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ABSTRACT

Privacy in data publishing has received much attention re-
cently. The key to defining privacy is to model knowledge of
the attacker — if the attacker is assumed to know too little,
the published data can be easily attacked, if the attacker
is assumed to know too much, the published data has lit-
tle utility. Previous work considered either quite ignorant
adversaries or nearly omniscient adversaries.

In this paper, we introduce a new class of adversaries that
we call realistic adversaries who live in the unexplored space
in between. Realistic adversaries have knowledge from ex-
ternal sources with an associated stubbornness indicating
the strength of their knowledge. We then introduce a novel
privacy framework called epsilon-privacy that allows us to
guard against realistic adversaries. We also show that prior
privacy definitions are instantiations of our framework. In a
thorough experimental study with real census data we show
that e-privacy allows us to publish data with high utility
while defending against strong adversaries.

1. INTRODUCTION

Data collection agencies, like the U.S. Census Bureau, the
World Bank, and hospitals, want to publish structured data
about individuals (also called microdata) to support research
on this data. However microdata contains much information
that is sensitive (e.g., information about salaries or diseases).
Privacy-preserving data publishing (PPDP) aims to publish
microdata such that (i) aggregate information about the
population is preserved, while (i) guaranteeing privacy of
individuals by ensuring that their sensitive information is
not disclosed. There has been research on the problem of
formally defining privacy in data publishing for more than
half a century. The key to formally defining privacy is to
correctly model how much sensitive information an adver-
sary can deduce about an individual in the published data.
This heavily depends both on the published data as well as
on any knowledge the adversary possesses about the world.
Let us illustrate this through a simple example.
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Non-Sensitive Sensitive
Zip Code| Age | Nationality Disease
1 130** | < 30 * Heart Disease
2 130*%* | < 30 * Heart Disease
3 130** | < 30 * Viral Infection
4 130** | < 30 * Viral Infection
5 1485* | > 40 * Cancer
6 1485* | > 40 * Heart Disease
7 1485* | > 40 * Viral Infection
8 1485* | > 40 * Viral Infection
9 130** 3x * Cancer
10 130%* 3% * Cancer
11 || 130%** 3x * Cancer
12 130%** 3% * Cancer

Table 1: Inpatient Microdata

EXAMPLE 1. Table 1 shows medical records published by
Gotham City Hospital. Each tuple in this table corresponds
to a unique patient in the hospital. Fach patient considers
her disease to be sensitive. The table also contains non-
sensitive attributes, that have been either been suppressed or
coarsened to ensure that mo patient can be uniquely iden-
tified. Supression and coarsening are popular methods for
PPDP that are both instances of generalization; Table 1 is
called a generalized table. The hospital should ensure that
an adversary cannot link any patient to his disease using
Table 1.

Suppose Rachel is an individual in the population. Given
access to only this table, the adversary Alice, may not be
able the deduce Rachel’s disease. But if Alice knows that
(a) Rachel is one of the individuals whose medical record is
published in Table 1, and that (b) Rachel is a 35 year old
American living in zip code 13068, Alice can deduce that
Rachel has cancer.

Alice’s knowledge can take many different forms: Facts
like Rachel is in Table 1, and men don’t get ovarian cancer,
or more uncertain knowledge that the likelihood of an arbi-
trary individual to have AIDS is less than 10%. Alice may
have gained her knowledge from phone books, publicly avail-
able Census statistics, the web, or even by eavesdropping on
an individual, just to name a few.

Recently, there has been much work on adversary models
and associated formal definitions of privacy for data pub-
lishing [16, 14, 9]. Each of these definitions make different
assumptions about the adversary’s knowledge. For example,
(-diversity assumes that Alice knows at most ¢ — 2 facts of



the form “men do not have ovarian cancer,” but that Alice
otherwise believes that all diseases for Rachel are equally
likely. t¢-closeness assumes that Alice knows the distribu-
tion of diseases in the table, and she assumes that Rachel’s
chances of having a disease follow the same odds. Differen-
tial privacy assumes that Alice knows the exact diseases of
all patients except Rachel, and that Alice may have other
arbitrary statistical information about Rachel’s disease.

However, as our short discussion already shows, a close
look at this prior work reveals an unfortunate dichotomy:
Existing privacy definitions either make very specific as-
sumptions about Alice’s knowledge that may be easily vi-
olated in practice (leading to weak privacy guarantees), or
they make very minimal assumptions that allow Alice to
know unrealistic amounts of information (but leading to very
strong privacy guarantees). For example, it is quite reason-
able to assume that Alice’s knowledge about Rachel’s disease
in Table 1 is neither a uniform distribution, nor matches its
distribution in the published table, but rather comes from
some other background information. (“It is flu season, and
there will be a lot of elderly patients with flu symptoms in
the hospital.”) Neither ¢-diversity nor t-closeness can cap-
ture such background knowledge. Differential privacy, on
the other hand, does not exclude any reasonable knowledge
that Rachel could have, but the assumption that Alice knows
everything about all patients except Rachel is equally unre-
alistic. Because of this strong guarantee, we cannot publish
much useful information [17]; for example, to achieve differ-
ential privacy (or one of its variants [17]), we cannot even
use the powerful technique of generalization, since no gen-
eralized table satisfies differential privacy.

Thus while privacy has been defined both for weak ad-
versaries and for very strong adversaries, defining privacy
for adversaries that inhabit the “realistic” space in between
is an important open problem. This is especially important
from the point of view of a practioner who would like to pub-
lish useful data, but also would like to provide provable pri-
vacy guarantees; for example, for useful PPDP algorithms
like generalization, either restrictive assumptions must be
made about the adversary’s knowledge, or no data whatso-
ever can be published if the data publisher is unsure about
the adversary’s knowledge and want to be on the safe side.

Contributions of This Paper. In this paper we make
a first step towards this middle ground between weak and
strong adversaries. We introduce realistic adversaries and an
associated novel privacy framework called e-privacy, that
allow us to reason about privacy across the spectrum of weak
to strong adversaries. Realistic adversaries form their knowl-
edge using external datasets, and they revise their knowl-
edge from the published data if they see enough contra-
dicting information in the published data. The adversary’s
willingness to revise her knowledge is characterized by a pa-
rameter o called the adversary’s stubbornness that depends
on the size of the external dataset used to form her knowl-
edge.

We claim not only that our novel privacy definition e-
privacy spans the space in the middle, but we can actually
prove that existing privacy definitions, including ¢-diversity,
t-closeness, differential privacy and perfect privacy [19] are
instances of e-privacy.! Because e-privacy can be instanti-

!These privacy definitions guard against infinitely stub-
born adversaries who (unrealistically) would need infinite
amounts of external data to form their priors. For this rea-

ated with differential privacy, it may be surprising that e-
privacy still permits generalization; we show how to publish
generalized tables guaranteeing e-privay against adversaries
with finite stubbornness, even when we are unsure about the
adversary’s knowledge. In a thorough experimental evalua-
tion on real census datasets, we show that generalized tables
with significantly more utility can be published by consid-
ering our new realistic adversaries with finite stubbornness.
The remainder of this paper is organized as follows. Sec-
tion 2 describes our new e-privacy framework. In Section 3
we identify four important classes of adversary models and
derive conditions under which a generalized table guarantees
e-privacy against each of these adversary classes. We also
propose efficient algorithms for PPDP. We experimentally
show the utility of e-private generalizations in Section 4.
Section 5 illustrates that e-privacy spans both the space of
adversaries that are neither too strong or too weak, but also
includes existing work as extreme instances. We discuss re-
lated work and conclude in Sections 6 and 7, respectively.

2. «PRIVACY

In this section, we describe our novel privacy framework.
Our framework has the following attractive properties:

e Our framework allows sensitive information about each
individual to be specified using a flexible language.

e Privacy is measured as the difference in an adversary’s
belief about an individual when the individual is in
the published data compared to when the individual’s
information is left out of the published data.

e Our framework formally models realistic adversaries
who form their priors using existing data and thus al-
lows both strong and weak adversaries and adversaries
that inhabit the middle ground.

Consider a data publisher who wants to publish data col-
lected from a set of individuals. We assume that this data
T has a relational structure with categorical attributes (A1,

.,Aq) with a finite domain. The attributes are partitioned
into a set of non-sensitive attributes whose disclosure is not
our concern, and a set of sensitive attributes S whose privacy
we should guarantee. We denote the non-sensitive and the
sensitive attributes using two multi-dimensional attributes
N and S, respectively. We assume that every tuple ¢, € T’
contains information about one unique individual u. The
data publisher uses a procedure R that takes T as input
and outputs another table T}, which is published. For his-
torical reasons, we will (incorrectly) refer to R also as the
anonymization procedure and T, as the anonymized table.

2.1 Sensitive Information

Let us formally describe an individual’s sensitive informa-
tion. An individual, we will call her Rachel, may want to
protect many kinds of information. First Rachel may not
want the adversary Alice to learn that she has some spe-
cific disease like cancer or the flu; such disclosures are called
positive disclosures. Next, positive disclosures can occur on
groups of diseases; for instance, Rachel may not want to
disclose the fact that she has some stomach disease (such

son, we call our new adversaries (maybe somewhat presump-
tuously) realistic adversaries.



as ulcer or dyspepsia). Finally, Rachel may not even want
Alice to learn that she does mot have cancer; this is called
a negative disclosure. Note that a negative disclosure for
cancer is the same as a positive disclosure that Rachel has
one of the diseases in the set Disease — {cancer}.

We model sensitive information using positive disclosures
on a set of sensitive predicates. The data publisher or an
individual can specify a set of sensitive predicates ® of the
form “Rachel[Disease] = cancer”, or “Rachel[Disease] €
{ulcer,dyspepsia}”. Let dom(S) denote the domain of the
sensitive attribute. Each individual is associated with a set
of sensitive predicates ®(u). Each predicate ¢(u) € ®(u)
takes the form ¢,.S € Sy, Sy C dom(S). Informally, in-
ferring that ¢(u) = true from the published data for some
¢(u) € ®(u) breaches u’s privacy.

EXAMPLE 2. Let us continue our example from the intro-
duction. Assume that the domain of the Disease attribute is
{Flu, Cancer, Ulcer, Dyspepsia}. If Rachel wants to protect
against positive disclosures for flu, cancer and any stomach
related disease, she has three sensitive predicates, namely:

© = {¢,¢%¢"}
(Rachel) trachet[S] € {Flu}
(Rachel) trachet[S] € {Cancer}
¢ (Rachel) trachet[S] € {Ulcer, Dyspepsia}

Rachel can protect against any kind of disclosures related to
her sensitive attribute if ® contains one sensitive predicate
@ for every subset Sy C dom(S).

2.2 Disclosure

Our measure of disclosure about a sensitive predicate at-
tempts to capture the privacy risk faced by an individual
when allowing the data publisher to publish her informa-
tion. Suppose a patient Rachel is deciding whether or not
to permit Gotham City Hospital to include her tuple in Ta-
ble 3. Rachel can achieve the most privacy by not permit-
ting the hospital to include her tuple in the published data.
However, since she cannot influence the privacy preferences
of other individuals, despite disallowing the release of her
information, the adversary Alice may infer some properties
of Rachel’s sensitive attribute based on her prior knowledge
and based on the other individuals in the table who look like
Rachel. Therefore, a data publisher should ensure that the
individual does not regret having given permission to release
her information; i.e., Alice’s belief about the true values of
Rachel’s sensitive predicates when her tuple is included in
Tpup should not be much higher when Rachel’s tuple is not
in Tpup.?

We can now describe our adversary model and explain
how adversaries form their beliefs.

2.3 Adversaries And Their Knowledge

Recent research has established that an adversary’s belief
about an individual’s sensitive information is determined by
the published information and her knowledge [6, 9, 16, 18],
also called her prior in statistical terms. Broadly, there are
two kinds of prior knowledge an adversary possesses — (a)
knowledge about the population from sources other than 7',

2The same intuition powers differential privacy [9]. -
Privacy differs from differential privacy in the adversary
model and in the modeling of the sensitive information.

and (b) knowledge about the individuals in 7. We describe
these in turn.

(a) Knowledge about the population from sources
other than the table being published.

Such knowledge is usually modeled by assuming that the
individuals in the table are drawn from a joint distribution
P over N and S, and that the adversary knows this dis-
tribution. More precisely, when both N and S are cat-
egorical, P can be described as a vector of probabilities
P =(..,pi...),5 € N xS such that Yienxshi = L
For instance, many papers in the privacy literature use the
random worlds prior [2, 6, 16, 18, 23, 24], where an adver-
sary is assumed to have no preference for any value of 1.
This can be modeled by a uniform distribution where for all
1€ N xS, pi =1/|N x S|. However, such a model has two
main problems:

1. Where does the adversary learn her prior P?  Typ-
ically, adversaries form their priors based on statistics Ts
that have been made public before the publication of T.
Such adversaries do not know which 7 is the right distri-
bution, instead they use statistics they have collected about
the population to determine p’. Thus such adversaries may
not have complete confidence in their prior. For instance,
suppose a hospital conducted a study on a sample of s in-
dividuals of the U.S. population, and found out that 10%
of the individuals have cancer (s; = s/10). How does Al-
ice generalize these statistics to the population? One way
would be to set p such that p; = s;/s = 0.1, the fraction of
individuals in the sample having cancer, and to assume that
all the individuals are drawn independently from 7. But in
reality, Alice may not be willing to believe that 10% of the
U.S. population have cancer when s is small (e.g., only 10
persons). However, when s is large (e.g., 1 million persons),
Alice would be quite confident, or stubborn, that 10% of the
population have cancer.

2. An adversary may change her prior. Modeling the
adversary Alice’s prior correctly becomes even more crucial
since we are interested in computing Alice’s beliefs about the
true values of Rachel’s sensitive predicates when Rachel’s
tuple is not included in the published data. For instance,
suppose Alice forms her prior based on a survey of only
s = 100 women, where s; = 50 women have cancer; Alice
creates a prior p with p; = 0.5. Let Alice assume that all
individuals, including Rachel, are drawn independently from
this prior distribution . Suppose she now sees Table 3,
which does not contain Rachel and where only 2000 out of
20,000 women have cancer. If Alice strongly believes in her
prior 7 and assumes that individuals are drawn indepen-
dently from p’, then she will continue to believe that the
probability of Rachel having cancer is 0.5. However, if Alice
takes the published Table 3 into account, which has over-
whelming evidence that p; is close to 0.1 rather than to 0.5,
then Alice is likely to change her prior accordingly.

The key to correctly modeling adversarial reasoning is to
relax the assumptions that (a) the adversary knows of a sin-
gle prior 7, and (b) all individuals are drawn independently
from P. In fact, by not committing to a single prior, indi-
viduals in the table are no longer independent of each other.
To understand this better, suppose there are two popula-
tions of equal size — €21 having only healthy individuals and
2 having only sick individuals. Suppose a table T is either
created only from €21 or created only from 2. If we do not
know which population 7T is picked from, using the principle



of indifference, our best guess for the probability that any
individual in the table T' is healthy is 0.5. However, if we
know that one individual in the table 7" is healthy, then we
can be sure that the rest of the individuals in the table are
also healthy (if we assume individuals are independent of
each other, the probability would be 0.5).

To formally be able to model such reasoning, we first in-
troduce the notion of exchangeability.

DEFINITION 1  (EXCHANGEABILITY). A sequence of ran-
dom variables X1, Xo, ... is exchangeable if every finite per-
mutation of these random variables has the same joint prob-
ability distribution.

The set of individuals in the table T' are exchangeable: if
H means healthy and S means sick, the probability of see-
ing HHSSH is the same as the probability of SSHHH.
It is easy to see that independent random variables are in-
deed exchangeable. The real power of exchangeable random
variables arises from deFinetti’s Representation Theorem
[8, 20]. Informally, deFinetti’s theorem states that an ex-
changeable sequence of random variables is mathematically
equivalent to (i) choosing a data-generating distribution 6
at random, and (i1) creating the data by independently sam-
pling from this chosen distribution €. In the above example,
each population represents one data-generating distribution
0 € (21,92). The table is then created by choosing individ-
uals independently from 6. Note that the prior probability
that an arbitrary individual ¢ in T is healthy is

2
> Prit=H|T C Q]P[T C Q)
=1

= 1-PrTC]+0-Pr[TCQ] = 05

Pr[t = H]

On the other hand if we know that there is one individual
in T who is healthy. Then Pr[t = H| changes to,

Prit = H|t, = H € T]

2

S Prit=H|H € TAT CQ]Pr[T C Qu|H €T
=1

= 1-PrilT Cjti=HeT|+0:-Pr[T CQ|H €T

= 1 since a T drawn from 2> would not contain a H.

More generally, under the notion of exchangeability, the
original table T' (of size n) can be assumed to be generated
in the following two steps. First one out of an infinite set
of probability vectors p is drawn from some distribution
D. Then n individuals are drawn i.i.d. from the probabil-
ity vector P. D encodes the adversary’s prior information.
An agnostic adversary with no information can be modeled
using a D that makes all p equally likely. An adversary
who knows, e.g., that out of 10° individuals 999,999 have
cancer, should be modeled using a D that assigns p* with
p* (cancer) = 0.999 a much higher probability than 7T with
pT(cancer) = 0.001. Since all our attributes are categorical,
we adopt the Dirichlet distribution® (from the statistics lit-
erature [4]) to model such a prior over p.

DEFINITION 2 (DIRICHLET DISTRIBUTION).
Let P = (p1,...,px) denote a vector of probabilities >ipi =
1). The Dirichlet distribution with parameters o = (o1,.. .,

3For numeric attributes Gaussian, Poisson or Pareto are
good choices.

o), which is denoted by D(@), is a probability density func-
tion defined over the space of probability vectors such that

I'(o) o;—1
I, 1o 117 B

where o =), 04, and I' is the gamma function.* o is called
the prior sample size and & /o = (0:/0,...,01/0) is called
the shape of the Dirichlet distribution.

D(p;70)

i

An adversary may form a Dirichlet prior D(o1,...,0%)
as follows. An adversary without any knowledge about the
population can be modeled by a prior of D(1,...,1); this
makes all the probability vectors equally likely and thus
models the complete lack of information. Upon observing
a dataset with counts (o1 —1,...,0% — 1) the adversary can
update his prior to D(o1,...,0x). With this updated prior
not all probability vectors are equally likely. _?‘he proba-
bility vector with the maximum likelihood is p* such that
p; = oi/o.

As_) we increase o without changing the shape of the Dirich-
let, p* becomes more and more likely. That is, the adversary

-
becomes more and more stubborn (or certain) that p* is the
correct prior distribution. Hence, we call o the stubbornness
of an adversary. In particular, in the extreme case when

=
o — 00, p* is the only possible probability distribution.

DEFINITION 3. An oo-stubborn adversary is one whose
prior sample size is such that o — oo.

Existing privacy definitions consider an extreme adversary
who is oco-stubborn. Here, the maximum likelihood vector

[? is the prior belief of the adversary.

Before we move on, we note that there may be scenarios
when a data publisher does not know exactly what knowl-
edge the adversary has. Rephrased in our case, a data pub-
lisher might not know (%) the shape of the adversarial prior,
(#¢) the stubbornness, or (ii7) both. Therefore, to define pri-
vacy in such scenarios, we consider classes of adversaries, all
of whom have the same stubbornness (in (7)), or the same
shape (i) (and all possible adversaries in (7i:)). We explain
this in detail in Section 2.5.

(b) Knowledge about the individuals whose infor-
mation resides in the table.

We consider adversaries who have full information about
a subset of tuples B C T in the table (like in [22]). Com-
plex kinds of knowledge (like negation statements [16], and
implications [18, 6]) have been considered in the literature;
we plan to incorporate them into e-privacy in future work.

2.4 Our Privacy Definition

Putting all the above discussions together, we can now
finally introduce our novel privacy definition. After Tpusp
is published, the adversary’s belief in a sensitive predicate
¢(u) about individual u is given by the following posterior
probability

P (Typubsu, ¢, B, ) = Pr(é(u) | Tpu = R(T) A B; D(?()z])

AT (t) is the gamma function defined as I '™ %dx.



The adversary’s belief in ¢(u) conditioned on the published
data when individual u’s information is removed from the
publication is:

pout(Tpuln u, d): B7 ?)
Pr(¢(u) | Tpus = R(T = {tu}) A B; D(7)]

®3)

The distance between the two probabilities p™ and p°“
measures how much more an adversaries learns about an
individual’s sensitive predicate ¢(u) if her information was
included in T. If p"" is much greater than p°** (or if 1 — p*™"
is much smaller than 1 — p°“*), then we say that the adver-
sary has learnt a lot of information towards deducing that
¢(u) = true; we call this a privacy breach. But if the belief
of an adversary is roughly the same no matter whether or
not her information is included in the dataset, she has no
reason to hold her data back.

DEFINITION 4 (e-PRIVACY). Let D(@) be the adversary
prior about the population and B be a subset of individ-
uals in T whose exact information the adversary knows.
Anonymization algorithm R is said to violate e-privacy if
for some output Tpup generated by R, for some individual u
appearing in T and some ¢(u) € ®(u),

pin (TPUb7 U, ¢7 B7 7)
pout(TPulU u, ¢7 B7 ?)
1-— pout(TPUb7 u, ¢7 B7 ?)
1- pi'n (Tpubf u, ¢, B, ?)

€ or

(4)

> e (5)

Note that we consider the change in the adversary’s belief
by removing an individual from the data only to measure
the disclosure risk of an individual. We do not use it as
an actual anonymization technique where we consider each
individual u in turn and drop t,, if and only if u’s privacy is
breached. We either publish the output of R on the whole
table, when no individual sees a privacy breach, or do not
publishing anything.

2.5 Adversary Classes

In order to effectively demonstrate the power of the e-
privacy framework, we next identify four interesting classes
of adversaries and then in the next section apply e-privacy
to generalizations in these adversarial settings. In each of
the classes, we consider adversaries who form a single prior
on the distribution of the sensitive attribute, that does not
depend on the value of the non-sensitive attributes.That is,
the adversary’s prior is captured by a Dirichlet D(0’), where
7 has one parameter o(s) for every s € S.

1. Class I: A set of adversaries with stubbornness at most
o and prior shape o /o.

2. Class II: A set of adversaries with stubbornness at
most o, but with an arbitrary prior D(7) such that

Yecs0(s) =0

3. Class III: A set of adversaries having the same prior
shape of & /o, but with arbitrarily large stubbornness
(i-e., an oco-stubborn adversary).

4. Class IV: The set of all possible adversaries (includ-
ing oo-stubborn adversaries with an arbitrary prior
shape).

o«

Class 11
g < o0
shape arbitrary
Class 1 Class IV
g < o0 g =00 )
shape (...,0(s)/a,...) shape arbitrary
Class 11T
0=00
shape (...,0(s)/o,...)

Figure 1: Adversary Classes: arrows point to the
stronger adversary class.

We would like to note this is the first time class I and
class II adversary are being considered. Moreover, since
they assume adversaries who form their prior based on finite
amounts of external data, we call them realistic adversaries.
Figure 1 shows the relationships between the different adver-
sary classes. Class I adversaries are weaker than both class
II and class III adversaries, both of which are in turn weaker
than the set of all adversaries (class IV). Before we go on to
analyze the privacy of generalizations in these realistic set-
tings, we compare and contrast how these adversaries reason
about privacy in the following example.

ExXAMPLE 3. Continuing with our hospital example, sup-
pose that Table 8 (Tpub)is a generalized version of the com-
plete inpatient medical records in Gotham City Hospital. At
the time of publication, suppose the nearby Metropolis City
Hospital has already published a dataset citing the distribu-
tion of flu and cancer; out of 29,998 individuals, 11,999 have
flu and 17,999 have cancer.

We consider the following example adversaries: a class 1
adversary who forms a prior of D(12000,18000) from the
Metropolis dataset, a class Il adversary with a stubbornness
of 30,000 who formed his prior based on some other un-
known dataset of size at most 29998, an oo-stubborn class
111 adversary who believes that the distribution of flu versus
cancer is (.4,.6), and a class IV adversary whose prior is
an arbitrary probability distribution. Assume B = () for this
example.

Let us now reason about the e-privacy of an individual,
say Rachel, whose tuple is in the table. We must calcu-
late (i) p™™(flu), the posterior probability that Rachel has
flu when she is in Tpup, and (i) p°“*(flu) when her tuple is
ezxcluded from the table for each of the four adversaries. We
show in the appendix that in all four adversarial scenarios
P (flu) = 0.9, which is the fraction of tuples in Rachel’s
anonymous group in Tpuy who have cancer. That is, p'™
only depends on the published data. However, adversaries
from different classes reason about p°** differently.

A class I adversary uses both the published data and his
prior knowledge and computes p°*t = % = .6,
where 12000 and 30000 are o(flu) and o respectively. Note
that even though the adversary’s prior belief that Rachel has
flu was .4, he revised it based on the evidence from Tpup.

A class II adversary’s stubbornness is constant, but his
o(flu) could be arbitrary: if the data he consulted has no
flu patients, then o(flu) could be as low as 1, and if it had
no cancer patients, o(flu) could be as high as 29,999. That
is, a class II adversary might compute p°“* to be as low as

1800041 — = .36002.

2000030000 ) )
A class III adversary has infinite stubbornness; hence, he



Symbol | Description

Toub Generalized table
Q Non-sensitive attribute
S Sensitive attribute
n Total number of tuples in Tpus

Number of t € Tpup s.t. t[Q] = ¢,t[S] = s
Y ees (g, s), for Ss'CSs

o g 0(s), for " C S

=

o (o(s1),...,0(s15))) ) )

B Adversary knows exact information about all
beB(BCT).

b(q,s) | Number of b € B s.t. b[Q] = ¢,b[S] = s

b size of B

o(s) Dirichlet parameter for adversarial prior for s € S

Table 2: Notation

Non-Sensitive || Sensitive

Age | Gender || Disease || Count
< 40 M Flu 200
< 40 M Cancer 300
> 40 M Flu 1800
> 40 M Cancer 2700
> 40 F Flu 18000
> 40 F Cancer 2000

Table 3: A generalized microdata table showing the
distinct tuples and their multiplicities.

does not revise his beliefs based on the data in Tpu. He
computes p°*t = 4.

A class IV adversary has both infinite stubbornness and an
arbitrary prior. His p°** could be any value in [0, 1], hence,
there is no finite € for which Rachel’s data is private against
this adversary.

It is easy to see that Rachel is guaranteed 4-, 6.4-, 6- and
no privacy against class I, class II, class III and class 1V
adversaries, respectively.

3. PRIVACY OF GENERALIZATION

In this section we apply e-privacy to generalizations. Ta-
ble 2 summarizes the notation used in this section. Let
Q denote the (multi-dimensional) attribute representing the
generalized non-sensitive information in Ty, and S the sen-
sitive attribute. Let n denote the number of tuples, and
hence individuals, in Tpus. We denote by n(g,s) the num-
ber of tuples t € Tpyup such that t[Q] = ¢q and ¢[S] = s.
We call the group of tuples ¢ € T' that share the same non-
sensitive information g as a g anonymous group; hence the
size of an anonymous group is usually termed its anonymity.
An anonymous group is called diverse if the distribution of
the sensitive attribute in the group is roughly uniform; it
is (c,2)-diverse if the most frequent sensitive value in the
group appears with at most a ¢/(c+1) fraction of the tuples
in the group.

For ease of explanation we assume that the set of sensitive
predicates for every individual u is ®(u) = {{s} | s € S}.
That is, every individual only cares about positive disclo-
sures about specific values in the sensitive attribute domain.
Extensions to other kinds of sensitive information is straight-
forward. We also assume that the data publisher does not
know the composition of B, but only its size b = |B|.

In order to help us reason about the privacy of all indi-
viduals efficiently, we next state the conditions under which
publishing a generalized table T, guarantees e-privacy of
all individuals in Ty, against each of the four adversary
classes. A reader interested in the technical details is re-
ferred to Appendix A.

THEOREM 1  (PRIVACY CHECK FOR CLASS I).
Table Tpup is e—private against a class I adversary with prior
D(7T) and |B| = b, if for all anonymous groups q, for all
sensitive values s, the following conditions hold

RI (a) n(q)—b> ‘fo or
() nrzfﬁf)b = 1—65(q) ' Uf)fbl
fiz % =ty +16(q) T +15(q) ' Of:)+_z;1
where, 5(q):(ef1).% and e = c- (17 Uib).

Theorem 1 has the following consequences. A combina-
tion of anonymity and closeness is sufficient to guarantee
e-privacy against a class I adversary; RI(a) requires each
anonymous group to be sufficiently large, and R1(b), R2 re-
quire that the sensitive attribute distribution in each anony-
mous group to be close to the prior shape. For instance, con-
sider Table 3 and an adversary with a prior of D (12000, 18000)
and b = 0. Table 3 satisfies 2.5-privacy because,

e In the two groups with males, the distribution of the
sensitive attribute is identical to the shape of the prior
(thus satisfying R1(b), R2).

e The group with females satisfies the anonymity re-
quirement (20,000 > 30,000/1.5) (R1(a)) and the sec-
ond closeness requirement R2.

Note that even though the distribution of sensitive attribute
in the females anonymous group squarely contradicts the
prior shape, privacy is not breached. This is because we
are dealing with an adversary who is willing to change his
prior if there is sufficient evidence to the contrary. Note
that the right hand sides of both R1(b) and R2 increase as
0(q) increases. Thus, as anonymity increases (keeping the
sensitive attribute distribution the same in each anonymous
group) a generalized table guarantees more privacy. Also for
the same €, anonymity can be traded-off with closeness. This
is the first privacy definition that shows such a connection
between anonymity and privacy.

THEOREM 2 (Privacy CHECK FOR Crass II).
Table Tpup is e-private against a class 11 adversary with stub-
bornness o and |B| = b, if for all anonymous groups q, for
all sensitive values s the following conditions hold

o+b
—b>
Rl n(q) =b=—,
n(g, s) 1
R2 <1-—
n(g) —b ~ € +4d(q)

where, §(q) = (e —

M) =b gl —e (1L
1) 2 and € =€ (1 a+b)'



Here, a combination of anonymity (R1) and diversity (R2) is
sufficient to guarantee e-privacy. For instance, Table 3 satis-
fies 3-privacy against a class II adversary with stubbornness
o = 1,000 and b = 0, because (i) §(< 40, M) = 1 and the
most frequent sensitive value in this group may appear in
at most 2 of the tuples; (i) §(> 40, M) = 9 and the most
frequent sensitive value in this group may appear in at most
13 of the tuples; and (iii) §(> 40,F) = 40 and the most
frequent sensitive value in this group may appear in at most
% of the tuples. When o = 30,000, however, Table 3 only
satisfies e-privacy for € > 61 for males of age less than 40.
The anonymous group is not large enough (500) to force a
30,000-stubborn adversary revise his prior, which may be
very different from (.4, .6).

We would like to note that this is the first privacy defi-
nition that allows a generalized table to be published with
formal privacy guarantees even though the data publisher
is unsure about the adversary’s prior shape. Also note that
for the same ¢, as the anonymity of a group increases, the
distribution of the sensitive attribute in that group is al-
lowed to be more and more skewed. Conversely, in order
for smaller groups to satisfy privacy, the distribution of the
sensitive attribute must be close to uniform.

THEOREM 3  (Privacy CHECK FOR Crass III).
Table Tpup is e—private against a class 11l adversary with
a prior shape of (...,0(s)/o,...) and |B| = b, if for all
anonymous groups q, for all sensitive values s the following
conditions hold

€

n(g) —b ~ o
n(q, s) 1 a(s)
B2 St =5 = 1‘2'(“?)

Theorem 3 requires that the distribution in each anonymous
group be close to the prior. Recall that a class III adversary
(due to oco-stubbornness) assumes that the individuals in
the data are drawn independently from a single distribution

—
p* such that p*(s) = o(s)/o. That is, no matter how much
—

evidence is seen contradicting the prior p* the adversary will
not update his beliefs. Hence, increasing anonymity has no
effect on the privacy guaranteed against a class I1I adversary.

Finally, we consider the set of all possible adversaries.
Since the stubbornness and prior shape are arbitrary, no
privacy can be guaranteed by generalization.

THEOREM 4  (PRrivacy CHECK FOR CrLass IV). A gen-
eralized table Ty, does not guarantee e—private against class
IV adversaries for any value of € even when b = 0.

3.1 Finding a Generalized Table

Algorithms for finding a private generalization (like Incog-
nito [12], Mondrian [13], etc.) usually involve two parts -
algorithm P that checks whether a generalization satisfies
privacy, and, algorithm A that searches for a generalization
that satisfies P and has the best utility. For all three classes
of adversaries in this paper, we can show that algorithm P
terminates in O(IV) time. Note that we only need to check
privacy conditions for those sensitive values s that appear
in the table (else privacy is automatically guaranteed).

Most algorithms A find a minimal generalization. A table
T can be generalized in many different ways. For instance,

Table 3 (T') can be generalized by suppressing either age
(giving Ty,) or gender (Ty), or both (7'r). We can impose
a partial ordering < on generalizations of T’ i.e., if T} and
Ty are generalizations of T', then 77 < T% if and only every
anonymous group in 7% is a union of one or more anonymous
groups in 7T7. Again in our example, T = Ty, Ty = T+, but
T, 2 Ty or vice versa. Note that we lose information with
every generalization (Tt has the least information). Hence,
we would like to efficiently find a generalization that is as
far away from T as possible that satisfies e-privacy; this is
called a minimal generalization.

Starting from an original table, we can find the set of all
minimal generalizations efficiently using existing algorithms
[12, 3, 13] if the check for e-privacy satisfies the following
monotonicily property.

DEFINITION 5 (MONOTONICITY). Let f be a function
that takes a table T € dom(T) and outputs either true or
false. f is said to be monotonic on a partial ordering < on
dom(T), if

Ty T A f(Th) =true =  f(Tz) =true

It can be easily shown that the check for e-privacy against
class I, IT and IIT adversaries (Theorems 1, 2 and 3) satisfies
the monotonicity property, thus allowing a data publisher
to efficiently compute a minimal generalization.

3.2 Choosing Parameters

We conclude this section with a brief discussion on how a
data publisher can choose parameters, namely €, stubborn-
ness o, and the prior shape, to instantiate e-privacy. Since
the choice of parameters is application dependent, our dis-
cussion will be based on a real Census application called On-
TheMap®, which publishes anonymized commute patterns
of workers in the US. The current OnTheMap (v3) algo-
rithm [17] is based on differential privacy (and thus a class
IV adversary). The parameter € is set between 10 an 100.
OnTheMap could greatly benefit from using realistic adver-
saries; here, the prior can be set based on the distribution
of commute patterns from a previous version (or versions)
of the Census data (for example, the Census Transporta-
tion Planning Package, CTPP6). The stubbornness can be
set based on the number of individuals contributing to each
demographic in CTPP. The stubbornness may also be set
higher or lower taking into account recency of the previous
versions. We would like to point out that the parameters do
not have to be exact, but rather, only need to upper bound
the strength of the adversaries considered. Also, if the Cen-
sus is worried that either the prior or the stubbornness has
changed since previous releases, a stronger adversary model
(II, IIT or IV) can be used to account for uncertainty in one
or both of these parameters.

4. EXPERIMENTS

In this section we experimentally evaluate the utility of
generalized tables that satisfy e-privacy in the new space of
realistic adversaries, and compare it to the utility of gener-
alized tables satisfying ¢-diversity and ¢-closeness, using real
census data. We do not consider differential privacy since
no generalization guarantees such strong privacy.

®http://lehdmap3.did.census.gov/.
Swww.fhwa.dot.gov/ctpp/.



Attribute Domain | Generalizations Ht.
size type
1| Age 73 ranges-5,10,20,40,% 6
2 | Marital Status 6 Taxonomy tree 3
3 | Race 9 Suppression 2
4 | Gender 2 Suppression 2
8 | Salary class 2 Sensitive att.

Table 4: Selected Attributes of the ACS Database

In Section 4.1 we compare the utility of generalizations
against class I, II and III adversaries. Within class I and
class II, we show that we can generate tables with strictly
more information as the stubbornness of the adversary de-
creases. For the first time, we show that generalization can
be used to publish useful tables against strong adversaries
with arbitrary priors.

In Section 4.2 we compare the utility of the generalizations
satisfying (c, 2)-diversity and t-closeness to that of general-
izations guarding against realistic class I and class II adver-
saries. We show that more useful information can be pub-
lished when considering realistic adversaries. We also un-
cover an interesting fact that a class III adversary with a uni-
form prior provides equivalent utility as (c, 2)-diversity, sug-
gesting that (¢, 2)-diversity is an instantiation of e-privacy.
We explore this in more detail in Section 5.

Data: We use the American Community Survey (ACS)
Dataset from the Minnesota Population Center [5] for our
studies. The ACS Dataset from 2006 contains nearly 3 mil-
lion tuples. We adopted the same domain generalizations
s [12]. Table 4 provides a brief description of the data in-
cluding the attributes we used, the number of distinct values
for each attribute, the type of generalization that was used
(for non-sensitive attributes), and the height of the gener-
alization hierarchy for each attribute. We call the original
table T. We treat the Salary class as sensitive |S| = 2.

Generalization Lattice: Recall that there are many gen-
eralizations of a table, and that we can define a partial or-
der < on these generalized tables. This gives us a gener-
alization lattice. Each table in the generalization lattice is
label [z1, 2, 3, T4] where x; denotes the number of levels at-
tribute 7 has been generalized. For example [4, 1, 1, 0] means
that Age was partitioned into ranges of 40, Marital Status
was partitioned into classes {married, never married}, Race
was suppressed, and the Gender was not generalized. The
sum of the generalization heights determines the level of a
table. The most general table T is labeled [5,2,1, 1] (level
9) and contains the least amount of information amongst all
the tables in the lattice. The partial order on the tables is:
T[mh x2, 1,'3,.’134] = Tl[yh y27y37y4] lfy T; < Yi-

Utility Metric: Many metrics have been proposed to study
the utility of generalizations — average size of an anonymous
group, KL-divergence to the original table [16], discernibility
[3], and average error on a pre-specified query workload. The
utility of a privacy definition P is the maximum utility of a
generalization that satisfies P. In practice, however, utility
depends on the application that uses the data, and we do not
know which properties are of interest for this application.
In addition to studying the above metrics, we look at all
the 72 possible generalizations of the ACS dataset and com-

Generali Smallest value of € for privacy against
zation AL | AL | 4207 | 4207 | gee | g
91105,2,1,1 1.13 1.0 1.1 1.6 1.5 1
81 14,2,1,1 105.8 70.8 2.9 211.6 | 118.9 79.5
51,1, 1 1.57 1.25 1.1 2.7 2.38 1.59
5,2,1,0 1.32 1.08 1.1 2.1 1.81 1.21
5,2,0,1 1.69 1.54 1.3 249.4 1.69 1.54
7113,2,1,1 105.8 70.7 2.9 211.6 | 119.0 79.6
4,2,1,0 377 | 251.9 11.1 753.9 | 407.0 | 272.0
4,1,1,1 213.4 | 142.6 6.9 426.8 | 229.8 | 153.6
5,0,1,1 15.3 10.3 1.3 30.5 17.7 11.8
5 1,1,0 3.01 2.14 1.1 5.7 4.38 2.92
5,1,0,1 4.71 1.25 3.6 | 1157.1 4.93 3.29
5,2,0,0 2.45 1.69 1.7 526.8 2.45 1.69
611[31,1,1 213.4 | 142.6 6.9 426.8 | 229.8 | 153.5
3,2,1,0 377 | 251.9 11.1 753.9 | 406.9 | 271.9
5,0,1,0 19.8 13.3 1.6 55.9 22.3 14.9
5,1,0,0 9.5 6.34 7.2 | 2625.7 9.72 6.49
5,0,0,1 21.7 14.5 | 21.8 14.6 21.8 14.6

Table 5: Minimum parameter ¢ such that each gen-
eralization guarantees privacy against each of the
adversaries.

pare which of these guarantee privacy according to each of
the privacy definitions we are interested in. We say that
privacy definition P; guarantees strictly more utility than
privacy definition P; if every generalized table that satisfies
P also satisfies P;. Consequently, P; has more utility than
P> according to all of the above metrics.

Privacy Definitions Compared: (c,?2)-Diversity and ¢-
closeness are compared to the following adversaries:

o A (e): e-privacy against a class III adversary with a
uniform prior shape, i.e., p(salary = high) = p(salary =
low) = 0.5.

e AZ°(e): e-privacy against a class III adversary whose prior
shape is identical to the sensitive attribute distribution in
the whole table (o(s)/o = n(s)/n); i.e., p(salary = high) =
0.334.

o A7(e): e-privacy against a class I adversary with a uni-
form prior shape and stubbornness o.

e A7 (e): e-privacy against a class I adversary whose prior
shape is Vs, o(s)/o = n(s)/n, and stubbornness o.

e A7 (e): e-privacy against class II adversaries (arbitrary
prior shape) with stubbornness o.

4.1 Generalization With Realistic Adversaries
We first compare the utility of generalization against re-
alistic class I adversaries (.A,lioﬁ (e), AL (€)), realistic class
IT adversaries (.Al,o3 (€), AL (e)) and class III adversaries
(AZ (e), AZ(€)). For every generalization Ty, we calculate
the smallest value of € such that T} satisfies e-privacy against
each of the 6 adversaries. Table 5 shows all the tables that
satisfy one of these criterion with ¢ < 20. For instance,
6
the table [5,1,1,0] provides privacy against AL (¢) for all
e > 3.01, against Aioﬁ (e) for all e > 2.14, against A0 (e)
for all € > 1.1 and so on.
e (Class I strictly more useful than corresponding Class II or
Class III: The minimum ¢ required for any table is smaller
6 6
for class I adversaries (A" (€), A% (€)) compared to either
(i) their corresponding class 111 adversaries (A (¢€), A (¢€)),
and (1) class II adversaries (Alf)6 (e)) with greater stubborn-
ness. Thus for any e, class I adversaries produce strictly
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Stubbornness (s)

(a) Minimum value of € for

AZ(€), AZ(€) and A7 (e)

Stubbornness (s)
(b) Minimum discernibility of tables
satisfying A7 (2.5), AZ(2.5) and A% (2.5).

Stubbornness (s)

(¢) Minimum average group size of tables
satisfying A7 (2.5), AZ(2.5) and A% (2.5)

Discernibility is in billions.

Figure 2: Maximum utility vs. stubbornness o for A7(¢), AZ(€), and AZ ().

more useful tables than class II or class III adversaries.

e Utility despite adversaries with arbitrary prior shapes: In
the current state of the art, a data publisher unsure about
the adversary’s prior cannot publish a generalization with
provable privacy guarantees. For the first time, our experi-
ments show that we can publish useful generalization tables
against strong realistic adversaries with an arbitrary prior
shape; there are 4 tables that are private against AL° (20)
adversaries, and 16 tables that can be published that are

private against AL (20) adversaries.

o More utility by tolerating less stubborn adversaries: The
minimum values of € increases consistently for all tables as
stubbornness is increased from 10° to co in the case of class
I adversaries, and from 10® to 10° for class II adversaries.
This is also seen in Figure 2(a), which plots the minimum
value of € such that the table [5,1,1,0] is private against real-
istic adversaries A7 (€), A? (¢), and A? (€) as stubbornness is
increased (10% to c0). As expected, we observe an increase
in the minimum e when we guard against increasingly stub-
born adversaries. Hence, as the adversarial stubbornness
decreases, for the same e more tables guarantee privacy, thus
yielding more utility.

Figures 2(a) and (b) show the same result using standard
utility metrics discernibility and average group size. For
€ = 2.5, we computed the minimum value of discernibility
and average group size achieved by some tables that satisfies
A%(2.5), AZ(2.5) and A? (2.5), respectively. Clearly, utility
increases when less stubborn adversaries are considered.

e Class II versus Class III adversaries: Finally, we note
that sometimes class IT adversaries may allow more useful ta-
bles to be published than class III adversaries. For instance,
the minimum value of € for almost all tables is smaller in the
case of class IT adversary A" (¢) than in the case of class ITI
adversaries AZ°(e) and A (€). In Figure 2(b), tables satis-
fying AZ (2.5) have the same utility as A7 (2.5) and A7 (2.5),
for all ¢ < 10°. Consequently, since A7 (2.5) is strictly more
useful than A (2.5), for o < 10°, this class II privacy defi-
nition provides strictly more utility than A5°(2.5).

We will see in the next section that Ag°(2.5) guarantees
privacy that is equivalent to (4,2)-diversity. This shows that
realistic class II adversaries not only allows us to protect
against adversaries with arbitrary prior shapes, but also can
provide more utility than existing privacy definitions.

level 9
level 8
5111, 5210,  [5201,
! level 7
L ) L)
[5,(\)\,1,1], [5,5[,1,0], [5,2,0,0],
e level 6
[5,0,1,0],

Figure 3: Graphical representation of part of the
generalization lattice.

4.2 Comparison with Existing Work

To compare e-privacy to existing work, we compare (4, 2)-
diversity to A3 (2.5), and 0.2-closeness to A%°(2.5).” We

also include A’ (2.5) in our comparison. Figure 3 graph-
ically represents a part of the generalization lattice. Gen-
eralizations which satisfy the above privacy definitions are
denoted by a square (for (4,2)-diversity), a dashed square
(for A" (2.5)), a circle (for 0.2-closeness), a dashed circle

(for AZ°(2.5)), and a little filled circle (for AL (2.5)). Lines
connect tables that are immediate generalizations.

o AP (<) = (c,1)-diversity: We observe that all tables
that satisfy (4,2)-diversity also satisfy 2.5-privacy against
AT (2.5), and vice versa. In fact, we found such an equiv-
alence for every generalization in the lattice whenever € =
¢kl This means that (c,2)-diversity and A3 (<f) allow
tables with equivalent privacy and utility to be published.
This in turn is not a co-incidence; we show in Section 5 that
e-privacy captures many existing privacy definitions.

In conjunction with results from Section 4.1, this equiva-
lence also means that (i) strictly more useful tables can be
published by considering class I A7 (<) adversaries than
(¢, 2)-diversity; and (ii) in addition to guaranteeing privacy
against adversaries with arbitrary prior shapes, class I ad-
versaries (like A% (2.5), o < 10°) may provide more utility
than (c,[)-diversity.

"The choice of t = 0.2,¢ = 4 and € = 2.5 is not arbitrary,
and reasons will be revealed by the end of this section.



o AX(e) versus t-closeness: A similar equivalence between

t-closeness and AZ° (€) does not hold even though they seem
to guard against the same adversary. There is no value
for t such that t-closeness is equivalent to A2°(2.5). In our
figure the generalization [5,2,0,0] is not 0.2-close, but it is
2.5-private against AZ°(2.5). If we increase ¢ further then
generalization [5,1,1,0] becomes t-close before generalization
[5,2,0,0]. This is because t-closeness and e-privacy differ
in the way they measure closeness. t-closeness uses earth
movers distance, which is an average difference between two
distributions. On the other hand e-privacy requires point-
wise closeness. Average closeness measures may allow some
privacy breaches to occur. For instance, there are tables
that satisfy 0.34-closeness (for instance [4,2,0,0]) that have
homogeneous groups (which is usually considered a privacy
breach). These tables with homogeneous groups do not sat-
isfy e-private for any e.

Nevertheless, the fact that every table that satisfies 0.2-
closeness also satisfies Ag°(2.5) is no co-incidence. We show
in the next section that whenever t-closeness does not allow
tables with homogenous blocks to be published, then for
€ = maxs{p;—jt, 7255} (ps = n(s)/n is the fraction of tuples
in the table with sensitive value s), every table that satisfies
A (e) also satisfies t-closeness. For instance, for ¢t = 0.2,
and Pweatthy = 0.334, ¢, = 2.5. Again in conjunction with
results in the previous section,

~» Strictly more useful tables can be published by consid-
ering class I A¢ (e;) adversaries than t-closeness.

~> In addition to that guaranteeing privacy against adver-
saries with arbitrary prior shapes, class II adversaries (like
A7 (2.5), 0 < 10°) may provide more utility than ¢-closeness.

In summary, we have demonstrated that by considering
realistic adversaries who form their beliefs from external
datasets we are able to publish tables with strictly more util-
ity than existing techniques. Moreover, for the first time,
we are able to publish provably private useful generalized
tables even against powerful adversaries with arbitrary pri-
ors. Finally, we uncovered an equivalence between A3 (¢)
and (c,2)-diversity when ¢ = <t1; we show in the next sec-
tion, that is equivalence is no accident, but that e-privacy
captures many existing privacy definitions.

S. EMBEDDING PRIOR WORK

We set out to build a framework for defining privacy for
the space of adversaries that are neither too weak nor too
strong. We achieved this by modeling realistic adversaries
who form their knowledge based on external data, and our
experiments showed that we can publish useful tables while
protecting against strong adversaries.

In this setion, we show that there are much deeper con-
nections to prior work. Our definition is not yet another
privacy definition, but it is a framework that encompasses
previous definitions. Thus our work does not only span
the space between prior work, but also covers the existing
end points. We will show that by changing parameters in
the e-privacy framework, we can walk along our newly con-
structed bridge and visit the end points. In particular, we
show how our model can instantiate ¢-diversity, differential
privacy, perfect privacy [19] and t-closeness. (Due to space
constraints we do not consider («, 3)-privacy breaches and
(d,y)-privacy, which can also be instanted in the e-privacy
framework.) Interestingly, all these privacy definitions only
protect against oo-stubborn adversaries.

5.1 (¢ 2)-Diversity

(¢, 2)-Diversity requires that the most frequent sensitive
attribute appears in at most _f7 fraction of the tuples in
every anonymous group. The privacy guaranteed by this
metric is equivalent to considering the following class III
adversary.
Sensitive information: For every individual, ®(u) con-
tains one predicate t,[S] = s for every s € S.
Adversary Model: An oco-stubborn adversary who prior
shape is uniform; i.e., the adversary assumes that all individ-

uals are drawn from 17*), where for all s € S, p*(s) = 1/|S5]|.
Moreover, the adversary does not know exact information
about any individual (B = ().

e-Privacy protecting against the above adversary guaran-
tees the same privacy as (¢, 2)-diversity if and only if

. c k-1
€ = min (k~m,(c+ 1)T> (6)
= C—gl,whenk:Q (7)

This is precisely the equivalence we uncovered in the exper-
imental section. Variants of this metric, like (c, 2)-diversity
[16] and personalized privacy [23] can be captured by chang-
ing the set of sensitive predicates. Since we do not consider
adversarial background knowledge in the form of negation
statements and implications, e-privacy does not yet capture
(¢, £)-diversity and its variants [18, 7].

5.2 e-Differential Privacy

e-differential privacy requires that an adversary should not
be able to distinguish between two input tables that differ
only in one tuple using the published data (in fact, by any
possible dataset that could be published). Using Claim 3
from Dwork et al. [10], we can show that equivalent privacy
can be guaranteed using the following setting of e-privacy.
Sensitive Information: Differential privacy does not dis-
tinguish between sensitive and non-sensitive attributes. Hence,
for every individual, ®(u) contains one predicate t,, € D, for
every D a subset of the domain of tuples.
Adversary Model: The adversary has exact information
about all but one individuals in the table; i.e., |B| = |T'|—1.
Clearly, no generalization guarantees differential privacy for
any €, Ty, — B would only contain one tuple. Moreover, the
adversary is oo-stubborn with an arbitrary prior shape.

5.3 Perfect Privacy

Perfect privacy is a very stringent privacy condition which
requires that no information be disclosed about any sensitive
predicate [19]. More formally, perfect privacy is preserved
if for every sensitive predicate ¢(u), the adversary’s prior
belief about the truth of ¢(u) is equal to the adversary’s
posterior belief about ¢(u) after seeing the published table,
no matter what the adversarial prior beliefs are. We state an
equivalent formulation of 1-privacy that provides the same
privacy protection as perfect privacy.

Sensitive Information: Perfect privacy does not distin-
guish between sensitive and non-sensitive attributes. Hence,
for every individual, ®(u) contains one predicate ¢, € D, for
every D a subset of the domain of tuples.

Adversary Model: An co-stubborn adversary whose prior
shape is arbitrary.

One interesting question is whether generalization can
guarantee 1-privacy against a weaker formulation of perfect



privacy. We can show that if the adversary’s prior shape is
fixed (say, o(s)/o) and known to the data publisher then 1-
privacy can be guaranteed by a generalization if for every ¢
anonymous group and every s € S, % = "fj). However,
publishing this table provides no utility; since we get no new
useful information about the distribution of the sensitive at-
tribute. If the prior shape is arbitrary 1-privacy cannot be
guaranteed even against finitely stubborn adversaries.

5.4 ¢-Closeness

t-closeness requires that the distribution of the sensitive
attribute in each anonymous group is close (based on Earth
Mover;s Distance) to the distribution of the sensitive at-
tribute in the whole table. The privacy guaranteed by this
metric can be equivalently guaranteed by the following class
IIT adversary.
Sensitive information: The same as (¢, 2)-diversity.
Adversary Model: An oco-stubborn adversary (B = ()
whose prior shape matches the sensitive attribute distribu-
tion in the whole table; i.e., Vs € S, ps = o(s)/o = n(s)/n.

Unlike (¢, 2)-diversity or differential privacy, there is no
setting of e for which e-privacy is equivalent to t-closeness.
This is because while e-privacy uses point-wise closeness be-
tween distributions, ¢-closeness uses earth movers distance
to measure the closeness of distributions. As a consequence,

a table that satisfied t-closeness may have homogeneous anony-

mous groups where all the individuals have the same sensi-
tive value. This is usually considered a breach of privacy,
and e-privacy will never allow such a table to be published.

Though the two conditions are not equivalent, under some
restrictions t-closeness implies e-privacy.

LEMMA 1. Any generalized table that does not contain
a homogeneous group and satisfies t-closeness, also satis-
fies er-privacy against an co-stubborn adversary whose prior
shape matches the sensitive attribute distribution in the whole

Ps+t _ps
ps ' ps—t

table, if, € > mazrses <

6. RELATED WORK

Recent research has focused on formally defining privacy.
We have already discussed k-anonymity, ¢-diversity, ¢-close-
ness, and differential privacy in depth.

Variants of k-anonymity and ¢-diversity have received co-
pious attention in terms of anonymization algorithms [13],
richer data semantics [23], and improved adversarial models
[18, 6]. The latter papers bound the worst cases adversarial
knowledge that can break an anonymized dataset. (p1,p2)-
privacy and v-amplification [11] bound the point-wise dis-
tance between the adversary’s prior belief in a property and
the adversary’s posterior belief in that property after seeing
a randomized version of the data. Other approaches [1] en-
sure (p1, p2)-breaches only on some parts of the data. (d,~)-
privacy [21] is a probabilistic privacy definition for data pub-
lishing in which all tuples are considered independent and
the privacy is guaranteed by bounding the prior P(¢) and
the posterior P(t|D) after seeing the published data D.

7. CONCLUSIONS

We introduced e-privacy, a new privacy framework that
allows us for the first time to bridge weak and strong adver-
saries. Our evaluation of e-privacy for generalization shows
that it gives practically useful tradeoffs between privacy and

utility. The relationship of e-privacy to previous privacy def-
initions gives interesting insights and opens up directions for
future work.

One interesting avenue for future work is to consider cor-
relations between sensitive and non-sensitive values. If an
adversary has different priors based on the non-sensitive at-
tributes, we can prove that an expression similar to Thm 3.1
in [16] should be used to compute p™”. Analyzing privacy
in this case is an important next step. Another interest-
ing avenue for future work is applying e-privacy to other
anonymization algorithms.
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APPENDIX
A. DERIVING PRIVACY CONDITIONS

Due to space constraints, we present a proof sketch for
Theorem 1. Proofs of Theorems 2, 3 and 4 follow along
the same lines. We only derive the privacy condition when
B = () due to space constraints. We refer the reader to our
technical report for the complete versions of the proofs [15].
Given Tpup, the adversary can find out the ¢ anonymous
group that contains and individual, say Rachel’s, record
(since tRrachet[Q] = g is public information). Given no other
information, the adversary cannot distinguish between indi-
viduals within an anonymous group. Hence, we can equiva-
lently reason about the privacy of a g-anonymous group.

e-Privacy is guaranteed if for every individual w (with
t.[Q] = q) and for every Sy such that ¢(u) € ®(u), p™/p°** <
eand (1 —p°")/(1 —p™") <e.
p™ and p°** can be computed as follows:

Z n(qa 5) (8)

s, ™a)

n(g,s) +o(s) —1
Z n(g)+o—1 ©)

pin(TPub7Q7 S¢7?7@) =

pout (Tpub7 q,S, ?7 @)

\%

SESy

Given, Tpup, an adversary would not know the exact com-
position of Tpup—{tu}. Ift = (g, s) then p°** = ™Md)tols) -1

n(q)+o—1
nla:9)+9(s) ~ Gince we are only interested in how
n(q)+o—1

much larger p'™ is than p°*’, it is enough to compute the
smallest value p°“* can attain.

Equation 9 leverages the duality between the parameters
of the Dirichlet distribution and prior data seen by the ad-
versary. Note that, if the adversary’s prior @ is interpreted
as counts in another dataset disjoint from T}, the pos-
terior probability that ¢[S] = s when the ¢ is not in the
published table can be interpreted as the fraction of tuples
with S = s in all the data that the adversary has seen until
now. Moreover, Equation 9 has the following properties:
Prior beliefs vs published data: The adversary’s belief about
the distribution of the sensitive attribute is a combination
of his prior and the statistics in the published table.
Anonymity vs Privacy: When o < 0o, as the number of indi-
viduals in each g-anonymous group increases, the difference
between posterior beliefs when the individual is in or out of
the published table shrinks.

Theorem 1 (when B = () follows from simple arithmetic.

else p°*t =

in

" (g, 5¢) .nlg) +o(g) —1
pout = n(q,Sg) +o(q,5) —1 n(q)

<e

(Q7S¢) € U(Q7S¢) -1
iff, 6>1 or < .
n(q) 1-46 o(q)
1 __pout
< (1 (g, Se)to(d, S¢)— 1) /<”(Q) —nlg, S¢>)) <
n(q)+o(q)-1 n(q)
. n(q7 S¢) < 1_— 1 1 . U(q, S¢) -1
R T AR T AC)
|
Proof of Equation 8.
P T .5, 7,0) = b= @O N ETul g

Yves Prit=1(q,8") A Tpu)
The probability of seeing the dataset Tpus equals the prob-
ability of seeing the histogram H = (..., n(q,s),...) from n
draws using some P drawn from the distribution D(7).

mmq:ﬁﬁmwﬂwmmmw

_ [T sholes) _T() )

[In(g,s)!  [IT(e(g;s)) TL(n+o)
The probability of seeing the dataset Tpu, where t = (g, s)
equals the product of (a) the probability of ¢ = (g, s) given
7, and (b) the probability of seeing the histogram H =
(...,n(q,s) —1,...) from n — 1 draws from P, for some p’
drawn from D(7). Let T}, = Tpus — {t}.

Prit = (q,8) AN Tpu)

= Prit = (g,5)[ D] Pr(Tyu|P]- Prip|D(d)ldp

7
n(q, s)
= X Pr{Tpu 12
n(q) [ pu ] ( )
Thus using Equations 10 and 12 we get the result. |

Proof of Equation 9.
Prit =(q,s) Nt &€ Tpus)

out —
p TUb7Q7S7U7® =
& ) T S Prli= (@) AL E T

Prit = (q,8) A Tpub At & Tpup)

= L5 [ piitu5) PrFIDE T (13)

where ¢/ = o + 1, 0'(q,s) = o(q,s) + 1, and for all other
(¢',s)eQxS,d'(qd,s") =0c(q,s"). From Equation 11
Prit =(q,8) ANTpus At & Tpus)
n(g*, s) + o(g*, s)

o X Pr{Tpus) (14)

Thus from Equations 13 and 14 we get the result. |



