Yy,
T(ti) =327 wlts, j)ess

return k tuples with largest Y values;

Subroutine: GENE(T ,t);

if 7 is a singleton node then

| if 7 = {t} then return y else return z
else

7; is the subtree rooted at r; for r; € Ch(r);
b= Zriec’h('r) p(r,73);
if r is a @ node then
L return 1 —p+3° oy P(r,73) - GENE(T;, t);
if r is a @ node then
| return [[ .y GENE(T, t);

numerical value of F’(a) directly. Again, we note that the value
F*(a) can be computed from the value of F*~!(a) in O(1) time
using Equation (2). Thus, we have O(n) time algorithm to compute
Y (t;) forall 1 <4 < n if the tuples are pre-sorted.

EXAMPLE 3. Consider Example 1 and the PRF® function for
t3. We choose w(i) = .6%. Then, we can see that F>(x) = (.5 +
5x)(.4 4 .6x)(4x). So, Y(t3) = F3(.6) = (.5 + .5 x .6)(.4 +
6% .6)(4 x .6) = .14592.

We can use a similar idea to speed up the computation if the tu-
ples are correlated and the correlations are represented using an
and/xor tree. Suppose the generating function for 7; is F*(x, y) =
> cjxd + 2, c;z? Ny and Y(t;) = D a’c;. We observe
an intriguing relationship between the PRF® value and the gener-
ating function:

YT(t;) = Zc]-aj = (Z cjad + (chaj_l)a) - Zc;-ozj

J J
= Fia,a) — F'(a,0).

Given this, Y(¢;) can be computed in linear time by bottom up
evaluation of F*(a, &) and F'(a, 0) in 7°. If we simply repeat it
n times, once for each t;, this gives us a O(n?) total running time.

By carefully sharing the intermediate results among computa-
tions of Y'(¢;), we can improve the running time to O(n log(n) +
nd) where d is the height of the and/xor tree. We sketch this algo-
rithm, which runs in iterations. Suppose the tuples are already pre-
sorted by their scores. In iteration ¢, leaf ¢; (the ¢’th tuple in score
order) is added to the tree and the computations are done along the
path from ¢; to the root. Specifically, the algorithm maintains the
following information in each inner node v: the numerical values of
Fi(a, o) and Fi(a, 0). The values on node v need to be updated
when the value of one of its children changes. Therefore, in each
iteration, the computation only happens on the path from ¢; to the
root. Since we update at most d nodes for each newly added node,
the running time is O(nd). The updating rule for F}(.,.)(both
Fila,a) and Fi(a,0)) in node v is as follows. We assume v’s
child, say u, just had its values changed.

1. visa @ node, Fi(.,.) « Fit (., )FL(., )/ Fimr(.,.)

2. visa @ node, then: ‘ .
Foles) = F ) + oo, w)Fuls ) = plo,u) Fu= (., )



We note that, for the case of x-fuples, which can be represented
using a two-level tree, this gives us an O(n log(n)) algorithm for
ranking according to PRF*.

4.4 Attribute Uncertainty or Uncertain Scores

We briefly sketch how we can do ranking over tuples with dis-
crete attribute uncertainty where the uncertain attributes are part of
the tuple scoring function (if the uncertain attributes do not affect
the tuple score, then they can be ignored for the ranking purposes).
More generally, this approach can handle the case when there is a
discrete probability distribution over the score of the tuple.

The algorithm works by treating the alternatives of the tuples
(with a separate alternative for each different possible score for the
tuple) as different tuples, and adding an xor constraint over the
alternatives. We can then use the algorithm for the probabilistic
and/xor tree model to find the values of the PRF function for each
resulting tuple separately. In a final step, we calculate the Y score
for each original tuple by adding the Y scores of its alternatives. If
the original tuples were independent, the complexity of this algo-
rithm is O(n?) for computing the PRF function, and O(n log(n))
for computing the PRF® function where n is the size of the input,
i.e., the total number of different possible scores.

5. APPROXIMATING AND LEARNING
RANKING FUNCTIONS

In this section, we discuss how to choose the PRF functions and
their parameters. Depending on the application domain and the
scenarios, there are two approaches to this:

o If we know the ranking function we would like to use (say
PT(h)), then we can either simulate or approximate it using
appropriate PRF functions.

o If we are instead provided user preferences data, we can learn
the parameters from them. Clearly, we would prefer to use a
PRF* function, if possible, since it admits highly efficient
ranking algorithms.
For this purpose, we begin with presenting an algorithm to find
an approximation to an arbitrary PRF“ function using a linear
combination of PRF* functions. We then discuss how to learn
a PRF* function from user preferences, and finally present an
algorithm for learning a single P RF'® function.

5.1 Approximating PRF* using PRF° Functions

A linear combination of complex exponential functions is known
to be very expressive, and can approximate many other functions
very well [3]. Specifically, given a PRF* function, if we can write
w(i) as: w(i) = ZlL:l wiadl, then we have that:

=Y (Sairtn =)

This reduces the computation of Y'(¢) to L individual PRF'® func-
tion computations, each of which only takes linear time. This gives
us an O(nlog(n) + nL) time algorithm for approximately rank-
ing using PRF* function for independent tuples (as opposed to
O(n?) for exact ranking).

Several techniques have been proposed for finding such approx-
imations using complex exponentials [24, 3]. Those techniques are
however computationally inefficient, involving computation of the
inverses of large matrices and the roots of polynomials of high or-
ders, and may be numerically unstable.

In this section, we present a clean and efficient algorithm, based
on Discrete Fourier Transforms (DFT), for approximating a func-

T(t) = 3 w(i)Pr(r

i

tion w(), that approaches zero for large values of i. As we noted
earlier, this captures the typical behavior of the w(7) function. An
example of such a function is the step function (w(i) = 1Vi < h, =
0V4 > h) which corresponds to the ranking function PT'(h). Ata
high level, our algorithm starts with a DFT approximation of w(z)
and then adapts it by adding several damping, scaling and shifting
factors.

Discrete Fourier transformation (DFT) is a well known technique
for representing a function as a linear combination of complex ex-
ponentials (also called frequency domain representation). More
specifically, a discrete function w(i) defined on a finite domain
[0, N — 1] can be decomposed into exactly N exponentials as:

N-1
1 2m0p
=Nzw(k)eN’“ i=0,...,N—1. (4
k=0
where j is the imaginary unit and ¢(0), - - - , (N — 1) denotes the

DFT transform of w(0), - - -, w(IN — 1). If we want to approximate
w by fewer, say L, exponentials, we can instead use the L DFT
coefficients with maximum absolute value. For clarity, we assume
that ¢(0), ..., (L — 1) are those coefficients. Then our approxi-

mation &P of w by L exponentials is given by:

27rJ .

~DFT k

wr Z bk '
- N

However, DFT utilizes only complex exponentials of unit norm,
i.e., e’ (where r is a real), which makes this approximation peri-
odic (with a period of N). This is not suitable for approximating
an w function used in PRF, which is typically a monotonically non-
increasing function. If we make N sufficiently large, say larger
than the total number of tuples, then we usually need a large num-
ber of exponentials (L) to get a reasonable approximation. More-
over, computing DFT for very large N is computationally non-
trivial. Furthermore, the number of tuples » may not be known
in advance.

We next present a set of nontrivial tricks to adapt the base DFT
approximation to overcome these shortcomings. To illustrate our
1, i<N
0, :>N
running example to show our method and the specific shortcoming
it addresses. We assume w(4) takes non-zero values within interval
[0, N — 1] and the absolute values of both w(i) and w7 (3) are
bounded by B.

1. (DFT) We perform pure DFT on the domain [1, aN], where a
is a small integer constant (typically < 10).

i=0,...,.N—1. (5

method, we use the step function w(i) = as our

2. (Damping Factor (DF)) We introduce a damping factor n <
1 such that Bn®™ < e where € is a small positive real (for
example, 10~°). Our new approximation becomes:

&EFTJrDF(Z-) _ nz X (:)DFT _ Z i.

k;:
(6)
By incorporating this damping factor, we have that
QPFTHPE () = 0. Especially, 0P "7 +PF (4) <

llmlﬁjLoo €

fori > aN.

3. (Initial Scaling (IS)) Use of the damping factor gives a biased
approximation when ¢ is small (see Figure 3(i)). Taking the
step function as an example, © ”D FT+DE () is approximately
n* for 0 < 4 < N instead of 1 To rectify this, we initially
perform DFT on a different sequence & (i) = 1~ "w(i) (rather
than w(¢)) on domain € [0,aN]. This gives us an unbiased
approximation, which we denote by @ ¥ T +PF+IS,
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Figure 3: Approximating functions using linear combinations of complex exponentials

4. (Extending and Shifting (ES)) This trick is in particular tai-
lored for optimizing the approximation performance for rank-
ing functions. DFT does not perform well at discontinuous
points, specifically at ¢ = 0 (the left boundary), which can sig-
nificantly affect the ranking approximation. To handle this, we
extrapolate w to make it continuous around 0. Let the result-
ing function be & which is defined on [—bNN, +oc0] for small
b > 0. Again, taking the step function for example, we let
(i) = { 1, —bN <i< N;

0, > N.

wards by bV to make its domain lie entirely in positive axis, do
initial scaling and perform DFT on the resulting sequence. We
denote the approximation of the resulting sequence by &’ (7)(by
performing (6)). For the approximation of original w(i) values,
we only need to do corresponding leftward shifting , namely
QPFTHDEHISHES 4y — ¢/ (4-bN). We can see from Figure
3(i) that DFT+DF+IS+ES produces a much better approxima-
tion than others around 7 = 0.

Figures 3(i) and (ii) illustrate the efficacy of our approximation

technique for the step function. As we can see, we are able to

approximate that function very well with just 20 or 30 coefficients.

Figure 3(iii) and (iv) show the approximations for a piecewise lin-

ear function and an arbitrarily generated continuous function re-

spectively, both of which are much easier to approximate than the
step function.

Then, we shift @(4) right-

5.2 Learning a PRF* or PRF° Function

Next we address the question of how to learn the weights of a
PRF* function or the « for a single PRF'® function from user
preferences. To learn a linear combination of PRF functions, we
first learn a PRF™ function and then approximate it as above.

Prior work on learning ranking functions (e.g., [20, 26, 4, 9]) as-
sumes that the user preferences are provided in the form of a set of
pairs of tuples, and for each pair, we are told which tuple is ranked
higher. Our problem differs slightly from this prior work in that,
the features that we use to rank the tuples (i.e., Pr(r(t) = i),i =
1,...,n) cannot be computed for each tuple individually, but must
be computed for the entire dataset (since the values of the features
for a tuple depend on the other tuples in the dataset). Hence, we as-
sume that we are instead given a small sample of the tuples, and the
user ranking for all those tuples. We compute the features assuming
this sample constitutes the entire relation, and learn a ranking func-
tion accordingly, with the goal to find the parameters (the weights
w; for PRFE“ or the parameter o for PRF®) that minimizes the
number of disagreements with the provided sample ranking.

Given this, the problem of learning PRF'“ is identical to the
problem addressed in the prior work, and we utilize the algorithm
based on support vector machines (SVM) [26] in our experiments.

On the other hand, we are not aware of any work that has ad-

dressed learning a ranking function like PRF®. We use a simple
binary search-like heuristic to find the optimal real value of « that
minimizes the Kendall distance between the user-specified ranking
and the ranking according to PRF“(c). In other words, we try to
find arg ming¢[o,1)(dis(o, o(c))) where dis() is the Kendall dis-
tance between two rankings, o is the ranking for the given sample
and o(«) is the one obtained by using PRF°(«) function. Sup-
pose we want to find the optimal a within the interval [L, U] now.
We first compute dis(o, o(L + i - Y22) fori = 1,...,9 and find
1 for which the distance is the smallest. Then we reduce our search
range to [max (L, L+ (i—1)- %5 min(U, L+ (i+1)- %5%)] and
repeat the above recursively. Although this algorithm can only con-
verge to a local minimum, in our experimental study, we observed
that all of the prior ranking functions exhibit a uni-valley behav-
ior (Section 7), and in such cases, this algorithm finds the global
optimal.

6. PRF COMPUTATION FOR ARBITRARY
CORRELATIONS

Among many models for capturing the correlations in a proba-
bilistic database, graphical models (Markov or Bayesian networks)
perhaps represent the most systematic approach [34]. The appeal
of graphical models stems both from the pictorial representation
of the dependencies, and a rich literature on doing inference over
them. In this section, we sketch an extension of our generating
function-based algorithm for computing PRF' to handle correla-
tions represented using a graphical model. The resulting algorithm
is a non-trivial dynamic program over the junction tree of the graph-
ical model, combined with the generating function method. Our
main result is that we can compute the PRF function in polyno-
mial time if the junction tree of the graphical model has bounded
treewidth. It is worth noting that this result can not subsume our
algorithm for and/xor trees (Section 4.2) since the treewidth of the
moralized graph of a probabilistic and/xor tree may not be bounded.

Definitions: We start with briefly reviewing some notations and
definitions related to graphical models and junction trees. Let T' =
{t1,t2,...,tn} bethe set of tuples in D, sorted in an non-increasing
order of their score values. For each tuple ¢ in 7', we associate an
indicator random variable X, which is 1, if ¢ is present and O oth-
erwise. Let X = {Xy,,..., Xy, fand X; = {Xy,,..., Xy, }. The
correlations among these variables may be represented using either
a directed or an undirected graphical model; we however assume
that we are provided with an equivalent junction tree over the vari-
ables (which can be constructed using standard algorithms [14]).
Let 7 be a tree with each node v associated with a subset C,, C
X. We say 7 is a junction tree if any intersection C,, N C,, for
any u,v € 7 is contained in C,, for every node w on the unique
path between u and v in 7 (this is called the running intersec-
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Figure 4: (i) A graphical model; (ii) A junction tree for the
model along with the (calibrated) potentials.

tion property). The treewidth of a junction tree is defined to be
maxye7 |Cy| — 1. Denote Sy, = C, N C,, for each (u,v) € 7.
We call Sy, a separator since the removal of S, ., disconnects the
graphical model.

We associate each clique C, (and each separator S, ,) with a
potential 7,(Cl) (resp. fiu,v(Su,v)), which is a function over all
variables X;, € C, (X, € Su,) and represents the correlations
among those variables. Without loss of generality, we assume that
the potentials are calibrated, that is, the potential corresponding to
a clique (separator) is exactly the joint probability distribution over
the variables in that clique (separator). Given a junction tree with
arbitrary potentials, calibrated potentials can be computed using the
message passing algorithm [14].

For a set of variables S, we use Pr(.S) to denote the joint prob-
ability distribution over those variables. Then the joint probability
distribution of X, whose correlations can be captured using a cali-
brated junction tree 7, can be written as:

_ ILerm(@)  TLerPrc)
H(u,v)ET Hu,v(su,v) H(u,v)E’T Pr(Su,v)
Figures 4 (i) and (ii) show an undirected graphical model over

five random variables X1, --- , X5, and a calibrated junction tree
7 over them.

Pr(X)

Algorithm Sketch: Our dynamic programming-based algorithm
computes Pr(r(t;) = h) givenany ¢t; € T, forall1 < h < n,
in polynomial time if the treewidth of 7 is bounded by a constant.
The algorithm begins by rooting 7 at a node r such that X;, € C...
The dynamic program then runs bottom up, from the leaves to the
root of the junction tree 7. Let 7, denote the subtree rooted at a
node v in the junction tree, and let C', denote the corresponding
clique. For each such node, we recursively compute:

Pr(K.) = Pr((5v,0})), V6, € {0,1}1! vo < ! <n

which is the probability that the variables in C', take the values
indicated by the Boolean vector 7, (called a configuration) and the
number of variables in 7, N X is exactly equal to 93',.

After computing all of these values using dynamic programming,
we can compute Pr(r(¢;) = h), Vh, as:

Pr(r(ti) =h) =3 4i_s
FriGplti]=1,

In other words, we compute the total probability that X, = 1, and
that exactly h variables in X; are equal to 1 (i.e., exactly h — 1
tuples ranked above ¢; are present in the possible world).

Given the above framework, we can construct a recursive for-

Pr(K:)

mula for computing Pr(K?) from (1) the computed values for the
children of the node v, and (2) the joint probability distributions
corresponding to the clique and its children. However it is not com-
putationally feasible to evaluate that recursion formula directly. In-
stead we develop a generating functions-based algorithm for that
purpose, which allows us to efficiently compute Pr(K?) for all
nodes v in the junction tree. Please see the full version of the pa-
per [30] for complete details and the proofs of correctness.

Running Time: We need to run our dynamic program n times for
each tuple t;. The time complexity is O (2" (n2™ + n?)|T) for
each execution of dynamic program, resulting in an overall time
complexity of O(2"n?(2™ 4 n)|T|), where tw is the treewidth
of the junction tree 7.

7. EXPERIMENTAL STUDY

We conducted an extensive empirical study over several real and
synthetic datasets to illustrate: (a) the diverse and conflicting be-
havior of different ranking functions proposed in the prior litera-
ture, (b) the effectiveness of our parameterized ranking functions,
especially PRF°, at approximating other ranking functions, and
(c) the scalability of our new generating functions-based algorithms
for exact and approximate ranking. We discussed the results sup-
porting (a) in Section 3.2. In this section, we focus on (b) and (c).

Datasets: We mainly use the International Ice Patrol (IIP) Ice-
berg Sighting Dataset® for our experiments. This dataset was also
used in prior work on ranking in probabilistic databases [25, 21].
The database contains a set of iceberg sighting records, each of
which contains the location (latitude, longitude) of the iceberg,
and the number of days the iceberg has drifted, among other at-
tributes. Detecting the icebergs that have been drifting for long
periods is crucial, and hence we use the number of days drifted as
the ranking score. The sighting record is also associated with a
confidence-level attribute according to the source of sighting: R/V
(radar and visual), VIS (visual only), RAD (radar only), SAT-LOW
(low earth orbit satellite), SAT-MED (medium earth orbit satellite),
SAT-HIGH (high earth orbit satellite), and EST (estimated). We
converted these seven confidence levels into probabilities 0.8, 0.7,
0.6, 0.5, 0.4, 0.3, and 0.4 respectively. We added a very small Gaus-
sian noise to each probability so that ties could be broken. There are
nearly a million records available from 1960 to 2007; we created 10
different datasets for our experimental study containing 100, 000
(IIP-100,000) to 1, 000, 000 (IIP-1,000,000) records, by uniformly
sampling with replacement from the original dataset.

Along with the real datasets, we also use several synthetic datasets
with varying degrees of correlations, where the correlations are
captured using probabilistic and/xor trees. The tuple scores (for
ranking) were chosen uniformly at random from [0, 10000]. The
corresponding and/xor trees were also generated randomly starting
with the root, by controlling the height (L), the maximum degree
of the non-root nodes (d), and the proportion of V) and @ nodes
(X/A) in the tree. Specifically, we use five such datasets:

(1) Syn-IND (independent tuples), (2) Syn-XOR (L=2,X/A=00,d=5),
(3) Syn-LOW (L=3,X/A=10,d=2), (4) Syn-MED (L=5,X/A=3,d=5),
and (5) Syn-HIGH (L=5,X/A=1,d=10).

For Syn-IND, the tuple existence probabilities were chosen uni-
formly at random from [0, 1]. Note that the Syn-XOR dataset, with
height set to 2 and no ® nodes, exhibits only mutual exclusivity
correlations (mimicking the x-tuples model [33, 38]), whereas the
latter three datasets exhibit increasingly more complex correlations.

Zhttp://nsidc.org/data/g00807.html
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combination of PRF* functions; (iv) Approximation quality for three ranking functions for varying number of exponentials.

Setup: We use the normalized Kendall distance (Section 3.2) for
comparing two top-k rankings. All the algorithms were imple-
mented in C++, and the experiments were run on a 2.4GHz Linux
PC with 2GB memory.

Approximability of Ranking Functions

We begin with a set of experiments illustrating the effectiveness of
our parameterized ranking functions at approximating other rank-
ing functions. Due to space constraints, we focus on PRF'® here
because it is significantly faster to rank according to a PRF'® func-
tion (or a linear combination of several P RF'® functions) than it is
to rank according a PRF*“ function.

Figures 5 (i) and (ii) show the Kendall distance between the
top-100 answers computed using a specific ranking function and
PRF* for varying values of a, for the IIP-100,000 and Syn-IND-
1000 datasets. For better visualization, we plot ¢ on the x-axis,
where @ = 1 — 0.9°. The reason behind this is that the behavior
of the P RF* function changes rather drastically, and spans a spec-
trum of rankings, when « approaches 1. First, as we can see, the
PRF* ranking is close to ranking by Score alone for small val-
ues of «, whereas it is close to the ranking by Probability when
a is close to 1 (in fact, for o = 1, the PRF*“ ranking is equiva-
lent to the ranking of tuples by their existence probabilities)®. Sec-
ond, we see that, for all other functions (E-Score, PT(h), U-Rank,
Exp-Rank), there exists a value of « for which the distance of that
function to PRF° is very small, indicating that PRF can indeed
approximate those functions quite well. Moreover we observe that
this “uni-valley”” behavior of the curves justifies the binary search
algorithm we advocate for learning the value of « in Section 5.2.
Our experiments with other synthetic and real datasets indicated a
very similar behavior by the ranking functions.

Next we evaluate the effectiveness of our approximation tech-
nique presented in Section 5.1. In Figure 5 (iii), we show the
Kendall distance between the top-k answers obtained using PT'(h)
(for h = 1000,k = 1000) and using a linear combination of
PRF* functions found by our algorithms. As expected, the ap-
proximation using the vanilla DFT technique is very bad, with the
Kendall distance close to 0.8 indicating little similarity between
the top-k answers. However, the approximation obtained using our
proposed algorithm (indicated by DFT+DF+IS+ES curve) achieves
a Kendall distance of less than 0.1 with just L = 20 exponentials.

In Figure 5 (iv), we compare the approximation quality (found
by our algorithm DFT+DF+IS+ES) for three ranking functions for
two datasets: IIP-100,000 and IIP-1,000,000 with k = 1000. The
ranking functions we compared were: (1) PT'(h) (h = 1000), (2)
an arbitrary smooth function, s func, (see Figure 3(iv)), and (3) a

On the other hand, for & = 0, PRF® ranks the tuples by their
probabilities to be the Top-1 answer.

linear function (Figure 3(iii)). We see that L = 40 suffices to bring
the Kendall distance to < 0.1 in all cases. We also observe that
smooth functions (for which the absolute value of the first deriva-
tive of the underlying continuous function is bounded by a small
value) are usually easier to approximate. We only need L = 20 ex-
ponentials to achieve a Kendall distance less than 0.05 for s func.
The Linear function is even easier to approximate. We also tested
a few other continuous functions such as piecewise linear function
and f(z) = 1/z, and found similar behavior. We omit those curves
due to space constraints.

Learning Ranking Functions

Next we consider the issue of learning ranking functions from user
preferences. Lacking real user preference data, we instead assume
that the user ranking function, denoted user-func, is identical to one
of: E-Score, PT(h), U-Rank, Exp-Rank, or PRF (. = 0.95). We
generate a set of user preferences by ranking a random sample of
the dataset using user-func (thus generating five sets of user prefer-
ences). These are then fed to the learning algorithm, and finally we
compare the Kendall distance between the learned ranking and the
true ranking for the entire dataset.

In Figure 6(i), we plot the results for learning a single PRF*
function (i.e., for learning the value of ) using the binary search-
like algorithm presented in Section 5.2. The experiment reveals
that when the underlying ranking is done by PRF®, the value of
a can be learned perfectly. When one of PT'(h) or U-Rank is the
underlying ranking function, the correct value a can be learned with
a fairly small sample size, and increasing the number of samples
does not help in finding a better . On the other hand, Exp-Rank
cannot be learned well by P RF'® unless the sample size approaches
the total size of whole dataset. This phenomenon can be partly
explained using Figure 5(i) in which the curves for PT'(h) and
U-Top have a fairly smooth valley, while the one for Exp-Rank is
very sharp and the region of « values where the distance is low is
extremely small ([1 — 0.9°°,1 — 0.9''°]). Hence, the minimum
point for Exp-Rank is harder to reach. Further, Exp-Rank is quite
sensitive to the size of the dataset, which makes it hard to learn
it using a smaller-sized sample dataset. We also observe that while
extremely large samples are able to learn E-Score well, the behavior
of E-Score is quite unstable when the sample size is smaller.

Note that if we already know the form of the ranking function,
we do not need to learn it in this fashion; we can instead directly
find an approximation for it using our DFT-based algorithm.

In Figure 6 (ii), we show the results of an experiment where we
tried to learn a PRF“ function (using the SVM-lite package [26]).
We keep our sample size < 200 since SVM-lite runs very fast
within such sample size but becomes drastically slow with larger
ones. For example, with 100 samples, it terminates within one sec-
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Figure 7: Experiments comparing the execution times of the ranking algorithms (note that the y-axis is log-scale for (ii) and (iii))

ond while 300 samples may take up to several minutes. First we
observe that PT'(h) and PRF* can be learned very well from a
small size sample (distance < 0.2 in most cases) and increasing
the sample size does not benefit significantly. U-Rank can also be
learned, but the approximation isn’t nearly as good. This is be-
cause U-Rank can not be written as a single PRF“ function. We
observed similar behavior in our experiments with other datasets.
Due to space constraints, we omit a further discussion on learning
a PRF* function; the issues in learning such weighted functions
have been investigated in prior literature, and if the true ranking
function can be written as a PRF"™ function, then the above algo-
rithm is expected to learn it given a reasonable number of samples.

Effect of Correlations

Next we evaluate the behavior of ranking functions over proba-
bilistic datasets modeled using probabilistic and/xor trees. We use
the four synthetic correlated datasets, Syn-XOR, Syn-LOW, Syn-
MED, and Syn-HIGH, for these experiments. For each dataset and
each ranking function considered, we compute the rankings by con-
sidering the correlations, and by ignoring the correlations, and then
compute the Kendall distance between these two (e.g., for PRF',
we compute the rankings using PROB-ANDOR-PRF-RANK and
IND-PRF-RANK algorithms). Figure 6(iii) shows the results for
the P RF“ ranking function for varying «, whereas in Figure 6(iv),
we plot the results for PRF*(ac = 0.9), PT(100), and U-Rank.
As we can see, on highly correlated datasets, ignoring the corre-
lations can result in significantly inaccurate top-k answers. This is
not as pronounced for the Syn-XOR dataset. This is because, in any
group of tuples that are mutually exclusive, there are typically only
a few tuples that may have sufficiently high probabilities to be part
of the top-k answer; the rest of the tuples may be ignored for rank-
ing purposes. Because of this, assuming tuples to be independent
of each other does not result in significant errors. As o approaches
1, PRF° tends to sort the tuples by probabilities, so all four curves
in Figure 6(iii) become close to 0. Ranking by E-Score is invariant
to the correlations, which is a significant drawback of that function.

Execution Times

Figure 7(i) shows the execution times for four ranking functions:
PRF*®, PT(h), U-Rank and Exp-Rank, for the IIP-datasets, for
different dataset sizes and k. We note that the running time for
PRF* is similar to that of PT'(h). As expected, ranking by P RF*®
or Exp-Rank is very efficient (1000000 tuples can be ranked within
1 or 2 seconds). Indeed, after sorting the dataset in an non-decreasing
score order, P RF'“ needs only a single scan of the dataset, and Exp-
Rank needs to scan the dataset twice. Execution times for PT'(h)
and U-Rank-k increase linearly with & and k respectively and the
algorithms become very slow for high ~ and k. The running times
of both PRF* and Exp-Rank are not significantly affected by k.

Figure 7(ii) compares the execution time for P7T'(h) and its ap-
proximation using a linear combination of PRF* functions (see
Figure 5(iii)), for two different values of k. w50 indicates that
50 exponentials were used in the approximation (note that the ap-
proximate ranking, based on PRF, is insensitive to the value of
k). As we can see, for large datasets and for higher values of k,
exact computation takes several orders of magnitude more time to
compute than the approximation. For example, the exact algorithm
takes nearly 1 hour for n = 500,000 and h = 10,000 while the
approximate answer obtained using L = 50 PRF'® functions takes
only 24 seconds and achieves a Kendall distance 0.09.

For correlated datasets, the effect is even more pronounced. In
Figure 7(iii), we plot the results of a similar experiment, but using
two correlated datasets: Syn-XOR and Syn-HIGH. Note that the
number of tuples in these datasets is smaller by a factor of 10. As
we can see, our generating functions-based algorithms for comput-
ing PRF* are highly efficient, even for datasets with high degrees
of correlation. As above, approximation of the PT'(h) ranking
function using a linear combination of PRF® functions is signifi-
cantly cheaper to compute than using the exact algorithm.

Combined with the previous results illustrating that a linear com-
bination of PRF'® functions can approximate other ranking func-
tions very well, this validates the unified ranking approach that we
propose in this paper.



8. CONCLUSIONS

In this paper we presented a unified framework for ranking over
probabilistic databases, and presented several novel and highly effi-
cient algorithms for answering top-k queries. Considering the com-
plex interplay between probabilities and scores, instead of propos-
ing a specific ranking function, we propose using two parameter-
ized ranking functions, called PRF“ and PRF°, which allow the
user to control the tuples that appear in the top-k answers. We
developed novel algorithms for evaluating these ranking functions
over large, possibly correlated, probabilistic datasets. We also de-
veloped an approach for approximating a ranking function using
a linear combination of P RF functions thus enabling highly effi-
cient, albeit approximate computation, and also for learning a rank-
ing function from user preferences. Our work opens up many av-
enues for further research that we are planning to pursue. For in-
stance, there may be other non-trivial subclasses of PRF functions,
aside from PRF®, that can be computed very efficiently. Under-
standing the behavior of various ranking functions and their rela-
tionships across probabilistic databases with diverse uncertainties
and correlation structures also remains an important open problem
in this area.
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