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ABSTRACT
Solid state disks (SSDs) provide much faster random access
to data compared to conventional hard disk drives. There-
fore, the response time of a database engine could be im-
proved by moving the objects that are frequently accessed
in a random fashion to the SSD. Considering the price and
limited storage capacity of solid state disks, the database
administrator needs to determine which objects (tables, in-
dexes, materialized views, etc.), if placed on the SSD, would
most improve the performance of the system. In this paper
we propose a tool called “Object Placement Advisor” for
making a wise decision for the object placement problem.
By collecting profile inputs from workload runs, the advisor
utility provides a list of objects to be placed on the SSD by
applying heuristics like the greedy knapsack technique or dy-
namic programming. To show that the proposed approach
is effective in conventional database management systems,
we have conducted experiments on IBM DB2 with queries
and schemas based on the TPC-H and TPC-C benchmarks.
The results indicate that using a relatively small amount
of SSD storage, the response time of the system can be re-
duced significantly by considering the recommendation of
the advisor.

1. INTRODUCTION
Solid state disks (SSDs) have been introduced by a num-

ber of vendors in the last few years. SSDs provide persistent
data storage using a form of solid-state flash memory. To
the operating system, they appear just like a conventional
disk device. Unlike hard disks, which have a mechanical
latency associated with seeks and rotation, there is a very
small overhead for random access to data relative to sequen-
tial access. As a result, a solid state disk can support one to
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two orders of magnitude more random I/O operations per
second than a hard disk [8, 17].

Currently, SSDs are more expensive than traditional hard
disks when measured in gigabytes per dollar, or in terms
of sequential I/Os per second per dollar. However, SSDs
provide better value than hard disks if one measures ran-
dom I/Os per second per dollar [8]. Thus, SSDs provide an
opportunity to improve the performance of a system if it
typically incurs a lot of random I/O. At the same time, one
does not typically want to put all of one’s data on SSDs,
because the cost per gigabyte is higher than on a hard disk.
Ideally, one should put “just enough” data on SSD storage
so that a large fraction of the potential random I/O savings
can be realized. Beyond a certain point, the marginal gains
in random I/O saving may be small, and outweighed by the
increased cost of the extra SSD devices.

Consider Bob, the database administrator for a large cor-
poration.1 Bob is likely to need answers to the following
questions:

• If I bought a single SSD device that can accommodate
only part of my data, which data should be placed on
it?

• Given the answer to the previous question, how much
better would my performance be?

• Would it be worth the expense to purchase multiple
SSD devices?

• What aspects of SSD performance should I care most
about when choosing an SSD product?

If these questions are not adequately addressed, then Bob
could easily make one of the following poor decisions:

• Buying a reasonable amount of SSD storage, but us-
ing it suboptimally, so that the apparent benefits are
smaller than what is possible.

1The questions listed would also be appropriate for the ad-
ministrator of any complex system with persistent storage,
such an an operating system or file system, but our focus in
this paper is on database systems.



• Not buying any SSD storage, because a trial-and-error
approach to placing objects on SSDs did not yield sig-
nificant savings, even when there were significant ben-
efits available with an informed data placement choice.

• Incurring the cost of buying too much SSD storage,
when less SSD storage would have performed just as
well.

• Buying the wrong kind of SSD storage, with the as-
pects of SSD performance most critical to the applica-
tion having not been the aspects on which the product
choice is made.

These are real concerns in today’s marketplace. Consider
the following comment made by the editor of a market sur-
vey on the potential use of solid state disks in industry [13]:

The fact that over half the responders cited per-
formance guarantees as a gating factor to buying
SSDs suggests that users have seen far too many
unmet promises about performance in other as-
pects of their IT experience... One problem is
that the application speedup in practise is going
to vary according to the hardware environment
and application. The pure performance of the
product does not tell the whole story.

Answering Bob’s questions in the context of a database
system is challenging.

• Current cost-based query optimizers can take account
of disk characteristics in order to estimate execution
times. However, until now, disk characteristics within
a single installation have typically been relatively uni-
form. Thus there has been little need for a database
utility to consider the various options for data place-
ment.

• Even if a query optimizer is intelligent enough to dis-
tinguish between sequential and random I/Os, there
are numerous run-time issues that make these esti-
mates extemely rough. For example, caching of data in
the buffer pool can radically alter the profile of physi-
cal data accesses.

• While a database administrator may have access to
certain kinds of run-time performance data about queries,
such data is relatively difficult to gather systemati-
cally without support from a database utility. Further,
performance data typically does not associate I/O be-
havior with data objects within a query. Thus it is
generally not possible to apportion the performance
numbers of a query to the individual objects (tables,
indices, materialized views, etc.) used by the query.

Our goal in this paper is to overcome these difficulties so
that a database administrator like Bob can make informed
decisions about object placement, and make good use of
limited SSD resources.

We have designed and implemented a tool that gathers
run-time statistics on I/O behavior from an operational database
residing on hard disk(s). By creating a benchmark instal-
lation in which each object is in its own tablespace, we are
able to gather information about the random I/O behavior
of each object without modifying the database engine code.

We profile the application workload in this benchmark in-
stallation to gather statistics for each database object.

We calibrate each SSD device off-line to determine its se-
quential and random I/O performance for reads and (sepa-
rately) for writes.

Based on the workload statistics and the device character-
istics, we determine which objects would get the “best bang
for the buck” by ranking them according to the expected
performance improvement divided by the size of the object.
We use a greedy heuristic to choose the highest-ranked ob-
jects one by one (in rank order) until no more objects fit
within our SSD space budget. These chosen objects are our
candidates for placement on the SSD device. We can create
a variety of configurations with different space-time trade-
offs by varying the SSD budget. We also compare the greedy
heuristic with a dynamic programming approach, which can
generate better configurations for a larger variety of SSD
space budgets at the expense of higher resource consump-
tion (memory and CPU).

To the best of our knowledge, ours is the first work that
shows how to cost-effectively make efficient use of available
SSD resources in an “industrial strength” database system,
and to provide guidance to database administrators about
the benefits to be expected from the purchase of SSD de-
vices.

We evaluate the performance of the placement advisor
on TPC-C and TPC-H-like workloads. We construct the
workloads to model a transactional database and an opera-
tional data store, respectively, that are expected to support
both interactive queries and updates. The TPC-H queries
are modified somewhat to query smaller fragments of the
database, as might be more typical of an operational data
store relative to a (read-mostly) data warehouse. When a
relatively small amount of data is consulted for a query, ran-
dom I/O performance becomes more important.2

In the evaluation, we use a database instance with access
to both a hard disk and an SSD, and place the data accord-
ing to one of several methods. We compare our method with
three other options:

1. Place all data on the hard disk.

2. Place all indexes on the SSD, and all base tables on
the hard disk.

3. Place all data on the SSD.

The second option is based on the observation that index
accesses often involve random I/O. This option is likely to
be the one chosen by a database administrator (DBA) in
the absence of any design advisor tool.

Our results show that we can obtain significant speedups
relative to the default strategy of placing all of the data on
the hard disk. For example, on the TPC-H database, the
hard-disk-based placement takes 139 minutes. We generate
a set of configurations with various space-time trade-offs;

2Our technique is not limited to operational data stores,
or to workloads dominated by random I/O performance.
Because our SSD device and hard disk happened to have
very similar sequential read bandwidth, our specific SSD
provided little improvement for scan-dominated workloads.
However, SSDs with faster sequential I/O are available, and
would (at a higher cost) provide speedups for sequential ac-
cess too.



one of these recommended configurations takes just 68 min-
utes using 1.8 GB of SSD space. These results are much
better than the naive strategy of placing just the indexes on
the SSD, which for the TPC-H database takes 117 minutes,
and uses 5.5 GB of SSD space. Placing all data on the SSD
is fastest, taking 53 minutes. However, this configuration
requires 39 GB of SSD space, an order of magnitude more
than our recommended placement.

The various space-time trade-offs allow a DBA to make
choices about how much to invest in SSDs. If time is very
important, then an organization might spend more on SSD
devices in order to obtain even moderate marginal gains.
Nevertheless, even a wealthy organization should not spend
money on additional SSDs when the marginal gains are close
to zero.

It is common practice to use only a small fraction of a
physical hard disk for database data (typically just the outer
tracks) so that seek times are small, a technique known
as “short-stroking” [23]. If additional space is needed, a
performance-sensitive DBA might choose to buy an extra
hard disk rather than use the remaining space on existing
disks. That way, each disk still has shorter seek times, and
multiple disk heads can be seeking in parallel.3 In this con-
text, using an SSD for randomly accessed data can have
secondary cost benefits. By moving the randomly accessed
data to the SSD, the hard disks are left with data that tends
to be accessed sequentially. As a result, it might be possi-
ble to use more tracks of each disk without incurring sub-
stantial extra seek time, and fewer disks would be needed.
Additionally, by reducing the load on the disks, one might
reduce overall power consumption because SSDs generally
consume less power than hard disks.

In modern databases, storage characteristics are specified
while creating the tablespaces so as to help the query op-
timizer choose a better query execution plan [10]. For in-
stance, a query could be executed with RID list fetch plan
if the storage device has very small average latency whereas
the same query could have been executed with a table scan
plan on a device with a higher average latency. Since the
placement advisor considers the estimates from the profiling
phase where the objects are placed on the HDD, the total
execution times may not exactly match the expected execu-
tion times after the objects are moved to the SSD. Due to
the changes in the plans, the workload execution may take
shorter or longer than what is expected.4

The placement advisor could also be used to estimate and
compare the performance benefits if different SSD devices
are being considered for purchase. There are many differ-
ent SSD products on the market, with very different perfor-
mance and cost characteristics. One major distinction be-
tween these products is the interface that is used to connect
the devices to the servers. Some of these options are: Fibre-
channel, parallel SCSI, Parallel ATA, Bus (includes PCI,
PMC, SBus, VME etc), Serial Attached SCSI (SAS) [13].

Although it seems advantageous to have plenty of options,
it may not be easy to determine which option is best suited
for a specific system. This is because for each device, the

3If the DBA does this, then the cost of an SSD might actu-
ally be competitive per “useful” gigabyte with the cost of a
hard disk.
4With a perfect optimizer, and an SSD having superior per-
formance to a hard disk, one would only see an improvement
as one moves to an SSD.

cost to provide data throughput for random and sequential
reads and writes will vary. Consider the following hypothet-
ical scenario in which the Object Placement Advisor would
be helpful in comparing different SSD products.

Suppose two alternative SSD devices with specifications
given below are under consideration for improving the per-
formance of a database management system. Product B pro-
vides 5 times faster sequential access compared to Product
A, while the random access speed of Product A is twice that
of Product B. As for the price per GB of storage, Product
B is twice as expensive as Product A. Given these specifica-
tions, the Object Placement Advisor might yield the chart
given in Figure 1 after collecting profiling results of a work-
load running in the DBMS. If the budget is less than $60,000,
then purchasing Product A would be a cost effective decision
since it provides more improvement per dollar relative to B.
If we have an SSD budget of $100,000 or more, then Prod-
uct B would be preferred since the total performance gain of
purchasing more of Product A would be less. With the help
of this chart, one can determine which product minimizes
cost and thus provides a higher utility.

Figure 1: Performance comparison of different SSD
products

The remainder of the paper is organized as follows: first,
we introduce the Object Placement Advisor in detail; then,
in Section 3, we present the results of the experiments con-
ducted on the IBM DB2 DBMS with queries and schemas
based on the TPC-H and TPC-C benchmarks; we present
an overview of the related work in Section 4; finally, we con-
clude in Section 5.

2. OBJECT PLACEMENT ADVISOR
Similar to “REORG”, a built-in utility in DB2 [10], Ob-

ject Placement Advisor is proposed as an off-line tool. The
procedure of obtaining an optimal placement strategy con-
sists of two phases: a “Profiling phase” and a “Decision
phase”. Based on the collected run time statistics in the
profiling phase, the estimated performance gain from mov-
ing each object from the HDD to the SSD is computed.
Later on, these estimates are used in the decision phase to
suggest an object placement plan.

The proposed database environment is illustrated in Fig-
ure 2. Suppose that we have a database management system
processing the incoming queries of a workload. The database
includes hundreds of tables, materialized views and indexes



created on multiple tablespaces. Initially, these tablespaces
are created on HDDs. On top of this storage system there
is a database engine processing the queries and transactions
coming from user applications. A monitoring tool attached
to the database engine measures the time spent for both
reading the pages from the storage device to the buffer pool
and writing the dirty pages back to the disk. These mea-
surements are sent to the placement advisor for evaluation.
Having this profiling input, the Object Placement Advisor
(OPA) outputs a Cost-Benefit graph showing different place-
ment strategies and the corresponding performance gains for
different capacity constraints. Based on these options, the
database administrator determines the amount of SSD space
to be purchased and moves the objects from the HDD to the
SSD according to the suggested placement plan.

In the following sections we will first discuss how profiling
data is collected while running a query workload and then
describe how to generate alternative placement strategies
based on the estimated improvements.

Figure 2: Object Placement Advisor (OPA) illustra-
tion

2.1 Profiling Phase
The goal of the profiling phase is to collect profiling infor-

mation about the disk access costs for each database object
during the execution of a query workload. This informa-
tion includes the number of physical disk accesses such as
sequential and random reads and writes and average page
access costs for all objects in a single tablespace.

IBM DB2’s snapshot utility is used to collect the profiling
data at the table space level [10]. Using this utility, one can
monitor activities on all buffer pools, tablespaces, and locks
etc. Some of the parameters included in a typical output of
a buffer pool snapshot are given in Table 1.

These parameters are used to measure the average sequen-
tial and random disk access costs of the pages pertaining to
the objects as described below.

2.1.1 Average sequential access cost of a page
The parameters obtained from the snapshot report can

be used to find the cost of sequential accesses. Whenever

Table 1: A sample buffer pool snapshot report for a
tablespace.

Bufferpool name = IBMDEFAULTBP
Database name = TPCH
Snapshot timestamp = 07/17/2008 12:19:14.265625
Buffer pool data logical reads = 98
Buffer pool data physical reads = 27
Buffer pool temporary data logical reads = 0
Buffer pool temporary data physical reads = 0
Buffer pool data writes = 2
Buffer pool index logical reads = 214
Buffer pool index physical reads = 91
Buffer pool temporary index logical reads = 0
Buffer pool temporary index physical reads = 0
Total buffer pool read time (ms) = 947
Total buffer pool write time (ms) = 3
Asynchronous pool data page reads = 0
Asynchronous pool data page writes = 0
Buffer pool index writes = 0
Asynchronous pool index page reads = 0
Asynchronous pool index page writes = 0
Total elapsed asynchronous read time = 0
Total elapsed asynchronous write time = 0
Asynchronous data read requests = 0
Asynchronous index read requests = 0

the pages of an object need to be read sequentially from the
disk, DB2 uses prefetchers which issue asynchronous read
requests.

Agents of the application send these asynchronous re-
quests to a common prefetch queue. As prefetchers become
available, they fulfill these requests to fetch the requested
pages from the disk into the buffer pool [10]. Therefore,
asynchronous access parameters can be used to find the se-
quential read cost for the ith table space. Similarly, the se-
quential write cost is attributed to the asynchronous write
cost.

The Total elapsed asynchronous read time in Table 1 rep-
resents the total time spent for sequential read operations.
The Asynchronous pool data page reads value, on the other
hand, provides the number of pages of a data object read se-
quentially. Dividing the first parameter to the second yields
the Average sequential access cost of a page for a data ob-
ject. For index objects the same method is applied except
that the Asynchronous pool data page reads is replaced with
the Asynchronous pool index page reads. For write opera-
tions, a similar methodology is applied for both data and
index objects.

2.1.2 Average random access cost of a page
DB2 does synchronous I/O requests wherever it is not

able to make the requests asynchronously (e.g., the range
of the pages to be retrieved is relatively small). Therefore,
synchronous access costs can be used to measure the total
random access cost for both data and index objects.

The buffer pool snapshot report does not include the syn-
chronous I/O costs and the number of synchronous page
accesses. However, these parameters can be computed us-
ing other parameters listed in Table 1. The total random
read cost of the pages of an object is computed by subtract-
ing the Total elapsed asynchronous read time from the Total
buffer pool read time. This is applicable to the index objects
as well as the data objects.

By subtracting the Asynchronous pool data page reads
from the Buffer pool data physical reads, we obtain the Syn-
chronous pool data page reads which is the number of pages
read randomly from the disk for the data objects. To com-
pute the same parameter for the index objects, the Asyn-



chronous pool index page reads is subtracted from the Buffer
pool index physical reads.

To obtain the Average random access cost of a page for
a data object, the Total elapsed synchronous read time is
divided by the Synchronous pool data page reads. The same
procedure is repeated to compute the Average random access
cost of a page for an index object. For all write related
parameters, the same procedure is applied by replacing the
read related parameters with write related parameters.

2.1.3 SSD Device Characteristics
Before making placement decisions, the advisor needs to

know the performance characteristics of the candidate SSD
device(s). We measure the read and write performance of
each device using a small set of straightforward sequential
and random I/O microbenchmarks. In these microbench-
marks, we use a page size equal to DB2’s page size. The
sequential and random per-page costs will be used during
the decision phase.

2.2 Decision Phase
Once the profiling phase is completed, the profiling results

including the number of physical page accesses and the aver-
age page access costs are forwarded to the OPA to be used in
the decision phase. By considering the profiling data, the es-
timated improvements (gains) for each object are computed.
Using these estimations and the storage costs of the objects,
the decision problem is first represented as an instance of 0-1
knapsack problem. Then, one of the well known heuristics,
the dynamic programming technique or the greedy technique,
is applied to obtain alternative placement strategies and the
corresponding performance gains for different capacity (or
budget) constraints. A detailed comparison of various as-
pects of these techniques is provided in Section 2.2.3.

2.2.1 Computation of Gain For Each Object
Since we have placed each object in its own tablepsace,

the statistics for that tablespace reflect the access pattern
for that object alone. There are four types of measure-
ments: sequential read (SR), sequential write (SW), ran-
dom read (RR) and random write (RW). Let j be one of
{SR, SW, RR, RW}. Then nj(i) denotes the number of ob-
served events of type j, hj(i) denotes the observed time
taken by the hard disk to perform a page of I/O of type j
for object Oi, and sj denotes the time taken by the SSD
to perform a page of I/O of type j. Then the gain γi that
can be obtained by moving the database object Oi from the
hard disk to the SSD is given by

γi =
∑

j∈{SR,SW,RR,RW}
nj(i)× (hj(i)− sj)

2.2.2 Provisioning Problem
Consider a database with n objects ϕ = {O1, O2, ..., On}

all stored on an HDD initially. For a given workload, relo-
cating object Oi from the HDD to an SSD provides γi units
of estimated improvement in terms of disk access time. The
storage cost of the ith object is ci. The objective is to max-
imize the total improvement by moving certain objects to
the SSD under the constraint of C units of SSD space. This
is an instance of the classical 0-1 knapsack problem [6].

Dynamic Programming solution
Let κn,C = {O1, O2, ..., On : C} denote the 0-1 knapsack

problem. Let a subset S of objects be optimal for κn,C and
Oi be the highest numbered object in S.

Then S
′
= S−{Oi} is an optimal solution for subproblem

κi−1,C−ci = {O1, O2, ..., Oi : C − ci} with v(S) = γi + v(S
′
)

where v(∗) is the value of an optimal placement “∗” (i.e. the
total improvement that can be obtained using that place-
ment plan).

Then a recursive definition for the value of optimal solu-
tion would be as follows:

Define v{i, c} as the value of an optimal solution for κi,c =
{O1, O2, ..., Oi : c}.

v[i, c] =





0, if i = 0 or c = 0
v[i− 1, c], if ci ≥ c

max{γi + v[i− 1, c− ci],
v[i− 1, c]}, Otherwise

(1)
This recursive definition specifies that an optimal solu-

tion Si,C for κi,C either contains Oi (i.e. v[i, c] = γi + v[i−
1, c − ci]) or does not contain Oi (i.e. v[i, c] = v[i − 1, c]).
If the object Oi is picked to be moved to the SSD, the
gain will be γi and then another object can be picked from
{O1, O2, ..., Oi−1} up to the storage limit c − ci to get the
improvement v[i− 1, c − ci]. If the object Oi is not picked,
an object from {O1, O2, ..., Oi−1} up to the weight limit c,
can be picked to get the improvement v[i− 1, c]. The better
of these two choices should be made.

Based on the recursive definition described above, the dy-
namic programming solution can be implemented.

Greedy solution
The greedy solution requires computing a priority value

for each object. The priority value of the ith object is com-
puted as5:

Pi =
γi

ci
(2)

After this computation, the objects are sorted by their
priority values in descending order. In this sorted list, the
ith object is the ith best candidate that is recommended to
be placed on the SSD. If c1 units of SSD space are planned
to be purchased, the first object in the sorted list would be
the best object to be moved to the SSD. If c1 + c2 units of
SSD space are purchased, the first and second objects in the
list would be the most recommended objects to be moved
to the SSD. Similarly, the ith object in the list should be
placed on the SSD provided that there is enough space to
move the objects with lower indices to the SSD.

Considering the budget(the amount of SSD space) and
estimated total improvement, a cut-off point in the list is
determined. All of the objects falling above this cut-off point
are moved to the SSD while the rest of the objects are kept
on the HDD.

Thus, because it needs to sort the objects by their priority
values the greedy algorithm runs in O(n log n) time.

Using this strategy, the database administrator can do a
budget planning and determine how much space should be
purchased. The details of this technique will be discussed in
Section 3.3.

5The priority value is the gain per unit of storage (i.e. sec-
onds of saved I/O time per megabyte of SSD storage).



Figure 3: Cost - Benefit analysis using Dynamic Pro-
gramming

Figure 4: Cost - Benefit analysis using Greedy Tech-
nique

2.2.3 Dynamic Programming vs. Greedy
The Object Placement Advisor can use either a dynamic

programming technique (DP) or a greedy technique in the de-
cision phase. The dynamic programming technique provides
the DBA with more placement options and the correspond-
ing performance gains for different capacity constraints. On
the other hand, the greedy technique finds the placement
strategies that maximize the per unit gain (e.g. second/dollar,
second/MB). The trade-off between the two techniques is
that the greedy technique is polynomial-time bounded in
the number of objects while the execution time of the DP
technique is proportional to the knapsack size. Also, the DP
technique requires an amount of main memory proportional
to the knapsack size multiplied by the number of objects,
while the greedy technique’s memory requirements are pro-
portional only to the number of objects.

In Figure 3 and Figure 4, two cost-benefit graphs corre-
sponding to the DP and Greedy Techniques respectively are
given. These results were obtained by simulating an Op-
erational Data Store environment described in Section 3.3.
Each point in these graphs represents different object place-
ment strategies. The X-axis represents the total cost of
employing a particular placement strategy while the Y-axis
represents the total improvement in the workload execution

time. Once a placement plan is chosen, the suggested ob-
jects are moved to the SSD while the rest of the objects are
kept on the HDD. Note that in Figure 4, the total gain is a
non-decreasing concave function of the total budget. This is
because in the greedy technique the objects are first sorted
by their unit gains and then at each point less valuable ob-
jects are added to the placement plan. The DP solution, on
the other hand, includes not only the placement plans sug-
gested by the greedy technique but also the other plans that
provide more overall utility but less per unit gain. The cir-
cled points in Figure 3 corresponds to the placement plans
suggested by the greedy technique.

3. EXPERIMENTS

To evaluate the effectiveness of the proposed technique,
several experiments are conducted using TPC-H and TPC-
C benchmarks on the IBM DB2 database server. Before
discussing the main experiment results, we will first describe
the hardware and software specifications and present results
from a preliminary experiment.

3.1 Hardware & Software Specifications
The system that is used to run all the experiments has

an Intel(R) Core(TM)2 Quad CPU Q6600 @ 2.40GHz with
8MB L2 cache and 4GB memory. Hardware specifications
are given in Table 2.

Table 2: Hardware specifications
HDD SSD

Brand: Seagate Samsung
Storage capacity: 1 TB 64 GB
Interface: SATA SATA
RPM: 7200 N/A
Cache size: 32 MB 64 MB
Sequential Access - Read: 105MB/s 100MB/s
Sequential Access - Write: 30MB/s 80MB/s
Average latency - Read: <8.5 msec 0.2 msec
Average latency - Write: <9.5 msec 0.4 msec

All experiments are conducted on a 64 bit Fedora 8 (Linux
kernel 2.6.24) operating system. IBM DB2 V.9 is used as
the DBMS software. To monitor the random access cost
of the database objects, each object is created on its own
tablespace.

3.2 Impact of disk access behavior on response
time

To observe the impact of mechanical movements in HDDs
on data retrieval cost we implemented a simple application
that reads 160MB of data in total from a 6 GB file. Given
an input argument δ, the application reads the 160MB of
data with jumps between two consecutive accesses where
the jump size is computed as δ x 16KB. For instance if δ =
3, the application reads 16KB data chunks from the offsets
ρ, ρ + (3 ∗ 16KB), ρ + (6 ∗ 16KB), ρ + (9 ∗ 16KB) .. of the
file where ρ is the file offset of the first read page.

At each run, we specified increasing jump sizes and mea-
sured the execution times on both the HDD and SSD. As the
results in Figure 5 indicate, the page retrieval cost on the
HDD depends on the distance between each page request
while the retrieval cost is independent of the jump size on
the SSD since there is no mechanical movement.



Figure 5: Reading 160 MB from a 6 GB file sequen-
tially with jumps

This is essential for the object placement advisor, because
it enables us to use a constant for the random access time
on the SSD in the computation of estimated gains (see Sec-
tion 2.2.1). Note that while the average page access times
for each object stored on the HDD are available from the
profiling phase, their SSD counterparts are not. Had the
SSD random page access time not been constant, we would
not have been able to acurately estimate the gains obtained
by relocating each object to the SSD.

3.3 TPC-H based Experiments
The TPC-H benchmark is a decision support benchmark

widely used in the database community to assess the perfor-
mance of very large database management systems [31]. The
benchmark illustrates decision support systems that exam-
ine large volumes of data, execute queries with a high degree
of complexity, and provide answers to critical business ques-
tions. Using the TPC-H schema and queries, we prepared
an Operational Data Store (ODS) environment [9, 11, 26]
to demonstrate the effectiveness of the Object Placement
Advisor.

Preparation of the experiment bed and workload:
In the TPC-H experiments each database is created using

the TPC-H schema depicted in Figure 6. The database is
comprised of 16 objects including 8 data objects and 8 index
objects of the 8 relations. While generating the data, a scale
factor of 30 is used. In total, 39GB of disk space are used
to create the TPC-H databases.

Figure 6: TPC-H Schema

The workload that is used in the experiments is con-
structed starting from 5 TPC-H queries (Query # 2, 5, 9,
11, 17) with the objective of maximizing the number of ob-
jects accessed during the execution of each query. We sub-
sequently modified these queries to simulate an Operational
Data Store (ODS) environment where some of the queries in
the workload require processing large ranges of data while
others process smaller ranges.

The major difference between an ODS and a data ware-
house (DW) is that the former is used for short-term, mission-
critical decisions while the latter is used for medium and
long-range decisions. The data in a DW typically spans a
five to ten years horizon while an ODS contains data that
covers a range of 60 to 90 days or even shorter [9, 11]. In
order to simulate an ODS environment, more predicates are
added to the “where” clause of the TPC-H queries. This in
turn, reduces the number of rows returned. As a result, we
obtained a workload comprising of random and sequential
accesses. The following query provides an example for this
modification:

select n name,
sum(l extendedprice * (1 - l discount)) as revenue

from customer, orders, lineitem, supplier, nation, region
where c custkey = o custkey and l orderkey = o orderkey
and l suppkey = s suppkey and c nationkey = s nationkey
and s nationkey = n nationkey and n regionkey = r regionkey
and r name = ’america’ and o orderdate ≥ ’1993-01-01’
and o orderdate ≤ ’2000-01-01’
and o orderkey between 170261658 and 170271658
group by n name order by revenue desc

In this query, the predicate “o orderkey between 170261658
AND 170271658” is added to the original query to reduce
the range of the data that has been accessed. In order to
reduce the bufferpool hit ratio, the predicate values are ran-
domly drawn from a uniform distribution with range (0, n)
where n is the maximum in the domain of the predicate at-
tribute. Using this strategy, a workload of 1000 queries is
prepared.

Table 3: Profiling Phase (Computation of Estimated
Gains)

Object Name Bufferpool
Access
Time
(msec)

Estimated
Gain
(msec)

Space
Require-
ment
(MB)

Priority
Value

PART DAT 1492096 1314731 865.703 1518.686
SUPPLIER DAT 304233 263924 46.563 5668.171
PARTSUPP DAT 4091521 1015276 3632.719 279.481
CUSTOMER DAT 2039413 1903452 772.344 2464.514
ORDERS DAT 16716 9648 5071.141 1.903
LINEITEM DAT 97456 85804 23758.59 3.611
PART IX 493267 442893 108.766 4071.993
SUPPLIER IX 51225 47810 5.453 8767.450
PARTSUPP IX 212758 198517 81.578 2433.461
CUSTOMER IX 149978 139979 537.250 260.548
ORDERS IX 9695 9049 815.703 11.093
LINEITEM IX 22443 20947 4029.344 5.199

In the profiling phase, the database is created on the HDD.
As described in section 2.1, for each object, a separate ta-
blespace is created so as to monitor disk access times. The
monitoring results are given in Table 3 6. The object names
are stated in the first column. “Dat” and “IX” represent

6The objects Nation IX, Nation DAT, Region IX and Re-
gion DAT are omitted from these tables since the storage
requirements of these objects are fairly small.



the data part and the index part of the relations respec-
tively. The total buffer pool disk access costs of the objects
are given in the second column. Using the bufferpool snap-
shot reports, the estimated gains are computed (given in the
third column of the table). As discussed earlier “gain of the
ith object” is the estimated improvement in terms of the
response time when the ith object is moved from the HDD
to the SSD. Using the gain and space requirement given in
the third and fourth columns of Table 3 respectively, the
priority values are computed (fifth column of Table 3).

In the decision phase, we use the greedy knapsack tech-
nique to determine the size of the SSD that should be pur-
chased and the objects to be moved to the SSD. To employ
this technique, the objects in Table 4 are first sorted by their
priority values in descending order. The second and third
columns in the table represent the cumulative storage cost
and estimated cumulative gain of the objects respectively.
Using this table, an optimal placement decision can be made
as follows: if the database administrator (DBA) decides to
purchase 5.5 MB of SSD space, the optimal placement strat-
egy would require moving SUPPLIER IX to the SSD since
it has the highest priority value in the list. In this case, the
total improvement in terms of the workload execution time
would be 47,810 milliseconds. If the DBA decides to in-
crease its budget (knapsack size) and to purchase 52 MB of
SSD space, the best placement strategy would be to move
the SUPPLIER IX as well as SUPPLIER DAT objects to
the SSD. Moving these objects would improve the execu-
tion time by 311,734 milliseconds. Similarly, if 161 MB of
SSD space are purchased, the third object to be included in
the knapsack would be PART IX which would provide an
improvement of 754,627 milliseconds.

Table 4: Decision Phase Results (The objects are
sorted by priority values)

Option Object Name Cumulative
Space
(MB)

Estimated
Cumula-
tive Gain
(msec)

Priority
Value

A SUPPLIER IX 5.5 47810 8767.45
B SUPPLIER DAT 52.0 311734 5668.11
C PART IX 160.8 754627 4071.99
D CUSTOMER DAT 933.1 2658079 2464.54
E PARTSUPP IX 1014.7 2856596 2433.41
F PART DAT 1880.4 4171328 1518.68
G PARTSUPP DAT 5513.1 5186603 279.48
H CUSTOMER IX 6050.4 5326583 260.54
I ORDERS IX 6866.1 5335631 11.09
J LINEITEM IX 10895.4 5356578 5.19
K LINTEITEM DAT 34654.0 5442382 3.61
L ORDERS DAT 39725.2 5452030 1.90

In Figure 4 the estimated cumulative gain (E.C.G.) is plot-
ted against the budget allocated to buying SSD space (the
second and the third columns of Table 4). For simplicity,
we assume that 1MB of SSD space costs $1 (in reality it
is significantly lower, currently as low as $0.01 for 1MB).
The figure suggests that E.C.G. is an increasing and con-
cave function of the allocated budget implying that objects
with the highest priorities are selected first to be moved to
the knapsack and as the knapsack size increases, less valu-
able objects are picked.

The database administrator employs a cost benefit anal-
ysis in determining the SSD size. Note that the set of fea-
sible storage options are the points on the horizontal axis
in Figure 4 corresponding to points A,B,C.. etc.. This

is because an object should either be located on the SSD
or on the HDD. Consider a database administrator with a
budget of $3000 or less. The SSD space options available
to this administrator will be those on the horizontal axis
corresponding to points A, B, C, D, E and F in Figure 4.
Since the marginal gain from an additional dollar spent on
SSD space is strictly positive at all available options to the
left of $3000, the best decision for the DBA is to buy an
SSD space of 1.8GB which is the horizontal axis component
of point F. Therefore in this scenario, we moved the first 6
objects; Supplier IX, Supplier Dat, Part IX, Customer Dat,
PartSupp IX, Part Dat to the SSD and left the rest of the
objects on the HDD.

Note that if the DBA has a budget of $6000 or more, he
would be better off by selecting H as the cut off point since
there is not much marginal gain from spending an additional
dollar after this point.

In addition to the database that is created for collecting
profiling data, three more databases are created. In the
second database the indexes are moved to the SSD while
the data objects are created on the HDD, for the purposes
of measuring the effectiveness of the naive approach. The
third database is created using the object placement strat-
egy suggested by the OPA. According to this plan, the first
6 objects in Table 4 are moved to the SSD while the remain-
ing objects are kept on the HDD. In the fourth database, all
objects are created on the SSD, to see the gain when all
objects are moved to the SSD.

The workload execution times that we obtained in four
separate experiment setups are shown in Figure 7. Apply-
ing the naive approach yields a 16% total improvement with
a cost of 5.5GB SSD space. On the other hand, placing the
objects considering the suggested priority list of the OPA
improves the workload execution time by 51% with a cost
of 1.8GB SSD space. The rightmost bar in Figure 7 corre-
sponds to the workload execution time when all the objects
are placed on the SSD. The minimum workload execution
time is obtained in this setup but with a large SSD space of
39GB.

Figure 7: TPC-H Results



As observed in this experiment, the object placement ad-
visor helps to make a cost effective decision that maximizes
the benefit with a reasonable cost.

3.4 TPC-C Experiments
TPC-C is a popular benchmark for comparing on-line

transaction processing (OLTP) performance on various hard-
ware and software configurations. TPC-C simulates a com-
plete computing environment where multiple users execute
transactions against a database. The benchmark is centered
around the principal activities (transactions) of an order-
entry environment. These transactions include entering and
delivering orders, recording payments, checking the status of
orders, and monitoring the level of stock at the warehouses.
The transactions do update, insert, delete, and abort opera-
tions and numerous primary and secondary key accesses [30].

The transactions operate against a database of nine ta-
bles. The schema is shown in Figure 8. The numbers in the
entity blocks represent the cardinality of the tables (number
of rows). These numbers are factored by W, the number of
Warehouses, to illustrate the database scaling.

Figure 8: TPC-C Schema

Majority of the objects in the TPC-C database are ac-
cessed randomly. We observed that 94 % of the disk access
cost is caused by random accesses. Therefore, moving all of
the objects to the SSD seems to be the best solution. How-
ever, depending on the frequency of the transactions in the
workload, some objects might be accessed more frequently
than others. In this experiment the object placement advi-
sor, helps to identify these frequently accessed objects.

In our experiments, the scaling factor is set to 20 Ware-
houses during the data generation. With this scaling factor
each database occupies a total of 2.2GB disk space. In the
first experiment, all of the objects are created on the HDD.
The profiling data is collected while executing concurrent
transactions issued by 15 clients. As in the TPC-H experi-
ments, we measured the gain of the objects and sorted the
objects by their priority values. Based on these monitor-
ing results, the objects New Order DT, Item IX, Item DT,
Stock IX, Customer IX, and Stock DT are moved to the
SSD while the remaining objects are kept in the HDD.

The TPC-C benchmark results are compared with tpmC
rate which is the average number of concurrent transactions
completed in one minute. We used tpmC rate to examine the
system performance when different object placement strate-
gies are employed. The average tpmC rate that we obtained
in four separate experiment setups are shown in Figure 9.
The leftmost bar corresponds to the number of transactions
executed when all the objects are placed on the HDD. The

second bar corresponds to the naive approach in which the
index objects are moved to the SSD and the data objects to
the HDD. As can be seen, the tpmC rates in the third and
fourth bars are significantly larger than the first two bars.
The third bar corresponds to the number of transactions ex-
ecuted when the objects are moved to the SSD considering
the priority list provided by the OPA, while the last bar rep-
resents the number of transactions when all of the objects
are moved to the SSD.

The results indicate that even though the vast majority
of the objects in a DBMS are accessed randomly, moving
all of the objects to the SSD may not be the most cost
effective decision. As it is seen in this scenario, a satisfactory
improvement in the transaction rate can be achieved with
one third of the total storage requirement of the objects. On
the other hand, the idea of moving only the index objects
to the SSD does not seem to be an effective solution as the
tpmC rate is almost identical to the one where no SSD space
is used.

Figure 9: TPC-C Results - Y axis represents the
number of transactions per minute with 15 clients

4. RELATED WORK
The data placement problem is one of the oldest problems

in Computer Science. Indeed, as soon as a computer system
has access to a multitude of storage devices of varying per-
formance and cost, it becomes important to decide where
to place each file, so as to obtain the best performance for
the money. Of particular interest is data allocation in stor-
age hierarchies, where different data sets need to be placed
at different levels of a storage hierarchy and moved across
levels whenever their access patterns change [19].

More recent work in this area is on data placement for
large-scale distributed caches [15] that focuses on reducing
access costs to remote caches at runtime. Other recent work
investigates the physical layout of data on disks based on
disk access characteristics [27] which is orthogonal to our
problem and at a lower level. Placement of data tuples on
different disks of a shared nothing RDBMS for the purpose
of increased query parallelism (“declustering”) is investi-
gated in [21] among others. While they consider skew in
the data and access distribution, they assume homogeneous



disks and can therefore not exploit the special properties of
SSDs. A more theoretical treatment of the table and index
placement problem for heterogeneous sets of disks is dis-
cussed by Aggarwal et al. [1]. They present algorithms to
increase disk access parallelism while at the same time re-
ducing the random access cost in a storage environment with
different random/sequential access costs. The difference to
our algorithm is that we measure actual table access pat-
terns for given workloads which allows us to capture subtle
interactions between concurrently running queries.

Modern commercial database systems have recommender
tools designed to assist a database administrator in the phys-
ical database design phase. Examples for such tools are the
SQL Access Advisor [7] in Oracle 10g that helps in the se-
lection of indexes and materialized views, and the Database
Tuning Advisor [2, 3, 5] in Microsoft SQL Server that pro-
poses indexes, views, and horizontal partitioning. Another
example is the IBM DB2 Design Advisor [33] that analyzes a
given workload and recommends a set of materialized query
tables (MQTs) and indexes to maximize the workload per-
formance. None of these recommender tools provide ad-
vice on placing tables on storage devices with varying access
characteristics.

The IBM DB2 Design Advisor’s capability has been re-
cently extended with a data placement advisor utility [18],
which recommends an optimized placement of MQTs in a
multi-tiered setting. This is similar in spirit with our ap-
proach, albeit with a different goal, namely reducing laten-
cies by placing part of the data closer to the applications.
The solution is based on analyzing the ratio between the
anticipated benefit provided by each MQT versus its size.
One distinction from our problem is the presence of depen-
dencies between individual MQTs which our setting does
not exhibit: the placement decision for each object does not
depend on the placement of other objects.

With the advent of solid state storage, there has been
increasing interest in the database research community for
the exploitation of this new technology. Some approaches
can be used with standard, off-the-shelf DBMS products
while others require changes in the DBMS engine.

In the first category (where our work also belongs), the
use of SSD’s for temporary tablespace has been shown to im-
prove performance by more than an order of magnitude [17].
While this is certainly a valuable observation, it is subsumed
by our approach as the temporary tablespace can be in-
cluded in the list of candidate objects and the Object Place-
ment Advisor can decide whether or not to place it on SSD
based on its calculated priority value.

In the second category, the use of the PAX column-major
storage layout [4] has been exploited for a novel random-read
efficient join algorithm, RARE-join [28]. Another kind of en-
gine adaptation in the form of flash-sensitive B+-Trees have
been proposed in [22, 25, 32]. Also, a novel in-page logging
scheme has been proposed in [16] in order to circumvent the
non in-place update limitations of flash. Clearly, since SSD
characteristics are quite different from those of traditional
hard drives, we share the view of these researchers that en-
gine data structures and algorithms need to be re-examined,
if one wants to take full advantage of solid state storage.

More closely related to our work, Koltsidas and Viglas [14]
study how to adapt the storage layer for use with a com-
bination of both flash and magnetic drives. They assume
that individual pages can be placed either on the flash de-

vice or on the magnetic device. They show how one might
change the design of buffer pool replacement algorithms so
that pages are placed on the better-suited device for that
page. Our work differs from this work in several respects.
First, their study applies only to MLC flash devices. They
argue that since MLC devices are likely to be cheaper than
SLC devices, it is more likely that such devices will become
the commodity device of the future. However, MLC de-
vices are far less reliable than SLC devices [12, 20]. As a
result, we expect that at least in the medium-term, SLC
drives will be the device of choice for enterprise-level stor-
age. Second, they assume that the flash disk is ten times
faster than the magnetic disk for random reads, but ten
times slower for random writes. These performance charac-
teristics do not carry over to SLC devices. In particular, on
SLC devices like the one we employed, both random reads
and random writes are an order of magnitude faster on the
flash device than on the magnetic disk. The MLC/SLC dis-
tinction mentioned above has critical implications for the
optimization problem studied. For Koltsidis and Viglas, the
aim is to spread pages between the two devices so that the
read-intensive pages tend to be on the flash device, and the
write-intensive pages tend to be on the disk device. If a flash
device were to dominate a magnetic device in both read and
write performance, their placement algorithms would put all
of the data on the flash device; no capacity constraints are
considered. In contrast, our metrics are primarily based on
cost/capacity constraints, assuming that the flash device is
more expensive per gigabyte than the magnetic device. We
aim to find the part of the database that would benefit the
most from a move to the flash device. Furthermore, Koltsi-
das and Viglas assume that storage decisions can be made
at a page granularity, i.e., that the choice of whether to store
a page on the flash device is independent of the choice for
all other pages. Clearly this assumption requires that the
storage manager be modified to implement such a placement
method. Further, there are disadvantages to such a method
that are not discussed by the authors. For example, a table
that is initially stored contiguously on the magnetic device
could end up being fragmented, drastically reducing the se-
quential I/O throughput. In contrast, our approach requires
no changes to the storage manager. Whole database struc-
tures (tables, indexes) are placed on each device as appropri-
ate. Our work can, today, be directly applied to workloads
running on commercial database systems. Finally, Koltsidas
and Viglas do not explicitly distinguish between sequential
and random I/O in their models, even though sequential
I/O is very common for database workloads. According to
their analysis, a magnetic disk is superior to an MLC flash
disk for both sequential reads and sequential writes. They
state that one way to incorporate sequential I/O into the
model would be to ask the database engine to supply hints
to the buffer manager about the sequential nature of the
access pattern. In contrast, our method explicitly accounts
for the sequential/random I/O distinction when computing
our gain function.

5. CONCLUSIONS AND FUTURE WORK
In this paper we described an object placement advisor, an

out-of-engine tool which can be used to decide, for a given
workload, which database objects should be placed on an
SSD for best performance. The advisor uses snapshot data
collected by DB2 to estimate the time savings that would be



realized by moving each object to an SSD. The placement
problem is thus reduced to a knapsack problem, where the
cost is the size of each object and the benefit is the estimated
access time saved. The knapsack problem can subsequently
be solved using any known heuristic, for example greedy or
dynamic programming. By implementing the recommended
placement configuration, we have observed significant per-
formance improvements at a much lower storage cost when
compared with a naive placement strategy.

While we have focused on SSD devices in this paper, our
methods could equally well be applied to other new technolo-
gies that are developed for use as on-line persistent storage
devices.

In future work, we plan to consider using more than two
kinds of devices, such as having two different SSDs with
different capabilities. The optimization problem we need
to solve would be more involved. Having multiple types
of devices may allow for specialized placement, matching
the bottleneck I/O parameter (read or write; sequential or
random) with the device that best handles such workloads.

For this paper, we only considered the performance char-
acteristics when choosing a device over another. Other con-
siderations may turn out to be just as important as raw per-
formance in practice. For example, the mean-time to failure
(MTTF) contributes directly to the total cost of ownership.
Replacement is an indirect aspect of the cost of choosing
a particular device. While early flash devices did wear out
fairly quickly, recent SSD-grade devices use more reliable
technology with wear-leveling that makes their expected life-
times at least several years, even if used continuously. En-
ergy consumption is yet another comparison factor.

Currently we do our initial measurements using the stan-
dard optimizer, which is not SSD-aware. We might be miss-
ing some opportunities because of the following kind of sce-
nario: plan X is generated on the HD configuration, where
X does a sequential scan; plan Y, which does random I/O
is marginally worse on the HD configuration, and so is not
generated. On the SSD system, the cost of plan X might
be no better than the cost of plan X on the HD system.
However, the cost of plan Y might be much better, and jus-
tify moving the corresponding data objects to the SSD. To
overcome these limitations, the optimizer needs to be made
aware of the specific characteristics of the SSD device. We
plan to investigate this direction as part of future work.

Finally, while we only experimented with DB2 for this
paper, we believe our solution could be used together with
other DB systems. For example, Oracle’s Automated Work-
load Repository [24] and SQL Server’s Performace Studio [29]
are both providing similar runtime statistics which can, in
principle, be exploited by our Object Placement Utility.
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