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ABSTRACT
When a database query has a large number of results, the
user can only be shown one page of results at a time. One
popular approach is to rank results such that the “best” re-
sults appear first. However, standard database query results
comprise a set of tuples, with no associated ranking. It is
typical to allow users the ability to sort results on selected
attributes, but no actual ranking is defined.

An alternative approach to the first page is not to try to
show the best results, but instead to help users learn what is
available in the whole result set and direct them to finding
what they need. In this paper, we demonstrate through a
user study that a page comprising one representative from
each of k clusters (generated through a k -medoid clustering)
is superior to multiple alternative candidate methods for
generating representatives of a data set.

Users often refine query specifications based on returned
results. Traditional clustering may lead to completely new
representatives after a refinement step. Furthermore, clus-
tering can be computationally expensive. We propose a tree-
based method for efficiently generating the representatives,
and smoothly adapting them with query refinement. Ex-
periments show that our algorithms outperform the state-
of-the-art in both result quality and efficiency.

1. INTRODUCTION

1.1 Motivation
Database queries often return hundreds, even thousands,

of tuples in the query result. In interactive use, only a small
fraction of these will fit on one display screen. This paper
studies the problem of how best to present these results to
the user.

The “Many-Answers Problem” has been well documented
[5]: too many results are returned for a query that is not
very selective. This problem arises because: i) it is very
difficult for a user, without knowing the data, to specify a
query that returns enough but not excessive results; and
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ii) often a user starts exploring a dataset without an exact
goal, which becomes increasingly clear as she learns what is
available. Consider Example 1 below, where a user searches
a used car database for a Honda Civic.

Example 1. Ann wants to buy a car, and visits a web site
for used cars. The web site is backed by a database that
we simplify for this example to have only one table “Cars”
with attributes ID, Model, Price, and Mileage. Ann specifies
her requirements through a form on the web site, resulting
in the following query to the database: Select * from Cars

where Model = ‘Civic’ and Price < 15,000 and Mileage

< 80,000. The query she formulates may have thou-
sands of results since it is on a popular model with unselec-
tive conditions. How should the web site show these results
to Ann?

A common approach to displaying many results is to batch
them into “pages”. The user is shown the first page, and
can navigate to additional pages as desired, and “browse”
through the result set. For this process to make sense, the
results must be organized in some manner that the user
understands. One popular solution is to sort the results, say
by Price or Mileage in our example. However, this sorting
can be computationally expensive for large result sets. More
important, similar results can be distributed many pages
apart. For example, a car costing 8500 with 49000 miles may
be very similar to another costing 8200 with 55000 miles,
but there could be many intervening cars in the sort order,
say by price, that are very different in other attributes (e.g.
high mileage but recent model year, high mileage but more
features, low mileage but in an accident, and so on).

Another possibility is to order results by what the system
believes is likely to be of greatest interest to the user. In-
deed, there is a stream of work [9] trying to develop ranking
mechanisms such that the “best” results appear first. Such
techniques can be successful when the system has a reason-
able estimate of the user’s preference function. However,
determining this can be hard: in our example the system
has no way to tell what Ann’s tradeoff is for price versus
mileage, let alone other attributes not even mentioned.

This “Many-Answer Problem” has also attracted much
attention from the information retrieval community. The
importance of the first page of results for a search interface
has been well documented [2, 13]. It has been shown that
over 85% of the users look at only the first page of results
returned by a search engine. If there is no exact answer in
the first page to meet users’ information need, the first page
needs to deliver a strong message that there are interesting
results in the remaining pages.



ID Model Price Mileage Zoom‐in
643 Civic 14,500 35,000 311 more Cars like this
876 Civic 13,500 42,000 217 more Cars like this
321 Civic 12,100 53,000 156 more Cars like this
452 Civic 11,200 63,000 87 more Cars like this
765 Civic 10,200 71,000 65 more Cars like this
235 Civic 9,000 78,000 43 more Cars like this

Figure 1: MusiqLens Example

In this paper, we solve the “Many-Answer Problem” start-
ing from a user’s point of view. Psychological studies have
long shown that human beings are very capable of learning
from examples and generalizing from the examples to similar
objects [24, 30, 28]. In a database querying context, the first
screen of data can be treated as examples of a large dataset.
Since users can expect more items similar to the examples,
we should make them as representative as possible.

To accomplish the above task, we propose a framework
called MusiqLens, as part of the MUSIQ project [1] from
the University of Michigan. MusiqLens is designed to: i)
automatically displays the best representatives result tuples
in the first screen of results when the result set is large,
ii) at user’s request, displays more representatives similar
to a particular tuple, and iii) automatically adapt to user’s
subsequent query operations (selections and joins). This
is exemplified in Fig. 1. Notice that each tuple represents
many cars with similar Price and Mileage. The represen-
tatives naturally fragment the whole dataset into clusters
such that cars of various price and mileage range are shown.
The representatives themselves have a high probability of
being what the users want. If they are not, they can lead
to more similar items. On the right side of each represen-
tative tuple, the number of similar items is displayed. A
hyper-link is provided for the user to browse those items.
Suppose now the user chooses to see more cars like the first
one. Since they cannot fit in one screen, MusiqLens shows
representatives from the subset of cars (Fig. 2). We call this
operation “zooming-in”, in analogy to zooming into finer
level of details when viewing an image. After seeing the
first screen of results, if the user now has more confidence to
further lower the price condition (since there are more than
100 cars with price around $10k), she could add a condition
price < 10,000. The next screen of results are generated
with the same spirit. By always showing the best represen-
tatives from the data, we enable users to quickly learn what
is available in the data without actually seeing all the tu-
ples. We have built a prototype of MusiqLens. See [18] for
a demonstration. 1

1.2 Challenges
Several challenges must be addressed before one can con-

struct an effective interface such as the one shown in Fig. 1.
We discuss these below. Let the first page of results be
limited to k tuples. We call these tuples on the first page
representatives of the whole result set.

Representation Modeling Our first problem is to de-
termine what it means for a small set of points to “represent”

1Note that MusiqLens was named DataLens in the demon-
stration paper.

ID Model Price Mileage Zoom‐in
643 Civic 14,500 35,000 71 more Cars like this
943 Civic 14,900 25,000 63 more Cars like this
987 Civic 14,700 28,000 55 more Cars like this
121 Civic 14,300 40,000 45 more Cars like this
993 Civic 14,100 43,000 40 more Cars like this
937 Civic 13,900 47,000 37 more Cars like this

Figure 2: After Zooming on First Tuple

a much larger data set. How can we choose between two (or
more) choices of possible representatives? Although it is
generally accepted that humans can learn from examples,
to our knowledge there is no gold standard for generating
those examples.

A naive approach is to display results sorted by some at-
tributes. This approach only presents to users a very small
fraction of results at the boundary of the value domain and
makes it impossible to find other tuples (for example, a car
that balances the price and mileage). Should we uniformly
sample k tuples from the results? While this can reflect the
density of data distribution, it misses small clusters that
may interest the user. Should we sample the results using
density biased sampling [25] instead? We need to answer
these questions and find a metric that matches human in-
formation seeking behavior.

Representative Finding Challenge Once the repre-
sentation model is decided, we need to efficiently find rep-
resentatives for the result set that are “best” in this model.
MusiqLens will impose some overhead, but the waiting time
perceived by the user should not be significant relative to
the time the database server needs to finish the query.

Query-Refinement Challenge In the application sce-
narios of interest to us, such as a used car purchase or a ho-
tel booking, users are typically exploring available options.
Queries will frequently be modified and reissued, based on
results seen so far. For example, Ann may decide to restrict
her search to cars with less than 60,000 miles (instead of
the 80,000 originally specified). In addition, once we show
representative data points we should permit users to ask
for “more like this,” an operation we call zooming in. See
Fig. 2. Such operations must be fast, which means that we
can probably not afford to recompute representatives from
scratch.

1.3 Contributions
Our first contribution is the MusiqLens framework for

solving the “Many-Answers Problem” in database search.
We propose to generate best representatives from a result
set to show on the first result page. Based on the repre-
sentatives, users can obtain a global and diversified view
of what is available in the data set. Users can drill down
by choosing to view more items similar to any tuple in the
screen.

Our second contribution is the development of a represen-
tation model and metric. Since the ultimate purpose is for
users to learn about the data, we compared several popular
candidates with a user study. Results are reported in Sec. 2,
and show that k -medoid clustering with minimum average
distance to be the technique of choice.

The third contribution is a fast algorithm to find repre-



sentative data points. Based on the cover-tree structure,
we are able to generate high-quality k -medoids clusters, for
metrics of average-distance or max-distance. This algorithm
is presented in Sec. 3. Experiments show the distance cost
and computational cost are both superior over the state-of-
the-art.

The fourth major contribution is algorithms for maintain-
ing representative samples under common query operations.
When a query is applied, some of the original samples may
still qualify to be in the answers and some are not. How
to generate new representative samples without rebuilding
the index from scratch? We devised algorithms for handling
selection and projection operators such that we always have
a valid cover tree index, and we can incrementally adjust
the set of representatives in response to query refinement.
These algorithms are presented in Sec. 4.

Our final contribution is a thorough experimental study of
our algorithms, compared with the state-of-the-art competi-
tor (R-tree based algorithm), presented in Sec. 5. Experi-
ments show that: i) for generating initial representatives, we
achieve better quality results (in terms of distance metric) in
shorter time, and ii) our algorithms can adapt to selection
and projection queries efficiently while R-tree based algo-
rithms cannot.

2. WHAT IS A GOOD SET OF REPRESEN-
TATIVES

Given a large data set, our problem is to find a small
number of tuples that best represent the whole data set. In
this section, we evaluate various options. Note that statisti-
cal measures, such as mean, variance, skew, moments, and
a myriad of more sophisticated measures, can be used to
characterize data sets. While such measures can be impor-
tant in some situations, we believe they are not suitable for
lay users interested in data exploration. Even for techni-
cally sophisticated people like members of our community,
a few sample hotel choices convey a much better subjective
impression than statistical measures of price and location
distributions. As such, we only consider using selected tu-
ples from the actual result set as a representative set.

2.1 Candidate Representative Choices
We consider the following methods for choosing represen-

tatives:

1. Random selection. Generate uniformly distributed
random numbers in the range of [1, < Data Set Car-
dinality >] and use them as index to select cars as
samples. This is a baseline against which to compare
other techniques.

2. Density biased sampling. It is argued that uniform
sampling favors large clusters in the data and may miss
small clusters. We therefore use the algorithms by
Palmer and Faloutsos [25] to probabilistically under-
sample dense regions and over-sample sparse regions.

3. Select k-medoids. A medoid of a cluster of data
points is the one whose average or maximum dissim-
ilarity is the smallest to other points. We denote the
two kinds of medoids as avg-medoid and max-medoid,
respectively. Under the most commonly used Euclidean
distance metric, we select k avg-medoids and max-

medoids from the data. Note that k-means cluster-
ing is frequently used, and is very similar. We do not
consider that since the mean values obtained may not
represent actual data points, and so may mislead users.

4. Sort by attributes. Since sorting is the standard
facility provided in systems today, we consider this
choice as well. We note that sorting is one attribute
at a time in a multi-attribute scenario.

5. Sort by typicality. Hua et al. [12] proposed to
generate the most “typical” examples. They view all
data as independent identically distributed samples of
a continuous random variable, and they select data
points where the probability density function (esti-
mated from the data) has highest values.

In the rest of the paper we use the following abbrevia-
tions for each method: Random (random samples) , Density
(density-biased sampling), Avg-Med (avg-medoids), Max-
Med (max-medoids), Sort-<attr> (sorted by attribute<attr>),
and Typical (sorted by typicality).

2.2 Data
We obtained information about cars of model Honda Civic

from Yahoo! Autos. For each car, we have values for numer-
ical attributes Mileage and Price. The site limits the total
number of results for a particular type of car to 4100 items,
some of which do not have mileage or price information and
are removed. This leaves us with 3922 cars that we used in
our study.

In Fig. 3 we show representatives generated using all
above methods (note that all data have been normalized
to range [0, 1]). The whole dataset is shown in the back-
ground of each figure. We can see visually that sorting does
poorly, whether we sort first by price or by mileage. Even
sorting by typicality does poorly, giving us a few points near
the “center”, but no sense of where else there may be data
points. We also see that Avg-Medoids, Max-Medoids and
Density-biased Samples all appear to do much better than
random samples. We further see that Max-Medoids seems
to choose points that delineate the boundary of the data set
whereas Avg-Medoids gives us points in the “center” of it,
with density-biased samples somewhere in between.

2.3 User Study
The goal of choosing representative points is to give users

a good sense of what else to expect in the data. While
each of us can form a subjective impression of which scheme
is better by looking at Fig. 3, we would like to verify this
through a careful user study. Towards this end, we recruited
10 subjects, and showed them the seven sets of representa-
tive points in random order, without showing them anything
else about the data, and not telling them that these were all
for the same distribution. For each set of representatives,
we sought to elicit from the users what the rest of the data
set may look like.

Eliciting information regarding an imagined distribution
is very tricky. We cannot get into the head of the user! Af-
ter considering many alternatives, we settled on asking the
users to suggest a few additional points that they would ex-
pect to see in the data set. (We required these points not
to be “too close” to the representatives provided or to one
another – but all of our subjects naturally adopted this con-
straint without explicit direction from us). We require that
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Figure 3: Samples Generated Using Different Meth-
ods. Light points are actual data, and dark points
are generated samples.

the points suggested by the user can not be any existing
point. Given a set of predicted data points, we can measure
how far these predictions are from actual data set values.
For each point in the dataset, we find the distance to the
closest point in the predicted set. We call this the prediction
error distance for that data point. If the minimum predic-
tion error distance is small, that tells us that an individual
predicted point is good, but says nothing about the overall
data set. If the maximum prediction error distance is small,
that tells us that there is no very poor prediction – the user
has not been misled about the shape of the data set. Finally,
if the average prediction error distance is small, that gives
us a global metric of how well the set of predicted points

as a whole match the actual data set. We refer to these
three metrics as MinDist, MaxDist, and AvgDist, respec-
tively. We computed values for all three, averaged across
all participants. The results of AvgDist and MaxDist are
shown in Fig. 4 (a), and MinDist is shown in Fig. 4 (b)
using a different scale in the y-axis.
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Figure 4: Average Distance Results for the Seven
Methods

In Fig. 4 (a), avg-medoids (Avg-Med) stands out as the
best based on AvgDist measurement, while max-medoids
(Max-Med) is the best in MaxDist measurement. For MinDist
measurement (Fig. 4 (b)), the winner is not clear. Among
the two best choices, avg-medoids has a smaller value than
density-biased sampling (0.00161 vs. 0.00253). However,
the values are too small to be statistically significant. We
calculated the statistical significance using Mann-Whitney
test to verify the above observation. p-values are shown
in Table 1. The first row shows the p-values of Avg-Med
against others under the AvgDist metric, second row shows
that of Max-Med against others under MaxDist metric, and
the third row shows Avg-Med against others under MinDist
metric. All values are significant, except one – Avg-Med
vs. Density under MinDist metric, meaning that the two
are similar in performance. Since Avg-Med is clearly better
than Density under AvgDist metric, it is overall more de-
sirable. In summary, if we consider AvgDist and MinDist
metric, avg-medoids is the choice; if we consider MaxDist,
max-medoids is the best.

The conclusion from the investigation described above is
that k -medoid (average) cluster centers constitute the repre-
sentative set of choice. k -medoid (maximum) cluster centers
may also make sense in a few scenarios. Even though the
rest of the paper will focus only on the former, computation
of the latter is not that much different, and the requisite
small changes are not hard to work out. For the rest of the
paper, we refer to average medoids when we use the term
medoid. Formally, for a set of objects O , k -medoids are a
subset M from O with k objects, which minimize the av-
erage distance from each point in O to the closest point in
M .

3. COVER-TREE BASED CLUSTERING AL-
GORITHM

Clustering has been studied extensively. Many clever tech-
niques have been developed, both to cluster data sets from
scratch and to cluster with the benefit of an index. See Sec. 6
for a short survey. Unfortunately, none of these techniques
address the query-refinement challenge or even support in-



Table 1: p-value of Mann-Whitney Test
Random Avg-Med Sort-Mile Density Sort-Price Max-Med Typical

AvgDist, Avg-Med vs. <0.0001 NA <0.0001 0.0087 <0.0001 <0.0001 <0.0001
MaxDist, Max-Med vs. 0.0228 <0.0001 <0.0001 <0.0001 <0.0001 NA <0.0001
MinDist, Avg-Med vs. 0.0011 NA 0.0018 0.1922 <0.0001 0.0104 0.0446

cremental recomputation. As such, we must develop a new
algorithm to meet our needs.

We propose using the cover-tree [4] data structure for clus-
tering. The properties of cover-tree (which will be discussed
shortly) make it a great structure for sampling. This im-
mediately reduces the problem of finding medoids from the
original data set to finding medoids in the sample. We then
use statistics gathered during the tree construction phase
to help find a good set of medoids. We begin by providing
some brief background on the cover-tree in Sec. 3.1, followed
by our novel contributions in the subsequent sub-sections.

3.1 Cover-tree
Cover-tree was proposed by Beygelzimer, Kakade, and

Langford in 2006 [4]. It is so named because each level
of the tree is a “cover” for the level beneath it. For conve-
nience in explanation, we assume that the distance between
any two data points is less than 1 (we will see later how this
condition can be relaxed). Following convention, we num-
ber the levels of the tree from 0 (root level). For level i,
we denote the value of 1/2i as D(i), which is a monotoni-
cally decreasing function of i. The condition that distance
between any two points is less than 1 can be relaxed if we
allow i to be negative integers. A cover-tree on a data set S
has the following properties for all levels i ≥ 0:

1. Each node of the tree is associated with one of the data
points sj .

2. If a node is associated with data point sj , then one of
its children must also be associated with sj (nesting).

3. All nodes at level i are at separated by at least D(i)
(separation).

4. Each node at level i is within distance D(i) to its chil-
dren in level i+ 1 (covering).

Fig. 5 shows a cover-tree of scale 2 for data points s1 to
s7 in 2-dimensional space. Nesting property is satisfied by
repeating every node in each lower level after it first appears.
Covering property ensures that nodes are close enough to
their children. Separation property means that nodes at
higher levels are more separated (e.g., nodes s1, s4, s5 are
far away from root node s7). Points s1 and s2 are at a
larger distance from each other than are s5 and s6. Thus
s2 is a child of s1 at level 2 while s6 is a child of s5 at
level 3 (where inter-node distance is smaller). We can prove
that the distance from any descendant to a node at level i is
at most 2×D(i) (using the convergence property of D(i)).
Cover-tree naturally provides a hierarchical view of the data
based on the distance among nodes, which our algorithms
will exploit.

The cover-tree shown in Fig. 5 is a theoretical implicit
tree, where every node is shown. It is neither efficient nor
necessary to repeat a node when it is the lone child of itself
in intermediate levels (for example, s7 at level 1 and 2).
In practice, we use an explicit tree, where such nodes are
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s7

s7

s1 s4s5s7
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s3s6s5 s4

Figure 5: Cover Tree Example

pruned. So every explicit node either has a parent other
than itself or or a child other than a self-child. We call the
rest of the nodes naive nodes. We use the implicit cover-
tree throughout this paper for the ease of understanding.
All algorithms in this paper can be easily adapted to the
explicit tree.

A very important property of cover-tree is that the subtree
under a node spans to a distance of at most 2×D(i), where i
is the level at which the node appears. We call this distance
the span of the node. For example, point s5 first appears
in level 1. The actual span of s5, however, is best obtained
when it appears again at level 2, where it has a non-self child.
In both levels, we are in fact trying to get the range of the
same subtree. The span obtained at level 2 is half of that
obtained at level 1, and it gives more accurate information
about the subtree. In the rest of the paper, we always use
span to refer to the least possible span that can be obtained
for the subtree, which is achieved by descending from the
root of the subtree to the node that has a non-self child.

The explicit cover-tree has a space cost to O(n), and it
can be constructed in O(n2) time. The tree is bounded in
width (number of children of any node) and depth. For more
details regarding properties and algorithms in cover tree, we
refer the readers to the original paper [4] since they are out
of the scope of this paper.

3.2 Using the Cover Tree

3.2.1 Additional Statistics
In order to better grasp the distribution of data, we need

to gather some additional statistics of the subtree rooted at
each node si:

• Density. This is the total number of data points in
the subtree rooted at node si. Note that this includes
all descendants of the node. For all nodes at the same
level in the cover tree, a larger density indicates that
the region covered by the node is more densely popu-
lated with data points.

• Centroid. This is the average value of all data points
in the subtree. Assume that there are T points in
total in the subtree. For node si, if we denote the
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Figure 6: Distance Cost Estimation

N-dimensional points in the subtree as
−→
X j where j =

1, 2, ..., T , then Centroid(i) =
∑T

j=1
−→
Xj

T
.

We refer to the density and centroid for the subtree under
node s as DS(s) and CT (s), respectively. The exact use of
density and centroid of a node will become apparent in later
sections. Both values can be collected when the tree is being
built. As each point is inserted, we increase the density for

all its ancestors. Assume the new data point inserted is
−→
X j ,

then for each node i along the insertion path of the new
point, we update the density and centroid as follows:

DS(s)′ = DS(s) + 1

CT (s)′ =
CT (s)×DS(s) +

−→
X j

DS(s) + 1

Both operations can be accomplished with a minor change
in the recursive insertion algorithm of the cover tree [4].

3.2.2 Distance Cost Estimation of Candidate k-medoid
Using density and centroid information, we can obtain an

estimate of the average distance cost for a set of candidate k -
medoids, using any level of nodes in the cover tree, without
having to read the whole data set. We illustrate using the
example in Fig. 6, where we have 8 nodes (s1 to s8) and two
medoids (m1 and m2). Note that each node actually repre-
sents many other data points in the subtree. Also, these 8
nodes should form a cover of the tree - they should be all the
nodes in a certain level of the cover tree. An arrow means
the node is closest to the pointed medoid. The total number
of data points can be found by summing up the density of
each node. Since we do not want to read all data points
under a subtree, we use the centroid maintained at the root
to stand for the actual data points when calculating the dis-
tance to the medoid. For example, to calculate the total
distance from all data points under node s1, we compute
the distance from the centroid of s1 to m1, and multiply it
by its density. We do the same for all other nodes and sum
up the total distance. This value is then averaged over the
total number of points, and we have obtained an estimate
of the average distance cost.

3.3 Average-medoids Computation
We now introduce our algorithm for k average medoid

queries. We start by traversing the cover tree from the root
until we reach a level with more than k nodes. Assuming
this is at level number m, and there are t nodes in this level
of the tree. Following notations introduced earlier, we refer
to the set of nodes at level m as Cm. For convenience we call
this level of the tree the working level, since we find medoids
by considering primarily nodes in this level. The separation
property of the cover tree ensures that nodes in Cm spread
out properly. We can view data under each subtree as a
small cluster, whose centroid and density are maintained in

the root of the subtree. In most cases, m does not equal k.
The general approach in the literature is to group Cm into
k groups first, and then find the medoid for each cluster.
Usually, k seeds are first selected among the nodes, and the
rest of the nodes are assigned to the respective closest seed.
k-medoid clustering is NP-hard [10], so we usually try to
achieve a good local minimum in terms of distance cost from
data points to their medoids. There are two existing seeding
methods:

• Random. We can randomly choose k nodes to be the
seeds. This is the simplest method with the lowest
cost.

• Space-filling curves. Hilbert space-filling curve has
been shown to preserve the locality of multidimen-
sional objects when they are mapped to linear space
[19], a property which Mouratidis et al. [22] exploited
in their R-tree based clustering technique. We can ap-
ply the same idea in the cover tree. Nodes in Cm could
be sorted by Hilbert values, and k seeds chosen evenly
in the sorted list of nodes.

Seeds that are not properly chosen may lead the algo-
rithms to a local minimum with high cost. In this paper, we
use information provided by the cover tree to choose seeds
in a better way than the above techniques. Level m − 1
of the cover tree, which contains less than k nodes, pro-
vides hints for seeds because of the clustering property of
the tree. As usual, we denote nodes at level m − 1 as set
Cm−1. Intuitively, nodes in Cm that share a common parent
in Cm−1 form a small cluster themselves. When we choose
seeds, we should avoid choosing two seeds in one such clus-
ter. Since Cm−1 contains fewer than k nodes, we will not
have enough seeds if we simply choose one node from all that
share a parent. As introduced in Sec. 3.1, nodes in Cm−1

may have different maximum distance to their descendant.
As a heuristic, we choose more seeds from children of a node
whose descendants span a larger area. Meanwhile, nodes
with a relatively small number of descendants should have
low priority in becoming a seed, since the possible contri-
bution to the distance cost is small. The contribution of a
subtree to the distance cost is proportional to the product
of the density and span. We denote this special value as the
weight of a node. Based on this observation, we use a prior-
ity queue to choose seeds as follows. The key of the priority
queue is the weight of a node. Initially all non-naive nodes
in Cm−1 are pushed to the queue. We pop the head node
from the queue and fetch all its children. We first make sure
the queue has k nodes by adding children of the node with
largest weight. Afterwards, if any child has a larger weight
than the minimum weight of all nodes in the queue, we push
it to the queue. We repeat this process until no more chil-
dren can be pushed into the queue. The first k nodes in the
queue are our seeds. This procedure, CoverTreeSeeding(),
is shown in Algorithm 1.

Once the seeds are chosen, the rest of the nodes are as-
signed to their respective closest seed to form k initial clus-
ters. We can obtain the centroids of each cluster by com-
puting the geometric center of all nodes from their density
and centroid. Using each centroid as input, we can find the
corresponding medoid with a nearest neighbor query, which
is efficiently supported by the cover tree. For each final
medoid o, we call nodes in the working level that are closest



to o as its CloseSet. In the future, if the user adds a selection
condition and removes a large portion of the CloseSet, the
corresponding medoid may have to be eliminated. More de-
tails on how the nodes in the CloseSet affects the existence
of the medoid are in Sec. 4.2.

Algorithm 1 Cover Tree-based Seeding Algorithm

Input: S : list of nodes in level m of the cover tree
Input: T : list of nodes in level m-1 of the cover tree
Input: k : number of medoids to compute
Input: Q : priority queue for nodes with key being the

weight of a node
Output: O : list of seeds
minWeight = 0 {maintains the minimum weight of all
nodes in Q}
for node t in T do

if t is a naive node or leaf node then
T = T − t

else
Insert(Q, t)
if weight(t) < minWeight then
minWeight = weight(t)

end if
end if

end for
repeat
n = ExtractMax(Q)
boolean STOP = TRUE
if Size(Q) < k then

add all children of n to Q
update minWeight to smallest weight values seen
STOP = FALSE

else
for each child node c of n do

if weight(c) > minWeight then
Insert(Q, c)
STOP = FALSE

end if
end for

end if
until STOP
O = Exact the first k nodes from Q

Optionally, we can try to improve the clusters before com-
puting the final medoids. In the literature [20, 16], usually
a repeated updating process is carried out: the centroid of
each cluster is updated; nodes are re-assigned to the up-
dated centroids. This process repeats until stable centroids
are found. In this process, we can take into account the
weight of each node, similar to [16]. This procedure is out-
line in Algorithm 2. As another refinement step, we can use
cover-tree directed swaps. Literature [23] suggests that we
can swap a medoid with other nodes and see if this leads to a
lower cost. Usually it is the step that computes the cost that
is expensive. We have at our disposal a formula that can es-
timate the distance cost, as described in Sec. 3.2.2. Instead
of swapping with a random node, we can swap with nodes
that was assigned to the closest neighbor medoid. Both mea-
sures significantly cut the computational cost. The details
are omitted here due to limited available space.

4. QUERY REFINEMENT

Algorithm 2 Compute Medoids

Input: S : list of nodes in level m of the cover tree
Input: L: list of seeds
Input: k : number of medoids to compute
Output: M : list of medoids

for node s in list S do
assign s to the seed in L whose centroid is closest
{forming the initial clusters}

end for{denote the initial clusters as C}
repeat

for ci in C, i ∈ [1, k] do
mi = the node in ci closest to geometric center of ci

end for
for node s in list S do

assign s to closest medoid in M
end for

until no change in M

In practical dataset browsing and searching scenarios, users
often find it necessary to add additional filtering conditions
or remove some attributes, often based on what they see
from the data. In interactive querying, the time to deliver re-
sults to the user is most critical. Expensive re-computation
that causes much delay (e.g., seconds) for the user severely
damages the usability of the system. In this section, we show
how our system can dynamically change the representatives
according to the new conditions with minimal cost.

4.1 Zoom-in on Representative
When the user sees an interesting tuple from the list of

representatives, she can click on the tuple to see more similar
items. This operation can be efficiently supported using the
cover tree structure. Recall that during the initial medoid
generation phase, every final medoid is associated with a
CloseSet of nodes in the working level. Those nodes are the
set of nodes that is closest to the medoid (relative to all
other medoids). Once a medoid s is chosen by the user, we
should generate more representatives around s. We proceed
as follows. We fetch all nodes in the CloseSet of s, and de-
scend the cover tree to fetch all their children and store them
in a list L. This should give us a sample of the nodes/data
around medoid s. We treat nodes in list L as the nodes in
our new working level. We can run the same algorithm in
Sec. 3.3 on nodes in L to obtain a new set of medoids.

4.2 Selection
When a user applies a selection condition, nodes in the

working level are very likely to change. As mentioned in
Sec. 3.3, existing representatives (medoids) will be elimi-
nated if their CloseSet of nodes are removed by the selection
condition. In this section, we detail how to effectively find
new medoids when a selection is applied.

First we discuss the effect of a selection condition on each
node in the working level. We start with this step because
of the procedure we use to generate the medoids. Since
the user queries a single table, we can consider a selection
condition as a line (in the 2D case) or hyperplane (in 3D or
higher dimensionality) in the data universe. For simplicity
we now discuss only the 2D case, but high dimensional cases
are easy to generalize to. For example, if we use Mileage as
x -axis and Price as y-axis in 2D space, adding the selection
condition “Price < 12000” removes all data points that are
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Figure 7: Effect of Selection on a Node

above the line y = 12000. Recall that for each node in the
cover tree in level i, all its children fall in a circle with radius
D(i), and all its descendants are in the circle with radius
2 × D(i) (span). Thus we can determine the impact of a
new query condition on a node and its subtree by considering
the relationship between the query line and the span of the
node. For each node and its subtree can be classified into
one of the following categories: 1) completely invalidated,
2) partially invalidated, or 3) completely valid. Category 1
nodes are removed from consideration and category 3 nodes
stay intact.

For a category 2 node, once a selection condition is ap-
plied and a significant portion of the possible region that
a node’s descendants can span becomes invalid, the origi-
nal data point is no longer a suitable approximation of the
center of the subtree. The span value of the node is also
inaccurate. The example in Fig. 7 shows a category 2 node,
node A. The point associated with A is denoted as a, and
it is located in the center of the largest circle, which is the
span of A. Assume that we have a selection condition “price
< 12000 ”. For each child s1 to s7, the radius of the respec-
tive circle denotes the span, and the numerical value denotes
the density. After the selection, child nodes s1 and s2 are
invalid, and s3 is partially valid.

For partially valid nodes, we use their children to approx-
imate the geometric center of the subtree. Specifically, we
treat each child as a point with weight, and calculate the
geometric center as the weighted average of all children. We
also update the span using the child who is the farthest from
the geometric center. Continue with the example in Fig. 7.
By averaging over all valid children, we obtain point b as the
estimated geometric center of all valid points of the subtree.
Now node s6 is the farthest child from point b. Denote the
span of s6 as s6.span, and the distance from s6 to b is d. The
new span is estimated as the sum of d and s6.span. How-
ever, there is a recursion here, since the children can also be
partially valid (for example, node s3). When this happens,
we estimate the valid percentage of the children as follows.
For child node s, in 2D case, we calculate the area around
s within distance s.span, and calculate the percentage that
is still valid under the selection condition. This can be eas-
ily extended to higher dimensions. We take into this valid
percentage by multiplying it with the node’s weight.

After applying the selection condition, if there are less
than k valid or partially valid nodes in the working level,
we descend the cover tree until a level that has more than k
nodes. On the other hand, if we still have more than k nodes
in the working level, we can work on the nodes that remain
or descend the tree to fetch new nodes. Next, we can re-run
the medoid generation algorithm in Sect. 3.3 over the new

set of nodes obtained from procedures detailed previously.
This gives us a set of updated medoids.

4.3 Projection
We assume the user removes one attribute at a time, which

is a reasonable assumption in interactive querying. There
is usually some “think time” between two consecutive user
actions. Our goal is to refresh the representative without
incurring much additional waiting for the user.

Once an attribute is removed, the cover tree index is no
longer a valid reflection of the actual distance among data
points. Thus the brute-force approach is to re-construct a
new cover tree without the attribute and re-compute the
medoids. We want to do better than that. Our observations
is that although the pair-wise distance between the samples
may change dramatically after removing the attribute from
consideration, the samples should still represent the data
relatively well. Thus we can still use the cover tree as a
sampling tool - we sample the data at a level in the cover-
tree regardless of the removed attribute.

Our approach is to use the same set of nodes in the work-
ing level we used to generate the previous medoids. We re-
move the dimension chosen by the user. These nodes serve
as our primary samples of data. Since the cost is very low
to re-run the medoid generation algorithm once we have the
seeds, the key is to find a good set of seeds. Using the
cover tree as direction is no longer viable: after removing a
dimension, nodes that are previously far away can become
very close. Also, the weight and span are less accurate in the
new distance measure, which may severely affect the quality
of generated seeds. So we use Hilbert sort re-order all nodes,
and find seeds as outlined in Sec. 3.3. The rest is the same
as described in Sec. 3.3.

5. IMPLEMENTATION AND EXPERIMENTS

5.1 System Architecture
The architecture of MusiqLens is shown in Fig. 8. When

a query is initially sent from the client user interface to the
DBMS, query results are fed to MusiqLens, which interacts
with the client in this query session. MusiqLens then builds
a cover tree index on the query results. This step can be
done very efficiently through cover tree’s construction algo-
rithm. One of the features of cover tree is that it can be
constructed efficiently in an online fashion. In our experi-
ment, the index for a dataset comprising 130k points in 2D
space is built in 0.7 seconds on an Intel Pentium Dual Core
2.8GHz machine with 4GB DDR2 memory. It takes Post-
greSQL server 2.7 seconds to output the same set of data
(we used a selection without any predicate).

Beside the indexer, the core of MusiqLens contains three
other parts: the k -medoid generator, which generates the
initial medoids after the user sends a new query to the
database; the zooming operator, which is responsible for
generating new representatives after user performs a zoom-
ing operation; and the query operator, which dynamically
adjusts the medoids according to user’s new query condi-
tions. MusiqLens can be implemented as a module in a
DBMS or a layer between the client and the DBMS. The
client interface we built is based on SheetMusiq [17], which
is a spreadsheet direct manipulation interface for querying
a database.
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Figure 8: MusiqLens System Architecture

5.2 Experimental Results
The experiments are divided into two parts. First, we

want to show that the cover tree based clustering algorithm
generates high quality medoids with low time cost. For this
we compare our algorithm with R-tree based algorithm in
[22], which is the most related work and state-of-the-art.
Second, we show that our query-adaptation algorithms work
effectively at low time cost and yet do not compromise in
quality. We compare algorithms for selection and projection
with computing the medoids from scratch.

5.2.1 Comparison with R-tree Based Methods
We use both real and synthetic data sets for this com-

parison. We use the LA data set from the R-Tree Portal
(http://www.rtreeportal.org). It contains 130k million rect-
angles and we take the center of each rectangle as a data
point. We generate synthetic data containing 2-dimensional
data points that follow a Zipf distribution with parameter
α = 0.8. We use 5 sets of data of increasing cardinality:
256K, 512K, 1M, 2M, and 4M. For all data sets, we normal-
ize each dimension of the data to the range of [0, 10000]. We
also vary the value of k, the number of medoids to compute.
Comparing with R-tree based algorithms, we measure two
metrics:

• Time: time to compute the medoids

• Distance: the average Euclidean distance from data
points to their respective medoid.

For convenience, we refer to the cover tree based method
as CTM, and R-tree based method as RTM. In the figures
below, legend for CTM is “Cover Tree”, and that for RTM
is “R-tree”.

Fig. 9 shows the time and distance cost with synthetic
data sets with growing cardinality, with a fixed value of k
at 32. We can see that CTM (Cover Tree based Method)
consistently outperforms RTM (R-Tree based Method) in
both metrics. Fig. 9 (a) shows that both methods are stable
and scalable in time with a growing size of the data set. The
primary reason is that, once the R-tree or cover tree index is
built, the cost depends more on the value of k (which we will
see soon) than on the size of the data. Both algorithms fetch
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Figure 9: Synthetic Dataset of Various Sizes

the upper levels of the data structure. For a fixed value of k,
the number of nodes that need to be read from the disk does
not vary significantly with the size of the data. The reason
CTM is faster is it brings less data from the disk. Each node
of the cover tree is also a data point, and it is smaller than
an R-tree node. Fig. 9(b) shows that the distance cost stays
stable as the data size varies. This is expected since the
medoids are found mainly on the upper levels of the data
structure. It also shows that cover tree method produces
medoids with much smaller distance cost. In sum, cover
tree based method generates better medoids at a lower cost,
regardless of the size of the data.

Fig. 10 shows the trend of time and distance cost with
the growth of the number of medoids to compute (k), for
a synthetic data set with cardinality of 1024k. We can see
that distance from CTM is consistently lower than RTM
while using almost half of the time, affirming the conclusion
before.
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Figure 10: Synthetic Dataset of Various k Values

Fig. 11 shows results on the real data set, LA, with various
values of k. The trend in time is the same as we observed
in synthetic data, where CTM outperforms RTM by a large
margin. CTM also produces better quality medoids than
RTM.
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5.2.2 Query Refinement
Having established that cover tree based method is supe-

rior than the R-tree based method in generating the initial
representatives, we want to see if user issued refinement can
be efficiently processed. Since we have no competitor in this
incremental re-computation of medoids, we use the absolute
running time as the measurement metric. For quality of re-
sults, we compare against re-computing the medoids from
scratch. For the latter case, when a user issues a selection
condition or removes an attribute, we re-build a new cover
tree on the data after the query. Thus we are comparing the
incremental re-computation algorithms with expensive fresh
re-computation.

Selection. We apply selection conditions of various se-
lectivity on a synthetic data set of cardinality 1024k. The
selectivity values are 0.8, 0.6, 0.4, and 0.2. We use selection
conditions such as “x < 4500” to remove a portion of the
data. Since re-constructing a cover tree takes much more
time than computing the medoids, there is little meaning
to show the time difference. The running time for our al-
gorithm is show in Fig. 12. Since the nodes at the working
level can be already cached in the memory when computing
previous medoids, we do not need to fetch them from the
disk. Possible I/O is still necessary if a large portion of the
nodes are disqualified and we need to descend the tree to
fetch lower level nodes. The time for selection is well below
0.01 seconds, which is orders of magnitude smaller than re-
building the index. In Fig. 13 we show the comparison in dis-
tance cost, for both synthetic and real data. The synthetic
data is of cardinality 1024k. We also use the LA data set.
We can see that incremental re-computation of medoids us-
ing the proposed algorithm (legend “Incremental”) provides
comparable quality of medoids. There is little, if noticeable
at all, difference in terms of distance cost. The time saved
is with orders of magnitude, with no compromise of result
quality.
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Figure 13: Selection Performance

Projection. We take the same approach as for selection -
compare the incremental algorithm with re-computing from

scratch. The number of medoids to compute is 32.
We assume that the user projects one attribute at a time.

We start with 4 different artificial data sets, each of dimen-
sion 5, 4, 3, and 2, respectively. We then remove one dimen-
sion from each data set and compare incremental approach
with re-computing from scratch. Fig. 14 shows the result.
The left figure shows the comparison of absolute distance
cost, while the right shows the percentage of increased dis-
tance cost using the incremental approach. We can see that
the percentage of result compromise is consistently below
10%. In interactive querying, users may not notice the 10%
of difference in distance cost, but they will surely notice the
difference in time between milliseconds and seconds. Thus
we think it is still valuable to save the time of re-building
the index and re-computing the medoids at the cost of small
deterioration of result quality. Re-computation is the last
resort, when the user removes a significant number of di-
mensions.
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Figure 14: Projection Performance on Single Di-
mension

5.3 Fast Representative Choice
Cover tree construction is moderately fast – under one

second for a moderate size data set (LA) with 131k tu-
ples. Fig. 15 shows the time to build a cover tree index
for synthetic data sets, with cardinality from 256k up to
4M. We can see that the construction time scales up grace-
fully. While it is not too expensive from an absolute time
perspective, even one second may be too much time to add
to how long a user waits to see results.

The encouraging results presented above for incremen-
tal computation offer a simple way around this. We pre-
compute the cover tree for the data set – maintenance of
this structure is comparable to the cost of incremental in-
dex maintenance. Then every query against the data set,
including the very first, can be treated as a “refinement” of
a base query that returns the whole data set. With this,
we have an overhead of only 10s of milliseconds per query,
a level that is quite affordable.

6. RELATED WORK
Various methods have been proposed for K-medoid clus-

tering. PAM (Partitioning Around Medoids) [15] starts with
k randomly selected objects and iteratively improves upon
them until the quality of clustering (measured by the aver-
age distance to medoids) converges. In each iteration, PAM
considers exchanging any of the current k -medoids with any
other data point and choosess the swap that leads to the
best improvement. This is prohibitively expensive to run on
large data sets. CLARA (Clustering LARge Applications)
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[15] attempts to reduce the cost by first randomly sampling
the data set and then performing PAM on the samples. In
order to ensure the samples are sufficiently random, CLARA
draws multiple (e.g., 5) sets of samples and uses the best
output as the final result. However, in order to estimate
the quality of the result, CLARA still needs to compute
the distance from all data points to the candidate medoids.
This would require scanning the whole data set at least once
in each iteration, which is again inefficient for large data
sets. Ng and Han’s CLARANS (Clustering Large Applica-
tions based on RANdomized Search) [23], instead of con-
sidering all possible swaps like PAM, randomizes the search
and greatly reduces the cost. CLARANS is a main-memory
clustering technique, and it also requires scanning the whole
data set. For MusiqLens framework, main-memory methods
will not suffice since we aim at large data sets.

Some other work uses disk-based indices to speed up the
clustering. FOR (focusing on representatives) [6, 8] and
TPAQ (tree-based partitioning querying) [21, 22] both as-
sumes that the data set is indexed by an R-tree. FOR takes
the most centrally located object out of each leaf node and
runs CLARANS on the samples. This means that FOR has
to read the entire data set to obtain the samples. TPAQ
starts from the root of the R-tree until it reaches a level
where there are more than k nodes. It then uses Hilbert
curve to sort the nodes and evenly chooses k seed nodes out
of all nodes in that level. Other nodes are signed to their
closest seeds and thus forming small clusters. The geomet-
ric center of each cluster is estimated and used to perform
a nearest-neighbor (NN) query to fetch the closest point in
the data set. The result of each NN query is the medoid of
the corresponding cluster. Experiments in [22] shows that
TPAQ improves both result quality and computational cost
over FOR. FOR and TPAQ are advantageous compared to
main-memory methods for the ability to handle large data
sets, which is the first requirement of MusiqLens. The sec-
ond requirement, query adaptation, however, remains un-
satisfied by either FOR or TPAQ. For interactive browsing,
users may not be so critical on the quality of the medoids,
but the lack of interactive refinement and navigation would
make the system unusable.

Pan et al [26] proposed an information-theoretic approach
for finding representatives from large set of categorical data.
They treat each data element as a set of features and obtain
a data distribution from the presence of features. It is un-
clear how to extend the proposed techniques to numerical
data, which is the focus of this paper.

Recent work by Li et al [16] proposed generalized group-by
and order-by for SQL. Their grid based method is for clus-
tering only, without actually finding the medoid for each
cluster. They use a separate ordering function to choose

which data point to output for each cluster. To apply tech-
niques in [16] to MusiqLens framework, we would have to
find a center for each cluster. One of the methods is to find
the point that is closest to the geometric center of the clus-
ter. This would require an additional scan of data or an
additional index structure. In addition, [16] does not sup-
port zooming, which is an essential feature of MusiqLens.
DataScope [32] provides an interface for zooming in and out
of a data set by ranking. Common built-in ranking functions
are provided (e.g., ranking by the number of publications of
authors). The system supports browsing but no searching
nor adaption to multiple searching criteria.

Computing k -medoid is related to the problem of clus-
tering. The goal of clustering is to find the naturally close
groups in a set of data, where the number of clusters is
not known or given a priori. Many efficient techniques have
been developed for clustering, for example, BIRCH [34], DB-
SCAN [7], and CURE [11] (see [33] for a comprehensive sur-
vey). The difference between the two problems is, one is to
find the natural groupings in the data, and the other is to
optimize a distance cost. The cluster centers that naturally
exist in the data may not be the best k -medoids, which is
shown in [22]. Projection adaptation (Sec. 4.3) is related
to the problem of subspace clustering, which has been ex-
tensively studied [3, 27]. Subspace clustering attempts to
find clusters in a data set by selection the most relevant di-
mensions for each cluster separately. In our case, the set of
dimensions to consider are dynamically determined by the
user.

Another related problem that has attracted increasing at-
tention is query result diversification [31]. Both [31] and this
paper attempt to provide better usability when the number
of tuples that can be shown are limited. We believe the two
are different solutions under different situations. Diverse re-
sults needs ordering of attributes from experts while we do
not.

7. CONCLUSION
In this paper, we propose the MusiqLens framework for

interactive data querying and browsing, where we solve the
“Many-Answers Problem” by showing users representatives
of a data set. Our goals are: 1) to find the representa-
tives efficiently, and 2) adapt efficiently when users refine
the query. We start by identifying what is a good set of
representatives by conducting a user study. Results show
consistently that k-medoids are the best amongst seven op-
tions. Towards the first goal, we devised cover tree based
algorithms for efficiently computing the medoids. Experi-
ments on both real and synthetic data sets shows that our
algorithm is superior over our competitor in both time and
distance cost. Towards the second goal, we proposed al-
gorithms to efficiently re-generate the representatives when
users add selection condition, remove attributes, or zoom-in
on frequentatives.

A larger context for the work presented in this paper is
the concept of direct manipulation [17, 14, 29], where a user
always has in hand data representing some partial result
of a search. Thus, someone looking for used cars is shown
a few representative cars upon entering the web site, and
incrementally refines the result set in multiple steps. The
work presented in this paper provides a means for databases
to show meaningful results to users without requiring addi-
tional effort on their part.
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