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ABSTRACT

The recent rise in popularity of social networks, such aseback
and MySpace, has created large quantities of data abouadnte
tions within these networks. Such data contains many gridat
tails about individuals so anonymization is required ptiorat-
tempts to make the data more widely available for scientdic r
search. Prior work has considered simple graph data to ve/amped
by removing all non-graph information and adding or delgiome
edges. Since social network data is richer in details atheutsers
and their interactions, loss of details due to anonymipalimits
the possibility for analysis. We present a new set of tealesq
for anonymizing social network data based on grouping the en
ties into classes, and masking the mapping between ergtitgbthe
nodes that represent them in the anonymized graph. Ouritpem
allow queries over the rich data to be evaluated with higluaey
while guaranteeing resilience to certain types of attackprEvent
inference of interactions, we rely on a critical “safety dition”
when forming these classes. We demonstrate utility via eoapbi
data from social networking settings. We give examples ofi-co
plex queries that may be posed and show that they can be atswer
over the anonymized data efficiently and accurately.
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and should not be revealed. This leads us to study how to-effec
tively anonymizeso as to guarantee privacy of data subjects while
maximizing the value (“utility”) of the resulting anonyn&d data.
The problem of data anonymization has been the focus of much
study in recent years. The initial focus was on anonymizaigyit
lar data, viak-anonymization and subsequent variations (see Sec-
tion 6). Naively applying such techniques does not yieldfulse
results on graph structured data, and so new methods hawe bee
proposed for this problem. Recent work has mostly concetra
on the case where the data can be represented as a simplefjraph
nodes and edges, and considered how to prevent the infeoénce
connections between individuals (represented by nodes).
However, real data sources are typically much richer tham th
Taking OSNSs as a motivating example, the main entities imlttia
are individuals who create profiles for themselves. Theeéles
can list lots of demographic information, such as age, sexlan
cation, as well as other personal data—political and religipref-
erences, relationship status, favorite music, booksijrdggins and
cuisines. Between users in an OSN, there are many diffeneds k
of interactions. A common interaction is for a pair of peojen-
dicate that they are “friends”: this allows each to see mafi@ma-
tion about the other, and to receive news of updates. Messzge
be exchanged between friends via internal email or instassag-
ing. Interactions can also involve more than just two pgdénots:

Many datasets are most naturally represented as graph strucmessages can be sent to several people; games can be played be

tures, with a variety of types of link connecting sets of &éexi in
the graph. An important and natural example of this is prieskn
by Online Social Networks (OSNs), which allow users to iifgnt
other users as “friends”, exchange messages and commests, p

tween several players; many users can subscribe to blogmger
groups can be formed for almost any purpose. Such complex set
of interactions cannot be easily represented by simplehgrab
nodes and edges without further information. We refer tocthe

and subscribe to blogs, and play games among themselvess OSN nections formed in the social networks as “rich interactjcaphs”

have over half a billion active users, with some OSNs excepdi
100 million members. There are many specialized OSNs oateri
to professionals, seniors, writers and students, amonagsy oth-
ers. There are many analytical and sociological questitaisdan

be answered using data encoded in these systems, so it ialnatu
to want to share the data with researchers. However, the atav d
is particularly sensitive: it contains personal detailteesd by the
users, and sensitive connections between them which apaibl¢
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to emphasize that they contain this rich set of data, basetieon
interactions between different entities.

Example Queries on a Social Network.Dealing with data from
OSNSs brings its own challenges. To understand the utilitshisf
data, we outline some of the queries which are of interestswar:

1. How many users are there in specific subpopulations,ie age
ranges, locations, with certain political viewpoints @tc.

2. What are the patterns of interaction and friendship, ahithv
subpopulations are interacting? What is the amount and fre-
guency of interaction? When is it occurring (time of day, day

of week, month of year)?

. Can the graph of interactions be partitioned with smats?2u
E.g., are there few links between users from different cemiis,
or with different political views? Can the graph structue b
characterized into collections of sub-graph types and etib-
graphs have identifiable properties?



. How are the interaction patterns changing/growing oiwrae?
How is the distribution of interaction between subpopoiasi
shifting over time?

. What can be learnt about the use of applications (suchrasga
in the network? How does their popularity spread over tint an
is this correlated with friendship links?

These queries can be answered exactly on the original data, b
there are too many possible such queries and variationbdatdta
owner to precompute and release all possible answers. Bhaean
to so many queries could leak sensitive data about indilgdina
the data set [1]. Moreover, it is not possible to anticipditp@ssi-
ble queries which could be of interest to analysts. Instéegoal
should be to design anonymization techniques so that theséeg,
and other similar ones, can be answered accurately on thk-res
ing published anonymized data set. Observe that theseegeme
not simply about properties of the entities in the data, onpsy
about the pattern of the link structure in the graph, butematin
their combination. Thus it is important for the anonymiaatito
mask the associations between entities and their interec{for
privacy) but not to obscure them entirely, so that such gseran
be answered with some degree of accuracy. Our experimenty! s
evaluates several instances of such queries over anonymiaa.
When the query relies on large numbers of individuals arefaut
tions, then it can be answered with high accuracy. Howeveenv
it is highly selective and involves only a very small numliés an-
swered with low accuracy—as one would expect, since an ateur
answer could compromise privacy.

1.1 Our Contributions

Based on the above motivations, we address the problem ef find
ing anonymization techniques for rich interaction graphsciv
represent Online Social Networks (OSNSs).

o We adopt a flexible representation of rich interaction gsaghich
is capable of encoding multiple types of interactions betwen-
tities, including interactions which can involve large riers of
participants (not just pairs). We describe two types of gntina-
tion techniques for such data, both based on partitionie@thy-
inal entities intoclassesand then analyze how the ability of an
attacker to infer additional information is minimized, erzero,
depending on the amount of background knowledge available t
them.

We present the “label list” approach, which allocates adisa-

bels to each node in the graph, among which lies its true label
(Section 3). That is, each node in the graph gets a list ofiposs
ble identifiers, including its true identifier. We show hovesle
lists can be structured to ensure that the true identity aiabe
inferred, and provide a “safety condition” to ensure that piat-
tern of links between classes does not leak information.

We describe the “partitioning” approach, which partitidims en-
tities into classes, and describes the number of interastbthe
level of classes, rather than nodes (Section 4). This meithod
resilient to attackers with greater amounts of backgrounfiok-
mation, but has lower utility since less graph structureas n
revealed.

perform experiments on real social network data, showirgg th
impact of these anonymization techniques on the abilityrto a

ul: 29, F, NY—v1

u2: 20, M, JP— v2 emaill— 1024 bytes on 1/3/0¢
u3: 24, F, UK— v3 friendl— added on 7/6/08

u4: 31, M, N&— v4 gamel— score 8-3-6

u5: 18, M, NJ— v5 email2— 812 bytes on 1/2/08
u6: 21, F, CA— v6 blogl — subscribed on 9/9/0¢

u7: 44, M, DE— v7 blog2 — subscribed on 2/6/0¢

Figure 1: Interaction graph example

2. PRELIMINARIES

2.1 Interaction Graphs.

A rich interaction graptG encodes a variety of interactions be-
tween a set of entitieg. In the case of an online social network
(OSN),V can represent the members of the network. The interac-
tions between them can be, for instance, that an email or I8l wa
sent between a pair, a game was played among four players, or a
large group declared their support for a political candidathese
interactions can be represented by a hypergraph, wherehgach
peredge consists of the set of entities involved in thatautgon.
This captures the special case of (directed or undirectephg,
which are hypergraphs in which each hyperedge is consttame
link exactly two nodes.

We choose to represent such rich interaction graphs astibépar
graphs over the sets andl. Each node in corresponds to an in-
teraction between a subset of entities fidman edggv e V,i €l)
indicates that the entity represented by nagrticipates in inter-
actioni. Each entity (corresponding to a graph node) has an iden-
tity (such as a user id) and a set of properties. For exampks, u
properties in an OSN include demographic information (asge-
ographic location, sex, date of birth) and other data (8N join
date). Each interaction between two or more entities alsoalma
identity and a set of properties. For example, each “frieetfition
includes static properties (creation date) and could aise ldy-
namic properties (number of times the friends communicaté
will ensure that each piece of information appears on orge"si
of the interaction graph only: if two entities that are fidisneach
record their location, then we do not allow the “friendshipter-
action to also record the location of the friends—this caittian
attacker in matching up interactions with entities (see #ie dis-
cussion on temporal attributes in Section 7).

We show an example in Figure 1. Here, the entities (users and
interactions) are linked to their properties (age, sexation for
users, denoted; ... u7; and other relevant properties for the inter-
actions). The users engage in different interactions irouarcom-
binations: some exchange email messages, establishad$tig”
relation, subscribe to each others’ blogs, and so on.

2.2 Anonymization and Utility Requirements.

Let G be an interaction graph over séfs| and edge€. Our
goal is to produce an anonymized versiof®fG’, say, so thaG’
retains many properties @ while limiting the amount of infor-
mation that is revealed. This should hold even under atteark f

We discuss how to answer queries over the anonymized data andan adversary who knows some limited information about thg- or

inal graph: giverG' it should not be possible to use some (partial)
knowledge ofG to infer additional linkages between other nodes.

swer such queries as those described above (Section 5). We obExactly which properties should be protected and which age p

serve that for many queries, it is possible to compute ateura
answers, while giving the privacy guarantees described.

served will depend on the application, and our assumptibosita



the other informatiohthat is known to an attacker seeking to break
the privacy. But there is an inherent tradeoff between theire-
ments of anonymization and utility: privacy entails remmayior
masking information in the data, thus potentially redudhwegyvalue

of the anonymized data.

We now distinguish between a node in the graph,V, and the
corresponding entitx € X (in the unanonymized data, these are
interchangable). Each entitycan have a number of attributes, such
as age, location, and a unique identifier. We wxite) to denote
the identifier, or “true label” of node. In the unanonymized graph
G, full information is published, sa(v) is presented exactly for
every node; in the unlabeled version, the mapping betwetiiesn
(labels or identifiers) and nodes is completely hidden, gbing
is revealed about(v). We examine settings where information
about the mapping(v) is partially revealed: this will allow non-
trivial queries to be computed over the data without exgpsire
complete data.

For instance, node, in the graph in Figure 1 corresponds to an
entity with attribute29, F, NY In this graph, the value of(v;) is
revealed precisely; in later examples, such the one in Eig(a),
only partial information is revealed about the mapping. algo-
rithm to generate the anonymized data is assumed to be plibkc
privacy conditions should still hold with this assumptidur fo-
cus is on the privacy of the entity-entity interactions, sedo not
study the privacy of the entity attributes. Either theseiblic,
or they can be anonymized up to an appropriate level via atand
k-anonymity [16, 17] or permutation-based methods [20, 21].

Utility is judged based on the quality with which various gae
can be answered on the anonymized graph. Clearly, somesgueri
cannot be answered with high accuracy without compromigiirg
vacy. For example, for a query that is so specific that it iifiesst
two unique entities and asks for the graph distance betwesn,t
an accurate answer would reveal whether they are directkgdi.
So our goal is to give accurate answers on queries that aggrinot
vacy revealing, and tolerate less accurate answers in otses.
We evaluate the utility of our solutions empirically by medsg
the accuracy with which various queries of the type idertifie
Section 1 can be answered.

We consider privacy requirements related to an attackergbei
able to learn interactions between entities. Some exarapjigine-
ments could include that: the attacker should not be ableami
any information about interactions beyond what they alydaubw;
or the attacker may learn about some types of interactiomaiut
others; or the attacker may learn about interactions betywais of
individuals who are known to the attacker, but not about ater+
actions involving others (corresponding to the case in SO/@bIs
such as LinkedIn where users can see the connections bettuaen
friends). In general we are only concerned with limiting ifiee
inferences, such as determining if two users did send a messa
between them. It is typically reasonable to allow some regat-
ferences, such as to learn that two users have never comaethic
This is by analogy with prior work on tabular data: for exaemph
an anonymized medical database, it is not possible for ankat
to determine which of a set of diseases a particular indatiguf-
fers from (positive inference), but they can rule out certiseases
(negative inferencé)

Iwe use “background knowledge” to refer to any information
known to the attacker that is pertinent to the anonymized,datd
consider different forms of background knowledge in thelysis.
2More can be done to hide the presence of an individual in a ta-
ble, relative to a fixed table of “public knowledge” aboutiiridu-

als [15].

3. ANONYMIZATION VIA LABEL LISTS

We propose to anonymize interaction graphs using “labed’lis
the identifier of each node in the graph is replaced by a ligosf
sible identifiers (or labels). This reveals partial infotina about
the mapping from nodes to their true identifiers, and theslin&-
tween them. We show that a carefully chosen labelling essha
an observer has low probability of guessing the true mapgtog
mally, in thelabel listapproach, we providelsst of possible labels
for each node i/, among which the true label is guaranteed to
lie. Conceptually, this is related to permutation-baseths for
anonymizing tabular data, which can be thought of as progiai
short list of possible senstive attributes for each reca@d. [

Definition 1. The output of a label list anonymization is a bipar-
tite graphG’ on verticed/ and the original set of interactiohghat
is isomorphic to the input grapB, so that the (structural) proper-
ties of the unlabeled graph are unaltered. The output atdodas
a functionl fromV to Z2(X) (the powerset of entitieX), so that
I(v) is the list (technically, a set) of possible labelsvofWe insist
that the true label of is included in its list, so that(v) e (v). O

Thus, the unanonymized graph is given by settivg = {x(v)},
and the unlabeled graph is given by settlifg) = X. In the re-
mainder of this section, we describe a method to build laisél |
anonymizations. First, Section 3.1 shows that simply pigkin-
structured lists is open to attacks. Instead, we propose stauc-
tured ways to generate lists, based on dividing the nodesinaller
groups, and considering each group independently. Se8tia
describes how to generate a set of lists for the group; thresthen
assigned to nodes, as described in Section 3.2.2. We thgyzana
the security of this anonymization in Section 3.3.

3.1 Arbitrary List Approach

The most general case is whEw) is an arbitrary list of labels.
An example is shown in Figure 2(a), where each list has thnee e
tries. Here, the first node (correspondingvioin Figure 1) has
the label list{uy,uy,us}. Its true labelx(v1) = uy, is included in
the list. Nodes ifl are labeled only with their true identity. On
first glance, it might seem that given such a set of arbitriatg,lit
is impossible for an adversary to recover the true labelciatl
with each entity. However, there are cases which do leaknimde
tion, motivating us to allow only a subclass of lists, withaganteed
security properties.

Consider again the example in Figure 2(a). The labebnly
appears for the last node, revealing its identity. For thet four
nodes, only the four labelu;,up,us, us} are used in various per-
mutations. Therefore, since every node corresponds toqueni
entity, these identities must belong to the first four nodiegartic-
ular, they cannot be the identities of the fifth or sixth nodbere-
fore, the fifth node must bes and the sixth nodeg, and so one
can deduce thaig anduy share the bloginteraction.

With these examples, it is possible to identify shortcomiimy
the choice of label lists, and attempt to rule them out. |a &xam-
ple, it seems desirable to insist that each list should coatdeast
k labels, and each label should appear abotimes in the lists,
for some parametdt. But a piecemeal approach of adding rules
to “patch” weaknesses is not sufficient to show securitytelad,
we show that anonymizations using more restricted claddégt
have stronger properties to foil inference attacks.

3.2 Uniform List Approach

We propose an approach to generate sets of lists which ae mor
structured; as a consequence, they avoid “static” attzamhd,re-
tain privacy in the face of attacks based on background kedgé.



{ul, u2, u3} {ul, u4, ué} (o)
{u2, u3, u4} emaill {u2, us} email1 U1, u2, u3} . emaill
{ul, u3, u4} friendl {u3, u7} friend1 ;< friendl
{u1, u2, u4} gamel {ul, u4, u6} gamel (U4, us} : gamfel
{ul, u2, us} email2 {u2, us} email2 s email2
{u3, u4, u6} blogl {ul, u4, ué} blogl {u6, u7} : 2:092
{U5, U6, U7} blog2  {u3, u7} blog2 = g

(a) Arbitrary label lists example (b) Full pattern example (c) Partitioning approach (double links in bold)

Figure 2: Examples of different anonymization approaches

Algorithm 1: DiviDENODESV,E)

1 SoRT(V);
2 forveV do
flag < true;
for class cdo
if SAFETYCONDITION(C,V) andsizE(c) < mthen

L INSERT(C,V);

w

~N o g s

flag < false; break;

o

if flagthen INSERT(CREATENEWCLASS(),V,E);

First, the node¥ are divided into “classes” of sizg, for a param-

eterm. From the set of nodes, a set of symmetric lists is built for

each class, based on a second paranketem. The lists are built
deterministically from the set of nodes in the class; it tremains
to assign a list to each node so that an attacker has a lowlplibpa
of guessing the correct label.

3.2.1 Dividing the nodes into classes.
To guarantee privacy, we must ensure that there is suffidient

versityin the interactions of nodes in the same class. For example,

in Figure 1, suppose entitiels andu, are placed together in a class
of size 2. Then it is clear thai; andu, were friends and emailed
each other, even without knowing exactly which node in trepbr
corresponds ta; and which corresponds 1. This inference is
possible because the choice of groups made the subgraptimngo
these nodeslense which implied that there must be a link. The
safety property ensures that such inferences are not pasaiid
more strongly, that even if additional information is leadncertain
properties still hold on the remainder of the graph. So wedhice
the following definition:

Definition 2. A division of node$/ into classes satisfies ti#ass
Safetyproperty if for any noder € V, v participates in interactions
with at most one node in any claSs_ V. That is,

V{v,i},{wi},{v,j},{z j} €eE:weSAze S=z=w O

This property holds in the example shown in Figure 2(b). Asesn
quence of this requirement is that3iis the class o¥ itself, thenv
can have no interaction with any other node in the same dlass;

V{v,i},{wi} €eE:ve SAWeES=v=w.

The definition allows two nodes to share multiple interatsio
(e.g., to participate in a friendship interaction and anieimirac-
tion). But it prohibits the case where an entity has multfplends

in the same class. This limits when it is possible to satishgs
safety: for instance, if there is a single entity which hdsriactions
with every other entity, it is not possible to achieve claaety for
anym> 1. Similarly, if the fraction of pairs of entities which are
linked by some interaction (out of tHe |2 possible pairs) exceeds
1/m, it is not possible for the safety condition to hold. But ialre
social networks a user typically interacts with only a srfraittion
of other entities out of the millions of possibilities.

For privacy, we require a solution which observes the safety
dition. This leaves room to optimize for utility. One appebas to
define a simple utility metric, and try to find an optimal sauat
relative to this objective (such as maximizing the simtiadf en-
tities in the same class). However, since we evaluateyuhlised
on the quality of query answering, such effort is not guaradtto
bring reward. Instead, we use heuristic methods to divideso
into classes, and compare their utility empirically.

The problem is simplified because the safety condition ogly r
stricts the interactions which connect nodes within andseclasses:
it is based solely on the graph structure linking nodes, artcn
any property of the labels of the corresponding entitiesth®qro-
cess can focus on partitioning the nodes into classes ofatifast)

m without yet considering how to generate the label lists inith
these classes and assign them to nodes. A simple greedyaahpro
is illustrated in Algorithm 1. Here, we take each nada turn, and
insert it in the first class that has fewer thmrmembers, provided
that performing this insertion would not violate the safepndi-
tion (lines 2—7). This can be checked by ensuring for eacle nod
that participates in an interaction wittthat it does not participate
in an interaction with a node already in the class under denat
tion. If no class can be found which satisfies this conditmmall
classes defined have at leasimembers, then a new class contain-
ing only v can be started (line 8); trivially, this class must satisfy
the safety condition. The/A&ETYCONDITION test can be imple-
mented efficiently by maintaining for each class a list ofr@tles
which have an interaction with any member of the class. kfe &
insertv into a class if neithev nor anyw that shares an interaction
with vis presentin the list.

LEMMA 1. The cost of Algorithm 1 is at most{v ||[E|log |V]).

PROOF There can be atmo€X(|V|) classes created by the algo-
rithm. In evaluating the SFETYCONDITION test, we have to test
a nodev and all its neighbors against a list for each class. These
tests can be implemented in tin@log|V|) using standard data
structures. Over all nodes there are a total dD(|E|) nodes and
neighbors, hence atotal 6|V ||E|) tests. Creating or updating the
list for the class thaV is placed in also take®(log|V|) time for
each neighbor, but this cost is dominated by the (worst cass)



of testing the 8FETY CONDITION in each potential class.[]

It is possible that this heuristic can fail to find a solutiohem
there is a dense pattern of interconnections. But in ourraxeats

this approach still has many degrees of freedom, which can be peen used to generate label lists.

used to improve the utility of the resulting anonymizatiQueries
which involve selections on entity attributes (say, séhectisers
located in Japan) will be unsure exactly which nodes thes@<o
spond to. But when entities in a class have the same valuei®n th
attribute, the uncertainty in the query answer is reducedesei-
ther all nodes in the class are selected by the query, or ridhera
are. Such groupings can be created in the anonymized dajacsu
to satisfying the safety condition. Given a “workload” delsing
which attributes are seen as most important for querying (sa
cation is first, followed by age), the input can be sorted urtidis
ordering of attributes, and the above greedy partitionieigggmed
on the resulting list of entities.  This sorting step is ireded in
line 1 of Algorithm 1. This aims to place nodes that are adjace
in the ordering in the same or nearby classes, unless thiklwsu
olate safety. Because the safety condition is respecteqritacy
conditions still hold: nodes with very similar propertiedlhave

to be put in different classes if there are interactions betwthem.
However, such anonymizations may yet be vulnerable to ‘i
ity attacks” [19]. Note that “structural” attributes, e.tptal degree
of the nodes, or number of emails sent, can also be incogabrat
this scheme for cases that anticipate many queries basedcbn s
graph features. We evaluate the effect of these optimizaitom
utility for different query types in our empirical study.

3.2.2 Generating and assignirigm)-Uniform lists

After nodes are divided into classes of sizeve generate lists of
labels to attach to graph nodes in each class drawn from thieeen
present in that class. We define a symmetric method of geéngrat
lists for a group of nodes based on a paramietard a “pattern’p.

Definition 3. Given a class ofnentitiesCj, a collection ofm la-
bel listsis formed based on an integer “pattep= {po, p1- .- Pk_1}»
which is a subset 0f0...m— 1} of size exactlyk. The label lists
generated fronp and 0< i < mfor entities labeledyy . ..uy,_1 are:

list(p,i) = {Ui+po modm; Yi4+-p; modm; - - - Yi4-py_; modm}. O

This definition is chosen to be very symmetric: essentittigre is
a single pattern which is cyclically shifted to generateli$ts. This
symmetry is key to proving security properties. After reling,
we can assume that the pattgrincludes 0.

Uniform List Example. Given entitiesg, up, Up, Uz, Ug, Us, Ug and
the pattern 01,3, we form label lists to assign to nodes as:

{Uo,u,uz}  {ug,Up,us} {up,u3,us} {us,Us,Ug}
{us,us,up} {us,ug,ur} {ug,up,uz}

We identify two special cases of uniform lists:

O

Prefix patterns. A prefix patternoccurs when the patterp =
{0,1,2,...k—1}. These have an important symmetric structure
which aids the subsequent analysis.

Full pattern. In thefull patterncasek = mand so the only possible
pattern isp = {0,1,2,...m—1}. In this case, each label list in a
class is identical, and consists of all labels of nodes in ¢hass,
similar to the structure designed in [6] for different typgraph.
This can also be seen as a special case of a prefix pattern.

An example of the full pattern case, with the labels assigned
to nodes, is shown in Figure 2(b). Here, the classe¥/ care

{ug,u4,ue}, {uz, us} and{usz, uz}.

Subsequently, we use the tefkym)-uniform list to refer to lists
generated over classes of size (at leastyith a pattern of sizé.
We refer to gk, k)-uniform list as €ull list for short, and talk about
aprefix listto denote the case when a prefix pattern Wwith m has
The two paramé&tarsd m
clearly affect the tradeoff between privacy and utility(1al) uni-
form list associates each node directly with the corresjmanen-
tity, allowing full utility but no privacy; a(|V|, |V|) uniform list as-
sociates each node with the list of all possible labels, eptesents
an extreme (within this model) of minimal utility and maxihyai-
vacy. The choice of the parametérandmwill depend on the data
and the degree of privacy desired. As shown belomtuitively
corresponds to the size of groups in permutation-basedyarnina-
tion of tabular data (and to a lesser extentkianonymity): it is
the size of a group of entities which are indistinguishabléhe
parametem allows a wider range of possible anonymizations to
be considered: for a fixed, anym > k can be chosen. Ak, k)
anonymization generatéd possible worlds, whilé€k, m) generate
more possible worlds, giving a different privacy/utilitsatie off:
for example,(3,3) list gives 6 possibilities, while &3,4) list gen-
erates 9 possibilities. We investigate the effect of vagygpttings
of min the experimental evaluation.

After the sets of label lists have been generated, they rhast t
be assigned to nodes. Each node must be assigned a list which
includes its true label. Schemes which are completely ptablie
should be avoided, else an attacker who learns part of theinmp
could reverse engineer the remainder. The assignment caode
eled as a matching problem on a bipartite graph withodes on
each sidem corresponding to entities, amd corresponding to la-
bel lists. Each edge connects a node to a label list in whielrtle
identity of that node lies, and the goal is to findnatchingin this
graph: a set o edges with no common vertices. The problem is
to pick anarbitrary matching from this graph, which corresponds
to assigning the label lists to their matching nodes: if ina$ arbi-
trary, then an attacker knowing the strategy could use tiosdege
to break the privacy. A natural search procedure is to picarai
trary node, and assign an arbitrary matching list to it, tregreat
this procedure after deleting all edges which are incidenthe
two matched vertices. Note that the task is simpler in thieptat-
tern case: all nodes in the same class are given the samdisabel
containing the set of all labels in the class.

3.3 Security of Uniform Label Lists

The class safety requirement is chosen to ensure an adveesar
not make inferences about interactions between nodes frem t
anonymized data alone. Thisis distinct from notionk-ahonymity,
and is more akin to the security that arises from permutatiafn
tabular data [20] in conjunction with diversity requirenefl3].

THEOREM 1. An attacker who observes data published using
the (k, m)-uniform list approach and who has no knowledge about
the original data can correctly guess which entities papéte in
an interaction with probability at mosit/k.

PROOF We prove the theorem by demonstrating that each “pos-
sible world”, W in which an entityv participates in a particular in-
teractioni is matched with at leagt— 1 others where this is not the
case. Since each is equally plausible, guessing that angarne
sponds to the interaction in the original data would sucacgitd
probability at most 1k. This relies on the symmetric structure of
(k,m) uniform lists: examples above allowed some assignments to
be ruled out, and by a process of elimination, allowed otksoai-
ations to be inferred.

Consider a clasS containing entitiesl . . . uy_1 and labels gen-
erated by the patterp = {po...pk_1}. This labeling is consis-



tent with each node being given thdth label in its listl(v), for many emails were sent, how many friends are listed), but ribeu

i =1...k. Each such choice of a single label for each node gives information about interactions is revealed—in particulaithout

a one-to-one mapping(vj) < Uj1p modm Where each label is  further background information or assumptions, they camies

picked exactly once. This shows that for each labell (v), there duce to whom the emails were sent, or with whom the friendship

is a possible world whengv) < u. were made. Under related models of background knowledge, th
Consider(v,i) € E. The class safety condition ensures it is pos- impact on the security of uniform list anonymizations caspabe

sible thatx(v) = u for anyu € I(v). By the safety condition, there  limited. A further observation is that the analysis is somatpes-

is at most one node if, the class of/, and hence at most one en-  simistic: it analyzes the worst case when all the knowleddgtes

tity in 1(v), which participates in the interaction. Since there is no to entities which the algorithm happens to have groupedtiege

information associated with entities which allows the syetmyto into the same class. Such coincidences seem unlikely iity;esd
be brokenx(v) < uis consistent/u € | (v). Thus, guessing which  even an attacker with information about much more tkentities
entity has the interaction withsucceeds with probabilitgt most may still be unable to guess the ineractions about othefeswiith
1/|l(v)| =1/k3 probability higher than A(k—1). The desired minimum security

Lastly, observe that the class safety condition limits thenn required thus guides the choice of the valu& ¢dind consequently
ber of pairs of nodes between a pair of classes that can ipatgc m). For some applications, it is sufficient to ensure that eatthy
in interactions. This prevents attacks based on a lack &fsity: is classed together with a small number of others, say 5 oml0;
if (almost) every pair of nodes between two groups partteipan other applications, higher privacy requirements can learger
some interaction, then an attacker could guess that somevpeg values ofk from 20 to 50 or higher.

friends and succeed with high probability. Consider theeoafs
nodesvi € §, Vo € S, where there is some interactiorso that 4. PARTITIONING APPROACH

(vi,) € E and(v,i) € E. The class safety condition ensures that  \yg haye studied the strengths of the label list approach. -How
St # S, and so for every possible woltl wherevy —uy, V2 — U, gyer an attacker who has complete or near complete infamat
there aré— 1 possible worlds where this is not the case. In partic- apout one node and partial information about other relatetbs
ular, each oby < Uryp, modm andvz < Up1p_modm IS possible, o compine this with data anonymized by the uniform list ap-

V\k/]her.elfn L ar)d 2 EO QOI share |nt§ractlop Thus, with no fqr- proach to infer more about the interactions between thoseso
ther information, the best strategy is again to guess a lpiesas- for which partial information is known. A concrete example o

signment of labels to nodes, and this succeeds in correkityry curs within a social network, when users know their own iter

entities in an interaction with probability at mostkl. - [J tions, and some properties of the entities that they haesdoted
with (for example, they can see the age and location of th&iNO
“friends”). Using the exact knowledge of their own numberiref
teractions, the attacker may be able to identify which nod€’i
corresponds to their data. Further, they can see which rtbegs
are connected to via interactions, and potentially idgikiém. For
example, if the attacker has only one friend in Alaska, and of all
the classes containing nodes which share an interactibnyonly
one has nodes located in Alaska, then the attacker has ftvend t
node corresponding to that friend. The attacker can leavntahe
interactions of any identified nodes, and in particular,alater-
actions amongst them (such as which have exchanged email).
PrROOF. We show the impact on the anonymized data when the  To preclude such attacks which leverage greater amountit b
true identityx(v) of some node is known. We show that combin- ground information, we increase the amount of masking o, cht
ing this knowledge with the anonymized data has at least @hmu the expense of utility. This leads us topartitioning approach
security as a full list on classes of sime- 1 and no background  which partitions the nodes into classes. Instead of redgdkie full
information. By Theorem 1 then, no further information can b edge information, only thaumberof edges between (and within)

This result shows that with no background knowledge, narinfe
ence is possible. But the label lists are also secure agzenistin
kinds of background knowledge. We analyze the case when-an at
tacker is able to use their knowledge to identify a small neindf
nodes with their true identity.

THEOREM 2. An attacker who observes data published using a
full list and is able to use background knowledge to find the tr
identity of at most r nodes can guess which other entitietigsar
pate in an interaction with probability at mo&y (k—r).

deduced without further background knowledge. Inducyiveith each subset is released. This is similar to the “generalizaech-
fewer tharr pieces of information of this form, the attacker has at nique of Hayet al. [8] for simple graphs; a key difference is that
most I/ (m—r) probability of correctly guessing interactions. we require additional structure of the partitions to ensattacks

Whenx(v) is learned, label lists for nodas in the same class are not possible. More context is given in Section 6.
Sasv are updated aE(V') — I(V)\x(v). Now for eachv € S
[I’(vV')] =m-1, and’(V) corresponds to a full list approach Biw.
Lastly, we note that the class safety still holds on the redwdtata.

If the property holds for a clasS then it must also hold foB\v:

as the property makes statements about nodes in the sarse clas
splitting a class cannot falsify this property. Therefdte safety
property is preserved as classes are partitioned by th&atereof

the identity of a node. [ Figure 2(c) shows an example 2-partition wheris partitioned

) ) ) ) into {ug,u,uz},{us,us} and{ug,uz}. In the illustration, thick

Observe thfit given the true |dent|.ty of a node in the graph and |ines indicate double edges (when there are two edges ¢jrtkie
data anonymized using thié& m)-prefix pattern approach, an at-  jnteraction on the right to members of the class on the left).

tacker can see exactly which interactions it was a part gf,(bow Under the partitioning approach, even if an attacker is $mwe

3without background knowledge, the attacker's best styeie¢p able to identify which node represents an entity, or a paleticin-
guess uniformly over thé possibilities; any other strategy has teraction, there is still uncertainty about other inteiaet. Never-
lower probability of success. theless, a safety condition is necessary to avoid infereimctact,

Definition 4. Given arich interaction grap®8, a partition anonymiza-
tion of G consists of a collection of sets of nodéawvhich partition
the vertex set. The partition anonymization is a (weighted) bipar-
tite graphG’ on ¢ and| so that the weight of edg¢€, i) is |{v e
C|(v,i) € E}|, the number of edges between nodes in classd
interactioni. This is anm-partition if for eachC e ¢, |C| >m. O




we make use of theamesafety condition as before (Definition 2).
Although the exact connections between nodes and interescéire
not revealed by the partition, the safety condition is needepre-
vent the attacker using the density of the graph to conclbhde t
entities participate in a particular interaction with higtobability.
For example, in Figure 2(c), which does not satisfy the coorli
an attacker can infer that sinag anduy are in the same class they
alone must share the blgpdnteraction. Likewise, if between two
classes of sizenthere wera? friend interactions (and each node
pair can participate in at most one friend interaction)nthee at-
tacker can infer that there are friend relations betweeh pair of
nodes drawn from the two different classes. The safety tiondi
prevents such inference; more formally:

COROLLARY 1. An attacker who observes data published us-
ing the m-partition approach and who has no background knowl
edge about the original data can correctly guess which iestipar-
ticipate in an interaction with probability at mo&ym.

PROOF The proof of this corollary is immediate from Theo-
rem 1: any partition which satisfies the safety conditionreor
sponds to a uniform list version of the data, but with styidtiss
information revealed. Therefore, the impossibility ofdrénce on
the (more informative) uniform list version implies thathimg can
be inferred on the partition version[]

The impact of background knowledge is further limited irstbase.

THEOREM 3. An attacker with background knowledge about
interactions of an entity, modeled as knowing the true iitheiaf
some nodes, and the fact that these nodes participate iainen:-
teractions, and data anonymized into an m-partition with shfety
condition can correctly guess which entities participatériterac-
tions about which nothing is known with probability at masn.

PrROOF Combining the background information with the pub-
lished data is equivalent to applying the same anonymizatidhe
original data with all the known edges entities removed sTues
not give any further information about the remaining untifesd
interactions, and so the probability of these being astatiaith
any particular node is uniform across the class. Simildiriye
assume that the attacker knows all participantsat share a par-
ticular interactioni this does not determine any other interaction
involving this pair. Even if there are nodes in the two clasthat
connect td’ this is consistent with any pair of other members in the
classes sharing the interaction. Lastly, by the safetyitiondthe
attacker cannot use the density of interactions to infettang fur-
ther about pairs which must be connected, using a similamaegt
to the label list case. [

In particular, this extends privacy to the case where a user i
social network knows a certain amount of information abbett-
self and about their OSN friends (as mentioned in Sectioh 1.1
Under the partition anonymization, they are unable to uieith
formation to learn anything additional from the anonymizizda.
This holds even when they interact with a large number ofrothe
users, since the safety condition will place each of thesesap-
arate class, preventing further inference. The partitigor@ach is
also resilient to attacks based on other information: kngwfor
example, that an entity has a certain unique degree, asdevadi
in [23, 12], cannot help identify any more information abat.it
However, this additional resilience comes at the cost ofica)
the utility for answering more complex graph queries, asoked
in the experimental analysis in Section 5.

5. EXPERIMENTAL STUDY
5.1 Querying Anonymized Data

The result of the anonymization (either via label lists atigian-
ing) is a graphG’ linking nodes to interactions, with a set of possi-
ble labels for each node. Given such masked data, an endhvaser
to perform their desired analysis upon it. Section 1 dedalset of
example queries on social networks, based on selectingpulip
tions, and identifying the pattern of interactions betwdem. We
outline approaches to answering such queries on anonyrdaad

Sampling Consistent Graphs. A probabilistic approach is for
the analyst to randomly sample a graph that is consisteht thvi
anonymized data, and perform the analysis on this graph.t Tha
is, for each class, they choose an assignment of nodes t@enti
consistent with the possible labels (in the style of the meshde-
scribed in Section 3.2.2). The query can be evaluated oeereth
sulting graph; repeating this several times generatesgetted”
answer to the query given the anonymized data. In the ftllaind
partition cases, sampling a consistent graph takes tireardiim the
size of the anonymized data.

Deterministic Query Bounds. A more costly approach is to search
over all possible graphs that are consistent with the antaan
data, and report the range of possible answers to the queggn-
eral, this could be prohibitively expensive, but for manyunal
queries, the problem can be broken down to consider thetrafsul
the query on each class separately, and combine these toggatio
bounds. The example query “how many users in the USA have used
application X?" can be answered by examining how many users i
the USA in each group have used the application. If the grag h
no users from the USA, or no links to the application in questi
then its contribution is zero; similarly, if all users of tgeoup are

in the US, or all nodes have an interaction with the applicatihen
the query can be answered exactly for that group.

5.2 Experimental Framework

Our analytical results prove tl@monymityproperties of our schemes.
We now present an empirical evaluation of titdity of these ap-
proaches using two datasets: one from the Xanga social nef8jo
and the other from a publicly available Speed Dating study co
ducted by Fismamet al.[7]. The two datasets vary appreciably in
size and graph structure. The crawled subgraph from the &ang
network consists of about 780K nodes and 3 million edgeshEac
node in the graph represents a user of Xanga and his corigspon
ing blog (the social network is based primarily around bliagy
There are two types of edges between nodes representing-the i
teractions: a subscription (or readership) to another Aaigg
and an explicit friendship relation. Each user has asstipto-
file information, such as the user’s location, age, and gemdgch
comprise attributes of the corresponding node in the grajlh.
interactions among the users in the dataset are included.

The speed dating dataset has 530 participants, and coosists
data about 4150 “dates” arranged between pairs of indilédéar
each participant, demographic information was collecégg( race,
field of study), and their level of interest in a number of hielston
a scale of 1 to 10. Each interaction node represents a “danel’,
records information about whether each participant wagipe®r
negative about their counterpart; we call this a “match’oiftbwere
positive. Each individual participated in from 6 to 22 dates

Queries of interest. Section 1 provides a list of example queries
on social networks. These are primarily based on how vasabs
populations interact within the social network, and whatctures
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are present in the interaction graph. Queries in bullet 1lman
answered directly from the unlabeled (i.e. sanitized) ,datzile
queries in bullets 4 and 5 require temporal information Wwhi
not present in the datasets we study here. So we analyzeilttye ut
of the anonymized data over a variety of queries which addies
second and third bullets in the earlier list:

e Pair Queries. These are single-hop queries of the kind: how
many nodes from one subpopulation interact with nodes of an-
other subpopulation. For instance, how many users from €S ar
friends with users from Australia?

Trio Queries. These queries involve two hops in the graph and
query for triples such as, how many Americans are friendl wit
Chinese users who are also friends with Australian users?

Triangle Queries. This type counts triangles of individuals (a.k.a.
the transitivity property among nodes, or the clusteringfco
ficient), that is, nodes that have neighbor pairs which are co
nected. For instance, how many Americans are friends with Ch
nese and Australians who are friends with each other?

Besides working with specific examples of the above querggyp
we present results on a workload comprised of 100 querieshEo
Xanga dataset, the workload consists of a diverse set ofeguer
of the above three types with a variety of constraints oncttral
properties and node attributes. For each of the pair, tribtan
angle queries, we set parameters with varying selectigityebich
attribute—age, location (country and continent), gendet de-
gree (number of interactions of a particular type). Foransg,
we include queries on highly populated age groups (15-238s
well as less populous age ranges (30-60yrs). All query ntss.
mentioned in this section are examples of the queries that fo

the workload. For the speed dating dataset, we consideri-a var
ety of pair and trio queries with attribute selections (éhare no
triangles in the underlying graph). For instance, “How maay-
ticipants who love movies (rating7) date each other?”, or “How
many Asian participants who dated each other hachtci?”.

We answer queries by sampling 10 consistent graphs, as de-
scribed in Section 5.1 and averaging the results. The paeasne
k and m are chosen to provide desired privacy levels. The de-
fault parameters for the Xanga dataset for the full list apph are
set tok = m= 10 and those for the prefix list approach are set as
k = 10,m = 20, which guarantees individual’s privacy with prob-
ability at least 90%, similar to previous work [4, 8, 15, 2@n
the smaller speed dating dataset, the parameters chosearege
spondingly smallerk = m= 5 for full lists, andk = 5,m = 10 for
the prefix list approach. Both anonymization and query answe
ing algorithms scale well: anonymization took less than auta
for the Xanga data on a standard desktop with 1GB RAM, while
queries took under a second each. Our code is availapletdt.
rut gers. edu/ ~snbhagat / G aphAnonCode. We compare
the utility of our anonymization approaches by looking athbie
absolute error in the query results, and the relative errdhe rel-
ative error is found by scaling the absolute difference leetwthe
true and approximate answers by the true answer, and so caadex
100%. Comparisons over the workload are performed by com-
puting the median relative error over all the queries in thoekw
load. For these results, the error bars show the 25 and 76riéec
points. We also present utility results over completelyrsmoized
(sanitized) data: here, the details of the entities andrtezactions
are given, along with a completely unlabeled interactioapbr
Query answering on this data is done by evaluating queries af
randomly assigning entities to nodes (as in Section 5.1}. th®
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speed dating set, we sampled graphs subject to the intexgnity
straint that only males were paired with females.

5.3 Experimental Results

Uniform List Anonymization. The accuracy of the uniform list
approach was evaluated on several queries, such gaihquery
Q1: “How many Americans in different age groups are friendt w
residents of Hong Kong with age less than 20?” on the Xanga
dataset. Figure 3(a) shows the query results for prefix ahtisiu
approaches, alongside the answers on the completely aigstym
(or sanitized) data, and the original unanonymized grapte fig-
ure illustrates similar query results on anonymized anchangmized
data, while those on the sanitized data err significantly.thBoe-
fix and full list anonymizations obtain answers which areselto
the true value, even when the query is very selective (dgretare
very few users with ages in the range 40-60). For the same/quer
Q1, Figure 3(b) shows the accuracy for several values of the p
rametersn. For fixed values ok, the relative error is appreciably
smaller for lower values ah, which correspond to smaller classes.
As one would hope, anonymization with smaller classes tegul
higher utility. The error on sanitized data is at least 3 srhigher
than that obtained on label list anonymized data. The velatc-
curacy worsens for age ranges with low support, which weeaigu
necessary. Since the query touches fewer individuals,inegua
highly accurate answer would compromise privacy.

Figure 3(c) shows results on querying node and edge agsbut
of the Speed Dating anonymized and sanitized graphs. Thy que
posed is: “How many pairs with the sarattributehad a match?”,
where attribute is race, field of study or career goals. Tledipr
(5,10) list performs slightly better than the full list fdvet race at-
tribute, while the full (5,5) list performs slightly bettéor field and
career attributes. Our general observation is that whaeh list
approach more often yields better accuracy, there areetatand
queries where the prefix list approach is better. Based odebign
of the lists, the full list works well when the data can be fexhinto
groups of sizen=k where all entities behave similarly; prefix lists
work well when the data can be formed into groups of size k,
where entities close in the group behave similarly but tlors®p-
posite sides” of the group are less similar.

Figures 3(d) and 3(e) present the median error over the work-
load of 100 queries of various types on the Xanga dataset.
median relative error for various values (& m) tested is in single
digits, while that on sanitized data is 184% (not shown infige
ure). In conjunction with our other experiments includirgitized
data, it seems safe to conclude that there are clear bermefiséng

these anonymization methods in preference to trivial saation,
and we do not show any further results with sanitized datae Th
accuracy for full list anonymization is slightly better thtne prefix
list approach with the same valuesofindeed, the general trend in
Figure 3(d) is for higher errors with largarvalues for the samle

On these data sets, it is better to arrange nodes into grdigizeo

k and assume that all entities behave similarly, rather tiiathem
into larger groups and assume that the similarity variesoship
within the group. For the full list approach, Figure 3(e) wba
clear trend of increase in error with increasing= m). This il-
lustrates the privacy-utility tradeoff, since largerdisbrrespond to
stronger guarantees of privacy. For the Speed Dating datase

fix lists perform slightly better than full lists over the SqukDating
dataset (Figure 3(f)). This seems to occur due to the smadkraf
each attribute value (typically 10), and the many combametiof
attribute values that are seen. Since the benefits of usefix fists
with m> k are small, and hard to predict, our general experimental
conclusion is that the full list approach is likely to be meéd in
general, but there are benefits to using prefix lists when #te d
and typical usage is well understood.

Partition anonymization. Recall that the partition approach does
not release edge information between nodes, but releasethen
number of edges between groups, BayTo generate a consistent
graph, we randomly creat¢ edges between nodes from two con-
nected groups that satisfy the safety condition. In the radesef
knowledge of node degrees, the number of edges between a pair
of nodes may be very different in a graph sampled from the data
anonymized by partitioning. For some simple queries thatato
involve node degrees, using data anonymized with the jmartip-
proach gives results similar to uniform lists. Figure 3lf)strates

that the partition approach performs as well as the othdprmi

list anonymizations over a workload for the Speed Datinglgra
However, this data was generated as part of a controlledrexpe
iment where the node degrees were carefully managed. For the
remainder of this section, we focus on the larger Xanga datas
Figures 4(a) and 4(b) show the utility of the partition agmio on
queries Q1 and Q2 respectively. Q1 is as above, and query Q2
in Figure 4(b) is: “How many Americans are connected to users
with degree greater than 10?” The utility of the partitiopagach

is similar to the label list approaches when querying forenatt

Thetributesonly, as seen in Figure 4(a). For query Q2, which involves

node degrees, the partition approach typically has muckrae-
curacy, as shown in Figure 4(b). The high error for the partit
approach occurs on age ranges 10-30 years, each of whictscove
many individuals, who together have high variation in thisigree.
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The lack of knowledge of the true degrees clearly contribtaehe
higher error. It achieves better accuracy on age groupsmiitth
fewer individuals (30—60 years), and here most nodes hayede
2. Meanwhile, label lists show the greatest variation oveugs
which are the least populous.

Query Selectivity. The selectivity of a query depends on the query
type (number of hops), and the choice of attribute conssain
each node. In the above figures, the choice of the age groupsl va
the selectivity. In Figure 4(c) we show the effect of chaggihe
number of constraints on attributes of a node. The figure shibes
accuracy ofpair queries on Xanga data with constraints on loca-
tion, age, gender and degree successively added at eagh Gher
trend is for the error to increase with the number of constsaas
the queries become more selective, and hence the numbetaf-ma
ing individuals decrease. The utility of full list is someathigher
than the prefix list approach for queries with high selettjwihile
partition is uniformly worse, in line with previous expemmts.

Verifying Privacy Guarantees. The analysis of the privacy of the
anonymization schemes gives guarantees in terms of theptees

k andm. We verify this by evaluating the accuracy with which we
can answer queries that violate the privacy requiremehtd, is,
reveal whether there was an interaction between partipalias of
nodes. We posed the query: “Does nodeteract with node/?”,
which is an instance of a pair query with a very precise sialect
In our experiments, we found there was no statisticallyificant
difference between answers for pairs which were conneated a
those that were not. This indicates that our anonymizataesahot
leak such interaction information.

Prioritizing Attributes for Utility.  Section 3.2.1 suggested that
queries can be answered more accurately if many classeairtont

nodes which are identical on the queried attributes; we rtadys
this experimentally. Such classes can be obtained by gaitttie
nodes based on one or more attribute values before groupang. t
We consider a variety of sort orders over the entity attebuand
degree of the nodes:

e Age, Gender, Location, Degree (AGLD)
e Gender, Age, Location, Degree (GALD)
e Location, Gender, Age, Degree (LGAD)
e Degree, Gender, Location, Age (DGLA)

The default sort order used in our experiments is AGLD. Fedi(n)
evaluates the benefit of performing an additional sort leeipoup-

ing on thepair query Q1. The figure shows a substantial benefit
when using the sorting. We next compare the results whem-prio
itizing different attributes. Figure 5(b) shows the resfita trio
query Q3: “How many users in the age group 15-20yrs (and vary-
ing number of friends) are friends with users in the age grbyp
15yrs and also with those in the age group 20-25yrs?” ewveduat
by grouping on the four different sort orders. Grouping tbees
after sorting with the first three sort orders results in ga@curacy

of over 99% on query Q3. Figure 5(c) shows the effect of sgrtin
on sample pair, trio and triangle queries involving twoihtites,
age and degree. The error obtained on this query for sort orde
AGLD is close to zero. Since the query depends very heavily on
age predicates, the sort order DGLA which puts age last hicerno
ably lower accuracy than orders which rank age higher. Threesa
query gives better results for the sort order DALG (not shamn
the figure) since this groups nodes together with similarekegnd
age. This effect is amplified as the query becomes more cample
and hence selects fewer nodes of the graph. For instanceizthe

gle query Q3 shown in Figure 5(c) is very selective with fettan



300 users satisfying the query. Consequently, answerimgjtiery together in the same classes (leading to the class safedijtioor).

using anonymized data with a sort order that emphasize feaatit A general criticism of anonymization techniques is that stmes
set of attributes results in a higher percentage error. the results offer limited utility gains compared to usingadthat
To show the effect of sort order more clearly, we considerigae has been completely sanitized [4]. In our experimentaluatan,
of the three types (pair, trio, triangle), where each prataiés only we observed that this is not the case for the examples wed=smsi
over a single attribute. Figure 5(d) shows the results wiigred- Due to the popularity of social networking services suchaceF
icates are based on location, while Figure 5(e) gives the wagn book, MySpace and LinkedIn, there has been great interssidly-

all predicates are based on age. The three queries in Figeye 5 ing the structures and features of users’ interactionsttadnpli-
are: thepair query “How many users of age 20 are friends with cations this has for the transmission of information and$dé his
users of age 21?”; thgio query “How many users of age 20 are led many to ask how best to share informative and representat
friends with users of age 21 and with users of age 22?"; and the data sets without compromising the privacy of the individwaho
triangle “How many users of age 20 are friends with users of age intended their details to be shared only with their socidlvoek
21 and age 22 who are also friends?”. Similar queries based on“friends”. Privacy issues in existing social networks aneveyed

locations are used in Figure 5(d): the chosen location gselgcts in [10]. In the past few years there has been much study of what
about 50 nodes, making the relative error quite high. In Edfe), can and cannot be achieved in anonymizing social netwoekatat

the error on all three types of age queries is less than 0.1%éo more generally, graph structured data.

AGLD sorting. Even sorting (using LGAD) with a lower prior- Backstromet al. [2] showed that a powerful attacker with sig-
ity on the primary query attribute (age) is effective: theoeris nificant background knowledge can learn information aboutes
less than 1% on all three queries. This is because, in thisssf individuals from an unlabeled graph. In particular, thepsidered

there are many values of (location, gender, age) which aeedh cases when an attacker “plants” enough nodes in the gragitzan
by many users. These fill many classes, meaning that the gaary  link them to legitimate users. If the full link structure isvealed,

be answered exactly for these classes, and uncertaintyaoisiys the “plants” can be reidentified, and the pattern of linksneen

for classes with a mixture of attribute values. These pltaarty their legitimate neighbors can be recovered. This attagkires

show that when the sort order matches the attributes spbaifie  legitimate users to “accept” the link requests from the tdéefore

the query, the results are substantially improved. Whemtlesy the data is anonymized. A more “passive” attack is when the ad

selects many entities in the same group, the observed erctrse versary learns the complete link information of a suffidigtdarge

to zero. Thus, to the extent possible, the anonymizationldHue close-knit group. This can again be located in the graplealev

crafted with the intended usage in mind. ing the links between neighbors of these group members. |In al
Finally, Figure 5(f) summarizes the accuracy obtained far t  these scenarios, nothing is learned about individuals ormected

four attribute priority orders when evaluated over the Wdkkload to nodes that are compromised by the attacker.

of 100 queries. Over this wider variety of queries, the dNera Several recent works try to thwart attackers by modifying th

curacy is high, since all the sortings place similar usegettoer in link structure of the graph by adding or removing edges. lrd a

classes. These experiments highlight the fact that chgasisort Terzi [12] modify the graph by edge additions so that thee ar

order that matches the expected query workload is necetsapy at leastk nodes with the same degree. Zhou and Pei propose the

timize for query accuracy. stronger requirement that each node must Hawthers with the

same neighborhood characteristics, and focus on the casensf-
6. RELATED WORK diate neighbors, with labels drawn from a hierarchy [23]y ld&al.

study the amount of privacy present when an attacker migh ha
background knowledge of (multi-hop) neighborhood infotioa
in anonymized graphs when the graph structure is not al{&led
In a similar setting, Korolovat al.[9] study the case when the at-
tacker can “buy” information about the neighborhood of rmdend
analyze the cost necessary to learn about certain indigdua
A criticism of methods which add or remove graph edges is that
simply counting the number of such alterations does notetae
with any meaningful measure of loss in utility (similar @isms
apply to tabular data anonymization [4]). In some casesiaff&
single edge can have global impact on the graph: changinthehe
a component is connected, or affecting the diameter of thphgr
As a result, several more recent works attempt to mask tloe-inf
mation in the graph without explicitly adding or removingged.
Zheleva and Getoor model an attacker as a machine learning al

The study of techniques to allow safe anonymization of siemsi
data has been ongoing for many years. It has a long histotgtis-s
tical areas, since census, survey and medical data shoutdveal
personal information about the participants. The work oe8mey
and Samarati which defined the notionkeinonymity [16, 17] led
to much research in the database world. Key subsequent works
have included-diversity [13],(a, k)-anonymity [18]t-closeness [11],
(c,k)-safety [14], and anonymization via permutation [20, 2Tje3e
works focused on the core problem of anonymizing a singletete
table while preserving the utility of natural SQL-style ges; as a
consequence, they do not immediately provide useful refurtin-
teraction graphs. Prior work shows that applying these oukstho
appropriately represented graph data retains littletyi{i]. Like-
wise, methods based on cryptography give strong privacyagua

tees, but have not been shown to be sufficiently general tatdea gorithm, and try to mask the graph data to limit the abilitsath

for the data publishing scenario we study here. . o2 - .
Our methods can be seen as extending permutation-based ap_algonthmsto correctly predict links [22]. They compareaymiza-

proaches to graph-structured data. On tabular data, a petiom ggqﬁaﬁaosrid ?hnerﬁlTrggg]rgo?%misgggf/’gss’ ?QS ir?sufg\‘/%;;zez
divides the rows into classes, and for each class assetthéna is y 9 group :

some (unspecified) bijection between the quasi-identifiads the et al. [8] proposed forming nodes _|nto groups and rgvgalmg only
» . . LT . the number of edges between pairs of groups. This is related t
set of sensitive attributes in the class. This is similaruomotion

of classes of nodes, where there is an unspecified bijectibveen g}les.pr?rfglo?;n%;n%h?d ;vrek Srf?ggsel‘q ?huatltls giftmc?d rQCnr:érlsgir
the graph nodes, and the entities (and their attributes)e prim- IMple grapns. Lur w ' ' | we study i

cipal differences are that the use of uniform-patterns riless a ?kregéz%t;ist nghegogg ggt“v\?;éﬁs’ riﬂd svﬁ Idrzcgfrzlt mferr:fr]ed 'Tg:]“
different set of possible bijections; and because the girgfphma- Y 9 group p qe!

tion requires additional restrictions on which entities ba placed work, there was no analysis of the residual anonymity foigy



partial revelation.

data comprising many different interaction types to be gnored

Extending this approach, Campan and Truta propose building effectively. Our empirical study validated the privacyepervation

“clusters” (groups) of nodes, and revealing only the numbfer
edges within a group and between pairs of groups [5]. Thesiode
have additional properties, which are generalized so thabdes

in the same cluster have the same generalized representatio
only a single type of interaction is allowed). Lastly, Comecet

al. studied anonymization of the subclass of bipartite graghishv
link two different types of entity, and proposed a permuatathased
approach [6]. Our work here differs by studying a much riatiass

of graphs which can handle many different types of entitied a
edge types, which allows social network data to be repredean
open problem in [6]. Our techniques are based on many differe
kinds of grouping, and allow representations that are nesipte

in prior work.

7. EXTENSIONS

Classes of interactions.Our anonymization methods place enti-
ties together in classes to mask their identity. They leaterac-
tions unmasked since the primary objective is to disguisihvh
interactions an entity participates in. It is possible teoatre-
ate classes of interactions, which makkir identity. While we
are concerned with the privacy of individuals, in generaréhis
less concern about the privacy of inanimate objects sucingkes
emails or friendship relations per se. However, one can iineag
scenarios where correlations between certain interactiould
also be masked: in the uniform list approach, it is possibleee
which interactions share a common participant, even thdbgh
identity of that participant remains hidden.

Directed Graph Representations.For simplicity, the interaction
graph has been assumed to be undirected. In general, sygfsgra
contain directional information—that an email was senhfrone
person to another, or a set of others; or one user is subddgbe
the blog of another (a “following” relation). These can be en

coded as directed edges in our setting. Directed graphs €an b [10]

anonymized using our techniques without losing the dioect-
ity: our methods give the same guarantees. Including dinest
may give more chance for an attacker with copious backgraund
formation to break the privacy, but it remains safe agaitiatkers
within the background knowledge bounds described.

Temporal information. Interaction graphs, in particular social net-
works, are rapidly evolving objects. Our discussion is &smlion
releasing an anonymized “snapshot” version of the datas @hi
lows many queries to be evaluated, but may limit the postitidr
observing how the data changes over time (longitudinaliet)d
This is not a concern for historical data: temporal datar{tbdate
that a user joined the network on a certain date, or that aagess
was sent at a particular time) is treated like any othertatte. Care
is needed: e.g., if a member joined only in 2008, then theyncdn
have started a friendship in 2007. This is an instance of @inges
type of information being present on both sides of the grapghea
same time, which was precluded in Section 2. Such infereane ¢
be prevented by placing temporal information on one sidenef t
graph only (entities or interactions), or by ensuring thkinéerac-
tions are feasible for all entities that they could be assigio.

8. CONCLUDING REMARKS

The problem of publishing sensitive social network datdltma
complex ad hoc questions to be answered accurately whisepre
ing privacy of the data subjects remains a challenging oreehave
introduced new representations and techniques which atidw

and utility claims of our anonymization schemes over a varoé
queries on two different datasets. It remains a challendeallp
understand how to translate the aim of privacy for data stbje
into precise quantifications of privacy goals, and to bejteantify
the utility of a resulting anonymization against an unkndwiure
query workload. It may be profitable to model the inhererdera
off between privacy and utility via information theoretiethods.
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