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ABSTRACT
Graphs are prevalent in many domains such as Bioinformat-
ics, social networks, Web and cyber-security. Graph pattern
mining has become an important tool in the management
and analysis of complexly structured data, where example
applications include indexing, clustering and classification.
Existing graph mining algorithms have achieved great suc-
cess by exploiting various properties in the pattern space.
Unfortunately, due to the fundamental role subgraph iso-
morphism plays in these methods, they may all enter into a
pitfall when the cost to enumerate a huge set of isomorphic
embeddings blows up, especially in large graphs.

The solution we propose for this problem resorts to re-
duction on the data space. For each graph, we build a sum-
mary of it and mine this shrunk graph instead. Compared
to other data reduction techniques that either reduce the
number of transactions or compress between transactions,
this new framework, called Summarize-Mine, suggests a
third path by compressing within transactions. Summarize-

Mine is effective in cutting down the size of graphs, thus
decreasing the embedding enumeration cost. However, com-
pression might lose patterns at the same time. We address
this issue by generating randomized summaries and repeat-
ing the process for multiple rounds, where the main idea is
that true patterns are unlikely to miss from all rounds. We
provide strict probabilistic guarantees on pattern loss like-
lihood. Experiments on real malware trace data show that
Summarize-Mine is very efficient, which can find interest-
ing malware fingerprints that were not revealed previously.
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1. INTRODUCTION
Recent years have witnessed the prevalence of graph data

in many scientific and commercial applications, such as Bioin-
formatics, social networks, Web and cyber-security, partly
because graphs are able to model the most complex data
structures. As illustrated by the enhancement made to many
core tasks of these domains, e.g., indexing [29] and classifica-
tion [14, 6], mining graph patterns that frequently occur (for
at least min sup times) can help people get insight into the
structures of data, which is well beyond traditional exercises
of frequent patterns, such as association rules [1].

However, the emergence of bulky graph datasets places
new challenges for graph data mining. For these scenarios,
the target graphs are often too large which may severely re-
strict the applicability of current pattern mining technolo-
gies. For example, one emerging application of frequent
graph patterns is to analyze the behavior graphs of mali-
cious programs. One can instrument malicious binaries to
generate system call graphs, where each node is a system call
event. By comparing the subtle differences between graphs
generated by malware and benign programs, it is possible to
find those graph fingerprints that are common and unique in
malicious programs [5]. Unfortunately, due to the bulkiness
and complexity of system call graphs, we found that none
of the state-of-art mining algorithms can serve this new and
critical task well. Similar problems are also encountered for
biological networks and social networks.

Existing frequent subgraph mining algorithms, like those
developed in [15, 28, 13], achieved great success using strate-
gies that efficiently traverse the pattern space; during this
process, frequent patterns are discovered after checking a se-
ries of subgraph isomorphisms against the database. How-
ever, as we argue in this paper, these methods ignore the
important fact that isomorphism tests are sometimes ex-
pensive to perform. The key issue here is a huge set of iso-
morphic embeddings that may exist. In order to check the
occurrences of a pattern in a large graph, one often needs to
enumerate exponentially many subgraphs. This situation is
further worsened by the possible overlaps among subgraphs.
Looking at G1, G2, . . . in Figure 1, subgraphs such as trian-
gles might share a substantial portion in common, while only
one different node/edge would require them to be examined
twice, which quickly blows up the total cardinality.

1



We use a simple example to demonstrate the above sce-
nario. Suppose we have 1,000,000 length-2 paths in a large
graph and we would like to check if it has a triangle in-
side. These one million paths have to be checked one by one
because each of them has the potential to grow into a full
embedding of the triangle pattern. The same dilemma exists
for any pattern that includes a length-2 path. Such a huge
number of possible embeddings become a severe bottleneck
for graph pattern mining tasks.

Now let us consider possible ways to reduce the num-
ber of embeddings. In particular, since many embeddings
overlap substantially, we explore the possibility of somehow
“merging” these embeddings so that the overall cardinal-
ity is significantly reduced. As Figure 1 depicts, merging
of embeddings is achieved by binding vertices with identical
labels into a single node and collapsing the network corre-
spondingly into a smaller version. As suggested by previous
studies [25, 3], the above process indeed provides a graph
summary that generalizes our view on the data to a higher
level, which can facilitate analysis and understanding, simi-
lar to what OLAP (On-Line Analytical Processing) does for
relational databases.
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Figure 1: The Summarize-Mine Framework

Graph summarization leads to a dramatic cut-down of
graph size as well as the total number of embeddings, which
makes subgraph isomorphism cheaper to perform. This forms
the main idea of our Summarize-Mine framework: In Fig-
ure 1, we first summarize the original graphs {G1, G2, . . .}
into small summaries {S1, S2, . . .}, which are then mined for
frequent patterns, where state-of-art algorithms should now
perform well. However, the price paid here is the possible
loss of patterns, i.e., there could exist false positives and
false negatives. For false positives, one can always verify
their frequency against the original database and discard
those failing ones (interestingly, as we shall discuss later,
based on the relationship between Gi and Si, a lot of ver-
ification efforts can be transferred to the small-sized Si, as
well); for false negatives, we choose to generate summaries
in a randomized manner and repeat the process for multiple
rounds. Intuitively, true patterns are unlikely to miss from
all rounds.

Recapitulating the above discussions, we outline the con-
tributions made in this paper as follows.

First, a previously neglected issue in frequent graph pat-
tern mining, i.e., the intrinsic difficulty to perform embed-

ding enumeration in large graphs, is examined, which could
easily block many downstream applications. Compared to
previous studies that focus on the efficient traversal of pat-
tern space, the perspective of this work is data space ori-
ented, which leads to an innovative Summarize-Mine frame-
work. The power and efficiency of our algorithm is val-
idated by extensive experiments on real program analysis
data, which can find interesting malware fingerprints that
were not revealed previously.

Second, the data reduction principle we adopt is to com-
press information within transactions. It eliminates the short-
coming of lossy summarization by a randomizing technique,
which repeats the whole process for multiple rounds and
achieves strict probabilistic guarantees. This is novel com-
pared to other methods that either reduce the number of
transactions (e.g., sampling [26]) or compress between trans-
actions (e.g., FP-Growth [8] losslessly compresses the whole
dataset into an FP-tree for frequent itemset mining).

Third, our proposed method of reducing data within trans-
actions supplemented by randomized mechanisms marks an
additional dimension that is orthogonal to the state-of-art
pattern mining technologies. In this sense, one can freely
combine Summarize-Mine with other optimizations sug-
gested in the past to further enhance their performance, and
the idea is not restricted to graphs, which can also be ex-
tended to sequences, trees, etc..

Finally, nowadays, extremely huge networks such as those
of Internet cyber-attacks and on-line social network websites
(e.g., Facebook and MySpace) are not uncommon; some-
times, they even cannot fit in main memory, which makes it
very hard for people to access and analyze. To this extent,
the usage of Summarize-Mine can be viewed from another
perspective: Considering the increasingly important role of
summarization as a necessary preprocessing step, we have
made a successful initial attempt to analyze how this pro-
cedure would impact the underlying patterns (frequent sub-
structures being a special instance). It is crucial for the
applications to understand when and to what degree a com-
pressed view can represent the original data in terms of its
patterns.

The rest of this paper is organized as follows. Preliminar-
ies and the overall Summarize-Mine framework are outlined
in Sections 2 and 3. The major technical investigations, in-
cluding probabilistic analysis of false negatives, verification
of false positives and iterating multiple times to ensure result
completeness, are given in Sections 4, 5 and 6, respectively.
Section 7 presents experimental results, Section 8 discusses
related work, and Section 9 concludes this study.

2. PRELIMINARIES
In this paper, we will use the following notations. For a

graph g, V (g) is its vertex set, E(g) ⊆ V (g) × V (g) is its
edge set, and l is a label function mapping a vertex or an
edge to a label.

Definition 1. (Subgraph Isomorphism). For two labeled
graphs g and g′, a subgraph isomorphism is an injective
function f : V (g) → V (g′), such that 1) ∀v ∈ V (g), l(v) =
l′(f(v)), and 2) ∀(u, v) ∈ E(g), (f(u), f(v)) ∈ E(g′) and
l(u, v) = l′(f(u), f(v)), where l and l′ are the labeling func-
tions of g and g′, respectively. Under these conditions, f is
called an embedding of g in g′, and g is called a subgraph
of g′, denoted as g ⊆ g′.
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Definition 2. (Frequent Subgraph). Given a graph database
D = {G1, G2, . . . , Gn} and a graph pattern p, let Dp be the
set of graphs in D where p appears as a subgraph. We define
the support of p as sup(p) = |Dp|, whereas Dp is referred
as p’s supporting graphs or p’s projected database. With
a predefined threshold min sup, p is said to be frequent if
sup(p) ≥ min sup.

The problem studied in this paper is essentially the same
as that of a well-studied graph mining task: finding all fre-
quent subgraphs in a database D, except that the graphs in
D are now associated with large size. As we mentioned in
the introduction, our proposal is to perform summarization
at first.

Definition 3. (Summarized Graph). Given a labeled graph
G, suppose its vertices V (G) are partitioned into groups,
i.e., V (G) = V1(G) ∪ V2(G) ∪ · · · ∪ Vk(G), such that 1)
Vi(G) ∩ Vj(G) = φ (1 ≤ i 6= j ≤ k), 2) all vertices in
Vi(G) (1 ≤ i ≤ k) have the same labels. Now, we can sum-
marize G into a compressed version S, written as S ≺ G,
where 1) S has exactly k nodes v1, v2, . . . , vk that correspond
to each of the groups (i.e., Vi(G) 7→ vi), while the label of vi

is set to be the same as those vertices in Vi(G), and 2) an
edge (vi, vj) with label l exists in S if and only if there is an
edge (u, û) with label l between some vertex u ∈ Vi(G) and
some other vertex û ∈ Vj(G).

Based on the above definition, multi-edge becomes possi-
ble for a summarized graph, i.e., there might be more than
one labeled edge that exist between two vertices vi, vj ∈
V (S), if there is an edge (u1, û1) with label l1 and another
edge (u2, û2) with label l2 6= l1 such that u1, u2 is in the
node group Vi(G) and û1, û2 is in the node group Vj(G). To
find patterns on top of such summaries, slight modifications
are needed because traditional graph mining algorithms in
general assume simple graphs (i.e., no self-loops and multi-
edges). We shall get back to this issue later as the discussion
proceeds.

3. THE SUMMARIZE-MINE FRAMEWORK
Given a graph database D = {G1, G2, . . . , Gn}, if we sum-

marize each Gi ∈ D to Si ≺ Gi, then a summarized database
D′ = {S1, S2, . . . , Sn} is generated. Denote the collection of
frequent subgraphs corresponding to D and D′ as FP(D)
and FP(D′), respectively. In this section, we are going to
examine the relationship between these two pattern sets and
investigate the possibility to shift mining from D to D′.

Intuitively, we expect that FP(D) and FP(D′) are similar
to each other if the summarization from D to D′ is prop-
erly conducted. As for the portion that is different between
them, there are two cases.

Definition 4. (False Negatives). A subgraph p frequent
in D but not frequent in D′, i.e., p ∈ FP(D) and p /∈ FP(D′),
is called a false negative caused by summarization.

Definition 5. (False Positives). A subgraph not frequent
in D but frequent in D′, i.e., p /∈ FP(D) and p ∈ FP(D′), is
called a false positive caused by summarization.

For the rest of this section, we are going to discuss how
these two types of errors can be remedied, which finally gives
rise to a novel Summarize-Mine framework.

3.1 Recovering False Negatives
False negatives include those patterns that are missed out

after we summarize the graphs. In Figure 2, we explain
the reason behind. Suppose p is a graph pattern such that
p ⊆ Gi, and correspondingly f is an embedding of p in
Gi. Consider the summary Si ≺ Gi, f will disappear if
there exist two nodes u, û ∈ V (p) whose images in V (Gi),
i.e., f(u) and f(û), are merged together as we shrink Gi

into Si. This will cause the support of p to decrease upon
summarization. '''() ( * ) (G+ S+ *() *p ''',

u

u

Figure 2: The Cause of False Negatives

So, how should we avoid false negatives? To begin with,
it is easy to prove the following lemma.

Lemma 1. For a pattern p, if each of its vertices bears
a different label, then p’s supporting graph set in the sum-
marized database D′ is no smaller than that in the original
database D, i.e., D′

p ⊇ Dp.

Proof. Suppose Gi ∈ Dp, i.e., p ⊆ Gi, let f be an embed-
ding of p in Gi. Obviously, for p’s vertices u1, . . . , um, their
corresponding images f(u1), . . . , f(um) in Gi must have dif-
ferent labels, and thus f(u1), . . . , f(um) should belong to m
separate groups, which end up as distinct nodes v1, . . . , vm

in the summarized graph Si ≺ Gi. Define another in-
jective function f ′ : V (p) → V (Si) by mapping uj to vj

(1 ≤ j ≤ m). Based on Definition 3, it is easy to verify that
whenever there is an edge (uj1 , uj2) ∈ E(p) with label l,
there exists a corresponding edge (vj1 , vj2) ∈ E(Si) bearing
the same label. Now, f ′ represents a qualified embedding
of p in Si. More generally, p ⊆ Si will hold for each Gi’s
shrunk version Si if Gi ∈ Dp, indicating that D′

p is at least
as large as Dp.

Based on Lemma 1, false negatives can only happen for
those patterns with at least two identically labeled vertices.
Meanwhile, from the proof above, we conclude that even if
two vertices u1, u2 ∈ V (p) possess the same label, as long as
their images f(u1), f(u2) are not merged by summarization,
the embedding f is still preserved. According to these ob-
servations, we could partition nodes into identically labeled
groups on a random basis, where for those vertices with
same labels in pattern p, they have a substantial probabil-
ity q(p) to stay in different groups, which guarantees that
no embeddings will be destroyed. Facing such probabilis-
tic pattern loss, we decide to deliberately lower the support
threshold in the summarized database by a small margin to
min sup′ < min sup: As we shall prove in Section 4, this
will then insure a high probability P for patterns to remain
frequent in D′. Finally, to further reduce the false negative
rate, we can perform randomized summarization for mul-
tiple times in an independent fashion, because the overall
pattern missing probability (1 − P )t will quickly converge
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to 0 as the number of iterations t increases. The details of
false negative analysis are given in Section 4.

3.2 Discarding False Positives
Given a graph pattern p, there is also possibility for its

support to increase upon summarization. Figure 3 shows
a “faked” embedding of p formed in the summarized graph
Si, where two sets of edges originally adjacent to different
vertices with label a are now attached to the same node.-. - / . -G0 S0 /p

-- /. -111 111
Figure 3: The Cause of False Positives

It is much easier to deal with false positives. For false
negatives, we must provide a mechanism to recover true pat-
terns that have disappeared after summarization, while for
false positives, we only need an efficient verification scheme
to check the result set and get rid of those entries that are
actually infrequent.

A straightforward verification scheme computes the sup-
port of every p ∈ FP(D′) in the original database D: If
sup(p) is smaller than min sup, we discard p from the out-
put. Interestingly, there is a better way to verify patterns by
leveraging the summaries: The embedding of p in the sum-
marized graph actually reveals its possible locations in the
original graph, which can be used to speed up the process.
Technical details will be covered in Section 5.

3.3 The Overall Algorithm Layout
With randomization and verification, the Summarize-Mine

framework is outlined as follows.

1. Summarization: For each Gi in a graph database D,
randomly partition its vertex set V (Gi): For vertices
with label lj(1 ≤ j ≤ L), where L represents the total
number of labels, we assign xj groups. This will result
in xj nodes with label lj in the corresponding sum-
mary graph. As the application characteristics vary,
we can control the summarization process by chang-
ing x1, . . . , xL to best cope with the situation.

2. Mining: Apply any state-of-art frequent subgraph
mining algorithm on the summarized database D′ =
{S1, S2, . . . , Sn}with a slightly lowered support thresh-
old min sup′, which generates the pattern set FP(D′).

3. Verification: Check patterns in FP(D′) against the
original database D, remove those p ∈ FP(D′) whose
support in D is less than min sup and transform the
result collection into R′.

4. Iteration: Repeat steps 1-3 for t times. To guar-
antee that the overall probability of missing any fre-
quent pattern is bounded up by ǫ, we set the number of
rounds t as ⌈ log ǫ

log(1−P )
⌉, where 1−P is the false negative

rate in one round.

5. Result Combination: Let R′

1, R
′

2, . . . , R
′

t be the pat-
terns obtained from different iterations, the final result
is R′ = R′

1 ∪ R′

2 ∪ · · · ∪R′

t.

Compared to the true pattern set R that would be mined
from the original database D if there are enough comput-
ing resources, no false positives exist, i.e., R′ ⊆ R, and the
probability for a pattern p ∈ R to miss from R′ is at most
ǫ. Note that, the verification step here is put after the min-
ing step for clarity purposes. As we shall see later, these
two steps can also be interleaved, where verifications are
performed on-the-fly: Whenever a pattern p is discovered,
Summarize-Mine verifies it immediately if p has not been
discovered and verified by previous iterations.

In the following, we will start from probabilistic analysis
of false negatives in Section 4, followed by Section 5, which
focuses on the verification of false positives, and Section 6,
which discusses iterative Summarize-Mine as well as result
combination.

4. BOUNDING THE FALSE NEGATIVE RATE
As we proved in Lemma 1 of Section 3.1, for a pattern p

and a graph Gi in the original database, if p is a subgraph of
Gi through embedding f , then as Gi is summarized into Si,
f disappears from Si if f(u1), . . . , f(um) are disseminated
into less than m groups and thus correspond to less than
m vertices in Si. Suppose there are mj and xj vertices
with label lj in p and Si, respectively, we have the following
lemma.

Lemma 2. For a graph pattern p, if p ⊆ Gi, then p is
also a subgraph of Si ≺ Gi with probability at least

P m1
x1
· · ·P mL

xL

xm1

1 · · · xmL
L

,

given that the grouping and merging of nodes that transform
Gi into Si is performed on a completely random basis. Here,
P

mj
xj

represents the number of permutations, which is equal

to
(

xj

mj

)

mj !.

Proof. Consider an embedding f through which p is a sub-
graph of Gi. The probability that all mj vertices with label
lj are assigned to mj different groups (and thus f continues
to exist) is:

xj

xj

xj − 1

xj

· · ·
xj −mj + 1

xj

=
P

mj
xj

x
mj

j

.

Multiplying the probabilities for all L labels (because the
events are independent), we have:

Prob
[

p ⊆ Si

]

≥
P m1

x1
· · ·P mL

xL

xm1

1 · · · xmL

L

.

Here, xj must be at least as large as mj to make the prod-
uct of probabilities meaningful, and during implementation,
there is often no problem for us to make xj >> mj so
that vertices with identical labels will not collide with high
probability.

To simplify analysis, if we stick with a particular set of
xj ’s (1 ≤ j ≤ L) when summarizing different graphs in the
database, the probability bound in Lemma 2 can be written
as q(p), since its value only depends on the label distribution
of pattern p, which holds for any Gi ∈ Dp. Now, because

4



of those embeddings that disappear due to summarization,
it is well expected that the pattern support will experience
some drop, with Theorem 1 characterizing the probability
of seeing a particular dropping magnitude.

Theorem 1. Suppose a pattern p’s support in the origi-
nal database is s, i.e., |Dp| = s, for any s′ ≤ s, the probabil-
ity that p’s support in D′ falls below s′ upon summarization
can be bounded as follows:

Prob
[

|D′

p| ≤ s′
]

≤
s′
∑

T=0

(

s

T

)

q(p)T [1− q(p)]s−T .

Proof. For each Gi ∈ Dp, we focus on a particular sub-
graph embedding fi and define an indicator variable Ii such
that Ii = 1 if fi continues to exist in Si and Ii = 0 otherwise.
Then,

Prob
[

|D′

p| > s′
]

≥ Prob

[

∑

Gi∈Dp

Ii > s′
]

,

because whenever
∑

Gi∈Dp
Ii > s′, there must be more than

s′ subgraph embeddings that are preserved in the summa-
rized database and thus |D′

p| > s′. We have:

Prob
[

|D′

p| ≤ s′
]

≤ Prob

[

∑

Gi∈Dp

Ii ≤ s′
]

=
s′
∑

T=0

Prob

[

∑

Gi∈Dp

Ii = T

]

.

The difference between the left and right hand side prob-
abilities is due to three effects: (1) there could be multiple
embeddings of p in Gi, so that p’s support after summariza-
tion may not decrease even if one embedding disappears, (2)
an “faked” embedding like that depicted in Figure 3 might
emerge to keep p as a subgraph of Si, and (3) “faked” em-
beddings can also happen for a graph Gj which originally
does not contain p. Now, because events are independent,

Prob
[

∑

Gi∈Dp

Ii = T
]

=

(

s

T

)

q(p)T [1− q(p)]s−T ,

where q(p) = Prob
[

Ii = 1
]

for all i such that Gi ∈ Dp.
Finally,

Prob
[

|D′

p| ≤ s′
]

≤
s′
∑

T=0

Prob

[

∑

Gi∈Dp

Ii = T

]

=
s′
∑

T=0

(

s

T

)

q(p)T [1− q(p)]s−T

is proved.

Corollary 1. Assume that the support threshold is min sup,
we set a new threshold min sup′ < min sup for the database
D′ summarized from D and mine frequent subgraphs on D′.
The probability for a pattern p to be a false negative, i.e., p
is frequent in D but not frequent in D′, is at most

min sup′
−1

∑

T=0

(

min sup

T

)

q(p)T [1− q(p)]min sup−T .

Proof. Being a false negative, we have s = |Dp| ≥ min sup
and |D′

p| ≤ min sup′ − 1. Let s′ = min sup′ − 1, a direct
application of Theorem 1 leads to

Prob
[

|D′

p| < min sup′
]

≤

min sup′
−1

∑

T=0

(

s

T

)

q(p)T [1−q(p)]s−T ,

where the right hand side corresponds to a binomial ran-
dom variable B

(

s, q(p)
)

’s cumulative distribution function
(CDF) being evaluated at s′. Denote the CDF of a bino-
mial variable Y ∼ B(N, p) as FB(N, p; n) = Prob

[

Y ≤ n
]

,
we have FB(N, p; n) monotonically decreasing in N , because
Y is the sum of N independent Bernoulli random variables
X1, . . . , XN ∼ Ber(p): When more Xi’s get involved, it is
naturally harder to have their sum Y bounded up by some
fixed number n. This leads to FB(N1, p; n) ≥ FB(N2, p;n)
if N1 ≤ N2. Finally, since s ≥ min sup,

FB

(

s, q(p); s′
)

≤ FB

(

min sup, q(p); s′
)

=

min sup′
−1

∑

T=0

(

min sup

T

)

q(p)T [1− q(p)]min sup−T ,

which is combined with the inequality at the beginning to
complete the proof.

As the Summarize-Mine framework suggests, the false
negative rate after t iterations is (1−P )t. To make (1−P )t

less than some small ǫ, one can either increase the number
of rounds t, or decrease the one-round false negative rate
1− P , which is achieved by lowering the support threshold
min sup′ on the summarized database D′. Since increasing
t and reducing min sup′ will both lead to a longer mining
time, we could simultaneously control both parameters to
find an optimal trade-off point where the best efficiency is
achieved. This will be tested in the experiments.

5. VERIFYING FALSE POSITIVES
To implement Summarize-Mine, we take gSpan [28] as

the skeleton of our mining algorithm. The main idea of
gSpan is as follows: Each labeled graph pattern can be trans-
formed into a sequential representation called DFS code,
based on a depth-first traversal of the pattern. With a de-
fined lexicographical order on the DFS code space, all sub-
graph patterns can be organized into a tree structure, where
(1) patterns with k edges are put on the kth level, and (2) a
preorder traversal of this tree would generate the DFS codes
of all possible patterns in the lexicographical order. Figure
4 shows a pattern tree, where v1, v2, . . . , vn are vertex pat-
terns, p1 is a pattern with one edge, and p1 is a subgraph of
p2.

This DFS code-based pattern tree is used in Summarize-

Mine. For each graph pattern p, we conduct the following
steps.

1. We decide whether the DFS code of p is minimum ac-
cording to the defined lexicographical order. Here, pat-
terns might have different codes in the tree because of
graph isomorphisms but we only need to examine one
of them. In this sense, non-minimum DFS codes can
be discarded since the corresponding minimum ones
must have been visited by the preorder traversal.

2. We check p against the summarized graphs and get p’s
projected database D′

p. If |D′

p| falls below min sup′,
we abort the search along this branch.
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Figure 4: A Pattern Tree

3. For each summary Si ∈ D′

p, we enumerate all embed-
dings of p in Si and based on that determine every pos-
sible one-edge extension that can be added to them.
These candidate patterns are inserted into the pattern
tree, which will be explored later.

4. When we drive search into a particular branch, D′

p is
passed down as a transaction ID-list, which will help
pruning since the new projected database there can
only be a subset of D′

p.

If Summarize-Mine generates a pattern tree as shown in
Figure 4, we could start checking false positives from big
patterns so that the verification of many smaller patterns
can be avoided. Given two patterns p1 and p2, where p1 is
a subgraph of p2, there is no need to verify p1 if p2 already
passes the min sup threshold, because sup(p1) ≥ sup(p2) ≥
min sup. Referring to the DFS code tree, this is done by
visiting the data structure in a bottom-up manner, which can
be easily implemented through a postorder traversal. On the
other hand, it seems that adopting the opposite direction,
i.e., visiting the tree in a top-down manner through a pre-
order traversal, might also give us some advantages: If we
verify p1 before p2, then there is no need to further try p2 if
p1 already fails the test, since min sup > sup(p1) ≥ sup(p2).
In this sense, considering the question of picking a better one
from these two approaches, it really depends on how many
false positives exist in the set of patterns we want to verify,
which could be data-specific. Generally speaking, if there
are not/too many false positives, the bottom-up/top-down
approach should work well.

Summary-Guided Isomorphism Checking. During the
verification process, after getting D′

p, we want to check a
pattern p against each Gi ∈ D and get its support in the
original database. Suppose Gi ≻ Si, there are two cases:
Si ∈ D′

p and Si /∈ D′

p. For the first case, the embedding
of p in Si could help us quickly find its possible embed-
dings in Gi. Let f : V (p) → V (Si) be the embedding
of p in Si, where the images of p’s vertices under f are
f(u1), . . . , f(um). Recall that Gi is summarized into Si by
merging a node group of Gi into a single vertex of Si, we can
check whether there exists a corresponding embedding of p
in Gi by picking one node from each of the node groups that
have been summarized into f(u1), . . . , f(um), and examin-
ing their mutual connections. This should be more efficient
than blindly looking for a subgraph isomorphism of p in Gi,
without any clue about the possible locations. For the sec-
ond case, there is no embedding of p in Si to leverage, can
we also confirm that p 6⊆ Gi by looking at the summary

only? Let us choose a subgraph p′ ⊆ p such that each of
p′’s vertices bears a different label, and test p′ against Si;
based on Lemma 1, since the embeddings of p′ can never be
missed upon summarization, if we can confirm that p′ 6⊆ Si,
then it must be true that p′ 6⊆ Gi and there is no hope for
p, a supergraph of p′, to exist in Gi, either. Concerning im-
plementation, we can always make p′ as big as possible to
increase the pruning power. Finally, we have transformed
isomorphism tests against the original large graph Gi to its
small summary Si, thus taking advantage of data reduction.

6. ITERATIVE SUMMARIZE-MINE
In this section, we combine the summarization, mining,

and verification procedures together and put them into an
iterative framework. As discussed previously, adding more
iterations can surely reduce the probability of false nega-
tives; however, it introduces some problems, as well. For
example, the final step of Summarize-Mine is to merge all
R′

k’s (k = 1, 2, . . . , t) into a combined set R′, which requires
us to identify what the individual mining results have in
common so that only one copy is retained. Furthermore,
due to the overlap among R′

1, R
′

2, · · · , a large number of
patterns might be repeatedly discovered and verified.

One solution to this problem is to represent the patterns
in each R′

k by their DFS codes, which are then sorted in lex-
icographical order, facilitating access and comparison. How-
ever, this approach is still costly. Our proposed strategy is as
follows: Since R′

1, R
′

2, . . . are mined from successive random
summarizations of the original graph database D, it is ex-
pected that R′

k’s would not be too different from each other
because they are all closely related to FP(D), the “correct”
set of frequent subgraphs that would be mined from D. This
hints us to unify the mining process of different iterations
into a single data structure, i.e., use only one pattern tree
T to drive the mining ahead.

The advantages of doing so are two-fold. First, if a single
data structure is maintained, and we incrementally mod-
ify T (i.e., recover false negatives that have been wrongly
omitted by previous rounds) as the mining of multiple iter-
ations proceeds, then the problem of merging R′

1, R
′

2, . . . is
automatically solved, because there is only one pattern tree,
which stores the combined result. Second, in such an inte-
grated manner, intermediate calculations achieved in earlier
rounds may help the processing of later rounds, which can-
not be achieved if consecutive iterations are separated. The
below example demonstrates this.

Our setting is as follows: In round 1, a pattern tree holding
R′

1 is generated, which is drawn on the left hand side of
Figure 5, i.e., T1. Then, as we go into round 2, some patterns
missed from the first iteration will be recovered (specifically,
p3 and p4), which update T1 into a new tree T2 that is drawn
on the right hand side.

Now, suppose we have finished round 1 and verified the
patterns in R′

1, e.g., p1, p2, by checking their support against
D, the corresponding projected databases, i.e., Dp1

, Dp2
,

become known to us. These two support sets, represented
as ID-lists, are stored with tree nodes p1, p2 for later use.
Note that, since ID-lists only record integer identifiers of
the transaction entries, they have moderate size and can
be easily maintained/manipulated. The same strategy has
been widely used in other graph data management tasks,
e.g., indexing [29].

Moving on to round 2, we start from the tree’s root p1
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Figure 5: The First Two Iterations of Summarize-

Mine with Verified ID-lists

(note that, although p1 has been verified and shown to be
frequent by round 1, we cannot bypass it in round 2, because
patterns such as p3 and p4, which are infrequent in round 1
but frequent in round 2, have to be grown from it), where
the first thing to do is checking p1’s support against the 2nd-
round summarized database D′2 = {S2

1 , S2
2 , . . . , S2

n}. Inter-
estingly, it is only necessary to test p1 with regard to those
graphs in Dp1

, i.e., what we finally obtain could be a sub-
set of D′2

p1
that is confined within Dp1

, i.e., D′2
p1
∩Dp1

. This
turns out to be OK: For any pattern p∗ that would be subse-
quently grown along the branch of p1, p1 ⊆ p∗ ⇒ Dp∗

⊆ Dp1

because of the Apriori principle; thus, when p∗ is finally ver-
ified against the original database D, its support graphs Dp∗

will be confined within Dp1
, anyway. This means that an

early pruning by the ID-list of Dp1
, which is readily avail-

able after round 1, should not have any impact on the rest
of the mining process.

We draw a few more steps in Figure 5 regarding the uti-
lization of pre-verified ID-lists when it comes to patterns
p3, p4, and the corollary below proves that the optimiza-
tions proposed would not change any theoretical foundation
of Summarize-Mine.

Corollary 2. The probability bound developed in Corol-
lary 1 still holds if verified ID-lists are used to prune the
mining space.

Proof. Given a pattern p, the bound in Corollary 1 is di-
rectly related to whether p’s embeddings for each of its sup-
port graphs in the original database D, i.e., Dp, would di-
minish or not upon randomized summarizations. As shown
above (think p as p1 in Figure 5), when we utilize verified
ID-lists for optimizations, entries in Dp are not filtered out
for sure, which means that all deductions made in the cor-
responding proofs now continue to hold.

The described pruning techniques should be applied as
early as possible in order to boost performance. In this
sense, we shall start verification right after a new pattern
is discovered, so that its ID-list might be used even in the
current iteration. Putting everything together, the pseudo-
code of Summarize-Mine is given in Algorithm 1.

Algorithm 1 Summarize-Mine with Verified ID-lists

D′k = {Sk
1 , . . . , Sk

n}: The kth-round summarized database.
p: The graph we are visiting on the pattern tree.
PD: Projected database passed from the caller.
p.err: A flag stored with p, it equals true if p has already
failed to pass a verification test in previous iterations.
p.IDs: The ID-list stored with p, it equals φ if p is discovered
for the first time and thus has not been verified.

sMine(p, PD) {
1: if p.err == true then return;
2: if p’s DFS code is not minimum then return;
3: if p.IDs 6= φ then PD′ = PD ∩ p.IDs;
4: else PD′ = PD;
5: foreach graph ID i ∈ PD′ do

6: if p 6⊆ Sk
i then PD′ ← PD′ − {i};

7: else enumerate the embeddings of p in Sk
i ; ∗

8: if |PD′| < min sup′ then return;
9: else if p.IDs == φ then

10: verify p against the original database D;
11: if |Dp| < min sup then p.err = true; return;
12: else

13: store the IDs according to Dp in p.IDs;
14: PD′ = PD′ ∩ p.IDs;
15: foreach p′ ∈ pGrow do

16: if p′ is not a child of p in T then insert p′ under p;
17: sMine(p′, PD′);
}

∗Steps 4-6 enumerate all possible one-edge extensions
that can be made to p, which we denote as pGrow.

To start Algorithm 1, we call sMine(p1, D), where p1 is
the root of the pattern tree and D includes every graph
in the database. In order to grow all possible patterns, p1

should be a null graph with zero vertices, as Figure 4 de-
picts. In line 1, we return immediately if the same p has
been shown to be infrequent by previous iterations; and the
reason for setting such a flag is to guarantee that unsuc-
cessful verifications will not be performed repeatedly. Line
2 checks whether a given DFS code is minimum. Lines 3-4
conduct a pre-pruning if p has been verified in the past and
thus an ID-list is readily available. Lines 5-7 proceed like
normal frequent subgraph mining algorithms, where support
is computed by checking isomorphic embeddings against the
current projected database, and all possible one-edge exten-
sions of p are recorded during this process. If the support
does not pass the lowered min sup′ threshold on summa-
rized databases, the algorithm returns immediately (line 8);
otherwise, we verify p (line 10) if it has not been verified
so far (line 9), mark p.err as true and return if p cannot
pass the min sup threshold after verification (line 11). If p
indeed can pass min sup (line 12), we store the ID-list (line
13) and use it to immediately prune the projected database
(line 14) that will be passed on when sMine is called for
those patterns grown from p (lines 15-17).

We discuss some variations of Algorithm 1 in the follow-
ing. First, we have been verifying patterns in the same or-
der as they are mined out, which corresponds to a top-down
scheme. As we mentioned in Section 5: The verified ID-lists
of each node in the pattern tree can also be obtained in a
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bottom-up manner, while the only shortcoming here is that,
pruning must be delayed until the next iteration, because
bottom-up checking can only happen when the whole pat-
tern tree is ready. Second, there are costs, as well as benefits,
to calculate and store the exact IDs of every pattern’s sup-
port graphs in D. Interestingly, suppose we choose bottom-
up verification, then for a pattern tree T , we could have
only verified those leaf nodes, while all internal nodes are
guaranteed to be frequent (because they have even higher
support), without any calculations. Thus, it is not always
necessary to maintain the ID-lists.

Consider whether or not to compute verified ID-lists, plus
that both top-down and bottom-up verification schemes can
be selected, there are four cases in total:

• ID-list+top-down: It corresponds to Algorithm 1.

• ID-list+bottom-up: Here, though verification result can
only be used in the next iteration, we are not sure whether
this shortcoming can be overcome by the relative edge if
bottom-up verification is faster than its top-down coun-
terpart. We will reexamine this issue in experiments.

• No ID-list+top-down: This scenario does not make much
sense, because in top-down verification, the ID-lists of all
patterns in the tree can be obtained as a by-product. So,
why not take this “free lunch” to boost performance?

• No ID-list+bottom-up: Figure 6 illustrates the situation.
We adopt bottom-up postorder traversal to verify false
positives, while successive iterations are essentially inde-
pendent to each other, except that they share the same
tree T to hold the mining result.de
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Figure 6: The First Two Iterations of Summarize-

Mine without Verified ID-lists

7. EXPERIMENTAL RESULTS
In this section, we will provide empirical evaluations of

Summarize-Mine. We have two kinds of datasets: a real
dataset and a synthetic dataset. To be more concrete, we
shall use the real dataset to show the effectiveness and ef-
ficiency of our algorithm, while the synthetic dataset will
demonstrate the parameter setting mechanism, as well as
the method’s scalability. All experiments are done on a Mi-
crosoft Windows XP machine with an Intel Core 2 Duo 2.5G
CPU and 3GB main memory. Programs are written in Java.

The mining process works by randomly summarizing a

graph database, finding patterns from the summaries, and
then verifying obtained patterns. As we briefly discussed in
Section 2, to handle edges with multiple labels during the
mining step, we modify gSpan and store a label list with each
edge in the graph: A pattern matching will be successful as
long as the pattern’s corresponding edge label is covered by
this list. For the verification step, we shall try alternative
schemes (e.g., top-down, bottom-up), and the optimization
that leverages summary-guided isomorphism checking (see
Section 5) will be adopted by default.

7.1 Real Dataset
Program Analysis Data. Program dependence graphs
appear in software-security applications that perform char-
acteristic analysis of malicious programs [5]. The goal of
such analysis is to identify subgraphs that are common to
many malicious programs, since these common subgraphs
represent typical attacks against system vulnerabilities, or
to identify contrast subgraphs that are present in malicious
programs but not in benign ones, since these contrast sub-
graphs are useful for malware detection. In our experience
and as reported by anti-malware researchers, these repre-
sentative program subgraphs have less than 20 vertices.

We collected dependence graphs from 6 malware families,
including W32.Virut, W32.Stration, W32.Delf, W32.Ldpinch,
W32.Poisonivy and W32.Parite. These families exhibit a
wide range of malicious behaviors, including behaviors as-
sociated with network worms, file-infecting viruses, spyware
and backdoor applications. In a dependence graph, ver-
tices are labeled with program operations of interest and
the edges represent dependency relationships between op-
erations. For example, when the operations are system or
library calls, then an edge with label y = f(x) between two
vertices v1 and v2 captures the information that the system
call at v1 assigns the variable x and the second system call
uses the variable y whose value is derived from x. Such de-
pendence graphs are quite large in practice, sometimes with
vertex counts up to 20, 000 and edge counts an order of mag-
nitude higher (up to 220, 000 based on our observation). For
the experiment data we use, the average number of nodes
for all graphs is around 1,300.

Before we move on, let us assume for now that all param-
eters in Section 7.1 are already set to the optimal values.
Detailed discussions on how this is achieved will be covered
in Section 7.2.

12 3

44

7

5

6

1: NtOpenKey(‘Catalog Entries’)
2: NtOpenKey(‘0000000010’)
3: NtOpenKey(‘000000009’)
4: NtQueryValueKey(...)
5: NtOpenFile(‘\\Device\\Afd\\EndPoint’)
6: NtDeviceIoControlFile(‘AFD_RECV’)
7: NtDeviceIoControlFile(‘AFD_SEND’)

Figure 7: A Sample Malware Pattern

Figure 7 shows a graph pattern discovered from the Stra-
tion family of malware. Stration is a family of mass-mailing
worms that is currently making its way across the Internet.
It functions as a standard mass-mailing worm by collecting
email addresses saved on a host and sending itself to the re-
cipients, which does display some characteristics of spyware
as shown in the figure. The displayed signature corresponds
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to a malware reading and leaking certain registry settings
related to the network devices.
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Figure 8: Theoretical Guarantee

In Figure 8, we plot the probability bound predicted in
Theorem 1 against the empirical event frequency that is ob-
served in experiments. Suppose there are Xj nodes with

label lj in a graph Gi ∈ D, we set xj as round
(

ai ·
Xj

∑

L
j=1

Xj

)

,

where ai is the number of nodes to be kept for each database
graph. In this way, labels that appear more often in the orig-
inal graphs will also have more presence in their summarized
versions, which is reasonable. Let A be the average num-
ber of nodes for graphs in the original database and a be the
corresponding number after summarization, the summariza-
tion ratio is defined as α = A/a. We set min sup = 55%
(note that, for a graph dataset with big transaction size,
min sup is often set relatively high since small structures
are very easy to be contained by a large graph; thus, there
would be too many patterns if the support threshold is low),
min sup′ = 45%, α = 8, and randomly pick 300 patterns
from the output of iteration 1. For each pattern p, we count
its support s = |Dp| in the original database D, compute
q(p) based on the distribution of p’s vertex labels according
to Lemma 2, and fix s′ = 70% · s to calculate the theoreti-
cal guarantee of Prob

[

|D′

p| ≤ s′
]

as given in the right hand
side of Theorem 1, which is drawn on the x-axis. Then,
we further generate 100 copies of D′ based on randomized
summarization, obtain the percentage of times in which p’s
support |D′

p| really falls below s′, and draw it on the y-axis.
Patterns whose vertices are all associated with distinct la-
bels have been omitted, because they can never miss.

It can be seen that our probabilistic guarantee is quite
safe, where only very few points exist whose empirical fre-
quencies go beyond the corresponding theoretical bounds,
which is possible, because the frequency values calculated
by such random sampling may not represent true probabili-
ties. On the other hand, it also shows that real false negative
rate is often not that high. So, we probably do not have to
be too conservative when setting the new support thresh-
old min sup′, due to the three effects we pointed out in the
proof of Theorem 1.

In Figure 9, we draw the running time with regard to
min sup′ after fixing min sup = 55%, α = 8, and compare
relative performances of the three strategies we proposed
in Section 6. Here, two iterations are processed, while one
can also increase the number of rounds t to further bring
down the pattern miss rate. Based on the testing results, it
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Figure 9: Three Alternative Strategies

seems that we are better off using verified ID-lists, because
they are very effective in pruning false positives. Suppose
a pattern p is mined from D′ and after verifying it against
D we find that p’s support in the original database is less
than min sup, then for ID-list+top-down, we will terminate
immediately without growing to p’s supergraphs. However,
considering No ID-list+bottom-up, as long as the support
of these supergraphs in D′ is greater than min sup′, they
will all be generated and then verified as a batch at the end
of each iteration. The advantage of such pre-pruning starts
to prevail when min sup′ becomes smaller, which induces
more false positives. Based on similar reasoning, the curve
for ID-list+bottom-up turns out to appear in the middle,
since pruning cannot happen in the first round but it can act
in the second round. Finally, due to its general superiority,
for the rest of this section, we shall use ID-list+top-down as
our default implementation of Summarize-Mine, without
further notices.
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Figure 10: Number of Output Patterns

Figure 10 shows the corresponding number of patterns
based on the same setting as Figure 9, and we also add
another curve depicting the fraction of false positives that
is verified and discarded by the ID-list+top-down strategy.
As expected, when min sup′ is reduced, false negatives de-
crease while false positives increase. The gap between these
two curves corresponds to the number of subgraphs that
are truly frequent in the original database D, which grad-
ually widens as we move to the left of the picture, since
Summarize-Mine can now catch more patterns above min sup′.
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Accordingly, the price paid for this is an increased cost to
mine the summarized database D′ and verify against D.
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Figure 11: Efficiency w.r.t. Transaction Size

We compare the performance of gSpan, a state-of-art graph
miner, with Summarize-Mine in Figure 11. For this exper-
iment, a series of connected subgraphs are randomly drawn
from each transaction, so that we can run both algorithms
on graphs with different size and see whether there exists
any trend. All other settings are the same as Figure 9, ex-
cept that we only run one iteration here. Obviously, when
the transaction size goes up, it becomes harder and harder
for gSpan to work, where we have omitted the rightmost
point of this curve since gSpan cannot finish within 3 hours.
In comparison, Summarize-Mine remains somewhat stable,
which is natural, because the embedding enumeration issue
becomes much worse for large graphs, and our algorithm is
specifically designed to tackle this problem.

7.2 Synthetic Dataset
Generator Description. The synthetic graph generator
follows a similar mechanism as the one used to generate
itemset transactions, where we can set the number of graphs
(D), average size of graphs (T ), number of seed patterns
(L), average size of seed patterns (I) and number of distinct
vertex/edge labels (V/E). To begin with, a set of L seed
patterns are generated randomly, whose size is determined
by a Poisson distribution with mean I ; then, seed patterns
are randomly selected and inserted into a graph one by one
until the graph reaches its size, which is the realization of
another Poisson variable with mean T . Due to lack of space,
we refer interested readers to [15] for further details.

Figure 12 considers the problem of optimally setting the
new support threshold min sup′ to achieve best algorith-
mic efficiency while ensuring a specific probabilistic guaran-
tee, i.e., the overall false negative rate is at most ǫ = 0.05.
Considering the total running time, intuitively, with a low
min sup′, we would miss fewer patterns in one round and
thus may require a smaller number of iterations to reach the
desired ǫ; however, it is also true that more time has to be
spent in each round. So, what is the best tradeoff? Since
one-round miss rate as predicted by Corollary 1 is monoton-
ically decreasing in q(p), we can make the following state-
ment. Focusing on a particular value of q(p) = θ, if under
this setting, we can guarantee that the overall false nega-
tive rate (1− P )t is at most ǫ, then for all patterns p′ with
q(p′) ≥ θ, the probability for them to miss from the output
must be less than ǫ, too. This θ value can be adjusted to
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Figure 12: The Optimal Setting of min sup′

tune Summarize-Mine accordingly toward larger/smaller
patterns or patterns with more/less identically labeled ver-
tices.

Setting θ = 0.8 (which we think is reasonable for the min-
ing task in hand), the total number of rounds t can be easily
determined based on a given value of min sup′: Here, t is
calculated by the formula t = ⌈ log ǫ

log(1−P )
⌉, where 1 − P has

been substituted by the probability bound given in Corol-
lary 1. Running Summarize-Mine for t iterations, we can
draw the total computation time against min sup′, which
is shown in Figure 12. The synthetic dataset we take is
D400T500L200I5V5E1, i.e., 400 transactions with 500 ver-
tices on average, which are generated by 200 seed patterns
of average size 5; the number of possible vertex/edge labels
is set to 5/1. Considering the graphs we generated above,
each transaction has approximately the same size, and thus
it is reasonable to retain an equal number of a = 50 vertices
for all summaries. min sup is set to 40%. Finally, the lowest
running time turns out to be reached at min sup′ = 28% for
both ID-list+top-down and No ID-list+bottom-up, where
because of its ability to pre-prune at the very beginning,
ID-list+top-down is not influenced much when min sup′ be-
comes low, which enables us to include more points for the
corresponding curve when it is extended to the left. Also,
the running time is not quite sensitive to parameter choices,
as long as min sup′ is not too high.
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In Figure 13, we analyze the impact of summarization ra-
tio on our algorithm. The dataset is D500T500L200I5V5E1.
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We vary α from 3.33 to 25 (outer loop), while min sup′ is
implicitly tuned to the best possible value as we did in Fig-
ure 12 (inner loop). It can be seen that, α = 10 happens
to be the optimal position: When we summarize more, data
graphs become smaller, which makes it faster to mine fre-
quent subgraphs over the summaries; however, in the mean-
time, topology collapsing also introduces more false nega-
tives and false positives, where additional computing re-
sources must be allocated to deal with them. In this sense, it
is important to run Summarize-Mine at the best trade-off
point; and as we can see from the figure, there are actu-
ally a broad range of summarization ratios with reasonable
performance.
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Figure 14: Scalability Test

Taking D(|D|)T500L200I5V5E1, we also test the efficiency
of our algorithm over ten datasets by varying the number of
transactions |D| from 100, 200 up to 1,000, which is shown in
Figure 14. We use min sup = 40%, α = 10, while min sup′

and number of rounds t are tuned and optimally set as we
did in Figure 12. As demonstrated, the implementation is
highly efficient, which can finish in hundreds of seconds,
and Summarize-Mine is linearly scalable with regard to
the data size.

8. RELATED WORK
Many efficient frequent subgraph mining algorithms have

been proposed, including FSG [15], gSpan [28], AGM [13],
followed by Path-Join, MoFa, FFSM, GASTON, etc., and
the wealth of literature cannot be fully enumerated here.
Owing to more recent development, now we are also able
to mine maximal graph patterns [12], significant graph pat-
terns [10], and patterns with topological constraints [20].
All these methods directly take the input graph database
without any data reduction. This strategy works fine for
a database consisting of small graphs. However, when the
graphs contain a large number of pattern embeddings, all
these methods could not perform efficiently, as we analyzed
in the introduction.

There is another line of research [16, 4] that specifically
mines frequent graph patterns from a single large network.
Their major contribution is to define the pattern support in
a single graph G, i.e., how many times should we count a
pattern, given all its embeddings in G that might overlap?
These methods are often restricted to sparse networks or
networks with a good number of labels, which limits the
number of embeddings.

There have been a few studies on how to improve the
efficiency of graph mining in general. However, they ap-
proach the problem from different angles, and none of them
could tackle the intrinsic difficulty of embedding enumera-
tion in bulky graph datasets. To name a few, [27] introduces
structural leap search and leverages structural similarity to
mine significant graph patterns. [9] invents a randomized
heuristic to traverse the pattern space, where a collection of
representative patterns are found. It analyzes how to reduce
pattern candidates, based on the observation that many of
them are quite similar. These two methods still work on the
pattern space: Instead of doing a normal traversal, they can
either perform “leap” or pick “delegates”. To improve the
mining speed on a large sparse graph, [23] decides to incor-
porate parallel processing techniques, which are orthogonal
to the focus of Summarize-Mine.

The concept of summarizing large graphs in order to fa-
cilitate processing and understanding is not new [11]. [22]
studies the problem of compressing Web graphs so that the
link information can be efficiently stored and easily ma-
nipulated for fast computation of PageRank; [24] further
analyzes how the sketches can help calculate approximate
personalized PageRank. [2] develops statistical summaries
that analyze simple graph characteristics like degree distri-
butions and hop-plots. [19] approximates a large network
by condensing its nodes and edges, which can preserve the
original topological skeleton within a bounded error. Re-
cently, [25] suggests a semantics-oriented way to summa-
rize graphs by grouping vertices based on their associated
attributes, which reflects the inherent structures and pro-
motes easy user navigation; [3] further integrates this notion
into a generic topological OLAP framework, where a graph
cube can be built. The mining algorithm we developed in
this paper can be further combined with all these studies
to examine how structured patterns are presented on the
summarized level.

Regarding other data reduction techniques that can be ap-
plied, we have pointed out sampling [26] and FP-Growth [8]
as two examples that either reduce the number of transac-
tions or compress between transactions, which are different
from our compression method that takes effect within trans-
actions. For a given pattern, because subgraph isomorphism
checking and associated embedding enumerations happen
inside a target graph, any method that cannot dig into indi-
vidual transactions does not help. For instance, if we want
to sample, then the sampling of nodes/edges/substructures
must keep their original characteristics intact, so as to pre-
serve the underlying patterns. This may require us to as-
sume a generic graph generation model like the one given in
[18]. In contrast, Summarize-Mine does not need such as-
sumptions, the theoretical bound we developed is only condi-
tional on the random grouping and merging of nodes, which
can be easily implemented.

Finally, within a bigger context, the method of creating
and leveraging synopsis to facilitate data processing has re-
ceived significant attention in the broad database field [7,
30]. There is a recent work [17] on bursty sequence mining
that transforms consecutive, identically-labeled items within
the same transaction into intervals for the purpose of length
reduction. However, as the data becomes more complex and
takes the form of graphs, compression based on randomized
mechanisms plays a key role in pattern preserving, which
is a major contribution of this study. For example, in XS-
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KETCH [21], the same set of nodes in the XML graph are
often merged together, which could cause much pattern loss
if we perform mining on such kind of summaries.

9. CONCLUSIONS
In this paper, we examine an important issue in frequent

graph pattern mining, the intrinsic difficulty to perform em-
bedding enumeration in large graphs, which might block
many important downstream applications. Mining bulky
graph datasets is in general very hard, but the problem
should still be solvable if the node/edge labeling is not very
diverse, which limits the explosion of pattern space. As we
tried to find out the bottleneck, it was observed that even
for small and simple substructures, the corresponding min-
ing process could be very slow due to the existence of thou-
sands of isomorphic embeddings in the target graphs. So,
different from previous studies, Summarize-Mine proposes
a novel mining framework that focuses on data space reduc-
tion within transactions, and effectively turns lossy compres-
sion into a virtually lossless method by mining randomized
summaries for multiple iterations. Experimental results on
real malware data demonstrate the efficiency of our method,
which can find interesting malware fingerprints that were
not revealed previously. Moreover, Summarize-Mine also
sheds light on how data compression may impact the under-
lying patterns. This will be particularly interesting, given
an emerging trend of huge information networks that must
adopt data reduction as a necessary preprocessing step for
analytical purposes.
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