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ABSTRACT
User generated content has been fueling an explosion in the amount
of available textual data. In this context, it is also commonfor
users to express, either explicitly (through numerical ratings) or
implicitly, their views and opinions on products, events, etc. This
wealth of textual information necessitates the development of novel
searching and data exploration paradigms.

In this paper we propose a new searching model, similar in spirit
to faceted search, that enables the progressive refinement of a keyword-
query result. However, in contrast to faceted search which utilizes
domain-specific and hard-to-extract document attributes,the refine-
ment process is driven by suggesting interestingexpansionsof the
original query with additional search terms. Ourquery-driven and
domain-neutralapproach employs surprising word co-occurrence
patterns and (optionally) numerical user ratings in order to identify
meaningful top-k query expansions and allow one to focus on a
particularly interesting subset of the original result set.

The proposed functionality is supported by a framework thatis
computationally efficient and nimble in terms of storage require-
ments. Our solution is grounded on Convex Optimization princi-
ples that allow us to exploit the pruning opportunities offered by
the natural top-k formulation of our problem. The performance
benefits offered by our solution are verified using both synthetic
data and large real data sets comprised of blog posts.

1. INTRODUCTION
The amount of available textual data has been growing at a stag-

gering pace. Besides the adoption of digital text (at the expense
of paper) as the primary means of exchanging and storing unstruc-
tured information, this phenomenon has also been fueled by the
transformation of the Web into an interactive medium. Web users
have transcended their role as simple consumers of information and
now actively participate in the generation of online content. Blogs,
micro-blogging services, wikis and social networks are just exam-
ples of an online revolution taking place in social media.

In this context, it is also common for users to express, either ex-
plicitly or implicitly, their views and opinions on products, events,
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etc. For example, online forums such as customer feedback por-
tals offer unique opportunities for individuals to engage with sell-
ers or other customers and provide their comments and experiences.
These interactions are typically summarized by the assignment of
a numerical or “star” rating to a product or the quality of a service.
Numerous such applications exist, like Amazon’s customer feed-
back and Epinions. Any major online retailer engages one wayor
another to consumer-generated feedback.

But even if ratings are not explicitly provided, sentiment anal-
ysis tools [15] can identify with a high degree of confidence the
governing sentiment (negative, neutral or positive) expressed in a
piece of text, which in turn can be translated into a numerical rating.
This capability enables the extraction of ratings from lessformal re-
views, typically encountered in blogs. Extending this observation,
such tools can be employed to identify the dominant sentiment not
only towards products but also events and news stories. Virtually
any text document can be associated with a rating signifyingthe
author’s attitude towards some event.

This trend is reminiscent of the explosion in the availability of
structured data that was witnessed during the 1990s and led to the
introduction of OLAP tools [7]. Similarly, given the vast text repos-
itories being accumulated, there is a pressing need for techniques
to efficiently and effectively navigate them.

Faceted search[3] is one example of a successful technique for
effective textual data navigation. In this searching paradigm, each
document is associated with a set of well-defined categorical at-
tributes (meta-data) referred to asfacets. The meta-data domains
are usually organized in a hierarchy, much like thedimensionat-
tributes of an OLAP application. Then, the result of a vanilla key-
word query is refined by “drilling-down” the facet hierarchies. This
interactive process effectively places and gradually tightens con-
straints on the meta-data, allowing one to identify and focus on a
fraction of the documents that satisfy a keyword query. Thisslice
of the original result set possesses properties that are considered
interesting, expressed as constraints on the document meta-data.

One major drawback of the faceted search model is its reliance
on domain-specific and hard-to-extract document attributes to fa-
cilitate data navigation. This limitation renders the approach in-
applicable to document domains that exhibit high variance in their
content, like blog posts or review collections of arbitraryitems. In-
stead, we would like to suggest ways to refine the original search
result in aquery-driven, domain-neutralmanner that is indifferent
to the presence of document meta-data, other perhaps than the om-
nipresent user ratings.

To realize things concrete, consider a search for “Canon SD700”
on a popular consumer electronics site. We would like to be able
to identify on the fly product features, e.g., “lens” or “SLR capabil-
ity”, which are discussed in the reviews. This capability would be



extremely helpful, especially for less prominent productswith more
obscure features, and would enable the refinement of the original
query result to reviews that discuss a certain feature of interest.

In addition, we are interested in incorporating user feedback in
the refinement process. Besides simply identifying productfea-
tures, we would like to locate the ones, e.g., the camera’s “lens” in
our example, which are mentioned in reviews for which users have
providedhigh on average ratings. Similarly, we should be able to
automatically locate other features, for instance the camera’s “SLR
capability”, which are discussed in reviews withlow on average
ratings. Finally, another helpful possibility is identifying features
mentioned in reviews withconsistent, unanimous ratings, indepen-
dently of whether they are actually good, bad or neutral.

Such functionality is quite powerful; it provides goal-oriented
navigation of the reviews, as we can interactively identifythe prod-
uct features (keywords) mentioned by satisfied consumers (high
ratings), dissatisfied consumers (low ratings) or consumers that have
reached a consensus (consistent ratings) and use them to refine the
initial query result and drill down to examine the relevant reviews.

In this spirit, we propose a new data analysis and exploration
model that enables the progressive refinement of a keyword-query
result set. However, in contrast to faceted search which utilizes
domain-specific and hard-to-extract document attributes,the re-
finement process is driven by suggesting interestingexpansionsof
the original query with additional search terms extracted from the
text collection. We refer to this iterative exploratory process as
Measure-driven Query Expansion. More specifically,

• We introduce three principled scoring functions to quantita-
tively evaluate in a meaningful manner the interestingnessof
a candidate query expansion. Our first scoring function uti-
lizes surprising word co-occurrence patterns to single outin-
teresting expansions (e.g., expansions corresponding to prod-
uct features discussed in reviews). Our second and third
functions incorporate the available user ratings in order to
identify expansions that define clusters of documents with
either extreme ratings (e.g., product attributes mentioned in
highly positive or negative on average reviews) or consistent
ratings (e.g., features present in unanimous reviews).

• The query expansion functionality is supported by a unified,
computationally efficient framework for identifying thek most
interesting query expansions. Our solution is grounded on
Convex Optimization principles that allow us to exploit the
pruning opportunities offered by the natural top-k formula-
tion of our problem.

• We verify the performance benefits of the solution using both
synthetic data and large real data sets comprised of blog posts.

The remainder of the paper is organized as follows: In Section
2 we survey related work. Section 3 formally introduces the query
expansion problem, while Section 4 describes our baseline imple-
mentation. Section 5 introduces our improved solution, whose su-
periority is experimentally verified in Section 6. Lastly, Section 7
offers our conclusions.

2. RELATED WORK
The availability of raw data on a massive scale requires the devel-

opment of novel techniques for supporting interactive exploratory
tasks. This necessity became evident with the proliferation of struc-
tured data and led to the development of OLAP tools [7].

An approach that resembles the OLAP cube, but for unstruc-
tured textual data, is thefaceted searchmodel [3] which extends
the plain keyword search model. The documents are associated

with orthogonal attributes with hierarchical domains, referred to as
facets. These hierarchies are navigated in order to refine the result
of a keyword query and focus on a subset that satisfies constraints
on the attribute values. The facet domains and their hierarchical
organization can be either set manually by an expert or automati-
cally extracted from the document collection on indexing time [9].
These document attributes tend to be highly domain-specific. This
is reasonable as very generic attributes would not offer significant
opportunities for identifying interesting refinements. Onthe down-
side, the need for domain-specific attributes reduces the utility of
faceted search in more general document domains.

Recent work [19] on improving faceted search proposed the use
of “dynamic” facets extracted from the content of the documents:
a result set can be further refined using frequent phrases appearing
in the documents comprising the result. This approach is similar
in spirit to the query expansion functionality that we propose, as it
does not rely (exclusively) on the document meta-data to drive the
refinement process. Nevertheless, the proposed query expansion
technique suggests refinements in a manner that is more princi-
pled and elaborate (we suggest refinements byoptimizingthree di-
verse measures of interestingness, two of which utilize omnipresent
user ratings) and scalable (we utilize pairs of tokens foundin doc-
uments; [19] stores and manipulates phrases of length up to 5).

Most major search engines provide query expansion functional-
ity in the form of query auto-completion. However, the suggested
expansions are ranked in aquery-independentand data-agnostic
manner, such as based on their popularity in query logs [2].

Two of the scoring functions that we propose to drive the query
expansion process rely on the presence of explicit or derived (through
sentiment analysis [15]) numerical ratings. The Live.com search
engine performs sentiment analysis on product reviews and identi-
fies the reviewer’s sentiment towards certain,predefinedproduct
features (e.g., ease of use, battery life) and cites the number of
positive comments for each feature. However, our use of userrat-
ings/sentiment is both more general and more elaborate, integrating
sentiment into general query processing.

The computational framework that we developed in order to sup-
port the query expansion functionality leverages two powerful math-
ematical techniques: the Ellipsoid Method and Maximum Entropy
reconstruction of a probability distribution.

The Ellipsoid Method is widely known in the context of Linear
Programming that deals with the optimization of linear functions in
the presence of linear constraints. Nevertheless, it is a more generic
technique that can be used to solve Convex Optimization problems
[5]. [4] surveys the history, operation and applications ofthe tech-
nique. The Principle of Maximum Entropy [8] is widely applied
for fully reconstructing a probability distribution when only partial
information about it is observed. The principle maintains that since
we have no plausible reason to bias the distribution towardsa cer-
tain form, the reconstructed distribution should be as uniform and
“uninformative” as possible, subject to the observed constraints.
The technique has been successfully applied for purposes similar
to our own before [14, 16, 12, 13].

3. MEASURE-DRIVEN QUERY EXPANSION
Consider a collection of documents denoted byD and a set of

wordsW that can appear in the documents of our collection. The
composition ofW depends on the application context and will not
affect our subsequent discussion. As an example, it can simply be
the full set or a subset of the words comprising the documents, the
contents of a dictionary, or a well-specified set of words relevant to
the application.

DEFINITION 1. A word-setF is a set ofr distinct words from



W, i.e.,F ∈ Powerset(W) and |F | = r.

DEFINITION 2. A collection of word-setsFr(w1, . . . , wl), l <
r is comprised of all word-setsF with F ∈ Powerset(W) and
|F | = r andw1, . . . , wl ∈ F .

Thus, a word-set is a set of distinct words fromW, while col-
lectionFr(w1, . . . , wl) consists of all word-sets of sizer, subject
to the constraint that they must always contain wordsw1, . . . , wl.
The following example clarifies the definitions and illustrates how
they relate to our goal of suggesting interesting query expansions.

EXAMPLE 1. Let D be a set of documents andW the set of
words appearing inD, after the removal of common and stop words.
A query that retrieves all the documents inD containing wordw1 is
issued. Let us denote the result of this query asDw1 . At this point,
we suggest a small numberk of potential expansions of the origi-
nal query by two additional keywords (the size of the expansion is a
parameter). The candidate expansions are the word-sets belonging
toF3(w1) (sets containing 3 words, one of which is definitelyw1).
Therefore, our goal is to suggestk expanded queries(word-sets)
fromF3(w1) that can be used to refine the initial search result in a
manner that is interesting and meaningful.

As the above example illustrates, at each step the functionality
of suggesting ways toexpandthe keyword queryQ = w1, . . . , wl

and refine the current set of results in an interesting manner can
be formulated as the selection ofk word-sets from a collection
Fr(w1, . . . , wl).

MEASURE-DRIVEN QUERY EXPANSION: Consider a document
collectionD and a keyword queryQ = w1, . . . , wl onD. LetDQ

be the set of documents inD that satisfy the query.Q can either
be the first query submitted to the system, or a refined query that
was already proposed. Then, the problem ofquery expansionis to
suggestk word-sets of sizer from Fr(w1, . . . , wl) that extendQ
and can be used to focus on a particularly interesting subsetofDQ.

Notice that the ability to perform this operation implies the use
of conjunctive query semantics, i.e., a document needs to contain
all search terms in order to be considered a valid result.

So far in our discussion we have purposefully avoided mention-
ing what would constitute a query expansion that yields an “inter-
esting” refinement of the initial result. In order to be able to single
outk expansions to a keyword query, we need to define quantitative
measures of interestingness. In what follows, we offer examples of
interesting and meaningful query refinements that we subsequently
formalize into concrete problems that need to be addressed.

3.1 Defining interesting expansions
EXAMPLE 2. Consider a search for “digital camera” on a col-

lection of product reviews. In the documents that contain these
query terms and comprise the result set, we expect to encounter
terms such as “zoom”, “lens” or “SLR” frequently. The reason
is that these terms are highly relevant to digital cameras and are
therefore used in the corresponding reviews. Thus, the probability
of encountering such terms in the result set is much higher than that
of encountering them in general text, unrelated to digital cameras.

We formalize this intuition with the notion ofsurprise [18, 6,
10]. Let p(wi) be the probability of wordwi appearing in a doc-
ument of the collection andp(w1, . . . , wr) be the probability of
wordsw1, . . . , wr co-occurringin a document1. If wordsw1, . . . , wr

1If considered appropriate, more restrictive notions of co-occurrence can also be used,
e.g., the words appearing within the same paragraph in a document.

were unrelated and were used in documentsindependentlyof one
another, we would expect thatp(w1, . . . , wr) = p(w1) · · · p(wr).
Therefore, we use a simple measure to quantify by how much the
observed word co-occurrences deviate from the independence as-
sumption. For a word-setF = w1, . . . , wr, we define

Surprise(F ) =
p(w1, . . . , wr)

p(w1) · · · p(wr)

We argue that when considering a number of possible query
expansionsFr(w1, . . . , wl), word-sets with high surprise values
constitute ideal suggestions: we identify coherent clusters of docu-
ments within the original result set that are connected by a common
underlying theme, as defined by the co-occurring words.

The use of surprise (unexpectedness) as a measure of interest-
ingness has also been vindicated in the data mining literature [18,
6, 10]. Additionally, the definition of surprise that we consider is
simple yet intuitive and has been successfully employed [6,10].

EXAMPLE 3. Consider a collection comprised of 250k docu-
ments and query “table, tennis”. Suppose that there exist 5kdoc-
uments containing “table”, 2k documents containing “tennis” and
1k documents containing both words “table, tennis”. We easily
compute thatSurprise(table,tennis)=25.

Let us compare the surprise value of two possible expansions:
with term “car” (10k occurrences) and term “paddle” (1k occur-
rences). Suppose (reasonably) that “car” is not particularly re-
lated to “table, tennis” and therefore co-occurs independently with
these words. Then, there exist 40 documents in the collection that
contain all three words “table, tennis, car” (Figure 1). We compute
that Surprise(table,tennis,car)=25. While this expansion has a sur-
prise value greater than 1, this is due to the correlation between
“table” and “tennis”.

Now, consider the expansion with “paddle” and assume that
500 of the 1000 documents containing “table, tennis” also con-
tain “paddle” (“table, tennis, paddle”). We compute thatSur-
prise(table,tennis,paddle)=3125. As this example illustrates, en-
hancing queries with highly relevant terms results in expansions
with considerably higher surprise values than enhancing them with
irrelevant ones.

surprise(table,tennis)=25

table
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Figure 1: Query expansion based on the Surprise measure.

The maximum-likelihood estimates of the probabilities required
to compute the surprise value of a word-set are derived from the
textual data of the document collectionD under consideration. We
usec(F ) = c(w1, . . . , wr) to denote the number of documents in
a collectionD that contain allr words ofF . In the same spirit,
we denote byc(wi) the number of documents that contain wordwi

andc(•) the total number of documents in the collection. Then, we
can estimatep(w1, . . . , wr) = c(w1, . . . , wr)/c(•) andp(wi) =
c(wi)/c(•). Using these estimates, we can write

Surprise(F ) =
c(F )/c(•)

c(w1)/c(•) · · · c(wr)/c(•)
(1)

Therefore, one of the problems we need to address in order to
suggest meaningful query expansions is,



PROBLEM 1. Consider a collectionD of documents and a word-
setQ = w1, . . . , wl. We wish to determine thek word-setsF ∈
Fr(w1, . . . , wl) with the maximum value of Surprise(F ).

Our first function does not assume the presence of meta-data in
addition to the textual content of the documents. As a matterof
fact, the query refinement solution based on the notion of surprise
can be applied to any document corpus. Nevertheless, for ourtwo
subsequent formulations of interestingness, we make the assump-
tion that every document is associated with a numerical “rating”
from a small domain of valuess1, . . . , sb. As we discussed in Sec-
tion 1, this could be the user-supplied rating to the productbeing
reviewed in the document, or even a measure of how positive or
negative is the sentiment expressed in the document [15].

The presence of numerical ratings associated with the documents
points to two natural and meaningful ways of suggesting query ex-
pansions. Notice that every possible expansionF ∈ Fr(w1, . . . , wl)
of the initial query is associated with a subset of our document col-
lection denoted asDF . Then, themean ratingand thevariance
of the ratingsof the documents inDF can be used to quantify the
interestingness of the query expansion considered.

EXAMPLE 4. Assume that our document collection is comprised
of electronic gadget reviews, associated with the “star” rating that
the reviewer assigned to the device. Then, if the original query is
“Canon SD700”, we can strengthen it with additional terms related
to product features, so that the expanded query leads to a cluster of
reviews with high on average “star” ratings, e.g., “Canon SD700
lens zoom”. Such expansions would be highly interesting andaid
users to quickly identify the product attributes for which other con-
sumers are satisfied. Another alternative is to offer suggestions
that would lead to groups of reviews with consistent ratings(low
variance), thus facilitating the location of features for which a con-
sensus on their quality has emerged.

More formally, for a word setF = w1, . . . , wr, let DF be
the documents inD that contain all words inF . Furthermore, let
c(F |si) be the number of documents inDF that are rated withsi.
Then, the average rating of the documents inDF is

Average Rating:Avg(F ) =
b

∑

i=1

sic(F |si)/
b

∑

i=1

c(F |si) (2)

The variance of the ratings inDF is equal to

Var. of Ratings:V ar(F ) =

b
∑

i=1

s
2
i c(F |si)/

b
∑

i=1

c(F |si) − Avg(F )
2 (3)

Having demonstrated how to compute the mean value and the
variance of the ratings associated with the result of a queryexpan-
sion, we can formally state the two additional problems thatwe
need to address.

PROBLEM 2. Consider a collectionD of documents rated with
numerical valuess1, . . . , sb, and a word-setQ = w1, . . . , wl. We
wish to determine thek word-setsF ∈ Fr(w1, . . . , wl) with either
theminimumor themaximumvalue ofAvg(F ).

PROBLEM 3. Consider a collectionD of documents rated with
numerical valuess1, . . . , sb, and a word-setQ = w1, . . . , wl. We
wish to determine thek word-setsF ∈ Fr(w1, . . . , wl) with the
minimumvalue ofV ar(F ).

Hence, the problem of suggesting a few meaningful and inter-
esting query expansions is formulated as three separate top-k prob-
lems (Problems 1, 2 and 3). Addressing Problem 1 produces thek
word-sets/expansions with the highest surprise values (e.g., prod-
uct features related to the query), Problem 2 expansions leading to

documents with extreme ratings (e.g., features mentioned in highly
positive on average reviews) and Problem 3 expansions leading
to documents with consistent ratings (e.g., features mentioned in
unanimous reviews).

Notice also that Problems 1,2 and 3 specify two input parameters
in addition to the queryQ to be expanded: the length of the expan-
sion r and the number of required expansionsk. The techniques
that we subsequently develop can handle arbitrary values ofthose
parameters. Appropriate values forr andk depend on the applica-
tion. However, in practice the number of suggested expansions will
normally be a fixed small constant (e.g.k = 10, see examples in
[3]). Likewise, a query will be expanded by 1 or 2 additional terms,
i.e.,r = l + 1 or r = l + 2, wherel is the length of queryQ.

4. IMPLEMENTING QUERY EXPANSION
Let us concentrate on Problem 1 that involves identifying the k

word-setsF ∈ Fr(w1, . . . , wl) that maximize expression (1). The
problem can be solved by computing the surprise value of every
candidate word-set and identifying the top-k ones. We argue that
the main challenge in solving the problem in that manner is calcu-
lating the surprise value of a candidate word-set.

The difficulty arises from our need to determine the value of
c(F ), i.e., the number of documents that contain all words inF .
Of course, expression (1) requires the number of occurrences in
the corpus for single words, as well as the size of the corpus,i.e.,
countsc(wi) andc(•) respectively. However, for all practical pur-
poses, these counts can be easily computed and manipulated.In
order to compute a word-set’s surprise value we need to focusour
attention on determining the value ofc(F ). This observation is
also valid for Problems 2 and 3: in this case the challenge is to
determine countsc(F |si), i.e., the number of word co-occurrences
conditioned on the numerical rating of the documents, whichis a
problem equally hard to determiningc(F ).

In what follows, we argue that the naive approaches offully
materializingand retrieving on-demand (Section 4.1) all possible
word co-occurrencesc(F ) is infeasible for large document collec-
tions, while performingno materialization(Section 4.2) at all is
extremely inefficient. Instead, we propose an alternative approach
that is based onestimatingco-occurrencesc(F ) by utilizing ma-
terialized, lower-order co-occurrences of the words comprising F
(Section 4.3).

4.1 Full Materialization
Suppose that we allow query expansions up to sizer = 5. Then,

the full materialization approach would need to generate, store and
manipulate all two, three, four and five-way word co-occurrences.
However, this is infeasible even for moderately large collections.

Let us demonstrate this using a simple example and concentrate
on the computation part for the occurrences of word-sets of size
four. The pre-computation of these occurrences would involve pro-
cessing the collection one document at a time, generating all four-
word combinations present in the document and temporarily stor-
ing them. Then, that data would need to be aggregated and stored.
If on average a document contains 200 distinct words, each doc-
ument would generate 65 million four-word tuples. If the corpus
contains 10 million documents, we would need to generate andag-
gregate 650 billion tuples. As this trivial exercise demonstrates, the
combinatorial explosion in the amount of generated data renders
the explicit handling of high-order co-occurrences impossible.

4.2 No Materialization
While materializing all high-order word co-occurrences isim-

possible for large document collections, materializing noinforma-



tion at all would be extremely inefficient. As an example, con-
sider a two-word query that we wish to expand with two addi-
tional words. Since we have no knowledge of four-way word co-
occurrences, in order to evaluate the candidate expansionswe would
need to compute them on the fly. That would involve performing
random I/O in order to retrieve all documents that satisfy the orig-
inal query and process them in order to compute all two-way word
co-occurrences in the documents (since two words out of the re-
quired four are fixed). It is evident that the I/O and CPU cost of
this operation is prohibitively high. It would only make sense if the
original result was comprised of a handful of documents, butin that
case, the refinement of such a result wouldn’t be necessary.

4.3 Partial Materialization
The proposed implementation of the query expansion functional-

ity lies in-between the two aforementioned extremes, offering a so-
lution that is both feasible (unlike full materialization)and efficient
(unlike no materialization at all). To accomplish this, we propose
the materialization of low-order word co-occurrences and their use
in the subsequentestimationof higher-order word co-occurrences.
This process involves the computation and storage of the occur-
rences of word-sets up to sizel, for a reasonable value ofl, and their
use in the estimation of the occurrences of arbitrary size word-sets.

Based on this high-level idea, algorithm DIRECT (Algorithm 1)
presents a unified framework for addressing problems 1, 2 and3.
Given a queryQ, we need to suggestk expansions of sizer that
maximize either one of the three scoring functions. In orderto do
so, we iterate over all candidate word-setsF ∈ Fr(Q). For every
candidate word-setF , we use the low-order co-occurrences (up to
sizel) of the words comprisingF andestimatethe number of doc-
umentsc(F ) that contain all the words inF . For scoring functions
(2) and (3) that require the co-occurrence values conditioned on
the document rating, we derive a separate estimate for everyrating
value. Finally, the estimated high order co-occurrences are used
to evaluate the interestingness of the candidate expansionand its
value is compared against the current list of top-k expansions.

Algorithm 1 DIRECT
Input : QueryQ, expansion sizer, result sizek

TopK = ∅
Iterator.init(Q, r)

while Iterator.hasMore() do
〈F, CountsF 〉 = Iterator.getNext()

for i = 1 to b do
c(F |si) = Estimate(〈CountsF 〉)

Score(F ) = Compute(c(F |s1), . . . , c(F |sb))

if Score(F ) > TopK.thresholdthen
Topk.update(F )

return TopK

A natural question that arises at this point is why, unlike many
other top-k query evaluation problems, we need to examine ev-
ery candidate word-set inFr(Q). Indeed, there exists a wealth of
techniques that support the early termination of the top-k compu-
tation, before examining the entire space of candidates [11] and
without sacrificing correctness. However, these algorithms require
the scoring function to be monotone. It has been establishedthat
the co-occurrence estimation process does not exhibit monotonic-
ity properties that can be exploited. Discussion related tothe non-
monotonicity of measures like the one adopted herein is available
elsewhere [10, 6].

In order to realize algorithm DIRECT, we need to address in an
efficient manner two challenges: (a) the progressive generation of
candidate expansions and the retrieval of the corresponding low-

order word co-occurrences and (b) their use in the estimation of the
desired high-order co-occurrences.

4.3.1 Generation of candidate word-sets
The solution suggested pre-computes and manipulates the oc-

currences of word-sets up to sizel. For most applications, the use
of two-word co-occurrencespresents the most reasonable alterna-
tive. Co-occurrences of higher order can be utilized at the expense
of space and, most importantly, time. For the scale of the appli-
cations we envision, materializing co-occurrences of length higher
than two is probably infeasible.

Two-word co-occurrences can be computed and stored efficiently
as described in [1]. This involves the computation of a sorted list
consisting of triplets(wi, wj , 〈c(wi, wj)〉s). Every such triplet
contains the number of co-occurrences〈c(wi, wj)〉s of wordswi

andwj for all document ratingss . A special tuple(wi, wi, 〈c(wi, wi)〉s)
stores the occurrences of wordwi. If two words inW do not co-
occur we simply don’t store the corresponding tuple.

Then, one can use the tuples in the list of two-word co-occurrences
and “chain” together pairs of words in order to progressively gen-
erate all word-sets of a collectionFr(Q), while at the same time
retrieving the corresponding one-word and two-word counts. With
some careful indexing and engineering this can be achieved without
generating a candidate word-set more than once and with a mini-
mum amount of I/O. Thus, we can efficiently implement the iter-
ator utilized by algorithm DIRECT, which progressively retrieves
word-set candidates and their low-order word co-occurrences.

Although we suggest the use of two-word co-occurrences and
base the remainder of our presentation on this assumption, all of
our techniques can be easily adapted to handle the use of higher-
than-two word co-occurrences.

4.3.2 Estimation of Word Co-occurrences
Having established a methodology for efficiently generating the

candidate word-sets and retrieving the corresponding single-word
and two-word counts (c(wi), c(wi, wj)), we need to focus on how
to utilize them in order toestimatehigher-order co-occurrences
c(w1, . . . , wr). The estimation approach that we use is based on
the widely accepted Principle of Maximum Entropy [8] and has
been successfully employed before [14, 16, 12, 13].

A basic observation is that a given word-setF = w1, . . . , wr

defines a probabilistic experiment and consequently a probability
distribution over the possible outcomes of the experiment:Given
a documentD ∈ D, we identify which of the wordswi of F are
contained inD. We associate with each wordwi a binary random
variableWi, such thatWi = 1 if wi ∈ D andWi = 0 otherwise.
Therefore, the experiment hasn = 2r possible outcomes that are
described by the joint probability distributionp(W1, . . . , Wr).

If we had knowledge of that joint probability distribution we
could easily estimate the number of co-occurrencesc(w1, . . . , wr)
using its expected value:c(w1, . . . , wr) = p(1, . . . , 1)c(•), where
c(•) is the number of documents inD. But although we do not
know the distribution, we are not completely ignorant either: the
pairwise co-occurrences and single-word occurrences at our dis-
posal provide us with some knowledge aboutp(W1, . . . , Wr).

EXAMPLE 5. In order to ease notation, let us concentrate on a
word-setF = a, b, c of sizer = 3 that defines an experiment with
n = 8 possible outcomes and is described by the joint distribution
p(A,B, C). Our fractional knowledge about this distribution is
in the form of simple linear constraints that we can derive from
the pre-computed co-occurrences. For example, we can estimate
that p(A = 1, B = 1) = c(a, b)/c(•). But p(A = 1, B =
1) = p(1, 1, 0) + p(1, 1, 1). In the same mannerp(A = 1) =



c(a)/c(•) = p(1, 0, 0) + p(1, 0, 1) + p(1, 1, 0) + p(1, 1, 1).

Let us introduce some notation that will allow us to describe
succinctly our knowledge about the joint distributionp. Each of
the n = 2r possible outcomes of the experiment described byp
is associated with a probability value. Recall that each outcome
is described by a tuple(W1, . . . , Wr), where variableWi is ei-
ther 0 or 1, signifying the existence or not of wordwi in the doc-
ument. Then, letp1 be the probability of outcome(0, . . . , 0, 0),
p2 of outcome(0, . . . , 0, 1), p3 of (0, . . . , 1, 0) and so on and so
forth so thatpn is the probability of outcome(1, . . . , 1). Therefore,
the discrete probability distribution can be described by avector
p = (p1, . . . , pn)T . Elementpn is used to provide the high-order
co-occurrence asc(w1, . . . , wr) = pnc(•).

As we discussed in Example 5, each two-word co-occurrence
countci provides us with some knowledge about the distribution in
the form of a linear constraintaT

i p = ci. ai is a vector with ele-
ments that are either 1 or 0, depending on thepi’s that participate in
the constraint. This is also true for the single word occurrences, as
well as the fact that the probabilities must sum up to 1. In total, we
have at our disposalm = 1+r+r(r−1)/2 independentlinear con-
straints:r(r − 1)/2 from the two-word co-occurrences,r from the
single-word occurrences and 1 from the fact that probabilities must
sum up to 1. Therefore, our knowledge of the probability distribu-
tion can be represented concisely in matrix form asAm×np = c,
p ≥ 0, where each row ofA and the corresponding element ofc

correspond to a different constraint.

EXAMPLE 6. LetF = a, b, c be a word-set. Thenr = 3, n =
8 andm = 7. We can describe our knowledge of the distribution
p ≥ 0 defined byF in matrix formAp = c, i.e.,









0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1
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c(a, b)/c(•)
c(a, c)/c(•)
c(b, c)/c(•)
c(a)/c(•)
c(b)/c(•)
c(c)/c(•)
c(•)/c(•)









The constraints can also be viewed as a system of linear equa-
tions. However, the systemAp = c is under-defined, as there are
less equations (constraints) than variables (pi’s). Therefore, this in-
formation by itself does not suffice to uniquely determine the joint
probability distributionp. It is important to note that we could
inject additional constraints by utilizing information like the num-
ber of documents inD that contain wordwi, but not wordwj .
The number of such documents is simplyc(wi, w̄j) = c(wi) −
c(wi, wj). However, all such additional constraints can be derived
by the original constraints defined byA andc, therefore no supple-
mentary knowledge can be gained in that manner.

When only partial information about a distribution is observed
(such as in our case) the well-known information-theoreticPrinci-
ple of Maximum Entropy[8] is widely applied in order to fully re-
cover it [14, 16, 12, 13]. The principle maintains that sincewe have
no plausible reason to bias the distribution towards a certain form,
the reconstructed distribution should be as symmetric and “unin-
formative”, i.e., as close to uniform(1/n, . . . , 1/n) as possible,
subject to the observed constraints. In that manner, no additional
information other than the observed constraints is injected.

More formally, the information entropy of discrete distribution
p is defined asH(p) = −∑n

i=1 pi log pi. Theuniquedistribu-
tion p∗ that maximizesH(p) subject toAp = c andp ≥ 0 is
themaximum entropy distributionand satisfies the aforementioned
desirable properties. Having computed the maximum entropydis-
tribution p∗, we estimate the desired high-order co-occurrence as
c(w1, . . . , wr) = p∗

nc(•).

EXAMPLE 7. Let us revisit Example 3 (Section 3.1) where we
compare the surprise value of two possible expansions for query
“table, tennis”: with irrelevant term “car” and highly relevant
term “paddle”. Using the two-way word co-occurrences depicted
in Figure 1 (Section 3.1) and the Maximum Entropy Principle,we
estimate that there exist 40 documents containing all threeterms
“table, tennis, car” (true value is 40) and 462 containing “table,
tennis, paddle” (true value is 500). While the reconstruction pro-
cess does not perfectly recover the original distribution,its accu-
racy is compatible with our goal of computing top-k expansions:
we estimate thatSurprise(table,tennis,car)=25 (true value is 25),
Surprise(table,tennis,paddle)=2888 (true value is 3125), i.e., we
are able to distinguish beyond doubt between interesting and non-
interesting candidate expansions.

Entropy maximization is aconvex optimizationproblem [5]. Al-
though there exists a variety of optimization techniques for address-
ing convex problems, the special structure of the entropy-maximization
task, its importance and the frequency with which it is encountered
in practice, has to led to the development of a specialized optimiza-
tion technique known asIterative Proportional Fitting(IPF) [8].
The IPF algorithm is an extremely simple iterative technique that
does not rely on the heavyweight machinery typically employed by
the generic convex optimization techniques and exhibits many de-
sirable properties. In what follows, we offer a brief description of
the algorithm and highlight some of its properties. More details are
available elsewhere [8].

Initially, vectorp is populated with arbitrary values. The choice
of the starting point does not directly affect the speed of the al-
gorithm, while the starting values do not even need to satisfy the
constraintsAp = c. Then, the algorithm iterates over the linear
equality constraints (the rows of matrixA) and scales by an equal
amount the variables ofp participating in the constraint, so that the
constraint is satisfied. This simple process, converges monotoni-
cally to the maximum entropy distribution.

A last point to note is that, due to the form of the entropy function
H(p), if we scale the right hand side of the problem constraints by
a scalara > 0, i.e.,Ap = ac, then the optimal solution will also
be scaled bya, i.e., the optimal solution will beap∗. Therefore, we
can scale the right hand side of the constraints byc(•) so that we di-
rectly use the low-order occurrence counts in the solution of prob-
lem (Example 6) and get the expected number of co-occurrences
c(w1, . . . , wr) = p∗

nc(•) directly from the value ofp∗

n. The IPF
procedure is also unaffected by this scaling.

5. WORKING WITH BOUNDS
The query expansion framework implemented by algorithm DI-

RECT (Algorithm 1) incrementally generates all candidate query
expansions and for each candidateF it solves an entropy maxi-
mization problem to estimate the co-occurrence countc(F ) from
lower-order co-occurrences. Hence, the bulk of the computational
overhead can be attributed to the maximum-entropy-based estima-
tion step. In this section, we focus our attention on reducing this
overhead. Let us begin by making two important observationsthat
will guide us towards an improved solution.

• First, the IPF procedure, or any other optimization algorithm
for that matter, “over-solves” the co-occurrence estimation
problem, in the sense that it completely determines the max-
imum entropy distributionp∗, relevant to the candidate ex-
pansion under consideration. However, recall that we only
utilize a single element ofp∗, namelyp∗

n, which provides
the required co-occurrence estimate (Section 4.3.2). The re-



mainingn − 1 values of the optimal solution vectorp∗ are
of no value to our application.

• Second, besides requiring a single element from the maxi-
mum entropy distributionp∗, we do not always require its
exact value: in most cases a bound aroundp∗

n would work
equally well. Remember that we only need to determine the
top-k most interesting query expansions. Therefore, a bound
on the estimated co-occurrence count,which translates into
a bound on the score of the expansion considered, might be
sufficient forpruning the candidate: if the upper bound on
the score of the candidate is less than the scores of the top-k
expansions that we have computed so far, we do not need to
evaluate its exact score as it can never make it to the top-k.

Hence, we require much less than what the IPF technique, or any
other optimization algorithm provides: we only need boundson the
value ofp∗

n (high-order co-occurrence) instead of the exact solution
p∗ of the entropy maximization problem.

In order to exploit this opportunity we develop ELLI MAX , a
novel iterative optimization technique. ELLI MAX is capable of
computing the exact value ofp∗

n, but does so by derivingprogres-
sively tighter boundsaround it. As we elaborate in Section 5.1,
each iteration of the ELLI MAX technique results in a tighter bound
aroundp∗

n. This is a property that neither IPF, nor any other opti-
mization algorithm possesses.

The unique properties of the ELLI MAX technique are leveraged
by algorithm BOUND (Algorithm 2), an improved framework for
computing the top-k candidate expansions. Algorithm BOUND pro-
cesses candidate expansions one at a time, as algorithm DIRECT

does. However, it utilizes the ELLI MAX technique to progressively
bound the co-occurrences of candidate expansionF and conse-
quently its score. The algorithm stops processing candidate F as
soon the upper bound on its score becomes less than the score of the
expansions currently in the top-k heap. In the case that a candidate
cannot be pruned since it needs to enter the top-k heap, the EL -
LI MAX technique is invoked until the bound on its score tightens
enough to be considered a singular value.

The advantage offered by algorithm BOUND over algorithm DI-
RECT presented before is its ability to prune candidate expansions
that cannot appear in the top-k result,without incurring the full cost
of computing their exact score. In most cases, only a handful of EL -
LI MAX iterations should be sufficient for eliminating a candidate
from further consideration.

Algorithm 2 BOUND
Input : QueryQ, expansion sizer, result sizek

TopK = ∅
Iterator.init(Q, r)

while Iterator.hasMore() do
〈F, CountsF 〉 = Iterator.getNext()
Scoremin(F ) = −∞, Scoremax(F ) = +∞

while Scoremax(F ) − Scoremin(F ) > ǫ do
for i = 1 to b do

Tighten[cmin(F |si), cmax(F |si)] using ELLI MAX

Tighten[Scoremin(F ), Scoremax(F )] using[cmin(F |si), cmax(F |si)]

if Scoremax(F ) < TopK.thresholdthen
Break

Topk.update(F )

return TopK

Before we proceed with the presentation of the ELLI MAX tech-
nique, let us briefly verify that a bound on the estimated number of
word co-occurrences is actually translated into a bound on the in-
terestingness of the candidate expansion, for all three scoring func-
tions that we consider.

• Surprise (1): It is not hard to see that a bound on the es-
timated number of co-occurrencesa ≤ c(F ) ≤ b bounds
surprise between a/c(•)

c(w1)/c(•)···c(wr)/c(•)
≤ Surprise(F ) ≤

b/c(•)
c(w1)/c(•)···c(wr)/c(•)

.

• Average Rating (2): Let assume that we have obtained bounds
ai ≤ c(F |si) ≤ bi. Additionally, let us also assume that rat-
ings si are positive. Then, in order to get an upper bound
onAvg(F ) we need to set the numerator to its largest possi-
ble value and the denominator to its smallest possible. Rea-
soning in the same manner for the lower bound, we obtain
∑

i siai
∑

i bi
≤ Avg(F ) ≤

∑

i sibi
∑

i ai
. A similar process can pro-

vide us with bounds when some of thesi’s are negative.

• Variance of Ratings (3): The variance equation is comprised
of two terms. We can compute bounds on the first term using
the process we just described, while the second is simply
Avg(F )2, for which we demonstrated how to derive bounds.

5.1 Progressive Bounding of Co-occurrences
The iterative ELLI MAX technique that we develop for providing

progressively tighter bounds around the estimated number of high-
order co-occurrencesp∗

n is based on the principles underlying the
operation of the Ellipsoid algorithm for solving Convex Optimiza-
tion problems. We briefly survey these topics in Section 5.1.1, as
they are vital for understanding of the ELLI MAX technique, sub-
stantiated in Section 5.1.2.

5.1.1 Convex optimization and the Ellipsoid method
The entropy maximization problem, whose optimal solutionp∗

provides the estimatep∗

n of the desired high-order co-occurrences,
is aconvex optimization2 problem [5].

min−H(p), Ap = c, p ≥ 0 (4)

DEFINITION 3. A setD ∈ R
n is convex if∀x, y ∈ D and

0 ≤ θ ≤ 1, θx + (1 − θ)y ∈ D.

Less formally, a setD is convex if any line segment connecting
two of its points lies entirely inD. Therefore, convex domains are
continuous subsets ofR

n without any “cavities”.

DEFINITION 4. A functionf : D → R, D ⊆ R
n is convex

if its domainD is a convex set and∀x, y ∈ D and 0 ≤ θ ≤ 1,
f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y).

It is not hard to demonstrate that both the optimization function
−H(p) and thefeasible areaof the problem, defined by constraints
Ap = c,p ≥ 0 areconvex. A desirable property of convex opti-
mization problems is the following.

THEOREM 1. [5] Any locally optimal point of a convex opti-
mization problem is also globally optimal.

A corollary of this important property is that most convex opti-
mization problems have a unique optimal solution. This is one of
the reasons that convex optimization is a tractable problem, since it
allows the development of efficient, greedy iterative techniques (de-
scent and interior-point) that progressively move towardsthe opti-
mal solution. Nevertheless, these algorithms areobliviousof their
current distance to the optimum.

There exists, however, a different class of optimization tech-
niques known as localization methods that progressively bound the

2We formulate the entropy maximization problem as a minimization problem in order
to conform with the established optimization terminology.



optimal solution within a shrinking container. When the container
becomes small enough, a point inside it is used to approximate the
solution. Most prominent among this class of algorithms is theEl-
lipsoid Method, which utilizes an ellipsoidal container to bound the
optimal solution.

The Ellipsoid Method can be used to solve convex optimization
problems of the formmin f(p) subject toAp ≤ b, wheref is a
convex function. At a high level, it utilizes an ellipsoid inorder to
contain the problem’s optimal solution. An ellipsoidE is described
by means of a matrixP and its centero, so that the points inside it
satisfyE = {p : (p − o)T P−1(p − o) ≤ 1}.

The algorithm commences with an ellipsoidE0 that contains
the entire feasible region, as defined by the problem constraints
Ap ≤ b. Then, at each iterationt, it queries anoracle which
provides the algorithm with a hyperplane passing through the cur-
rent ellipsoid’s centerot. The hyperplane is described by a vector
ht perpendicular to the hyperplane. Using this representation, the
pointsp on the hyperplane satisfyhT

t (p−ot) = 0. The guarantee
we are offered by the oracle is that the optimal solutionp∗ is lo-
cated on the positive side of the hyperplane, i.e.,hT

t (p∗−ot) ≥ 0.
Having obtained thisseparating hyperplane, the algorithm com-
putes the uniqueminimum volume ellipsoidEt+1 which contains
the half of the current ellipsoidEt that lies on the positive side of
the hyperplane. Notice that the invariant maintained by this pro-
cedure is that the current ellipsoidEt alwayscontains the optimal
solutionp∗. When the ellipsoid becomes small enough, we can use
its center as an adequate approximation to the optimal solution.

Although the iterations of the ellipsoid algorithm might seem
heavyweight, they are actually efficient and come with a theoreti-
cal guarantee concerning the amount of shrinkage they accomplish.
In case the cost functionf is differentiable, as is the case for the en-
tropy function, the separating hyperplane is simply minus thegra-
dient of the function at the ellipsoid center, i.e.,ht = −∇f(ot)
[5]. In the event the ellipsoid center lies outside the feasible re-
gion, any violated constraint (rows fromAp ≤ b) can serve as a
separating hyperplane. Having obtained the separating hyperplane,
determining the next ellipsoid involves a few simple matrix-vector
multiplications involving matrixPt and vectorsht, ot. The total
cost of an iteration isO(n2) (n is the problem dimensionality) and

reduces the containing ellipsoid’s volume by at leaste
−

1
2(n+1) [4].

5.1.2 TheELLI MAX technique
The ellipsoid method offers a unique advantage not providedby

IPF or any other convex optimization technique. Namelythe pro-
gressively shrinking ellipsoid can be utilized to derive bounds on
any elementp∗

i of the optimal solution. However, this process is far
from straightforward. There are a number ofsignificant challenges
that need to be addressedefficientlyin order to substantiate the EL -
LI MAX optimization technique to used by algorithm BOUND.

• Remove equality constraints: As we discussed in our overview
of the ellipsoid method for convex optimization, it is appli-
cable in the presence of inequality constraints of the form
Ap ≤ b. However, our optimization problem (4) contains
equality constraints that need to be efficiently removed.

• Update bounds aroundp∗

n: We need to work out the details
of how to translate the ellipsoidal bound around the optimal
solutionp∗ into a one-dimensional bound forp∗

n.

• Identify a small starting ellipsoid: The ellipsoid method re-
quires a starting ellipsoid that completely covers the feasi-
ble region. Since our motivation for utilizing the ellipsoid
method is to derive a tight bound around the optimum as fast
as possible, it is crucial that we initiate the computation with

the smallest ellipsoid possible, subject to the constraintthat
its determination should be rapid.

In the remainder of the Section, we focus on providing efficient
solutions for these tasks. The efficiency of the solutions isalso
experimentally verified in Section 6.4.1.

Removing the equality constraints and moving to theλ-space

The ellipsoid method cannot handle equality the equality con-
straints of the entropy maximization problem (Ap = c) because
such constraints cannot provide a separating hyperplane inthe case
the ellipsoid’s center violates one of them. Therefore, theproblem
needs to be transformed into an equivalent one that does not fea-
ture equality constraints. In order to perform this transformation
we utilize linear algebra tools [20].

DEFINITION 5. The null spaceof matrix Am×n, denoted by
N (A), is the space of vectorsr that satisfyAr = 0. The null
space is a(n − m)-dimensional subspace ofR

n.

LEMMA 1. A vectorp with Ap = c can be described as the
sum of two vectorsp = q + r, whereq is any vector that satisfies
Aq = c andr is a vector that lies in the null space ofA.

The null space ofA, like any vector space, can be described by
anorthonormal basis, i.e., a set of orthogonal, unit vectors. Such
a basis can be computed using one of a number of available tech-
niques, like the Singular Value Decomposition. The basis consists
of g = n − m, n-dimensional vectors.

LEMMA 2. Lete1, . . . , eg with g = n −m be an orthonormal
basis forN (A). Then,Ar = 0 ⇔ r =

∑g
i=1 λiei, with λi ∈ R.

To ease notation, letU = [e1 . . . eg] be a matrix whose columns
are the basis vectors ofN (A). Then,Ar = 0 ⇔ r = Uλ.

The aforementioned lemmas allow us to eliminate the constraints
Ap = c by simply enforcingp = q + Uλ. Observe that a vector
λ ∈ R

g fully defines a vectorp ∈ R
n. Then, we can substitute

p in the cost function withq + Uλ and express it as a function
of λ. We will denote the entropy function expressed as a function
of λ with Hλ(λ). It is easy to show that−Hλ(λ) is also convex.
Additionally, the constraintp ≥ 0 becomesUλ ≥ −q. Putting it
all together, the optimization problem that we need to address is:

min−Hλ(λ), Uλ ≥ −q (5)

Problem (5) is equivalent to problem (4), but (a) it does not
contain equality constraints and (b) it is of smaller dimensional-
ity g = n − m, sincep ∈ R

n while λ ∈ R
n−m. We will say that

the original problem (4) lies in thep-space, while the transformed
problem (5) lies in theλ-space.

The remaining question is whether this transformation can be
computed efficiently. The answer is positive and this is due to a
simple observation:matrix A is always the same for all instances
of problem (4). Although the constraints are different for every
instance, what varies is the values of vectorc. This is intuitive,
as the only change from instance to instance are the low-order co-
occurrence counts populating vectorc and not the way that vari-
ablespi are related, which is described by matrixA (Section 4.3.2).

Therefore, the null space ofA and consequently matrixU can be
pre-computed using any one of available techniques [20]. Wecan
also use pre-computation to assist us in determining an appropriate
vectorq, such thatAq = c. A solution to this under-defined sys-
tem of equations can be computed by means of either theQR or
LU decomposition ofA [20]. As with the null space, the decom-
position ofA can be pre-computed.

Translating the ellipsoidal bound in theλ-space to a linear bound
in the p-space



At each iteration, the ellipsoid method provides us with an up-
dated ellipsoidE = {λ : (λ − o)T P−1(λ − o) ≤ 1}. The chal-
lenge we need to address is how to translate this ellipsoidalbound
in the λ-space into a linear bound for variablepn in the p-space.
The following theorem demonstrates how this is done.

THEOREM 2. Let E = {λ : (λ − o)T P−1(λ − o) ≤ 1} be
the bounding ellipsoid in theλ-space. Let us also define vector
d = (e1n, . . . , egn)T . Then, variablepn in thep-space lies in

pn ∈ [qn + d
T
o −

√
dT Pd, qn + d

T
o +

√
dT Pd]

PROOF. We can verify thatpn = qn + dT o + dT m, with
mT P−1m ≤ 1, using thep-space toλ-space mapping. Due to
the positive-definiteness ofP , there exists real, invertible matrix
V such thatP = V V T . Thus, the constraint onm becomes
(V −1m)T (V −1m) ≤ 1. We setv = V −1m and have that
pn = qn + dT o + (V T d)T v, with vT v ≤ 1. In other words,
v is a vector of length at most 1 andpn is maximized when prod-
uct (V T d)T v is maximized. In order to accomplish this, vector
v must be aligned with vectorV T d and its length must be set to
its maximum value, i.e., 1. Hence, the value ofv maximizingpn

is v = V T d/||V T d||. By substituting (and using the fact that√
xT x = ||x||) we obtainpn’s maximum value.

Based on the aforementioned result, the translation of the ellip-
soidal bound in theλ-space to a linear bound for variablepn in the
p-space can be computed analytically by employing a few efficient
vector-vector and matrix-vector multiplications.

Identifying a compact starting ellipsoid

Identifying a compact starting ellipsoid is an integral part of
the ELLI MAX technique. Nevertheless, determining such an el-
lipsoid presents a performance (computation cost)/efficiency (ellip-
soid size) trade-off. For example, we can formulate the problem of
identifying the minimum volume ellipsoid (known as Löwner-John
ellipsoid) covering the feasible region of problem (5) as a convex
optimization problem [5]. However, the resulting problem is harder
than the problem we need to solve. Therefore, it does not make
sense to determine the best possible starting ellipsoid at such cost.

In what follows, we present ananalytical procedure for identi-
fying a compact starting ellipsoid. The procedure is efficient, as it
involves a handful of lightweight operations, and is comprised of
three steps: (a) identifying an axis-aligned bounding box around
the feasible region in thep-space, (b) using the box in thep-space
to derive an axis-aligned bounding box in theλ-space and (c) cov-
ering the latter bounding box with the smallest possible ellipsoid.

Let us concentrate on the first step of the procedure. The feasible
region in thep-space is described by the linear constraintsAp = c

andp ≥ 0. Every row ofA along with the corresponding element
of c, define a linear constraint that sums some of thepi’s so that
they equal a valuec (Example 6). Then, sincep ≥ 0, the elements
of p that participate in the constraint cannot be greater thanc, since
that would require some element in the constraint to be negative.

Therefore, by iterating once over all the constraints inAp = c

we can get an upper bound for every elementpi. At that point we
can make another pass over the constraints in order to determine a
lower bound tighter than 0: by setting all variables but one to the
maximum value that they can assume, we can use the linear equal-
ity to derive a lower bound for our free variable. By repeating this
process for all constraints and variables we identify lowerbounds
for all variablespi.

EXAMPLE 8. Suppose that we only have 2 constraintsp1 +
p2 = 2 and p2 + p3 = 4. From the first constraint we can
derive thatp1 ≤ 2 and p2 ≤ 2, while the second one provides

p2 ≤ 4 (for which we already acquired a better bound) andp3 ≤
4. We then use these upper bounds to derive the lower bounds
p1 ≥ 2 − p2,max ⇒ p1 ≥ 0, p2 ≥ 2 − p1,max ⇒ p2 ≥ 0 and
p3 ≥ 4 − p2,max ⇒ p3 ≥ 2.

We now need to translate the derived boundsai ≤ pi ≤ bi into
bounds in theλ-space. Letvi = (0, . . . , 1

i
, . . . , 0)T be a basis

vector of thep-space. Then,

p = q +

g
∑

i=1

λiei and p =
n

∑

i=1

pivi ⇒ q +

g
∑

i=1

λiei =
n

∑

i=1

pivi

Let us multiply both sides of the equation with vectorek, keep-
ing in mind that vectorsei form an orthonormal basis.

q +

g
∑

i=1

λiei =
n

∑

i=1

pivi ⇒ λk = −q
T
ek +

n
∑

i=1

pi(v
T
i ek)

Getting a bound onλk is now straightforward. Each constraint
ai ≤ pi ≤ bi is multiplied by(vT

i ek), so that

ai(v
T
i ek) ≤ pi(v

T
i ek) ≤ bi(v

T
i ek), if (vT

i ek) > 0

bi(v
T
i ek) ≤ pi(v

T
i ek) ≤ ai(v

T
i ek), if (vT

i ek) < 0

Adding these constraints up and further adding−qT ek to both
the lower and upper bound, we get a bound onλk.

Lastly, the minimum volume ellipsoidV covering an axis-aligned
box can also be analytically determined. Intuitively,V is an axis-
aligned ellipsoid whose center coincides with the box’s. The length
of V ’s axis parallel to theλi-axis is equal to

√
g times the box’s ex-

tent across that axis.

THEOREM 3. Consider ag-dimensional, axis-aligned box so
that λmin

i ≤ λi ≤ λmax
i . Then, the minimum volume ellipsoid

V = {λ : (λ − o)T P−1(λ − o) ≤ 1} covering the box is

o = (
λmin
1 + λmax

1

2
, . . . ,

λmin
g + λmax

g

2
)T

Pii = g
(λmax

i − λmin
i )2

4
and Pij = 0

6. EXPERIMENTAL EVALUATION

6.1 Summary of Contributions
Before we proceed with our evaluation, let us recapitulate our

contributions and the algorithms introduced and subsequently eval-
uated. In Section 3 we formulated the problem of refining a key-
word query result by suggesting interesting and meaningfulquery
expansions. We introduced three scoring functions to quantitatively
evaluate the interestingness of candidate query expansions and sin-
gle out thek expansions with maximum (or minimum) score values
(Problems 1, 2 and 3).

In Section 4 we observed that the main challenge in evaluating
the score of a candidate expansionF lies in computing the number
of documentsc(F ) containing all the words comprisingF and jus-
tified the use of two-word co-occurrences in order to estimatec(F ).
To this end, we introduced Algorithm DIRECTwhich incrementally
generates all candidate query expansions and for each candidateF
it (a) solves an entropy maximization problem (many in the case
of Problems 2 and 3) to estimatec(F ) (Section 4.3.2) and (b) uses
this estimate to computeF ’s score. Algorithm DIRECT uses the
specialized IPF technique in order to solve the entropy maximiza-
tion problem.

Algorithm BOUND (Section 5) improves upon DIRECT by ex-
ploiting the natural top-k formulation of the query expansion prob-
lem. By leveraging the novel ELLI MAX technique (neither IPF nor



any other algorithm can be used) in solving the entropy maximiza-
tion problem, it can progressively boundc(F ) and subsequently the
score of a candidate expansionF and eliminate it as soon its upper
bound is lower than the candidates in the top-k heap.

While we introduced ELLI MAX for use with algorithm BOUND

and apply it on the entropy maximization problem, it should be
noted that it is anovelandgenericoptimization technique and can
be applied onany convex optimization problemin order to derive
progressively tighter bounds around parts of its optimum.

6.2 Expansion Length and Problem Dimen-
sionality

Let us now briefly discuss how the lengthr of the candidate
query expansions affects the overall complexity of our problem.
This length defines the size of the resulting entropy maximization
problem which in turns contributes to the difficulty of our problem.

Estimating the occurrences for a word-set of sizer requires the
solution of a convex optimization (entropy maximization) problem
involving n = 2r variables andm = 1+r+r(r−1)/2 constraints
(Section 4.3.2). In the case of the ELLI MAX technique we intro-
duced in Section 5.1, removal of them equality constraints results
in an optimization problem that lies in theg-dimensionalλ-space,
whereg = n−m. Table 1 summarizes the values of these variables
for three reasonable values ofr.

n m g
r = 3 8 7 1
r = 4 16 11 5
r = 5 32 16 16

Table 1: Word-set size effect on problem size.

As the length of the candidate expansions increases, so doesthe
complexity of the entropy maximization problem. This has anad-
verse effect on the running time of both the IPF (used by DIRECT)
and the ELLI MAX (used by BOUND) algorithms. An interesting
observation is that forr = 3, the ELLI MAX technique handles a
1-dimensional problem. Effectively, the feasible region of the con-
vex optimization problem in theλ-space is a line segment. In this
case, the ELLI MAX technique collapses to a bisection method that
bounds the optimal solution by iteratively cutting the feasible line
segment in half.

6.3 Experimental Setting
Both the IPF process and the ELLI MAX algorithm are optimiza-

tion techniques that iteratively converge towards the problem’s op-
timum. The methods terminate when they are able to provide an
approximation to the optimal solution within a desired degree of
accuracy. In our experiments, we set this accuracy to10−6 in abso-
lute terms, i.e., we declared convergence when|pn − p∗

n| < 10−6.
In order to guarantee that the convergence condition is met by the

IPF, we required that two iterations fail to change the values of all
variablespi by more than10−6 [14]. At this point, the IPF’s most
recent estimate forp∗

n is returned to Algorithm 1. The ELLI MAX

technique derives progressively tighter bounds around therequired
optimal valuep∗

n. Unless the method is terminated by algorithm
BOUND, due to the algorithm being able to prune the candidate,
the ELLI MAX technique stops when the bound aroundp∗

n becomes
smaller than10−6. Then, the middle-point of the interval is used to
approximate the true value ofp∗

n with accuracy within10−6.
In our timing experiments we concentrated on the CPU time re-

quired by algorithms DIRECT and BOUND, since the I/O compo-
nent is identical for both algorithms. The CPU time of algorithm
DIRECT is consumed by IPF calls, while the CPU time of BOUND

is consumed by ELLI MAX iterations. Our test platform was a

2.4Ghz Opteron processor with 16GB of memory, although both
optimization techniques have miniscule memory requirements. The
methods were implemented in C++, while the vector and matrixop-
erations were supported by the ATLAS linear algebra library[17].

6.4 Experimental Results
6.4.1 Evaluation of theELLI MAX Technique

The initialization of the ELLI MAX technique includes the re-
moval of the equality constraints and the transition to theλ-space
where the algorithm operates, as well as the computation of acom-
pact starting ellipsoid. An iteration involves the computation of
a cutting hyperplane, its use in updating the ellipsoidal container
and the derivation of a linear bound for variablep∗

n. Each iteration
guarantees a reduction of the ellipsoid’s volume by at leasta certain
amount. Although this reduction cannot be directly translated into
a reduction in the size of the bound aroundp∗

n, it provides us with
some information about the effectiveness of each iteration. Table 2
summarizes this information.

Initialization (µs) Iteration (µs) Vol. reduction%
r = 3 1.8 0.5 50
r = 4 4.6 2.6 8
r = 5 12.00 7.9 3

Table 2: Performance of the ELLI M AX method.

As we can observe, both the initialization and iteration opera-
tions are extremely efficient. Nevertheless, as the problemsize in-
creases (expansion lengthr), two sources contribute in the method’s
performance degradation: (a) the iterations are more expensive and
(b) more iterations are required in order to decrease the bound
aroundp∗

n by an equal amount. Such trends are consistent as the
value ofr increases.

6.4.2 Synthetic data
For our first set of experiments, we applied both algorithm DI-

RECTand algorithm BOUND to a stream of 100k synthetically gen-
erated candidate expansions and measured the total CPU time(spent
in IPF calls by DIRECT and ELLI MAX iterations by BOUND) re-
quired in order to identify the top-10 expansions. As we discussed,
since the purpose of computing expansions is to present themto a
user, only a handful of them need to be computed.

A candidate expansion is generated by assigning values to the
low-order co-occurrences that describe it. Equivalently,for every
candidate we need to assign values to the constraint vectorc of its
corresponding entropy maximization problem (4). For Problems
2 and 3, the required low-order co-occurrences conditionedon the
document rating, are generated for each rating value independently.

Our first data generator, denoted byU , works as follows. In-
stead of directly populating vectorc, its values are generated in-
directly by first producing the underlying probability distribution
p that the maximum entropy process attempts to reconstruct. Re-
call that low-order co-occurrences appearing in vectorc are related
to the underlying distribution that we estimate through constraints
Ap = c. Then, sinceA is fixed andp known, we can generate
vectorc. These constraints are theonly information used by IPF
and ELLI MAX in order to estimatep∗

n. The data distribution vector
p is populated with uniformly distributed values from a specified
range ([5, 10000] in our experiments). We experimented with other
skewed data distributions and the results were consistent with the
ones we subsequently present.

During our experimentation we observed a dependence of the
performance of the IPF technique (and consequently of algorithm
DIRECT) on the degree ofpairwise correlationbetween the words
comprising a word-set. We quantify the correlation betweenwords



wi andwj by employing ratiosc(wi, wj) /c(wi) andc(wi, wj)/c(wj):
the closer the value of these ratios is to 1, the more frequently words
wi andwj co-occur in the document collection. As we will discuss
in more detail, we observed that the convergence rate of IPF was
adversely affected by the presence of strong correlations.

Our second data generator, denoted byC, synthetically produces
co-occurrences with a varying degree of pairwise correlation. Its
first step is to randomly generate two-word co-occurrencesc(wi, wj)
from a uniform distribution over the interval[100, 1000]. These co-
occurrences are subsequently used in the generation of the single
word occurrencesc(wi): for every wordwi, the ratiomaxj c(wi, wj)
/c(wi) is sampled uniformly from an interval[a, b]. Using this ra-
tio we can derive a value forc(wi). Controlling the interval[a, b]
allows us to control the degree of pairwise correlation we inject.
Therefore, we experimented with 5 data sets:C0, where we sample
from the interval[0.01, 0.99], C1 from the interval[0.01, 0.25], C2
from [0.25, 0.50], C3 from [0.50, 0.75] andC4 from [0.75, 0.99].
Intuitively, data setC0 is comprised of candidates with a varying
degree of correlation, while data setsC1 to C4 contain candidates
that exhibit progressively stronger correlations.

The experimental results for Problem 1 are presented in Figure
2. The left bar chart depicts the results for expansions of sizer =
3, while the right bar chart for expansions of sizer = 4. At a
high level, it is evident that algorithm BOUND clearly outperforms
DIRECT by orders of magnitude. BOUND’s superior performance
can be attributed to the fact that once a few of highly-surprising
candidates are encountered, the pruning of subsequent candidates
is relatively easy, requiring only fewELLI MAX iterations.
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Figure 2: Problem 1 performance on synthetic data sets.

Additionally, the performance of DIRECT in Figure 2 verifies
our previous observation, i.e., IPF’s performance decreases as the
degree of two-way correlation between the words increases (data
setsC1 to C4). The absence of pairwise correlations suggests that
the underlying text is mostly uniform. Given that the maximum
entropy principle underlying the operation of IPF is essentially a
uniformity assumption, this effect is understandable: themore the
ground truth about the data distribution (pairwise co-occurrences)
deviates from the technique’s assumptions (uniformity), the slower
its convergence.

We consider this behavior as a major drawback of the IPF tech-
nique and algorithm DIRECT since we are, by the definition of our
problem, interested in discovering words that are highly correlated
and define meaningful and significant clusters of documents.This
trend in the performance of IPF is consistent throughout ourexper-
imental evaluation.

For Problems 2 and 3 we used three ratings: 0, 1 and 2. Our
experimental results are depicted in Figures 3 and 4 respectively.
For r = 3 the BOUND algorithm outperforms DIRECT by a large
margin. Forr = 4 the image is mixed, although the BOUND algo-
rithm performs clearly better for all data sets other thanC1 andC2.
Recall that these two data sets exhibit exclusively very lowcorre-
lations, a scenario which as we discussed is beneficial for IPF and

algorithm DIRECT. In practice we expect hardly ever to encounter
close to uniform (uncorrelated) text. Correlations are prevalent in
real data sets and this points to the advantage of our proposal.
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Figure 3: Problem 2 performance on synthetic data sets.

The reason for the, perhaps surprising, gap in the performance
of the BOUND algorithm fromr = 3 to r = 4 is the following.
Due to the complexity of scoring functions (2) and (3), we need
to derive relatively tight bounds on the estimated co-occurrences in
order for them to be translated into a sufficient for pruning bound
around the expansion’s score. But, in order to achieve thesebounds,
BOUND for r = 4 must perform more, yet less efficient ELLI MAX

iterations than forr = 3 (Section 6.4.1).
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Figure 4: Problem 3 performance on synthetic data sets.

We also performed experiments to examine whether enabling the
use of more rating values adversely affects the pruning performance
of the BOUND. Figure 5 presents its performance for documents
with 3, 5 and 10 possible ratings, under theU data set. The running
time scales linearly, as desired: 3, 5 and 10 instances of theELLI -
MAX technique need to run and provide bounds for countsc(F |si)
in parallel, therefore this linear scale-up is expected. A super-linear
increase would imply a reduction in pruning efficiency, but this was
not observed. The performance of IPF also scales linearly and is
therefore omitted from the graphs. This result was consistent for
all synthetic data sets.
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Figure 5: Performance vs number of possible ratings.

6.4.3 Real data
We also performed experiments using massive, real data sets

comprised of blog posts. To evaluate the performance of the tech-
niques on Problem 1, we used a sample consisting of 2.7 mil-
lion posts, retrieved daily during February 2007. In order to re-
duce the search space of the algorithms and prune uninteresting



co-occurrences, we only maintained countsc(wi, wj) such that
c(wi, wj)/c(wi) > 0.05 andc(wi, wj)/c(wj) > 0.05. We posed
random single-keyword queries and present the average CPU time
required by the techniques in Figure 6. As it is evident, the BOUND

method has a clear advantage over DIRECT, offering significantly
better performance.
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Figure 6: Problem 1 performance on real data.

In order to evaluate performance on Problems 2 and 3, we used a
sample of 68 thousand posts from the day of 13/02/2008. We used
a custom sentiment analysis tool based on [15] to associate each
post with a rating (0 for negative, 1 for neutral and 2 for positive).
As before, we removed uninteresting co-occurrences to reduce the
search space in a similar manner and posed random single-word
queries. Figure 7 presents the average CPU time required by the
algorithms to solve Problem 2. The results for Problem 3 followed
the same trend and are therefore omitted. As it is evident, the prun-
ing opportunities exploited by the BOUND algorithm enable us to
deliver superior performance to DIRECT.
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Figure 7: Problem 2 performance on real data.

6.4.4 Qualitative results on real data
Finally, we conclude our experimental evaluation with a brief

case study regarding the query expansions suggested by our tech-
nique. We used blog post data for the day of 26/08/2008, pro-
cessed by the same sentiment analysis tool as before. Only stop-
words were removed. Below we present the top-3 expansions sug-
gested using the scoring functions discussed in Section 3.1, for
a small sample of product-related queries, in order to verify our
claims from Sections 1 and 3 and demonstrate the utility of the
query expansion framework. Notice that the expansions are in-
deed comprised of terms (mostly products and product features)
relevant to the original query, e.g., “toner” (feature) forquery “hp
printer” (product), or “eee netbook” (product line) and “acer net-
book” (competitor) for query “asus” (manufacturer).

The expansions suggested would be invaluable for interacting
with the underlying document collection. For example, we query
thegeneric and diverseblog post collection for the day of 26/08/2008
in order to unearth discussion, reviews and opinions about “hp
printer(s)”. Without further assistance from the query expansion
framework, manual browsing of hundreds matching blog postswould
be the sole option for discovering more useful information about
the subject. The expansions allow us to rapidly identify andfocus

on a particularly interesting slice of the relevant posts. For instance,
expansions with high surprise value identify a subset of posts dis-
cussing particular features of interest, e.g, “cartridges”. Alterna-
tively, we have the option to focus on posts with low average score,
discussing a problematic aspect of the product, e.g., “graphics”.

Query Surprise Max. Avg. Score Min. Avg. Score

hp printer
cartridge network toner

laser mobile cartridge
ink ebay graphics

nikon digital
autofocus viewfinder slr standard canon click

cmos viewfinder slr tone camera file
cmos autofocus slr stabil manual images

asus
acer netbook laptop camera eee install
eee netbook mobile model eee linux

acer eee core mobile laptop pc

7. CONCLUSIONS
Motivated by the accumulation of vast text repositories andthe

limitations of existing techniques, we introduced a new data anal-
ysis and exploration model that enables the progressive refinement
of a keyword-query result set. The process is driven by suggest-
ing expansions of the original query with additional searchterms
and is supported by an efficient framework, grounded on Convex
Optimization principles.
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