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ABSTRACT
A mashup is a Web application that integrates data, com-
putation and UI elements provided by several components
into a single tool. The concept originated from the under-
standing that there is an increasing number of applications
available on the Web and a growing need to combine them
in order to meet user requirements. This paper presents
MatchUp, a system that supports rapid, on-demand, intu-
itive development of mashups, based on a novel autocomple-
tion mechanism. The key observation guiding the develop-
ment of MatchUp is that mashups developed by different
users typically share common characteristics; they use sim-
ilar classes of mashup components and glue them together
in a similar manner. MatchUp exploits these similarities
to recommend useful completions (missing components and
connections between them) for a user’s partial mashup spec-
ification. The user is presented with a ranking of the rec-
ommendations from which she can choose and refine accord-
ing to her needs. This paper presents the data model and
ranking metric underlying our novel autocompletion mecha-
nism. It introduces an efficient top-k ranking algorithm that
is at the core of the MatchUp system and that is formally
proved to be optimal in some natural sense. We also experi-
mentally demonstrate the efficiency of our algorithm and the
effectiveness of our proposal for rapid mashup construction.

1. INTRODUCTION
A (music) mashup is a composition created from the com-

bination of music from different songs. Web mashups, in a
similar spirit, stem from the reuse of existing data sources or
Web applications, with an emphasis on GUI and programming-
less specification. As described in [4], the concept of mashups
originated from the understanding that the number of appli-
cations available on the Web is growing very rapidly, and so
is the need to combine them to meet user requirements. Such
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applications are typically complex, access large and hetero-
geneous data, and have varied functionalities and built-in
GUIs. As a result, it often becomes an impossible task for
IT departments to build them in-house as rapidly as they
are requested to. The role of mashups is to facilitate this
rapid, on-demand, software development task.

A mashup consists of several smaller components, namely
mashlets, implementing specific functionalities. For instance,
a mashlet may model a data source, e.g., a news RSS feed,
or it may implement some visual functionality, e.g., draw
a map, or it may realize a specific operator, e.g., extract
location information from an RSS feed input. It may also
contain logic that “glues” together other mashlets, in which
case we refer to it as a glue pattern (GP for short). As
an example, a GP may combine the aforementioned three
mashlets in order to present a map with the locations of
recent news feeds.

Following the previous model, a programmer builds a
mashup by selecting specific mashlets and specifying the
GPs that link them. Several mashup editors are available
on the market to perform this task [12, 13, 30]. However,
building a mashup-based application, as done nowadays in
many IT departments (e.g. for health-care or government-
support), is still a fairly complex (and error-prone) task. It
involves not only finding the most suitable domain-dependent
mashlet components, but more importantly, gluing them to-
gether in an effective way. This gluing is non-trivial as the
names of the mashlets input/output variables are not always
meaningful/uniform, they include state variables that one is
not always aware of, types are inconsistent, etc. To address
this problem we present MatchUp, a system that allows for
rapid, on-demand, intuitive development of mashups, based
on a novel autocompletion mechanism.

The key observation guiding the development of MatchUp

is that mashups developed by different users, in similar con-
texts, typically share common characteristics, i.e., they use
similar classes of mashup components and glue them to-
gether in a similar manner. It can thus be very helpful to
use the “wisdom” of other users in order to determine the
wirings among the components of a new mashup. How-
ever, a given mashlet might have been used/glued (in differ-
ent contexts) in thousands of different mashups; browsing
through all to identify common and suitable wirings is too
time consuming. This is precisely where our system comes
into play—it instantly retrieves those GPs that are poten-
tially most relevant to the user’s current needs.

We draw our inspiration from integrated development tools
and propose the use of autocompletion. The idea is simple



and intuitive: The user selects some initial mashlets that are
indicative of the mashup that he/she aims to build, and the
system proposes possible completions with GPs and possi-
bly other mashlets. The user can then select one or more
of the possible completions, perform some refinements, and
continue building the mashup in this iterative fashion.

The characteristics of mashup composition introduce two
unique challenges to the problem of autocompletion that
are not found in other environments. The first concerns the
identification of potentially relevant GPs. Intuitively, a good
GP would glue all the mashlets selected by the user without
introducing additional mashlets in the mashup. Such a GP,
however, may not exist in the database, in which case the
system should try to relax the requirements. For instance,
a GP may link a proper subset of the selected mashlets,
or introduce additional mashlets. Another option is to use
a GP that does not link the exact mashlets, but instead
links mashlets that are similar to them. As an example,
assume that the user selects “Yahoo! NY Map” and “New
York Restaurants” as the starting mashlets. Even if there
is no GP that links these exact two mashlets, a GP that
links a generic “Yahoo! Map” mashlet with a “Restaurants”
one, may still be useful here, e.g. to show the user how
restaurants and maps are normally linked.

The second important challenge is the ranking of candi-
date GPs so that the system can propose to the user a mean-
ingful short list of completions. The rank of a candidate GP
intuitively depends on its “tightness”, i.e., the omission of
mashlets or the introduction of additional mashlets should
penalize the quality of a candidate. At the same time, it is
important to also take into account the tightness of the GP
with respect to inheritance relationships. Intuitively, GPs
that link mashlets that are more general than those speci-
fied by the user (e.g. the generic “Yahoo! Map”) take less
advantage of the specific capabilities of the given mashlets
(e.g “Yahoo! NY Map”). Finally, it is important to take
into account the “collective wisdom” of the user community
when presenting choices to the user. For instance, GPs that
use the general “Yahoo! Map” mashlet might be more fre-
quently used and rated as more stable by users compared to
other GPs that use “Yahoo! NY Map”, in which case the
system may choose to rank the former higher even if they
are a little less tight.

Of course, mashlets’ semantics still need to be taken into
consideration by the programmer when adopting a suggested
GP. MatchUp does not try to reason about semantics in
order to generate the recommendations; instead, it lever-
ages the efforts of programmers who already spent time on
understanding these semantics, in order to assist other pro-
grammers engaged in similar efforts. This takes advantage
of the recent new phenomenon: massive volume of develop-
ers sharing experience.

We note that the paradigm of autocompletion has been
used successfully in many domains, e.g., phase prediction,
file name completion, and in integrated development envi-
ronments, but these previous efforts do not address the im-
portant issues mentioned above.

Our Contributions.In this paper we present the MatchUp

system that supports an autocompletion functionality for
mashup composition. MatchUp uses an intelligent recom-
mendation engine that takes into account the incomplete
specification of the user, the interactions among mashlets

in the database, and also the “collective wisdom” of previ-
ous users that have successfully built mashups, in order to
generate possible completions from a large database of real
mashlets and GPs available on the Web. We describe the
principles of our autocompletion mechanism and its under-
lying algorithmic foundation. We stress that our goal is not
to invent yet another mashup editor/platform, but rather to
develop a generic novel technique that can be plugged into
any such editor/platform [9, 13, 21, 30] to facilitate faster,
intuitive, and more efficient mashup development.

The technical contributions of this paper can be summa-
rized as follows:

•We introduce a simple generic model for describing mash-
lets and GPs. A key ingredient of this model is an inheri-
tance relationship between mashlets/GPs, which in turn en-
ables notions of generalization and relaxation as described
above. The model also enables an intuitive importance met-
ric for mashlets and GPs that captures their interaction with
other mashlets/GPs and their rating according to the user
community. Based on this model, we develop a formal defini-
tion of the autocompletion problem and introduce a ranking
function for ranking possible completions.

•We describe an efficient algorithm to generate the top com-
pletions given a partial mashup specification. We describe
the physical structures used by the algorithm and analyze
its performance theoretically. One interesting aspect of our
algorithm is that it uses a non-monotonic ranking function,
yet we are able to prove strong theoretical guarantees on its
performance.

• We briefly discuss the implementation of the MatchUp

system that incorporates the aforementioned model and al-
gorithm. (A first prototype of MatchUp was demonstrated
in [2].) MatchUp operates within an existing system (IBM
Mashup Center platform [13]) for mashups design, which
demonstrates the feasibility of our approach in practice.
Note that while our implementation uses the IBM Mashup
Center as the platform for mashup design, the autocomple-
tion mechanism that we propose is generic and can similarly
be used to enhance other existing mashup systems.

• We present an empirical study on the efficiency and ef-
fectiveness of the proposed framework. Our experiments
demonstrate that MatchUp generates meaningful recom-
mendations sufficiently fast to maintain an interactive user
experience, even when it operates on a mashlet database
that is 10× larger than the largest mashlet database avail-
able today on the Web.

The paper is organized as follows. Section 2 describes
our data model and Section 3 defines the autocompletion
problem. Section 4 explains how candidate completions are
found and ranked, assuming some knowledge about the rela-
tive importance of mashlets and GPs. Section 5 then shows
how such importance is measured. The system implementa-
tion and our experiments are described in Section 6. Finally,
we consider related work in Section 7 and conclude.

2. THE MODEL
This section details a model for describing mashlets and

GPs that forms the basis of the auto-completion problem
defined later. The model extends the formal mashup model
in [1]. We first briefly (and informally) recall the main ingre-
dients of the model (for full description see [1]), then explain



how it is extended to capture mashlets/GPs inheritance and
reuse.

Mashlets and Glue Patterns.The basic components of
the model are atomic mashlets. A mashlet is a module that
implements a specific functionality and supports an inter-
face of variables and methods visible from other mashlets.
For mathematical simplicity, the model is based on relations
as in relational database systems: the state of a mashlet is
maintained and represented by a set of relations, and the
logic of the mashlet (which includes its interaction with the
external world) is represented by a set of Datalog-like (ac-
tive) rules. A distinction, however, is that the standard
relational model assumes first normal form, i.e., the compo-
nent of a relation is a tuple of atomic values. This restric-
tion is relaxed here and the model is not strictly first-order,
but is more in the spirit of nested relations. In particular,
to model complex mashlet data, tuples in mashlet relations
may contain other relations, and even entire mashlets. More
concretely, an atomic mashlet has the following components:

• Input and Output Relations: they capture the input and
output fields respectively of a mashlet. This constitutes
the external interface of the mashlet that is manipulated
by other mashlets or users in the system.

• Internal relations: they define local data of the mashlet.
They can be specified as visible or not outside the mashlet.

• Rules: they specify the logic implemented by a mashlet.
This logic describes how the output relations are populated
based on the values of the input relations and the local data.
In the model, this logic may be encoded using Datalog-style
active rules, which enables taking advantage of advanced
existing technology, notably query optimization. The logic
may alternatively be provided in a high-level programming
language such as Java or C++. In that case, the mashlet
behaves as a black box.

The left column of Figure 1 shows two example atomic
mashlets named “Map” and “Yahoo! Map”. The “Map”
mashlet contains a coordinate input relation with attributes
such as longitude, latitude, and zoom, that control the lo-
cation displayed on the map. “Yahoo! Map” may contain
and additional view input attribute, controlling whether the
map displays a satellite view or a normal view.

A compound mashlet is typically composed of other (atomic
or not) mashlets. Thus, in addition to the above men-
tioned components, a compound mashlet may include im-
ported mashlets, as well as rules to specify how its imported
mashlets interact with each other (e.g. how the output of
one mashlet is transformed into the input of another). Since
the main contribution of such mashlets reside in the “glue”
they provide between the mashlets they use, we call them
Glue Patterns (GPs for short).

Figure 1 shows four GP examples, labeled GP1 - GP4.
For instance, GP1 combines the basic “Map” mashlet with
a “Simple Marker” mashlet to display a list of locations
on a map using simpler markers. GP2 performs the same
task except that it uses the “Video Marker” mashlet for the
markers. In both cases, the GP passes information from
one mashlet to the other using the corresponding external
interfaces.

The model presented above includes both syntactic and
semantic features for mashlets and GPs. Reasoning about
semantics is clearly challenging, given also that the logic of
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Figure 1: Inheritance of Mashlets and Glue Patterns

mashlets may be implemented in different languages. Thus,
our work focuses solely on the syntactic features which can
be identified easily from the specification of the mashlet.
Hence, in the remainder of the paper, a mashlet is modeled
as its set of input and output relations, i.e., its public ex-
ternal interface. Similarly, a GP is modeled as the graph of
connections between the input and output relations of the
mashlets that it links.

Inheritance.Mashlet inheritance plays a central role in the
design of mashlets and in the autocompletion mechanism we
introduce in the paper. We next extend the model of [1] with
such a mechanism in a rather standard manner.

The high-level observation is that, similar to software com-
ponents, mashlets may share properties with other mashlets
and comply with the inheritance paradigm. As an exam-
ple, observe that the “Map” and “Yahoo! Map” mashlets
implement very similar functionality, and it may be actu-
ally possible to use a “Yahoo! Map” in any GP that uses
a “Map” as one of its components. Based on this intuition,
we analyzed in detail Programmableweb.com [20], currently
the most extensive collection of mashups on the Web. This
led us to the understanding that a large number of mashups
are similar to each other, in their components and in the
logic they offer to users. For example, at the time of our
study, 1669 mashups (39% of all mashups) included maps
provided by various vendors (Google, Yahoo!, etc.). Since
their characteristics are often standard, it is easy to reuse
the composition logic defined for one mashlet on another
similar mashlet. Even if some of the functionalities may not
be enabled, the core logic should be reusable.

Following our modeling of mashlets and GPs according
to syntactic features, we adopt a model of syntactic inheri-
tance that is defined with respect to the external interface
of the mashlets/GPs. More specifically, a mashlet m2 inher-
its from mashlet m1 if the interface of m2 (its input/output
relations) is a superset of the interface of m1, and for each
input (resp. output) relation of m1, the attribute-set in the
corresponding relation in m2 is a superset of that in m1.
This definition of syntactic inheritance implies that mash-
let m2 can substitute m1 in any composition that uses an
instance of m1.

Similarly, we can define syntactic inheritance among GPs.



In this case, the inheritance relationship is defined based on
the mashlets linked by a GP. Formally, a GP g2 inherits
from GP g1 if there is mapping h from the mashlets linked
by g1 to the mashlets linked by g2 such that if h(m) = m′

then m′ inherits from m. As an example, GP2 in Figure 1
inherits from GP1, in the sense that GP1 can also link a
“Map” to a “Video Marker”, and thus it can be used in any
composition that uses GP2.

Clearly, the inheritance relationship can be computed in
a straightforward manner based on the external interfaces
of mashlets and GPs. Note also that these interfaces are
already provided in most mashlet repositories, and they can
be extracted automatically from the definitions of mashlets.
In the following sections, we assume that the inheritance
relationship among mashlets/GP is already computed. We
henceforth view a set of mashlets and GPs as a directed
graph. Mashlets and GPs are represented as nodes, and GPs
are connected to the mashlets that they glue together. More-
over, the graph contains inheritance edges among mashlets
and GPs.

We note that our work does not rely on the specific type
of inheritance—on the contrary, our techniques can be ap-
plied unchanged to any inheritance relationship, provided
that it can be pre-computed offline. For instance, one possi-
bility is to employ semantic inheritance, which is a stricter,
more amorphic notion, that refers also to the goal that a
mashlet/GP serves. A mashlet (resp. GP) m2 is required to
provide all the services that m1 provides and possibly more.
An example is a “Yahoo! Map” that provides all that a
generic “Map” does, plus the possibility to choose whether
the map displays a satellite view or a normal view. We
choose to work with syntactic inheritance because it can be
readily computed based on existing information in mashlet
repositories, and our experiments show that it works well in
practice. We intend to investigate different types of inheri-
tance as part of our future work.

3. THE PROBLEM
We next define the autocompletion problem. We first de-

velop some intuitions based on the informal presentation
already given in introduction, and then formalize the prob-
lem.

Basic Ideas.At an abstract level, the mashup autocomple-
tion problem can be defined as follows: Given a database of
mashlets and GPs with some inheritance relationships, and
a set of mashlets selected by the user, identify and rank GPs
that link a subset of the selected mashlets. As explained in
Section 1, the generation of recommended completions in-
volves two interrelated tasks: identifying the GPs relevant
to the users mashlets, and ranking the candidate GPs.

Given a set of user mashlets, an “ideal” GP would glue
together exactly those mashlets and not more. Relaxations
of this ideal solution include GPs that link some more gen-
eral variants of the given mashlets, link only a subset of the
selected mashlets (or their more general variants), or intro-
duce some additional mashlets. As an example, assume that
the user selects “Yahoo! Map” and “Video Marker” as the
starting mashlets. As shown in Figure 1, there exists no GP
that links exactly these two mashlets only. But it is possible
to use GP2 since “Yahoo! Map” inherits from “Map”. The
downside, of course, is that GP2 does not take full advan-
tage of the map’s capabilities. Alternatively, we can use G4,

adding m6 to our mashup.
The rank of a candidate GP reflects the “tightness” of its

coverage of the selected mashlets relative to the ideal GP,
that is, how many user mashlets are omitted, how many
new mashlets are introduced, and how far are the GP mash-
lets (w.r.t the inheritance hierarchy) from the user mashlets.
Going back to our previous example, GP2 should be ranked
higher than GP1, since the latter links generalizations of
both “Yahoo! Maps” and “Video Marker”, whereas GP2
can take advantage of the capabilities of the video markers.
Finally, it is important to take into account the “collective
wisdom” of the user community when presenting choices to
the user. For instance, GP1 might be more frequently used
and rated as more stable by users compared to GP2, in
which case it might have to be ranked higher even if it is
a little less specific. This “collective wisdom” can also help
us choose between two, otherwise incomparable, relaxations
such as GP2 and GP4.

The previous discussion indicates that the final ranking
function has to take into account several factors. Indeed,
the problem definition that we provide later follows this ap-
proach. More specifically, we first assume the existence of a
function Imp(m) ∈ [0, 1] that reflects the static importance
of a mashlet/GP m, and which captures the collective wis-
dom mentioned above. Second, we assume the existence of a
function Dist(m 7→ m′) ∈ [0, 1] that quantifies the penalty of
substituting m′ for m based on the inheritance relationship.
The penalty is low if most of the interface (input/output
attributes) of m is covered by m′ and hence the coverage is
good, otherwise the penalty is high. (We discuss the def-
inition of Dist and Imp later.) The final ranking function
is defined in terms of Imp and Dist and also captures how
well a GP links the mashlets selected by the user. The idea
is to map each GP in the database to a point in a multi-
dimensional space based on the inheritance relationships rel-
ative to the selected mashlets. The “ideal” GP that links
just the selected mashlets is also mapped to a point in this
space. The distance between this point and a GP point is
the basis to rank the GPs.

Our approach is best illustrated with an example. Sup-
pose again that the user selects mashlets m2 and m4 (“Ya-
hoo! Maps” and “Video Marker” respectively). We con-
sider the three-dimensional unit cube, where the dimensions
correspond to (1) the importance of the glue pattern that
would link the two mashlets, (2) the mashlet m2, and (3)
the mashlet m4. The candidate GP2 is mapped to the point
(1 − Imp(GP2),Dist(m2 7→ m1), 0), that is interpreted as
follows. The value of the first coordinate is 1 minus the
importance of GP2, hence is close to 0 if GP2 is of high
importance. Let us look now at the second coordinate. In-
stead of using m2, GP2 links m1 that is a generalization
of m2. The penalty of generalization is captured by a “dis-
tance” metric, denoted as Dist(m 7→ m′), that quantifies
the penalty of using m′ instead of m in a GP. Dist is a value
between 0 and 1; the penalty is low if most of the interface
(input/output attributes) of m is covered by m′. Hence, the
coverage is good; the more features are missed, the higher
the penalty. The third coordinate is 0 since GP2 takes full
advantage of m4. The ideal GP is represented as the point
(0, 0, 0), meaning that it has the highest importance value
and links precisely the two mashlets. The distance between
(0, 0, 0) and (1− Imp(GP2),Dist(m2 7→ m1), 0), e.g., mea-
sured by the L2 norm, will provide the rank of GP2. Hence,



a candidate GP gets a good rank if it covers precisely all the
selected mashlets and has a high static importance.

Formal definition.We now provide a formal definition of
the auto-completion problem, following the approach out-
lined above. We use M to denote the collection of mash-
lets and GPs in the database. In what follows, we identify
mashlets and GPs inM using unique integer ids from the set
{1, . . . , |M|}. We use m ∈ {1, . . . , |M|} to denote a mashlet,
and we use g to distinguish a GP. The set of mashlets linked
by a GP g is denoted as Components(g). Each mashlet m
in M is associated with a value Imp(m) that measures the
importance of m in the mashlet Web, and a similar value
Imp(g) is associated with a GP g. The computation of Imp()
is discussed in the following section.

Let m and m′ be two mashlets such that m′ inherits
(directly or indirectly) from m. As mentioned above, we
assume the existence of a “distance” metric, denoted as
Dist(m 7→ m′), that quantifies the penalty of using m′ in-
stead of m in a GP. This is computed as the fraction of the
attributes of the input/output relations of m′ that are not
present in m. The definition of inheritance guarantees that
Dist(m 7→ m′) ∈ [0, 1), with 0 denoting that m′ has exactly
the same public interface as m.

We assume that the user specifies a partial mashup M
consisting of n mashlets m1, . . . , mn from M. A GP g is a
candidate completion for M if it can link a non-empty subset
of m1, . . . , mn. We note that g can introduce more mashlets,
or it may need to generalize some of m1, . . . , mn in order to
link them. In the latter case, we write g(mi), i = 1 . . . n,
to denote the mashlet m ∈ Components(g) that is a gen-
eralization of mi and is closest to it, i.e. Dist(mi 7→ m) is
minimal. (We allow g(mi) = mi.) If several such general-
izations exist, we pick one randomly; if none exist, g(mi) is
undefined, denoted by g(mi) = ⊥. We use Compl(M) to
denote the set of completions for the partial mashup M .

Each completion g in Compl(M) is associated with a score
S(g) defined as follows. Let D = |M| + 1. We build a
conceptual D-dimensional space, where dimension 0 corre-
sponds to the set of available GPs, and each dimension d,
1 ≤ d ≤ |M|, corresponds to the distinct mashlet from M
with the same id. Without loss of generality, we will assume
that the user-specified mashlets correspond to dimensions
1, . . . , n. A candidate g is mapped to a point pg in this
space with the following coordinates:

pg[0] =
max{Imp(g′)|g′ ∈M}− Imp(g)

max{Imp(g′)|g′ ∈M}−min{Imp(g′)|g′ ∈M}

pg[m] =



























Dist(m 7→ m′) 1 ≤ m ≤ n ∧ g(m) = m′

1 1 ≤ m ≤ n ∧ g(m) = ⊥

1 n < m ≤|M| ∧ m∈Components(g)

∧ ∀ 1 ≤ m′ ≤ n, g(m′) 6= m

0 otherwise

Similarly, we create a point p∗ that represents the “ideal”
candidate as follows: p∗[m] = 0, 0 ≤ m ≤ D. The score
S(g) of the candidate g is then measured in reverse to the
distance of pg from the ideal p∗. (Closer points get higher
score). Hence, based on the definition of pg, g is penalized
for a mashlet m (pg[m] > 0) either if m is a user-selected
mashlet that is not linked by g, or if m is linked by g but it
is not selected by the user, or if g links a generalization of
m′ such that Dist(m 7→ m′) > 0. GP g is also penalized if

it has a low importance value with respect to the other GPs
in the database (i.e., pg[0] approaches 1).

One possible option for function S is to use the L2 norm
of the vector corresponding to pg. Regardless of the choice,
it is natural to require that the scoring function S obeys the
following property:

Definition 3.1. [Monotonicity] Function S is mono-
tonic if and only if the following implication holds for any
two GPs g and g′: ∀m ∈ {0, . . . , D}(pg[m] ≤ pg′ [m]) ⇒
S(g) ≥ S(g′).

The autocompletion problem can now be formulated as
follows:

Definition 3.2. [Mashup Autocompletion Problem]
Given a partial mashup M , a monotonic scoring function
S, and an integer K ≤ |Compl(M)|, generate K GPs from
Compl(M) that have the highest scores.

We note that certain completions may have equal scores,
which implies that there are several valid solutions to the
problem. However, all valid solutions correspond to the
same ordered sequence of top-K scores. The last score of
this sequence is of particular interest and is termed the ter-
mination score. Finally, it is possible to modify the problem
definition to take into account preferences denoted by the
user on the importance of mashlets. This is achieved in
a straightforward manner by scaling the dimensions of the
space of candidates according to the specified preferences.
We do not consider this extension further, as it requires a
straightforward extension of our techniques.

4. THE ALGORITHM
We introduce next an algorithm that can solve the afore-

mentioned problem efficiently, provided that certain query-
independent information has been materialized off-line.

We define first the information used by the proposed al-
gorithm. Each mashlet m in M is associated with a set
Lm = {(g, w)|g ∈ M∧ g : m 7→ m′ ∧ w = Dist(m 7→ m′}.
Essentially, Lm records the GPs that link m or its general-
izations, along with the penalty of the generalization. We
assume that the elements of Lm can be accessed in increas-
ing order of the weight w, and we use Lm[i] to denote the
i-th element of Lm in that order. We also define a set

L0 = {(g, w)|g ∈M ∧

w = max{Imp(g′)|g′∈M}−Imp(g)
max{Imp(g′)|g′∈M}−min{Imp(g′)|g′∈M}

}

that contains all the GPs and their importance metrics, and
we assume a similar sorted access model. Clearly, these sets
can be built off-line by examiningM. The sorted access can
be provided by indices (primary or secondary) over the sets.

We also assume that it is possible to retrieve efficiently
the set Components(g) for a specific GP g. Given that a GP
is likely to connect few mashlets, we can consider inlining
the definition of the GP along with its id in each list Li,
0 ≤ i ≤ |M|. Otherwise, we need an additional index that
can also be built off-line.

We are now ready to define the algorithm. We start with
a simple variant that is correct but inefficient, and then
present a refined version that overcomes this drawback.

First attempt.The initial simple autocompletion algorithm,
depicted in Algorithm 1, follows the standard lines of top-k
algorithms, a la TA [10]. (For the time being, we ignore



the lines framed in boxes.) The algorithm accesses sequen-
tially the lists L1, . . . , LM that correspond to the database
mashlets, plus list L0. The access is round-robin. For each
accessed element (g, w), the algorithm finds the definition of
g, computes S(g), and places g to an output queue O that
holds the best K GPs that have been identified thus far. Let
O[1], . . . , O[K] denote the completions identified thus far, in
decreasing order of their scores. The algorithm maintains
a per-mashlet threshold ti that is always set to the w com-
ponent of the last accessed element (g, w). The algorithm
also maintains a threshold t on the best potential score of
unexamined completions. The threshold is computed as the
score of a conceptual candidate g′ that corresponds to a
point in the multi-dimensional space, having the value ti for
the ith coordinate, i = 0 . . .M. When S(O[K]) ≥ t, it is
not possible to generate a better completion than the ones
already contained in O. Hence, the algorithm terminates
and returns the K completions in O.

Algorithm 1: The autocompletion algorithm

Input: A partial mashup M with mashlet ids
{1, . . . , n};

Monotonic scoring function S;
Number of results K.

Output: K elements of Compl(M) with highest scores.
Initialize a priority queue O that holds at most K1

completions;
tm ←∞ for 0 ≤ m ≤M;2

tm ←∞ for 0 ≤ m ≤ n ;2

t←∞;3

while |O| < K ∨ S(O[K]) < t do4

i← next index in round-robin from {0, . . . ,M};5

i← next index in round-robin from {0, . . . , n} ;5

(g, w)← next element from Li;6

Retrieve definition of g and compute S(g);7

Insert g in O;8

ti ← w;9

Let g′ be a conceptual GP such that pg′ [m] = tm for10

0 ≤ m ≤M;

Let g′ be a conceptual GP such that pg′ [m] = tm for
0 ≤ m ≤ n and pg′ [m] = 0 for n < m ≤ |M|

;

10

t← S(g′);11

end12

Given the monotonicity of the score function S and the
fact that the algorithm follows essentially the same princi-
ples as the standard TA-style algorithms, it is easy to prove
that the algorithm is correct. Nevertheless, it has one signif-
icant drawback. Observe that the number of lists that the
algorithm manages is very large; it is equal to the number of
mashlets in the database and a typical database may contain
thousands of mashlets [20]. Note also that typically, most
of the database mashlets are totally unrelated to the user
mashlets. It is clearly desirable to ignore those and focus
on the much smaller set of mashlets directly reflecting the
user’s interest. This is precisely what our refined algorithm,
presented next, does.

The refined autocompletion algorithm.The refined al-
gorithm has the same definition as Algorithm 1 except that
it employs the boxed lines.

As shown, it accesses only the lists L1, . . . , Ln that cor-
respond to the user mashlets (plus, as before, the list L0

describing the GPs importance). So in lines 2 and 5, m
now ranges only from 0 to n, instead of 0 to M, as in the
previous version. Although it may seem that this simple fix
would meet our needs, it actually leads to an incorrect al-
gorithm. The key observation is that even though the score
function S is monotonic, this property does not necessar-
ily hold when only dimensions 0, . . . , n are considered. We
can formalize this observation as follows: There may be two
GPs g and g′ s.t. pg[m] ≤ pg′ [m] for all m ∈ {0, . . . , n}, but
S(g) < S(g′). This may happen because g is closer (w.r.t
the inheritance relationship) to the user mashlets but also
introduces many additional mashlets, whereas g′ is farther
(w.r.t the inheritance relationship) from the user mashlets
but introduces no other mashlets.

To account for this non monotonicity, a more careful com-
putation of the threshold t is required. This is achieved by
the updated line 10 in the algorithm. Namely, the thresh-
old is computed as the score of a conceptual candidate g′

that has importance t0, links each user mashlet m through
a generalization with penalty tm, for 1 ≤ m ≤ n, and does
not link any other mashlets. As we show next, the mono-
tonicity of the original scoring function S and the sorted
access model guarantee that t is still a correct threshold.

We now provide a formal proof of correctness. In what
follows, we refer to the algorithm as AC ∗ (for AutoComple-
tion). We first prove a useful property of the algorithm, and
then present the main correctness theorem.

Lemma 4.1. Let t be the threshold at the end of one iter-
ation. Let g be a candidate GP that has not been yet exam-
ined by AC ∗, i.e., it has not been encountered in any of the
accessed elements. Then, S(g) ≤ t.

Proof. Since g has not been examined, it must appear
in the unread parts of lists L0, . . . , Ln. The sorted access
model implies that pg[m] ≥ tm for m ∈ [0, n]. Moreover,
for any other dimension m ∈ (n, |M|], it must hold that
pg[m] ≥ 0. Overall, it holds that pg[m] ≥ pg′ [m] for all m ∈
[0, |M|], and thus it follows by the monotonicity property
that S(g) ≤ S(g′) ≡ t.

Theorem 4.1. Algorithm AC ∗ returns a correct solution.

Proof. Let gK be the last completion in the output of
the algorithm. It suffices to show that there exists no can-
didate g such that g is not in O and S(g) > S(gK).

Let us assume that such a candidate g exists. Clearly,
g is a candidate that the algorithm has not examined yet,
otherwise it would have been inserted in the output queue
O. Hence, g must be an unseen candidate. Let t be the
threshold when the algorithm terminates. Lemma 4.1 im-
plies that S(g) ≤ t. Moreover, we know that S(gK) ≥ t due
to the termination criterion of the algorithm. It follows that
S(gK) ≥ S(g), which is a contradiction.

Optimality. Next we consider the optimality properties of
the algorithm. We examine the class C of deterministic al-
gorithms that operate under the same access model as AC ∗.
Thus, a correct algorithm A in C receives as input the lists
L0, . . . , Ln corresponding to mashup M , a monotonic scor-
ing function S, and the number K of desired results, and
returns the top-K completions for M . Algorithm A can



use any order (i.e., not specifically round-robin) to access
the lists, and it can also use any thresholding scheme as
the termination criterion. The only restriction is that the
algorithm must rely on information inferred solely by the ac-
cessed elements in the lists. As a counter example, A cannot
use information on the size of the lists L0, . . . , Ln, as such
information is not part of the input. It might be possible to
apply optimizations if such or similar statistics are available,
but we do not consider this option in this paper.

Given an algorithm A in C and an input instance I, we
define Depth(A, I, m) as the number of elements that A ac-
cesses from list Lm when solving instance I. The total cost of
the algorithm is defined as Cost(A, I) =

∑n

m=0 Depth(A, I, m).
It is interesting to note that this cost metric focuses solely on
the access of lists L0, . . . , Ln and does not take into account
the cost to recover the definition of a GP g. The assumption
is that the latter is expected to be small, since it involves
a single index look-up, or the definition of the GP may be
inlined with each list entry.

To measure the efficiency of our algorithm, compared to
other algorithms in the class C, we use the standard notion
of instance optimality, originally introduced in [10]: We say
that an algorithm A ∈ C is instance optimal within class
C if there are constants c and c0 such that for every input
instance I, cost(A, I) ≤ c× cost(A′, I) + c0 where A′ ∈ C is
the algorithm that solves optimally I. We refer to c as the
optimality ratio of A.

We show that AC ∗ is indeed instance optimal within class
C. Our analysis works in two steps. We first show that
the maximum depth of AC ∗ must be matched by any other
algorithm, and then prove the main theorem.

Lemma 4.2. Let A be an algorithm in C and let I be an
input instance. Then
max{Depth(A, I, i)|0 ≤ i ≤ n} ≥

max{Depth(AC ∗, I, i)|0 ≤ i ≤ n}.

Proof. For convenience of notation, we define
pj ≡ Depth(A, I, j) and p∗

j ≡ Depth(AC ∗, I, j), 0 ≤ j ≤ n.
Let pmax ≡ max{Depth(A, I, i)|0 ≤ i ≤ n} and p∗

max ≡
max{Depth(AC ∗, I, i)|0 ≤ i ≤ n}. Let also gK denote the
last GP identified in the solution of A.

The proof works by contradiction. Assume that pmax <
p∗
max, i.e., AC ∗ does not halt after reading pmax rounds. Let

t∗j be the per-input thresholds at the end of round pmax,
and t∗ be the overall threshold. At that point, AC ∗ has
examined a superset of the patterns that A has examined,
and thus S(O[K]) ≥ S(gK). Since AC ∗ continues pulling
it holds that t∗ > S(O[K]), and hence it follows that t∗ >
S(gK).

Based on this last statement, we construct an input in-
stance I ′ that leads to an error with algorithm A . Instance
I ′ is identical to I up to depths p0, . . . , pn. We set L0[p0 +1]
equal to (g, t∗0), where g is a new GP that links exactly the
mashlets m1, . . . , mn. Accordingly, we set Li[pi + 1] equal
to (g, t∗i ), 1 ≤ i ≤ n. Clearly, S(g) = t∗ > S(gK). It
is straightforward to verify that I ′ is a valid input instance.
When algorithm A executes on instance I ′, it will halt again
at the same depths p0, . . . , pn since it is deterministic, but
it will have missed the solution g. This is a contradiction,
since the algorithm is assumed to be correct.

Theorem 4.2. Algorithm AC ∗ is instance optimal within
class C with an instance optimality ratio of (n + 1).

Proof. Consider an input instance I and the correspond-
ing optimal algorithm Opt. Define
pOpt
max ≡ max{Depth(Opt, I, j) |0 ≤ j ≤ n} and p∗

max anal-
ogously for AC ∗. Using the previous lemma, it holds that
pOpt
max ≥ p∗

max. We can express the cost of algorithm AC ∗ as
follows:

Cost(AC ∗, I) =
∑

0≤i≤n

Depth(AC ∗, I, i)

≤ (n + 1)p∗
max

≤ (n + 1)pOpt
max

≤ (n + 1)Cost(Opt, I)
Thus, for the specific instance I, it holds that Cost(AC ∗, I) ≤

c×Cost(Opt, I)+c0, for constants c = n+1 and c0 = 0 that
do not depend on the instance. Given that the instance was
chosen arbitrarily, it follows that AC ∗ is instance optimal
with optimality ratio n + 1.

Discussion.Our autocompletion algorithm accesses only a
small set of lists that correspond to the user selected mash-
lets, and we have seen above that it is instance optimal w.r.t
the class of algorithms that also access only these lists. A
natural question, however, is whether AC ∗ maintains this
property when competing against the class C′ of algorithms
that may access all the mashlet lists, similar to Algorithm 1.

Clearly, an algorithm in C′ may be “lucky” and access a
top-K GP that lies at the beginning of the additional lists
Ln+1, . . . , L|M|, but appears only further down in the lists
L1, . . . , Ln accessed by AC ∗. Consequently, AC ∗ may per-
form arbitrarily worse than this lucky algorithm, which in
turn implies that AC ∗ is not instance-optimal within C′.
This may seem negative at first, but, as the following theo-
rem shows, it may not carry any practical significance.

Theorem 4.3. There is no algorithm A that is instance
optimal within class C′ with an instance optimality ratio
smaller than |M|, the number of mashlets in the database.

Proof. The proof is similar to the proof of Theorem 9.5
in [10].

In other words, even if AC ∗ were instance optimal within
C′, its optimality ratio for real-world mashlet databases would
be so high that it would not carry any practical benefits.
Moreover, our experiments, described in Section 6, demon-
strate the efficiency of our algorithm in a real life setting.

5. COMPUTING IMPORTANCE
We assumed so far the existence of an Imp function mea-

suring the static importance of mashlets/GPs. We next con-
sider its computation.

An importance measure could be based on the number of
downloads or an explicit rating system by users. Our sys-
tem allows using such “base” measures but also computes
importance in the style of PageRank [7]. A mashlet acquires
importance from its use in important GPs; GPs similarly
acquire importance from using important mashlets. An in-
teresting aspect of our computation is that importance flows
through inheritance edges as well, i.e., a mashlet/GP that
inherits from an important mashlet/GP gets a boost in its
importance.

More precisely, we assume a base importance value for
each mashlet m and GP g, denoted base(m) and base(g) re-
spectively, with Σ base(m) = Σ base(g) = 1. We use Isa(m)
(resp. Isa(g)) to denote the set consisting of m (respectively,



g) and all its direct specializations. We assume that (i) each
GP includes at least one mashlet (which is the case in prac-
tice), and that (ii) one GP has all the known mashlets as
components (for this we introduce a dummy GP with im-
portance 0). We will see further where these conditions are
used. We use parameters, α, β, γ, with α + β + γ = 1, to
weigh the impacts of the three facets: base measure, usage
of components, and inheritance. The following two recur-
sive equations compute the importance of a mashlet m and
a GP g, respectively:

Imp(m) = α[
∑

{g|m∈Components(g)}
Imp(g)

|{m′|m′∈Components(g)}|
]

+ β[
∑

{m̂|m∈Isa(m̂)}
Imp(m̂)

|{m′|m′∈Isa(m̂)}|
]

+ γ[base(m)]

Imp(g) = α[
∑

m∈Components(g)
Imp(m)

|{g′|m∈Components(g′)}|
]

+ β[
∑

{ĝ|g∈Isa(ĝ)}
Imp(ĝ)

|{g′|g′∈Isa(ĝ)}|
]

+ γ[base(g)]

Consider the first equation. The first summand, weighted
by α, transfers importance from each GP to its components.
The second summand, weighted by β, transfers importance
from each mashlet to its specializations in the inheritance hi-
erarchy. The third summand, weighted by γ, corresponds to
a bias we introduce according to base. It can be interpreted
as a transfer of importance from each mashlet to all the
mashlets, according to their base importance. The second
equation computes the importance of GPs simultaneously
in a similar manner. We initialize Imp0(m) = base(m) and
Imp0(g) = base(g) for each m and g, and then iterate com-
puting Impi from Impi−1 using the two equations, i > 0.

We next consider convergence. As this is rather standard,
our presentation will be brief. This is a PageRank computa-
tion on the graph consisting of the mashlets and GPs. There
are edges from m to g and conversely, if m is a component
of g. There are edges from components to their specializa-
tions. The edges are weighted according to the equations
above. Observe that the importance of a mashlet is trans-
ferred conservatively to GPs (via the first summand of the
2nd equation), and to other mashlets (via the last two sum-
mands of the 1st equation); and symmetrically for GPs. By
Perron-Frobenius [11], such a computation converges if the
graph is aperiodic and strongly connected. Aperiodicity is
not an issue and strong connectivity is guaranteed by as-
sumptions (i) and (ii) above.

In MatchUp, the values of the weights were set to be
equal (1/3), following our experiments with the system (re-
ported in Section 6.3), and the fixpoint was reached fairly
rapidly.

6. IMPLEMENTATION AND EXPERIMENTS
We present an extensive experimental study of a prototype

implementation of MatchUp. In what follows, we summa-
rize the main features of our implementation, and highlight
the main experimental results.

6.1 Implementation
We completed a prototype implementation of the

MatchUp framework described in this paper inside the IBM
Mashup Center platform [13]. The latter implements the
necessary functionality for mashup design, whereas MatchUp

is used to enhance the system and provide on-demand com-
pletions. The implementation of MatchUp in an actual

mashup platform validates the applicability of the frame-
work in practice.

Before describing the system architecture, let us briefly
review the main features of the IBM Mashup Center plat-
form. The platform, based on the WebSphere Application
Server, is composed of two layers. The first layer, called In-
foSphere Mashup Hub allows users to create XML data feeds
from a variety of information sources/Web services and mix
them together to create new feeds called feed mashups. Once
the feeds are defined, they can be assembled into a (visual)
Mashup using the second layer, called Lotus Mashups. As
a proof of concept, we have augmented this second layer
with our novel autocompletion mechanism, showing how it
can be used to speed up the visual Mashup design. Similar
principles can be applied to the first layer as well.

An information source (InfoSphere data feed/Web service)
is visually represented in Lotus Mashups by a Widget (a UI
component). These correspond to mashlets in our model.
Widgets communicate via events. They can define published
events (which they may send to other Widgets) and han-
dled events (the events they can receive as input). These
correspond, respectively, in our mashup model, to the input
and output relations of the Widget mashlets. The Lotus
Mashups system provides a wiring function to specify which
published events (from a source widget) are fed into which
handled events (of a target widget). This correspond in our
model to the GP that glues the corresponding mashlets.

The data about the widgets (mashlets) and wirings (GPs)
is stored, in an XML representation, in the platform database.
The current format does not include inheritance informa-
tion, and we extended it to include this data. To speed up
processing, we also keep a (materialized) relational view of
the data in a DB2 database, where only the mashlet/GP
details that are relevant to the autocompletion computation
are stored. This view is queried by the autocompletion en-
gine, to create the mashlets lists and compute the GPs score.
Our autocompletion engine is written in Java, wrapped as
a web-service and deployed on the InfoSphere Mashup Hub.
It is accessed by Lotus Mashups as a web-service-based feed,
gets as input the mashlets selected by the user and returns
as output the computed autocompletion suggestions.

The system architecture and (part of) its execution flow
are depicted in Figure 2. The user selects some initial mash-
lets that are indicative of the mashup that he/she aims to
build (1). These, along with the configurable parameter k,
are sent to the autocompletion Widget as input events (2).
The application server queries the mashlets database (3) to
get the relevant data (4). The top-k completions are com-
puted and displayed to the user on the screen (5). Before
the user chooses to use one of the suggestions, she can ask to
preview its potential effect on the current mashlets. In this
case, the system highlights the “wirings”, showing which
data items will be output/fed into which Widget. When the
GP involves mashlets that are ancestors (in the inheritance
hierarchy) of the user mashlets, the system also marks the
specific input/output parameters of the user mashlets that
are not covered by the ancestor mashlets. Finally, if the
autocompletion suggestion includes new mashlets, those are
also automatically brought to screen. The user can then
choose to adopt the suggestion as is, or refine it (e.g. by
adding new wirings for the parameters not captured by the
ancestor mashlets), in which case the system marks the new
created GP as inheriting from the original GP.
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We ran two series of experiments to validate our approach.
First we tested the performance and scalability of our auto-
completion algorithm. We measured its execution time on a
variety of data sets, varying the main parameters that may
influence the performance and quantifying their affect on the
results. Second, we assessed the quality of the completion
suggestions and their usefulness for mashup development.
Here we asked a set of users to use the system for a par-
ticular mashup design and evaluated their satisfaction with
the suggested GPs. These two series of experiments are pre-
sented next. All the experiments were performed on an IBM
T60p laptop, with Pentium 1.65GHz Dual-Core and 2GB
RAM. Each experiment was run ten times and the graphs
show the average. But in all cases, the maximal deviation
from the average was not more than 5%.

6.2 Performance
To evaluate the performance of our algorithm in a real life

environment, we examined ProgrammableWeb.com, one of
the main Web mashup directories, and built our data sets
following its main characteristics. ProgrammableWeb.com
currently contains around 1000 mashlets (called there APIs)
and 3500 GPs (called there Mashups). Hence the ratio be-
tween the number of mashlets and GPs is 1:3.5, reflecting
the fact that a typical mashlet is used by several GPs. The
number of mashlets connected by a given GP ranges from
2 to 5, with fairly uniform distribution. Mashlets are split
into categories (e.g., travel, search, maps, photos, politics)
and there are currently 60 such categories of approximately
the same size (around 20). Inheritance information is cur-
rently not recorded in the repository. However, an analysis
of the mashlets belonging to a given category shows that
they provide similar functionality and have similar inter-
face, and essentially form inheritance hierarchies of depth
ranging from 1 to 5.

We generated data sets with similar characteristics, vary-
ing the following parameters:
Number of mashlets We varied the number of mashlets in

the database from 1 to 40, 000 with a ratio of 1:3.5 between
the number of atomic mashlets and the generated GPs.
GP structure The maximal number of mashlets connected
by a GP in the database (which we refer in the following
as the database GP complexity) was varied from 2 to 10.
For each GP complexity c, the exact number of mashlets
connected by a given GP in the database (a number in the
range 2 to c) and the identity of the mashlets it connects,
were drawn randomly with uniform distribution.
Inheritance depth Mashlets are split into sets, each con-
sisting of 20 mashlets. A set corresponds to the notion of
a category in ProgrammableWeb (e.g., travel, search, maps,
etc.). We varied the maximal depth of the inheritance hi-
erarchy within the categories from 1 to 20. For a given
inheritance depth bound d, the specific depth of the hier-
archy tree in a given category (a number in the range 1 to
d) was drawn randomly with uniform distribution, and a
corresponding tree was randomly generated.
Mashlet importance To compute the importance of mash-
lets, we need the base importance vector and the weights
α, β, γ. (See Section 5). For the base, we considered uniform
and Zipfian distributions. For the weights, we experimented
with a variety of values. The performance was practically
insensitive to these changes. Of course, the top-k GPs de-
pended on these choices. In the performance experiments
presented below, the results were obtained with uniform dis-
tribution for the base and equal weights (i.e., 1/3 for each).
User input Finally, we varied the number of mashlets that
the user places on screen from 2 to 10, and varied the number
k or requested autocompletion suggestions from 3 to 20.

Let us first consider how the number of mashlets affects
response time. Results for a particular set of experiments
are shown in Figure 3. Consider first Figure 3(b) which de-
picts the running time of our top-k algorithm (in seconds)
for a database with a growing number of mashlets and k val-
ues varying from 2 to 20. The maximal inheritance depth is
5 and the GP complexity is 5 too (the characteristics of Pro-
gramableWeb.com). The number of input user mashlets is
also 5. (We will consider the effect of changing these parame-
ters further.) The vertical line in the left part corresponds to
a database similar in size to that of ProgrammableWeb.com.
So, clearly, the algorithm scales to a much larger number of
mashlets. We can observe a moderate linear increase of the
running time as the number of mashlets increases, and as
k grows. But even when the data is 10 times the size of
ProgrammableWeb.com, and k = 20, the response time is
below 0.8 seconds which is more than adequate to maintain
an interactive user experience.

The effect of GP complexity is demonstrated in Figures
3(a) and 3(c). In Figure 3(a) the GP complexity is 2, (namely,
mashlets are connected in pairs, as often done in IBM’s Lo-
tus Mashups) and in Figure 3(c) the GP complexity is 10.
We can see that higher GP complexity implies longer com-
putation time. This is because with high GP complexity
mashlets participate in more GPs, which causes the mash-
lets lists manipulated by the algorithm to contain more can-
didate GPs. Indeed, measuring the lists length we observed
that the average lengths for GP complexity 2, 5 and 10,
were 35, 53, and 102, resp. But even for GP complex-
ity 10 (double than the maximal GP complexity in Pro-
grammableWeb.com) the response time is below 1.8 seconds.

We next examined how the number of user mashlets af-
fects the performance. We varied the number of mashlets
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Figure 3: Runtime vs. #mashlets & k

that the user places on the screen from 2 to 10 and re-ran the
above experiments for each case. The results were fairly uni-
form, showing stable performance, with only very marginal
increase in computation time. Figure 4 depicts the results
of a sample experiment, conducted with GP complexity 5,
inheritance depth 5 and k = 3. The number of user mash-
lets (abbr. in the figure by #UM) here are 2, 5 and 10,
and we can see that the corresponding lines are practically
indistinguishable.

Finally, we tested how the inheritance depth affect the
performance. We varied the inheritance depth from 1 to 10
and re-ran the above experiments for each case. Again, no
effect on the performance was observed since the length of
the mashlets list is mostly affected by the overall number of
mashlets and the connectivity of the GPs.

6.3 Quality
To assess the quality of the proposed autocompletions,

we ran a second set of experiments with real users who were

0

1

2

0 5000 10000 15000 20000 25000 30000 35000 40000

# of Mashlets

A
lg

o
ri

th
m

 R
u

n
ti

m
e 

(s
ec

o
n

d
s) #UM=2

#UM=5

#UM=10
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asked to build a travel-related mashup. We constructed a
mashlets database in IBM Mashup Center, containing rele-
vant mashlets and GPs in the spirit of what we have seen on
ProgrammableWeb (e.g., including hotel and restaurant di-
rectories, weather forecasts, maps, news, and relevant GPs)
as well as unrelated mashlets and GPs. For lack of available
information on download rates, we set the initial importance
of mashlets/GPs to reflect their relative Google PageRank.
We asked the users to build a mashup incrementally, start-
ing from a couple of mashlets that they place on screen, and
followed their interaction with the system.

At each experiment we presented to the user the top-10
autocompletions computed by MatchUp. First we checked
whether or not the users chose to adopt any of the sug-
gested autocompletions for the mashup construction, and
if so which ones. Second, we asked the users to browse
through the database using the standard IBM Mashup Cen-
ter tools and see whether they can find GPs that are more
helpful/relevant for their needs than the ones suggested by
MatchUp. We then asked each user to rank these GPs,
together with the set proposed by MatchUp, to form their
own top-10 list of relevant GPs, and measured the correla-
tion between the ranking generated by users and the ranking
generated by MatchUp.

Ten users participated in the trial. For each, we ran sev-
eral experiments, varying the weights assigned to the differ-
ent components of the importance formulas, and analyzing
the effect on the grade. For all users except one, the best
grades were obtained when the three ingredients of the im-
portance formulas had equal weights. (For this user too the
difference was only marginal.) Thus this is what we chose
for our implementation.

In all the experiments (with these parameters), the users
indeed chose to adopt one of the suggested autocompletions
for the mashup construction. Furthermore, the adopted au-
tocompletions were among the top-5 proposals. Clearly, the
results demonstrate the usefulness of the generated auto-
completions.

The users’ search for other more relevant GPs were gen-
erally unsuccessful. Only in two experiments the users iden-
tified a single additional GP, but ranked it relatively low
in the list (replacing the 8th and 9th proposed GPs, resp.)
Generally there was an agreement with the subsets of GPs
proposed in slots 1–5 and 6–10, with the only difference
being the order within these subsets. To measure the corre-
lation between the rankings, we used Spearman’s rank cor-

relation coefficient [23], defined as ρ = 1 −
6

∑

1...n
d2

i

n(n2−1)
, n

being the number of ranked elements and di the difference



between the element’s ranking. In the case where the users
and MatchUp lists contained exactly the same set of GPs,
n = 10 is the number of GPs in the set and di the differ-
ence between the rank of GPi in the two lists. For the case
where the users replaced one of the GPs, n = 11 with the
omitted GP given the rank of 11. The grades thus range
from 1 (the best case when the user’s ranking is the same as
MatchUp’s) to −1 (reversed ranking).

Overall the grades ranged from 0.84 to 0.5, with the aver-
age being 0.81. An interesting conclusion that we drew from
the analysis of the results was that the difference in rank-
ing was typically a reflection of the user’s “taste”: When
offered two GPs of the same importance, where the first
omits some user mashlet while the second includes all mash-
lets but also adds some redundant one, some users consis-
tently preferred the first option whereas others the second.
Recall that MatchUp’s score function views these two de-
viations from the user’s request symmetrically, giving them
the same score. In view of this analysis we consider includ-
ing in the next version of MatchUp an adaptive version
of the score function, where the dimensions of the multidi-
mensional space that correspond to added/missing mashlets
may be scaled to reflect this personal preference.

It is interesting to note that the gluing of mashelts in
IBM’s Mashup Center typically requires a fairly long se-
quence of steps(screens) where the relevant input and out-
put events are individually selected and wired (six steps for
the definition of a single “wiring”, with a typical GP consist-
ing of 5-6 such wirings). All this is replaced in MatchUp

by a single “adopt this completion” click. So even in the
case where a programmer knows in advance precisely which
mashlets she wants to wire and how, adopting (even part
of) the suggested autocompletion saves time. Another issue
pointed out by the users was the increased level of confidence
they felt for their wiring choices when these were indicated
by MatchUpto be common choices, whereas they were more
careful otherwise.

7. RELATED WORK
Autocompletion is a classical problem found in various

domains, e.g., phrase prediction [17], email fields [16], file
locations [16]. However, we are not aware of any work on
autocompletion for mashups. Probably closest to our prob-
lem is that of phrase-prediction [17]. In our mashup auto-
completion problem, GPs consisting of a few mashlets au-
tocomplete the user initial mashlets; In phrase-prediction,
phrases consisting of a few words autocomplete the user ini-
tial text. The two problems however have distinct properties
that require different algorithmic solutions. One aspect that
makes phrase prediction harder than mashup autocomple-
tion is the lack of well defined phrase boundaries (in con-
trast to the well defined scope of a GP). On the other hand,
an aspect that makes mashup autocompletion harder is the
multi-dimensionality of the problem, where candidate GPs
may not only add additional mashlets but may also alter
the user input, omitting mashlets or replacing them by more
general ones.

Recommendations systems have worked successfully for
Web users in a variety of domains like music selection and
shopping [3, 18]. A key contribution of this paper is in in-
troducing such a recommendations mechanism for program-
mers, in order to simplify Web software development.

Related work in the context of Web services has stud-

ied how to substitute a Web service for another and how
to compose Web services to fulfill a particular goal. The
service composition in [19] gets as an input a set of ab-
stract BPEL4WS [5] descriptions of component Web ser-
vices, and a composition requirement, and automatically
generates an equivalent executable BPEL4WS process that
satisfies the requirement. The work in [25] performs similar
processing, starting with web services described in OWL-
S. In [6], a model for web-service composition is proposed,
containing elements from the above mentioned works. The
decidability of the composition and choreography synthesis
problems is studied, providing double exponential complex-
ity upper bounds under certain assumptions. An optimized,
customized algorithm, is proposed in [15]. It uses high-level
procedures and constraints to reduce the search space, but
has the same worst case complexity bounds. While cer-
tainly a desirable goal, semantic composition of web services
is a complex and computationally heavy task. It requires a
declarative description of the services, which is often unavail-
able for Web mashlets, since they are coded individually by
arbitrary Web users. In contrast, our lightweight autocom-
pletion mechanisms relies solely on the syntactic signature
(interface) of the mashlets/GPs and their importance, pre-
computed solely based on the mashlets graph and the users
interest.

Of course the semantics of mashlets still need to be taken
into consideration when building the mashup. Our approach
is to build on the expertise of the very large body of expert
programmers who have already spent time on understanding
these semantics. The goal is to do efficiently the main part
of the selection process. One could then imagine in a second
phase using more sophisticated tools.

Our system is built on top of the IBM Mashup Center
platform [13]. MatchUp uses the Mashup Center platform
for Mashups design. Our new autocompletion algorithm is
used to enhance the system and facilitate fast and intuitive
mashup development. There exist several other tools for the
creation of mashups. Damia [22] is a data integration infras-
tructure platform, known today as the InfoSphere Mashup
Hub, which is one of the layers of IBM Mashup Center
platform. Marmite [29] provides an end-user programming
tool which lets end-users create mashups that repurpose and
combine existing web content and services. Google Mashup
Editor [12]is an Ajax-based system that enables users to as-
semble mashups. None of these tools provide the autocom-
pletion mechanism that we propose in this paper. While
our implementation uses the IBM Mashup center as plat-
form for mashup design, our autocompletion mechanism is
generic and can similarly be used to enhance other existing
mashup editors/systems.

Several works provide complementary tools to assist in
Mashup assembly. [21] proposes a tag-based navigation tech-
nique to compose data mashups. [24] considers the extrac-
tion of valuable information from integrated data mashups.
It exploits the sources semantics and thus shares similar ad-
vantages and disadvantages with the above mentioned works
on Web services composition. MashMaker [9] analyzes the
data currently viewed by the user to suggest widgets that
might assist in handling this data. For example, the tool
might suggest adding “map locations” or “distance” wid-
gets if the user currently views a list of addresses. How-
ever it does not provide the glue to connect the proposed
widgets with the present mashup (in our terminology, the



best fitting GPs). Interleaving the two techniques a user
would be able to browse the web, be presented with some
relevant mashlets by MashMaker, glue them with our auto-
completion algorithm, possibly introducing new additional
mashlets or generalizing existing ones. MashupAdvisor [26]
recommends a set of possible outputs for a specific mashup.
Each specific output corresponds to some transformation of
the data being manipulated by the mashup. After the user
has selected one output, then MashupAdvisor computes an
extension of the mashup in order to achieve the selected out-
put. Compared to MashupAdvisor, our Matchup framework
works at a lower conceptual level, as it recommends GPs for
a specific set of mashlets instead of trying to reason about
the output of the whole application. However, the two tech-
niques can be combined in the same mashup platform to
accommodate the needs of different users.

We have used ProgrammableWeb.com as a source for real
life mashlets and GPs. Some additional available mashup
directories include MashupFeed [14], which is based on the
ProgrammableWeb data set and links to its mashups and
APIs, the WebAPI.org website [27] that contains a relatively
small collection of APIs and mashups, and Webmashup.com
[28] that contains a larger data set with approximately 600
APIs and mashups, yet smaller than ProgrammableWeb.com.

8. CONCLUSION
This paper presents MatchUp, a system that enables the

rapid, intuitive development of mashups, based on a novel
autocompletion mechanism. MatchUp exploits similarities
between the ways users glue together mashup components.
Given a user’s partial mashup specification, it recommends
possible completions (missing components and connection
between them) that are in some sense the best candidates for
this specification. We presented the data model and ranking
metrics underlying MatchUp, as well as our efficient top-
k autocompletion algorithm. An interesting aspect of our
algorithm is that it uses a non-monotonic ranking function;
yet, we are able to prove strong theoretical guarantees on
its performance. We also experimentally demonstrated the
efficiency and effectiveness of our algorithm.

In our development, we assumed that the inheritance re-
lationship among mashlets/GPs is given and used it to gen-
eralize the user input. While a simple approach may rely
on syntactic inheritance, when the logic of mashlets/GP
is given declaratively, e.g. as Datalog rules, semantic in-
heritance may be inferred automatically and we intend to
study such automatic inference in the future. Another in-
teresting direction for future research is distribution. In the
Web context, information about mashlets/GPs may be dis-
tributed over the Web and stored in several mashlet directo-
ries. Efficient identification of relevant completions in such
a distributed setting is challenging. Finally, incorporating
semantics, user preferences and the context in which the
mashup is developed is another interesting direction.
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