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ABSTRACT

Mining for association rules and frequent patterns is a cen-
tral activity in data mining. However, most existing algo-
rithms are only moderately suitable for real-world scenarios.
Most strategies use parameters like minimum support, for
which it can be very difficult to define a suitable value for
unknown datasets. Since most untrained users are unable or
unwilling to set such technical parameters, we address the
problem of replacing the minimum-support parameter with
top-n strategies. In our paper, we start by extending a top-n
implementation of the ECLAT algorithm to improve its per-
formance by using heuristic search strategy optimizations.
Also, real-world datasets are often distributed and modern
database architectures are switching from expensive SMPs
to cheaper shared-nothing blade servers. Thus, most min-
ing queries require distribution handling. Since partitioning
can be forced by user-defined semantics, it is often forbidden
to transform the data. Therefore, we developed an adap-
tive top-n frequent-pattern mining algorithm that simplifies
the mining process on real distributions by relaxing some
requirements on the results. We first combine the PAR-
TITION and the TPUT algorithms to handle distributed
top-n frequent-pattern mining. Then, we extend this new
algorithm for distributions with real-world data character-
istics. For frequent-pattern mining algorithms, equal distri-
butions are important conditions, and tiny partitions can
cause performance bottlenecks. Hence, we implemented an
approach called MAST that defines a minimum absolute-
support threshold. MAST prunes patterns with low chances
of reaching the global top-n result set and high comput-
ing costs. In total, our approach simplifies the process of
frequent-pattern mining for real customer scenarios and data
sets. This may make frequent-pattern mining accessible for
very new user groups. Finally, we present results of our
algorithms when run on the SAP NetWeaver BW Accelera-
torwith standard and real business datasets.
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1. INTRODUCTION

The importance of data mining is widely acknowledged to-
day. Mining for association rules and frequent patterns is a
central activity in data mining [21]. Three main strategies
are available for such mining: APRIORI [1], FP-tree-based
approaches like FP-GROWTH [8, 15], and algorithms based
on vertical data structures and depth-first mining strategies
like FCLAT and CHARM [22, 23, 24].

Unfortunately, most of these algorithms are only moder-
ately suitable for many “real-world” scenarios because their
usability and the special characteristics of the data are two
aspects of practical association rule mining that require fur-
ther work.

1.1 Expert vs. Non-Expert

All mining strategies for frequent patterns use a parameter
called minimum support to define a minimum occurrence
frequency for searched patterns. This parameter cuts down
the number of patterns searched to improve the relevance
of the results. In complex business scenarios, it can be dif-
ficult and expensive to define a suitable value for the mini-
mum support because it depends strongly on the particular
datasets. Users are often unable to set this parameter for
unknown datasets, and unsuitable minimum-support values
can extract millions of frequent patterns and generate enor-
mous runtimes. For this reason, it is not feasible to permit
ad-hoc data mining by unskilled users. Such users do not
have the knowledge and time to define suitable parameters
by trial-and-error procedures. Our discussions with users of
SAP software have revealed great interest in the results of
association-rule mining techniques, but most of these users
are unable or unwilling to set very technical parameters.
Given such user constraints, several studies have addressed
the problem of replacing the minimum-support parameter
with more intuitive top-n strategies [7, 9, 10, 14].

We have developed an adaptive mining algorithm to give
untrained SAP users a tool to analyze their data easily with-
out the need for elaborate data preparation and parameter
determination. Previously implemented approaches of dis-
tributed frequent-pattern mining were expensive and time-
consuming tasks for specialists. In contrast, we propose a
method to accelerate and simplify the mining process by us-
ing top-n strategies and relaxing some requirements on the
results, such as completeness. Unlike such data approxima-
tion techniques as sampling, our algorithm always returns
exact frequency counts. The only drawback is that the re-



sult set may fail to include some of the patterns up to a
specific frequency threshold.

1.2 Research vs. Business

Another aspect of real-world datasets is the fact that they
are often partitioned for shared-nothing architectures, fol-
lowing business-specific parameters like location, fiscal year,
or branch office. Users may also want to conduct mining op-
erations spanning data from different partners, even if the
local data from the respective partners cannot be integrated
at a single location for data security reasons or due to their
large volume.

Almost every data mining solution is constrained by the
need to hide complexity. As far as possible, the solution
should offer a simple user interface that hides technical as-
pects like data distribution and data preparation. Given
that SAP users have such simplicity and distribution re-
quirements, we have developed an adaptive mining algo-
rithm to give unskilled SAP users a tool to analyze their
data easily, without the need for complex data preparation
or consolidation.

For example, SAP NetWeaver Business Intelligence sce-
narios often partition large data volumes by fiscal year to
enable efficient optimizations for the data used in actual
workloads. For most mining queries, more than one data
partition is of interest, and therefore, distribution handling
that leaves the data unaffected is necessary.

The algorithms presented in this paper have been devel-
oped to work with data stored in the SAP NetWeaver BW
Accelerator. A salient feature of the SAP BW Accelerator
is that it is implemented as a distributed landscape that sits
on top of a large number of shared-nothing blade servers.
Its main task is to execute OLAP queries that require fast
aggregation of many millions of rows of data. Therefore, the
distribution of data over the dedicated storage is optimized
for such workloads. Data mining scenarios use the same
data from storage, but reporting takes precedence over data
mining, and hence, the data cannot be redistributed with-
out massive costs. Distribution by special data semantics
or user-defined selections can produce many partitions and
very different partition sizes. The handling of such real-
world distributions for frequent-pattern mining is an impor-
tant task, but it conflicts with the requirement of balanced
partition sizes [21]. To the best of our knowledge, no al-
gorithm is currently available for efficient and robust top-n
frequent-pattern mining on uneven distributed datasets.

1.3 Structure

The remainder of the paper is organized as follows. Sec-
tion 2 introduces some mining algorithms and extends them
heuristically to improve their performance. That section fo-
cuses on top-n algorithms for ECLAT-based solutions.
Section 3 considers the goal of handling distributed data.
In general, business datasets may be unevenly distributed,
but initially, we focus on equally distributed datasets. We
combine two well-known algorithms: the PARTITION al-
gorithm [17] for distributed frequent-pattern mining and the
TPUT algorithm [3] for distributed top-n aggregations.
Section 4 considers real-world distributions with different
partition sizes. The runtime of regular minimum-support-
based frequent-pattern mining algorithms increases dramat-
ically for small absolute minimum-support values. In partic-
ular, the small partitions can be the bottleneck for unevenly

distributed datasets. One way to handle low absolute sup-
port values is to define a minimum absolute-support thresh-
old. By pruning local patterns with small absolute-support
values, we can make a trade-off between runtime and result
quality. We implemented this approach as the Minimum
Absolute Support Threshold (MAST) algorithm.

Section 5 evaluates the results of running our algorithms
on the SAP NetWeaver BW Accelerator. We used a mixture
of well-known artificial and real-world datasets in different
distributions and partitionings. Section 7 summarizes our
results and concludes the paper.

1.4 Formal Preliminaries

To complete the preliminaries, we define the basic concepts
and terminology for the study of top-n patterns.

Let I = {i1,i2,...,i4} be a set of items. An itemset or
pattern P is a non-empty subset of I. The length of itemset
P is the number of items contained in P. P is called an
[-itemset or [-pattern if its length is [.

A tuple (tid, P) is called a transaction, where tid is a
transaction identifier and P is a pattern. A transaction
database DB is a set of transactions. A pattern P is con-
tained in transaction (¢id,Y) if P C Y.

Given a transaction database DB, the support of P, de-
noted as support(P), is the number of transactions in DB
that contain P. The minimum support threshold for P to
become part of the result set is called minSupport.

A pattern P is a top-n frequent itemset if there exist no
more than n — 1 patterns whose support is higher than that
of P. Patterns with the same support as the n-th pattern
are top-n results, too.

2. SIMPLE MINING PARAMETERS

In this section, we focus on efficient and simple frequent-
pattern mining techniques. We start by introducing a top-n
version of ECLAT. Then, we extend this algorithm heuris-
tically to improve its search strategy and performance.

The problem of mining for the top-n frequent patterns is
a well-studied area of research [7, 9, 10, 14, 21]. There are
solutions for most of the common association-rule mining
algorithms. In this paper, we focus on a top-n algorithm for
ECLAT-based solutions. Like the classic APRIORI-based
approaches, FCLAT uses the well-known downward closure
property: the support of each subset of a pattern has at
least the support of the pattern itself. Thus, if a pattern is
frequent, each of its subsets is frequent as well.

2.1 Problem Statement

In contrast to breadth-first algorithms like APRIORI, the
ECLAT algorithm works in a depth-first way. The algo-
rithm starts with 1-patterns and adds items recursively un-
til the minimum support is no longer reached. The function
Support() returns the frequency of patterns in the database.
These support values can be determined for all subnodes in
one single scan per node. This algorithm is very efficient for
regular mining calls using a user-defined minimum support
threshold. Top-n minings work in a different way. Such
an implementation lacks efficiency if the minimum-support
value, which increases from 1 to the final top-n support dur-
ing the algorithm’s runtime, grows slowly. In that case, a
lot of top-n candidates are identified and stored but only a
fraction reach the final top-n result set. This can dramati-
cally increase the storage and calculation effort.
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Figure 1: Example and processing of ECLAT
pattern reach the top-n result. The bold entries in Table
Example: 1 represent the current top-n patterns for each step. The

The following example demonstrates how the top-n ECLAT
algorithm works. We wish to determine the top five pat-
terns for the dataset shown in Figure 1 in tabular format
and visualized as a pattern tree. The dotted line indicates
how the algorithm traverses the pattern tree. The numbers
in brackets represent the transaction count. For each node,
the list of valid transactions can be used to drill down effi-
ciently to its child nodes because the transaction list of each
node is a subset of the parent’s transaction list. Note that it
is difficult to return to already visited and processed nodes
because the required information to count the support of
such nodes efficiently has already been removed.

Step Top-List
1 [D:8] 1
[D:8, C:7] 1
[D:8, C:7, CD:3] 1
[D:8, C:7, B:5, CD:3] 1
[ 3
3

minSupport

D:8, C:7, B:5, BC:5,CD:3
[D:8, C:7, B:5, BC:5,
CD:3, BCD:3]

7 [D:8, C:7, B:5, BC:5, 3
CD:3, BCD:3, BD:3]
8 | [D:8, C:7, B:5, BC:5, 4
A:4, CD:3, BCD:3]
9 [D:8, C:7, B:5, BC:5, 4
A:4, AB:4, CD:3, BCD:3]
10 [D:8, C:7, B:5, BC:5, 4
A:4, AB:4, ABC:4,
CD:3, BCD:3]

11 [D:8, C:7, B:5, BC:5, 4
A:4, AB:4, ABC:4, AC:4,
CD:3, BCD:3]

| U W N

Table 1: Processing example

Table 1 and Figure 1 together show how to find the top-5
frequent patterns. Starting from the root node, the pattern
tree is processed from left to right, following the dotted line.
The number of the line represents the steps in Table 1. Pat-
terns with a level of support lower than the minimum are
skipped, and patterns with the same support as the n-th

other patterns are top-n candidates pushed out of the top-n
set. One can easily see that two patterns (CD:3, BCD:3)
have been stored as candidates without reaching the final
top-n result set. Unfortunately, real datasets generate much
bigger overheads.

2.2 Idea Overview

One method to avoid mining unnecessary patterns has
been proposed in [9]. The basic idea is to start with 1-
itemsets and move on to the next-level child nodes of the cur-
rently most frequent unexpanded top-n node. The algorithm
stops when the child nodes of all active top-n nodes have
been explored. That is possible because each pattern de-
pends only on its parent nodes and not on parallel branches.
This algorithm is efficient and fast for small datasets and/or
small n. For large n, high memory consumption becomes a
problem because each unexpanded node has to store all its
transaction IDs to enable the steps down to the child nodes
efficiently. Although this structure can be held in a com-
pressed form, such as a sparse array or a bit vector, the
memory footprint can still be large for real-world scenar-
ios. For typical business datasets and customer requirements
with millions of transactions and n set to 10,000 or more,
such a solution becomes very expensive. However, it is still
important to find an intelligent way of traversing the pat-
tern tree efficiently. A solution based on level-wise search
strategies like APRIORI, called MTK, has been introduced
by Chuang et.al. in [6]. MTK splits the search space into
partitions with user-defined memory constraints to minimize
the number of required database scans.

We propose an algorithm called FASTINC' to solve this
problem. FASTINC uses a heuristic branch-and-bound [12]
premining step to define a lower bound [b for the final n-th
pattern support value and for performing the common min-
ing call using minSupport = b instead of minSupport = 1.
The increased initial minimum support prevents the exami-
nation of sub-branches that have no chance of reaching the
final top-n set. Since the premining step works approxi-
mately, the result quality after this step is poor and this in-
termediate result does not fit most user requirements. Nev-
ertheless, the support of the n-th pattern is always lower
and already close to the final n-th support. The mining
step of FASTINC can use the intermediate n-th support
to increase the initial minimum support. This optimization



substantially reduces the number of temporarily generated,
stored, and replaced patterns. The runtime of the premi-
ning and mining steps is better than regular one-step top-n
ECLAT processing.

Since the second mining step is a regular top-n mining
with increased initial minimum support, we focus on the
premining step and on how to find an adequate threshold.

2.3 Determine the Lower Bound

Figure 1 illustrates that the support value for specific pat-
terns shrinks with increasing level in the pattern tree. It
is easy to see that top-n patterns are mostly close to the
root node. We use a common mining call with some very
rough restrictions as a premining step to find patterns with
a better chance of reaching the final top-n set. In that step,
on the one hand, the final top-n patterns could be missed,
but on the other hand, the support values for the explored
patterns are correct. Therefore, the support value of the
n-th premining pattern can represent the lower bound [b of
the final top-n.

Patterns on higher levels can reach better support values
than patterns on deeper levels on other branches, like BC:5
and A:4. For such behavior, the heuristic mining problem is
reduced to determine the relevance of each node for the final
top-n result set. This problem is hard to solve in an efficient
way because branches on the right of the current branch are
unknown, and it is impossible to return to previous branches
without storing immediate results. We propose some heuris-
tics to stop a branch’s exploration in order to proceed with
its neighbor. Strategies for when to stop the recursion in-
clude:

1. if current pattern length > predefined maximum pat-
tern length m,

2. if current support < v x* support(Y), for 0 <y <1 and
the next relevant item Y,

3. if current pattern does not reach at least rank n * 3,
for a defined 0 < 8 < 1.

All conditions rely on the fact that for frequent-pattern
trees, the probability of finding top-n values diminishes with
an increasing level in the tree and with decreasing frequency
of single items (or from left to right in the tree).

1. The first condition proposes a static way of focusing
on the most frequent patterns. Such an implementa-
tion stops examining a pattern tree branch at a user-
defined maximum level in the pattern tree. This is a
robust way to control the algorithm runtime on most
datasets, and it is fast and easy to implement because
there is no need for dynamic or complex decisions. The
maximum-pattern-length parameter m can also be de-
fined dynamically for each mining call. The effect of
parameter m depends on the number of distinct val-
ues and n. Due to specific data characteristics and
data dependencies, such estimations fail in most cases.
Experiments show that a fixed m = 2 is a reasonable
value for most real-world business data because of usu-
ally low average transaction sizes in retail datasets.

2. The second condition is more dynamic and depends
on the dataset. Each branch is examined until the
support value is smaller than the support of the next

single item on the next level. Thus, a stored pattern is
very likely to be more frequent than many patterns ex-
amined on upcoming branches, starting from the root
node. This provides a very rough pruning that discards
many potential final top-n patterns. This intermedi-
ate result produces a low [b value and therefore results
in bad performance.

3. The third condition is based on the heuristic that a fi-
nal top-n pattern reaches a higher ranking than other
patterns at insertion time. Patterns at the end of the
ranking have just a small chance of staying in the top-
n set, and therefore, the algorithm skips them by de-
fault. This condition’s behavior is similar to that of
the second condition, and it depends on 3. The cor-
rect definition of 3 is difficult. Thus, this condition
should not be used.

This premining step could be iterated multiple times to raise
the final minimum support level close to the support of the
final n-th pattern. Experiments show that the benefit of
performing the premining step multiple times shrinks sig-
nificantly with the number of runs. For regular datasets,
the lower bound b after a premining down to 2 patterns
reaches 75%...90% of the final minimum support. Increas-
ing the premining depth to 3 patterns lifts the lower bound
to 80%. ..100% and nearly doubles the runtime.

2.4 Summary

In this paper, we address the problem of parameter reduc-
tion and tuning for top-n frequent-pattern mining. Based
on an implementation of ECLAT, we propose an algorithm
called FASTINC to improve the mining process by estimat-
ing the result and using this information to speed up the
mining process. In the next section, we will focus on the
efficient handling of real-world data distributions in combi-
nation with top-n frequent-pattern minings.

3. DISTRIBUTED TOP-N ASSOCIATION
RULE MINING

In addition to our goal of improving top-n data mining
by replacing user-unfriendly parameters with more intuitive
ones, we also want to handle real-life distributed datasets
efficiently, if only to make full use of the distributed archi-
tecture of the SAP NetWeaver BW Accelerator. First, we
introduce the handling of equally distributed datasets, and
in the subsequent section, we extend this algorithm to work
with real-life, unevenly distributed SAP datasets.

Naive solutions handle complex operations on distributed
datasets by merging partitions or redistributing the data.
We are unable to use such techniques because the distribu-
tion is part of the given semantics in many of our real-world
scenarios (e.g., a global star schema is often partitioned into
multiple star schemas by fiscal year) or because either data
security or resource bottlenecks preclude any modifications
of the physical design or the replication of the datasets.

3.1 Basic Strategy

A prima facie attractive adaptation of common top-n al-
gorithms for distributed landscapes is to run local top-n
calculations on each partition and to combine these partial
results to a final global top-n set. However, most of the
top-n algorithms cannot be used that way without making



generally unwarranted assumptions about the characteris-
tics of the data and its distribution. Such algorithms fail or
block the landscape for bad conditions. A robust solution
should be able to handle that.

A problem occurs for distributed data with distinct top-n
results on each partition. If a final top-n pattern is fre-
quent but never reaches a local result set, this pattern will
be globally missed. For example, the top-3 bestsellers for
an apparel manufacturer may be completely different from
season to season, but the fourth bestseller could be the same
every time. For the complete year, it may be that under-
wear is the global number-one bestseller, but it may miss
the global top-3.

To attack this problem, we extend the known algorithm
PARTITION [17] with functionality of the distributed top-
n aggregation algorithm TPUT [3]. The local mining part
on each partition is independent from a specific frequent-
pattern mining algorithm. Therefore, we use our FASTINC
algorithm. Obviously, FP-GROWTH, APRIORI etc. are
also possible.

The PARTITION algorithm (for patterns based on mini-
mum support) works as follows:

1. Determine all patterns on all nodes m with the defined
minimum support.

2. Send all intermediate results I1,...,m to a control oper-
ator to merge the results.

3. Since each global frequent pattern must be frequent on
at least one partition, the final result must be a subset
of the merged patterns M = |J I1,...,m (maybe some
partial counts are still missing).

4. Search on all nodes m for patterns P € M, P ¢ I,,.

5. Merge again, filter patterns with valid global minimum
support, and return results.

The TPUT algorithm goes like this:

1. Use a top-n pre-aggregation step to determine a lower
bound b for the global top-n result values.

2. Search all local results for all values x, possibly
aggregation(z) > 1b.

3. Merge intermediate results.
4. Determine missing local aggregations.
5. Merge again and resolve top-n results.

The steps of these two algorithms are very similar and it
seems surprisingly easy to combine the distributed frequent-
pattern mining idea of PARTITION with the distributed
top-n handling of TPUT. However, there are important dif-
ferences in the behavior of aggregation and frequent-pattern
mining. The first and the second step of TPUT are fast
and efficient for aggregations because aggregating twice to
find distributed top-n results is acceptable. This holds espe-
cially for TPUT, where aggregation costs are very small in
contrast to communication costs. Mining for frequent pat-
terns twice, first for local top-n patterns to define (b and
again with minSupport = b, intolerably increases the over-
all runtime in many scenarios. Moreover, on some datasets,

a low threshold [b can produce many more than just n re-
sults for both aggregation and frequent-pattern mining. The
consequences for aggregation are large intermediate result
sets and thereby higher network traffic and merge efforts.
Frequent-pattern mining generates more partial results, too,
but requires much more effort to determine the local result
sets; and it may even fail completely. Therefore, a naive
adaptation of TPUT for distributed frequent-pattern min-
ing is possible in principle but problematic in practice be-
cause the runtime is hard to predict and the usability is
poor. Thus, an adaptation of TPUT for distributed top-n
frequent-pattern mining is not reasonable for many scenar-
ios. To define a baseline for the evaluation, we refer to this
less robust algorithm as TPARTITION.

3.2 Improved Strategy

In contrast to aggregations, frequent-pattern mining is usu-
ally a task that does not require completeness. The ma-
jority of frequent-pattern mining tasks in real-life scenarios
are slightly unspecific by nature. To find the top-10 most
important pieces of information is not necessary if the ex-
tracted information overall is still very interesting for the
user. For these reasons, we propose an efficient and robust
algorithm called Save-Threshold (STH) to perform stable
frequent-pattern mining on real-world distributions. The
algorithm produces an approximate result set with exact
support values but potentially missed top-n patterns. Such
behavior is much more interesting for customers in compar-
ison to synopsis-based approximations like sampling with
estimated support values.

Figure 2 shows the exact but less robust algorithm TPAR-
TITION for frequent-pattern mining. The STH algorithm,
as part of TPARTITION, is used to define a lower bound
for searching global top-n results without losing results. Us-
ing both phases, the algorithm determines the exact top-n
patterns. Using just STH, it returns an approximate top-n
result. Note that STH is only responsible for half of the run-
time. As the evaluation will show, running the full TPAR-
TITION is much more expensive.

Starting with STH and using the local top-n minings to
build the global top-n patterns still generates a large fraction
of the exact final top-n patterns for most datasets and data
distributions. Due to these cost savings, the use of only the
robust STH instead of the full TPARTITION seems reason-
able. There is high probability, but no specific probability
bound, for a global top-n pattern to reach at least one lo-
cal top-n set. Such patterns will be found by STH, and
missed counts on some partitions after phase S1 will then
be determined in phase S2. Therefore, it is impossible to
get an incorrect final support count, and all support values
in the top-n result set of STH are correct. Only patterns
missed on each partition may miss the global top-n result
set and patterns beyond the global top-n will be returned
instead. Nevertheless, it is possible to define a threshold
to divide the result set into guaranteed and non-guaranteed
top-n patterns. In the next section, we will consider how to
define an upper bound for the support value of a possibly
missed top-n pattern.

3.3 Computing the Save Threshold of STH

Since the final support values are exact, a specific maxi-
mum support value s of missed patterns can be determined.
Therefore, all patterns P with support(P) > s are guaran-
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Figure 2: Distributed top-n frequent-pattern mining
with TPARTITION

teed to have the right rank in the top-n result list because
no missed pattern can reach a higher position. The same ar-
gument also shows that all patterns P with support(P) > s
are found by the algorithm.

The question is how to define s. Let W be the most
frequent globally missed pattern. The only way W can fail
to reach the global top-n is by missing the local top-n on
each partition. Let Xi. ., be the n-th result pattern on each
partition 1...m. The maximum support value ms that W
can reach is

ms(W) = Z (support(L;) — 1) = s

i=1

In this case, all final patterns P with support(P) > s can be
guaranteed because they have both the right rank and cor-
rect support values. Tests with artificial and real data and
different distribution strategies suggest that ms(W) values
are close to the support of the n-th rank pattern, so most of
the results are guaranteed. By mining the local top-(n * «)
patterns (for @ > 1) and returning just the global top-n, the
save threshold can be lowered down to the support of the
global n-th pattern without massive processing overhead.

TID | Items TID | Items
TO01l [abcd TO7 | bed
T02 | ¢ TO8 | d

TO3 | d T09 | abc
T04 | d T10 | abc
TO5 | d T11 |abcd
To6 | d T12 | ¢

Table 2: A partitioned transaction database DDB

Guarantees to find the completely correct results by choos-
ing a specific a are not possible.

Example:
Within this example, the task is to mine for the top-2 fre-
quent patterns of the distributed dataset in Table 2.

1. Running a top-2 mining on each partition returns
ILi=[D:5C:2land I, =[C :5,B:4].

2. Merging local results builds
M=LUI,=[C:7,D:5 B:4].

3. Missed support values are support for pattern B on
the first data partition and support for pattern D on
the second one.

4. The smallest local supports are 2 and 4, so the save
thresholdis s =(2—-1)+ (4 —1) = 4.

5. Merging formerly missed and already known support
values (from steps 2 and 3) produces

M=[C:7,D:5B:4U[D:3|U[B:1]
M = [D:8, C:7,B:5].

6. The final result for the global top 2 is
M=[D:8,C:1].

7. Since s = 4 and for all P € M, support(P) > s, the
global result set is complete.

The worst case of this algorithm appears in datasets with
almost disjoint data partitions, with local but not global fre-
quent patterns, and in those where most of the real global
top-n patterns miss all local top-n result sets. In this case,
many of the missed patterns could be locally sparse in any
location. These patterns can still be more frequent glob-
ally than the algorithmically selected global top-n patterns,
which renders the whole result set uncertain. However, in
most real-world scenarios, there are globally applicable se-
mantics for all the data partitions, so many frequent pat-
terns appear globally. From this point of view, extremely
disjoint local result sets probably indicate better results by
individual pattern minings for each partition.

4. HANDLING OF REAL-WORLD DATA
DISTRIBUTIONS

In contrast to most artificially generated datasets, real-world
distributions often have different partition sizes, tiny parti-
tions, and uneven data characteristics. Distributions based
on business-related characteristics, such as time or country,
can differ in size by orders of magnitude. Even in the case of
equally distributed datasets, a reasonable business query can



select a very unevenly distributed subset of the data. Dis-
cussions with SAP customers show that most of their mining
calls target such uneven distributions. Unfortunately, equal
partition sizes are an important prerequisite for most dis-
tributed frequent-pattern mining algorithms [21].

We start by describing the problem of very different par-
tition sizes with regular minimum-support-based frequent-
pattern mining, and we use the example of the PARTITION
algorithm. We propose a solution for algorithms based on
minimum support and top-n. The standard PARTITION
algorithm mines for locally frequent patterns on each parti-
tion with the same relative minimum support minSupport
as defined for the global dataset. For example, a global min-
ing call to determine frequent patterns P with support(P) >
20% will search on each partition for frequent patterns reach-
ing a local 20% support value [17].

The runtime of frequent-pattern mining increases dramat-
ically for small absolute minimum-support values due to the
exponential complexity of such algorithms [21]. If |DB] is
the number of used transactions, we define the absolute min-
imum support as

minSupportAbs = [minSupport x |DB]]

The mining process uses the absolute minimum support. For
example, minSupport = 10% for a dataset with 50 transac-
tions means minSupportAbs = 5 and patterns with a fre-
quency of 5 or more will be found. Setting minSupport =
1% will produce minSupportAbs = 1. In this case, the al-
gorithm will declare, store, and return all possible patterns
as frequent. The consequence is a complex and expensive
operation because the runtime scales up exponentially with
shrinking minSupport but improves only linearly with a re-
duction of |DB| [21]. The same parameters for a partition
with 10,000 transactions give minSupportAbs = 100, and
only a small fraction of all patterns will reach this frequency.
Therefore, a mining process on a small dataset is often much
slower than one with the same relative minSupport but
minSupportAbs > 1 on larger datasets. For unevenly dis-
tributed datasets, surprisingly, it is the small partitions that
can be the bottleneck.

An approach to handle such unintended behavior is re-
quired, and for usability reasons, it should be automated.
One way to handle small partitions is a minimum threshold
for |DB|. All data partitions that do not reach this mini-
mum number of transactions return an empty result set by
default. Otherwise, the calculation of the final frequent-
pattern support values can occur as before. Final result
sets built like this can miss patterns that are only seen in
small data partitions and not in large ones. Such scenarios
are possible but improbable because global frequent-pattern
supports are mostly dominated by the large partitions. The
final support values are still correct because all patterns
found in larger partitions will be determined after the first
merge step for both small and large partitions. Experiments
show mostly correct results, but only very weak guarantees
are possible for this approximation.

Another way to handle low absolute support values is to
define a minimum absolute support threshold. Most of the
local top-n results on small partitions with an absolute sup-
port value close to 1 are not included in the local results on
larger partitions. Therefore, they will not significantly in-
fluence the final result set. Therefore, by pruning patterns
with small local absolute support values, we should be able

to achieve an efficient trade-off between runtime and result
quality. We implemented an additional parameter ¢ to de-
fine a lower bound for the absolute minimum support value
on each partition. If the regular absolute minimum support
is below this threshold, then

minSupportAbs = max([minSupport x |DB|] ,t).

The optimal value for t depends on many characteristics,
such as the global transaction count, data dependencies, and
more. Nevertheless, for most scenarios, a default value of
t = 2 reduces the risk of excessive runtimes and an explo-
sion of local result sets for small partitions. We found this
approach attractive and we implemented it as the Minimum
Absolute Support Threshold (MAST) algorithm. To adapt
this kind of risk handling for distributed top-n frequent-
pattern mining, the local mining calls have to start with the
setting minSupportAbs = t on each partition (instead of
minSupportAbs = 1).

In our experience, this optimization is useful for many
real-world scenarios. Nevertheless, without knowing any-
thing about the patterns we may have missed, we cannot
make any judgment on the final result quality. By clos-
ing the gap between the STH approach and the handling
of real-world data distributions, the MAST approach can
address the quality issue caused by the increased local min-
imum support values within the STH algorithm. With the
same arguments as in Section 3.3, the most frequent pattern
P missed on all partitions 1...m can reach

support(P) < Z (minSupport Abs; — 1) = b.
j=1

As with the save threshold s, it is possible to use regular
minimum-support-based and top-n algorithms to define an
upper bound b for the maximum support of a missed pat-
tern. Therefore, all patterns P € M with support(P) > b
are found, correct, and guaranteed. For real datasets with
many small partitions, b gives uncertain results because b
increases with the number of increased local supports to t.
Thus, datasets with many small partitions using ¢ and only
a few very large partitions produce a high value for b. This
procedure creates result sets with small global absolute sup-
port values and mostly non-guaranteed top-n results. How-
ever, experiments with real-world datasets and distributions
show that in most such cases the global result is dominated
by the big partitions. Although the results are not guaran-
teed, our evaluation will show that they are still very close
to being correct.

5. EVALUATION

We implemented our algorithms within the SAP NetWeaver
BW Acceleratorand exploited its existing data structures
and system resources. Due to limited space, we are not
able to give more technical details in this paper. Please,
have a look at [13, 16] for details and further information.
Our experiments used a blade-server architecture with up to
three blades and four CPUs with 2.6 GHz per blade. Each
blade had 8 GB RAM and ran Microsoft Windows Server
2003 Enterprise x64.

5.1 TestData

Table 3 describes the experimental datasets. We used a mix-
ture of well-known artificial and real-world datasets. The



Name Type Partitions Transactions | Avg. Trans. Length | Distinct Items
SynthA artificial/open | 1, 2, 4, 6, 8, 10, 40 800 000 19.9 772
SynthB artificial /open 1 980 000 10.2 24 000
Retail real/open 1,2 85 146 9.6 16 398
CustomerA real/closed 1, 2, 4, 10, 22 134 167 3.0 72 252
CustomerB real/closed 40 33 542 000 3.3 72 025

Table 3: Dataset characteristics
Top-100 Parts lb Support of | Uncertain | Wrong | a For Save
n-th Pattern Top-100
1 17 361 0 0 1.00
2| 17 378 17 361 1 0 1.03
4 | 17 446 17 361 6 0 1.03
6 | 17 426 17 361 5 0 1.05
8 | 17 420 17 361 5 0 1.03
10 | 17 398 17 361 3 0 1.03
40 | 17 510 17 361 11 0 1.07
Top-1000 Top-1000
1 9 227 0 0 1.00
2| 9213 9 227 0 0 1.00
4| 9228 9 227 1 0 1.01
6| 9232 9 227 2 0 102
8| 9233 9 227 2 0 1.02
10 | 9232 9 227 2 0 1.01
40 | 9249 9 227 4 0 1.06
Top-10000 Top-10000
1 2 638 0 0 1.00
2| 2636 2 638 0 0 1.00
4| 2633 2 638 0 0 1.00
6| 2634 2 638 0 0 1.00
8| 2632 2 638 0 0 1.00
10 | 2631 2 638 0 0 1.00
40 | 2623 2 638 0 0 1.00

Table 4: Scaling of STH’s [b for evenly distributed artificial SynthA dataset

SynthA dataset is generated by a modification of the well-
known IBM data generator [11]. As areal and public dataset,
we tested our approach with the open Retail dataset [2]. The
distributed version of Retail is divided into two parts storing
short and long transactions to show scenarios with uneven
data characteristics.

Given the commercial context of this work, we were pri-
marily interested in achieving good performance for typical
SAP business data; thus, for our tests, we used real busi-
ness datasets called CustomerA and CustomerB in different
distributions and partitionings. The customer datasets are
different to the other dataset with respect to average trans-
action length and number of distinct items. These charac-
teristics cause a high number of short itemsets. The parti-
tioning is fixed for each dataset for all evaluations. Usually,
the support of determined patterns is quite low (< 0.1%)
because of weak (but real) dependencies. Thus, using this
data, the support of frequent patterns is usually not signif-
icantly higher than that of unfrequent patterns. For Sawve-
Threshold experiments, all datasets were used with a dif-
ferent number of partitions, distributed by transaction ID.

All datasets were stored in a vertical data format and each

transaction item used one table row.

Only patterns with two or more items are able to produce
association rules. Therefore, top-n mining means mining
n patterns with length > 2 in our evaluation. And hence,
top-n mining can return more than n results because any
pattern of size 1 with higher support than the n-th pattern
becomes part of the top-n result.

5.2 Results for FASTINC

The first evaluation shows centralized top-n frequent-pattern
mining and the effect of premining on the definition of a
lower bound for the n-th pattern support. Figures 3(a)
and 3(b) illustrate the effect of premining and the maxi-
mum premining level used. The results for Basic represent
the standard usage without premining, those for FASTINC-
2 show premined patterns with a maximum length of two
items, and those for FASTINC-3 show premined patterns
with a maximum length of three. All these experiments use
unpartitioned datasets.

The effect of the FASTINC' parameter depends strongly
on the underlying dataset and configuration. For the real
business data shown in Figures 3(a) and 3(b), the premi-



Top-n | Parts | Ib Support of | Uncertain | Overall | Wrong
n-th Pattern Patterns

100 22 | 45 24 87 104 0
250 22 | 37 17 223 256 0
1.000 22 | 27 1.148 1.223 0
5.000 22 | 22 5.543 5.768 1
10.000 22 | 22 11.754 12.258 1
100 5| 36 70 101 0
250 5| 20 112 253 0
1.000 5| 10 621 1.222 0
5.000 5| 5 2508 5.764 1
10.000 5 5 9855 12.111 1

Table 5: Unbalanced partitionings on CustomerA using minSupportAbs = 2 for MAST

ning step produces diverse runtimes. For small values of
n, the standard mining without premining outperforms the
versions using FASTINC by a factor of up to 3. Neverthe-
less, FASTINC scales better and outperforms the standard
algorithm for larger n. Since our customers set n > 10000
to provide a solid basis for further analysis, FASTINC-2 is
a useful optimization for their mining scenarios.

Figure 4 shows the decreased numbers of recursion calls
needed to find a top-n result. This number represents the
number of evaluated patterns, too. The TOP-n ECLAT
graph represents a standard TOP-n ECLAT call, FASTINC-
2 shows the corresponding FASTINC-2 call. Initialscan
presents the number of recursions needed for premining. For
this example, FASTINC-2 already includes the Initialscan.
The graphs promise a significant speedup, but FASTINC-2
reduces a lot of recursion with low support. Very frequent
and therefore expensive patterns are still part of the result.
Implementations with higher costs per recursion call can
reach much better optimization. Figure 4(b) shows the num-
ber of saved recursion calls for the three different premining
strategies. The v = 40% graph shows the number of saved
recursions by storing only patterns reaching the top-(n * ).
The 8 = 20% graph visualizes the effect of using a pattern
for premining if its support is higher than 3 * support(X)
and X is the next single item. Other values for gamma and
B show similar scalings. It is easy to see that FASTINC
outperforms the strategies using v or . If the J-stategy is
not able to fill the top-n and lift the support for the second
scan, the algorithm performs poorly. It is hard to choose
a good value for 8, thus using this strategy is not a robust
solution.

5.3 Results for STH

To evaluate distributed top-n mining, we looked at the im-
pact of partitioning, the value of n, data characteristics for
the save threshold, the number of uncertain patterns in the
top-n list, the absolute minSupport value to resolve top-n
sets, and the number of incorrect or missed final results.
Tables 4, 5, and 6 represent this evaluation for different
datasets. One characteristic is the decreasing number of un-
certain patterns with increasing n. Another characteristic
is a small « factor to reach completely guaranteed results.
The speedup factor in Table 6 represents the runtime of
STH in comparison to a full TPARTITION. The minimum
support of TPARTITION is the value of column MinSup for
TPARTITION. As assumed, the speedup has approximately

a factor of 2 for balanced partitioned datasets. Figure 3(c)
shows the runtime scaling for an uneven partition with dif-
ferent data characteristics on each part. It is easy to see
that STH outperforms the naive integration of TPUT and
PARTITION by orders of magnitude for big n.

Note that the save threshold per dataset for each n is
largely independent of the distribution. The impact of par-
titioning is small in relation to the support values. In par-
ticular, the number of partitions does not significantly influ-
ence [b. The reason for the fluctuation of Ib can be found in
changing dependencies and data characteristics caused by
modified data distributions. Figure 3(d) shows the conse-
quences of increased partitioning for the result quality. The
number of uncertain patterns increases with the number of
partitions, but it stabilizes above a certain threshold.

Table 5 shows an evaluation for uneven partition sizes.
For this experiment, the CustomerA dataset was partitioned
by date into 22 parts; 20 of them were very small and 2 of
them were large. Regular mining calls cannot handle this
distribution efficiently because most of the small partitions
are unable to produce local top-n sets with an absolute sup-
port > 1. Each evaluation presented in Table 5 runs one to
eight seconds. The same configuration without MAST us-
ing TPARTITION was stopped after 20 hours. This repre-
sents a speedup factor of at least 9,000 between MAST and
TPARTITION. This behavior is independent of the underly-
ing mining algorithm because the runtime and the number of
local results generated on such partitions increase massively.
For these experiments, we defined a minimum absolute sup-
port of 2 on each partition. With 20 small parts using the
lower bound, most final result patterns are uncertain. Nev-
ertheless, most of them are still correct. That is, the large
partitions dominate the final result set and the small parti-
tions do not substantially influence the output quality.

6. RELATED WORK

This paper touches on numerous different problem defini-
tions that have been well-studied in many papers in the
database community. [5, 18, 21] give an interesting overview
including algorithms, complexity, and a problem definition
for frequent-pattern mining. There are plenty of similarities
between aggregation and frequent-pattern mining, which is
reflected in related work. An extension of PARTITION [17]
for top-n frequent-pattern mining applies a principle close
to that of distributed top-n aggregations using TPUT [3].
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Top-n patterns with specific characteristics are addressed
in [7]. This work considers searching for top-n patterns with
a predefined minimum length. Such restrictions are irrele-
vant for our work because we know from SAP system users
that pattern mining in real-world retail datasets tends to fo-
cus on small patterns. Therefore, we only need to consider
frequent patterns up to a specific size. Furthermore, shorter
patterns are used to determine the importance of generated
association rules, and so they cannot be pruned. Neverthe-
less, the main idea represents a solution for efficient top-n
pattern mining. The mining engine holds a list of active
top-n frequent nodes of the pattern tree and drills down
on the most frequent unresolved node for new top-n can-
didates until all active nodes have been processed. This is
efficient in the number of generated patterns, but it conflicts
with the principle of using as much information as possible
about generated patterns and dropping unused information
quickly. In real scenarios, such top-n lists have to hold n-
transaction lists for a large number of stored transactions.
A similar solution for CLOSET can be found in [9].

There are a number of distributed mining frameworks,
such as [4, 5, 14, 19], and papers on the importance of the
semantics of data distributions [20, 25]. A similar solution
to the FASTINC' algorithm proposed in this paper can be
found in [10], where - in contrast to our solution - a dy-
namic threshold ¢ is used to decide between going down and
proceeding with the next branch in the pattern tree. Here,
the definition and management of ¢ become difficult, which
makes the solution weak for real datasets and data mining
scenarios.

7. SUMMARY AND CONCLUSION

In real-world data mining scenarios, a minimum-support pa-
rameter can be difficult to set and the data is often dis-
tributed into differently sized partitions. Therefore, we ex-
plored the applicability of more intuitive top-n strategies.
We developed an adaptive mining algorithm that avoids the
need for complex data preparation or prior parameter deter-
mination. Our method accelerates and simplifies the mining
process by relaxing some requirements on the results, such
as completeness. Our algorithm always returns exact fre-
quency counts, but the top-n set may fail to include some
of the patterns in the data.

To avoid mining unnecessary patterns, we proposed a
premining step to find a lower bound [b for the final n-th
pattern support value and performed the mining call using
minAbsSupport = [b. The increased initial minimum sup-
port prevents the examination of sub-branches that have no
chance of reaching the final top-n set. We implemented this
as the FASTINC' algorithm. The premining step is heuris-
tic and this result cannot be returned to the user. But a
second step with increased initial minimum support value
substantially reduces the runtime for both steps together.
As premining step, we used a mining call to find patterns
with a raised chance of reaching the final top-n set and we
proposed three heuristic conditions.

To handle equally distributed datasets, one option is to
run local top-n calculations on each partition and to com-
bine these partial results to a final global top-n set. How-
ever, this involves making mostly unwarranted assumptions



200

180 | —*=Top-N ECLAT A
w160 ——Fastinc-2
® Initialscan
Y 140
S
% 120
S 100 el
é 80
= 60
40 /
» e
0 :

0 10000 20000 30000 p 40000

100%

80% .

——FASTINC-2 |-

60%
/ v=40%
40% B =20%

20%

OUD

-20%

dropped recursion calls

-40%

-60% T T
0 10000 20000 30000 N 40000

(a) Recursion calls Top-N ECLAT vs. FASTINC-2

(b) dropped recursion calls

Figure 4: Recursion calls with FASTINC on SynthB

Top-n | Partitions | b Support of MinSup For Uncertain | Wrong | Speedup
n-th Pattern | TPARTITION Results

100 2|23 24 22.7 0 0 2.10
250 2116 17 15.1 0 0 2.01

1 000 2| 7 8 6.3 0 1 missed 2.15
5 000 21 2 4 1.9 0 0 2.12
10 000 21 2 3 1.9 0 0 2.17
100 4124 24 21.9 0 0 1.94
250 4115 17 13.1 0 0 2.10

1 000 4 8 8 7.2 0 | 15 missed 1.71
5 000 41 2 4 0.0 0 0 2.05
10 000 41 0 3 0.0 0 0 2.17
100 10 | 22 24 18.1 0 0 2.99
250 10 | 13 17 9.0 0 0 1.98

1 000 10 9 8 1.0 276 0 2.03
5 000 10 0 4 1.0 0 0 2.02
10 000 10| 0 3 1.0 0 0 2.15

Table 6: Behavior of STH on real dataset CustomerA

about the data. To weaken this problem, we combined two
algorithms, PARTITION and TPUT, and we tried to use
the advantages of both. Since frequent-pattern mining does
not usually require exact results and completeness, we pro-
posed an algorithm called Save-Threshold to perform stable
frequent-pattern mining on distributed data and to build an
approximate result set with exact support values but poten-
tially missed top-n patterns. We considered how to define
a lower bound for the support value of a missed top-n pat-
tern. We defined a specific maximum support value that a
missed pattern can reach by noting that the only way the
pattern can fail to reach the global top-n is by missing the
local top-n on each partition.

Real-world distributions often have very different parti-
tion sizes. This causes a problem but we proposed a so-
lution. For unevenly distributed datasets, the small parti-
tions can be a performance bottleneck, since the runtime
of frequent-pattern mining increases dramatically for small
absolute minimum support values. One way to handle low
absolute support values is to define a minimum absolute
support threshold. By pruning patterns with small absolute
support values, we made a trade-off between runtime and

result quality. We implemented a parameter called ¢ to de-
fine such a lower bound and found that for most scenarios,
a default value of 2 reduces the risk of excessive runtimes
and an explosion of local result sets for small partitions. We
implemented this approach as the MAST algorithm. We
defined an upper bound b for the maximum support of a
missed pattern in such a way that all patterns with support
above b are correct and guaranteed. Since real datasets with
many small partitions and only a few very large partitions
usually produce a high b, they create result sets with small
global absolute support values in the top-n, and most of the
results are not guaranteed. However, our tests showed that
in most such cases, the global result is dominated by the big
partitions and therefore still usable.

We evaluated our algorithms by running them on the SAP
NetWeaver BW Accelerator. We used a mixture of artificial
and real-world datasets in different partitionings. We tested
the effect of premining and of different premining levels. The
effect of the FASTINC parameter depends strongly on the
underlying dataset. In cases with many dependencies and
long average transaction times, premining does not signifi-
cantly raise the lower bound for the n-th pattern support.



For small values of n, standard mining without premining
outperforms mining using FASTINC by a factor of 1 to
3, but FASTINC outperforms the standard algorithm for
larger n. In practice, FASTINC-2 is a useful optimization
for many real-world scenarios.

To evaluate distributed top-n mining, we looked at the im-
pact of partitioning, the value of n, data characteristics for
the save threshold, the number of uncertain patterns in the
top-n list, the absolute minSupport value to resolve top-n
sets, and on the number of incorrect or missed final results.
The more common data distributions only rarely deliver in-
correct patterns. The save threshold per dataset for each
n is largely independent of the distribution. The impact of
partitioning is small in relation to the support values, and
the number of partitions does not significantly influence the
lower bound. We tested the consequences of partitioning
for the result quality. The number of uncertain patterns in-
creases with the number of partitions, but it stabilizes above
a certain threshold. We also tested uneven partition sizes.
For those, most final result patterns were uncertain but still
correct.

Although this paper discusses problems that have been
well studied in the community, to our knowledge, the aspects
that we considered have not previously been examined in
such detail and combination. These aspects are decisive in
practice for extracting the full power of real-world frequent-
pattern mining.
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