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ABSTRACT
The recent rise in popularity of social networks, such as Facebook
and MySpace, has created large quantities of data about interac-
tions within these networks. Such data contains many private de-
tails about individuals so anonymization is required priorto at-
tempts to make the data more widely available for scientific re-
search. Prior work has considered simple graph data to be anonymized
by removing all non-graph information and adding or deleting some
edges. Since social network data is richer in details about the users
and their interactions, loss of details due to anonymization limits
the possibility for analysis. We present a new set of techniques
for anonymizing social network data based on grouping the enti-
ties into classes, and masking the mapping between entitiesand the
nodes that represent them in the anonymized graph. Our techniques
allow queries over the rich data to be evaluated with high accuracy
while guaranteeing resilience to certain types of attack. To prevent
inference of interactions, we rely on a critical “safety condition”
when forming these classes. We demonstrate utility via empirical
data from social networking settings. We give examples of com-
plex queries that may be posed and show that they can be answered
over the anonymized data efficiently and accurately.

1. INTRODUCTION
Many datasets are most naturally represented as graph struc-

tures, with a variety of types of link connecting sets of entities in
the graph. An important and natural example of this is presented
by Online Social Networks (OSNs), which allow users to identify
other users as “friends”, exchange messages and comments, post
and subscribe to blogs, and play games among themselves. OSNs
have over half a billion active users, with some OSNs exceeding
100 million members. There are many specialized OSNs catering
to professionals, seniors, writers and students, amongst many oth-
ers. There are many analytical and sociological questions that can
be answered using data encoded in these systems, so it is natural
to want to share the data with researchers. However, the raw data
is particularly sensitive: it contains personal details entered by the
users, and sensitive connections between them which are notpublic
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and should not be revealed. This leads us to study how to effec-
tively anonymizeso as to guarantee privacy of data subjects while
maximizing the value (“utility”) of the resulting anonymized data.

The problem of data anonymization has been the focus of much
study in recent years. The initial focus was on anonymizing tabu-
lar data, viak-anonymization and subsequent variations (see Sec-
tion 6). Naively applying such techniques does not yield useful
results on graph structured data, and so new methods have been
proposed for this problem. Recent work has mostly concentrated
on the case where the data can be represented as a simple graphof
nodes and edges, and considered how to prevent the inferenceof
connections between individuals (represented by nodes).

However, real data sources are typically much richer than this.
Taking OSNs as a motivating example, the main entities in thedata
are individuals who create profiles for themselves. These profiles
can list lots of demographic information, such as age, sex and lo-
cation, as well as other personal data—political and religious pref-
erences, relationship status, favorite music, books, destinations and
cuisines. Between users in an OSN, there are many different kinds
of interactions. A common interaction is for a pair of peopleto in-
dicate that they are “friends”: this allows each to see more informa-
tion about the other, and to receive news of updates. Messages can
be exchanged between friends via internal email or instant messag-
ing. Interactions can also involve more than just two participants:
messages can be sent to several people; games can be played be-
tween several players; many users can subscribe to blogs; orlarger
groups can be formed for almost any purpose. Such complex sets
of interactions cannot be easily represented by simple graphs of
nodes and edges without further information. We refer to thecon-
nections formed in the social networks as “rich interactiongraphs”
to emphasize that they contain this rich set of data, based onthe
interactions between different entities.

Example Queries on a Social Network.Dealing with data from
OSNs brings its own challenges. To understand the utility ofthis
data, we outline some of the queries which are of interest to answer:

1. How many users are there in specific subpopulations, e.g.,in age
ranges, locations, with certain political viewpoints etc.?

2. What are the patterns of interaction and friendship, and which
subpopulations are interacting? What is the amount and fre-
quency of interaction? When is it occurring (time of day, day
of week, month of year)?

3. Can the graph of interactions be partitioned with small cuts?
E.g., are there few links between users from different continents,
or with different political views? Can the graph structure be
characterized into collections of sub-graph types and do the sub-
graphs have identifiable properties?



4. How are the interaction patterns changing/growing over time?
How is the distribution of interaction between subpopulations
shifting over time?

5. What can be learnt about the use of applications (such as games)
in the network? How does their popularity spread over time and
is this correlated with friendship links?

These queries can be answered exactly on the original data, but
there are too many possible such queries and variations for the data
owner to precompute and release all possible answers. The answers
to so many queries could leak sensitive data about individuals in
the data set [1]. Moreover, it is not possible to anticipate all possi-
ble queries which could be of interest to analysts. Instead,the goal
should be to design anonymization techniques so that these queries,
and other similar ones, can be answered accurately on the result-
ing published anonymized data set. Observe that these queries are
not simply about properties of the entities in the data, or simply
about the pattern of the link structure in the graph, but rather on
their combination. Thus it is important for the anonymization to
mask the associations between entities and their interactions (for
privacy) but not to obscure them entirely, so that such queries can
be answered with some degree of accuracy. Our experimental study
evaluates several instances of such queries over anonymized data.
When the query relies on large numbers of individuals and interac-
tions, then it can be answered with high accuracy. However, when
it is highly selective and involves only a very small number it is an-
swered with low accuracy—as one would expect, since an accurate
answer could compromise privacy.

1.1 Our Contributions
Based on the above motivations, we address the problem of find-

ing anonymization techniques for rich interaction graphs which
represent Online Social Networks (OSNs).

• We adopt a flexible representation of rich interaction graphs which
is capable of encoding multiple types of interactions between en-
tities, including interactions which can involve large numbers of
participants (not just pairs). We describe two types of anonymiza-
tion techniques for such data, both based on partitioning the orig-
inal entities intoclasses, and then analyze how the ability of an
attacker to infer additional information is minimized, or is zero,
depending on the amount of background knowledge available to
them.

• We present the “label list” approach, which allocates a listof la-
bels to each node in the graph, among which lies its true label
(Section 3). That is, each node in the graph gets a list of possi-
ble identifiers, including its true identifier. We show how these
lists can be structured to ensure that the true identity cannot be
inferred, and provide a “safety condition” to ensure that the pat-
tern of links between classes does not leak information.

• We describe the “partitioning” approach, which partitionsthe en-
tities into classes, and describes the number of interactions at the
level of classes, rather than nodes (Section 4). This methodis
resilient to attackers with greater amounts of background infor-
mation, but has lower utility since less graph structure is now
revealed.

• We discuss how to answer queries over the anonymized data and
perform experiments on real social network data, showing the
impact of these anonymization techniques on the ability to an-
swer such queries as those described above (Section 5). We ob-
serve that for many queries, it is possible to compute accurate
answers, while giving the privacy guarantees described.
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Figure 1: Interaction graph example

2. PRELIMINARIES

2.1 Interaction Graphs.
A rich interaction graphG encodes a variety of interactions be-

tween a set of entitiesV. In the case of an online social network
(OSN),V can represent the members of the network. The interac-
tions between them can be, for instance, that an email or IM was
sent between a pair, a game was played among four players, or a
large group declared their support for a political candidate. These
interactions can be represented by a hypergraph, where eachhy-
peredge consists of the set of entities involved in that interaction.
This captures the special case of (directed or undirected) graphs,
which are hypergraphs in which each hyperedge is constrained to
link exactly two nodes.

We choose to represent such rich interaction graphs as bipartite
graphs over the setsV andI . Each node inI corresponds to an in-
teraction between a subset of entities fromV: an edge(v∈V, i ∈ I)
indicates that the entity represented by nodev participates in inter-
actioni. Each entity (corresponding to a graph node) has an iden-
tity (such as a user id) and a set of properties. For example, user
properties in an OSN include demographic information (suchas ge-
ographic location, sex, date of birth) and other data (e.g.,OSN join
date). Each interaction between two or more entities also has an
identity and a set of properties. For example, each “friend”relation
includes static properties (creation date) and could also have dy-
namic properties (number of times the friends communicate). We
will ensure that each piece of information appears on one “side”
of the interaction graph only: if two entities that are friends each
record their location, then we do not allow the “friendship”inter-
action to also record the location of the friends—this couldaid an
attacker in matching up interactions with entities (see also the dis-
cussion on temporal attributes in Section 7).

We show an example in Figure 1. Here, the entities (users and
interactions) are linked to their properties (age, sex, location for
users, denotedu1 . . .u7; and other relevant properties for the inter-
actions). The users engage in different interactions in various com-
binations: some exchange email messages, establish a “friendship”
relation, subscribe to each others’ blogs, and so on.

2.2 Anonymization and Utility Requirements.
Let G be an interaction graph over setsV, I and edgesE. Our

goal is to produce an anonymized version ofG, G′, say, so thatG′

retains many properties ofG while limiting the amount of infor-
mation that is revealed. This should hold even under attack from
an adversary who knows some limited information about the orig-
inal graph: givenG′ it should not be possible to use some (partial)
knowledge ofG to infer additional linkages between other nodes.
Exactly which properties should be protected and which are pre-
served will depend on the application, and our assumptions about



the other information1 that is known to an attacker seeking to break
the privacy. But there is an inherent tradeoff between the require-
ments of anonymization and utility: privacy entails removing or
masking information in the data, thus potentially reducingthe value
of the anonymized data.

We now distinguish between a node in the graph,v∈V, and the
corresponding entityx ∈ X (in the unanonymized data, these are
interchangable). Each entityx can have a number of attributes, such
as age, location, and a unique identifier. We writex(v) to denote
the identifier, or “true label” of nodev. In the unanonymized graph
G, full information is published, sox(v) is presented exactly for
every node; in the unlabeled version, the mapping between entities
(labels or identifiers) and nodes is completely hidden, so nothing
is revealed aboutx(v). We examine settings where information
about the mappingx(v) is partially revealed: this will allow non-
trivial queries to be computed over the data without exposing the
complete data.

For instance, nodev1 in the graph in Figure 1 corresponds to an
entity with attributes29, F, NY. In this graph, the value ofx(v1) is
revealed precisely; in later examples, such the one in Figure 2(a),
only partial information is revealed about the mapping. Thealgo-
rithm to generate the anonymized data is assumed to be public. The
privacy conditions should still hold with this assumption.Our fo-
cus is on the privacy of the entity-entity interactions, so we do not
study the privacy of the entity attributes. Either these arepublic,
or they can be anonymized up to an appropriate level via standard
k-anonymity [16, 17] or permutation-based methods [20, 21].

Utility is judged based on the quality with which various queries
can be answered on the anonymized graph. Clearly, some queries
cannot be answered with high accuracy without compromisingpri-
vacy. For example, for a query that is so specific that it identifies
two unique entities and asks for the graph distance between them,
an accurate answer would reveal whether they are directly linked.
So our goal is to give accurate answers on queries that are notpri-
vacy revealing, and tolerate less accurate answers in othercases.
We evaluate the utility of our solutions empirically by measuring
the accuracy with which various queries of the type identified in
Section 1 can be answered.

We consider privacy requirements related to an attacker being
able to learn interactions between entities. Some example require-
ments could include that: the attacker should not be able to learn
any information about interactions beyond what they already know;
or the attacker may learn about some types of interaction butnot
others; or the attacker may learn about interactions between pairs of
individuals who are known to the attacker, but not about any inter-
actions involving others (corresponding to the case in someOSNs
such as LinkedIn where users can see the connections betweentheir
friends). In general we are only concerned with limiting positive
inferences, such as determining if two users did send a message
between them. It is typically reasonable to allow some negative in-
ferences, such as to learn that two users have never communicated.
This is by analogy with prior work on tabular data: for example, in
an anonymized medical database, it is not possible for an attacker
to determine which of a set of diseases a particular individual suf-
fers from (positive inference), but they can rule out certain diseases
(negative inference)2.

1We use “background knowledge” to refer to any information
known to the attacker that is pertinent to the anonymized data, and
consider different forms of background knowledge in the analysis.
2More can be done to hide the presence of an individual in a ta-
ble, relative to a fixed table of “public knowledge” about individu-
als [15].

3. ANONYMIZATION VIA LABEL LISTS
We propose to anonymize interaction graphs using “label lists”:

the identifier of each node in the graph is replaced by a list ofpos-
sible identifiers (or labels). This reveals partial information about
the mapping from nodes to their true identifiers, and the links be-
tween them. We show that a carefully chosen labelling ensures that
an observer has low probability of guessing the true mapping. For-
mally, in thelabel listapproach, we provide alist of possible labels
for each node inV, among which the true label is guaranteed to
lie. Conceptually, this is related to permutation-based methods for
anonymizing tabular data, which can be thought of as providing a
short list of possible senstive attributes for each record [20].

Definition 1. The output of a label list anonymization is a bipar-
tite graphG′ on verticesV and the original set of interactionsI that
is isomorphic to the input graphG, so that the (structural) proper-
ties of the unlabeled graph are unaltered. The output also includes
a functionl from V to P(X) (the powerset of entitiesX), so that
l(v) is the list (technically, a set) of possible labels ofv. We insist
that the true label ofv is included in its list, so thatx(v) ∈ l(v).

Thus, the unanonymized graph is given by settingl(v) = {x(v)},
and the unlabeled graph is given by settingl(v) = X. In the re-
mainder of this section, we describe a method to build label list
anonymizations. First, Section 3.1 shows that simply picking un-
structured lists is open to attacks. Instead, we propose more struc-
tured ways to generate lists, based on dividing the nodes into smaller
groups, and considering each group independently. Section3.2.1
describes how to generate a set of lists for the group; these are then
assigned to nodes, as described in Section 3.2.2. We then analyze
the security of this anonymization in Section 3.3.

3.1 Arbitrary List Approach
The most general case is whenl(v) is an arbitrary list of labels.

An example is shown in Figure 2(a), where each list has three en-
tries. Here, the first node (corresponding tov1 in Figure 1) has
the label list{u1,u2,u3}. Its true label,x(v1) = u1, is included in
the list. Nodes inI are labeled only with their true identity. On
first glance, it might seem that given such a set of arbitrary lists, it
is impossible for an adversary to recover the true label associated
with each entity. However, there are cases which do leak informa-
tion, motivating us to allow only a subclass of lists, with guaranteed
security properties.

Consider again the example in Figure 2(a). The labelu7 only
appears for the last node, revealing its identity. For the first four
nodes, only the four labels{u1,u2,u3,u4} are used in various per-
mutations. Therefore, since every node corresponds to a unique
entity, these identities must belong to the first four nodes.In partic-
ular, they cannot be the identities of the fifth or sixth node.There-
fore, the fifth node must beu5 and the sixth nodeu6, and so one
can deduce thatu6 andu7 share the blog2 interaction.

With these examples, it is possible to identify shortcomings in
the choice of label lists, and attempt to rule them out. In this exam-
ple, it seems desirable to insist that each list should contain at least
k labels, and each label should appear aboutk times in the lists,
for some parameterk. But a piecemeal approach of adding rules
to “patch” weaknesses is not sufficient to show security. Instead,
we show that anonymizations using more restricted classes of lists
have stronger properties to foil inference attacks.

3.2 Uniform List Approach
We propose an approach to generate sets of lists which are more

structured; as a consequence, they avoid “static” attacks,and re-
tain privacy in the face of attacks based on background knowledge.
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Figure 2: Examples of different anonymization approaches

Algorithm 1 : DIVIDE NODES(V,E)

SORT(V);1

for v∈V do2

flag← true;3

for class cdo4

if SAFETYCONDITION(c,v) andSIZE(c) < m then5

INSERT(c,v);6

flag← false; break;7

if flag then INSERT(CREATENEWCLASS(),v,E);8

First, the nodesV are divided into “classes” of sizem, for a param-
eterm. From the set of nodes, a set of symmetric lists is built for
each class, based on a second parameterk≤m. The lists are built
deterministically from the set of nodes in the class; it thenremains
to assign a list to each node so that an attacker has a low probability
of guessing the correct label.

3.2.1 Dividing the nodes into classes.
To guarantee privacy, we must ensure that there is sufficientdi-

versityin the interactions of nodes in the same class. For example,
in Figure 1, suppose entitiesu1 andu2 are placed together in a class
of size 2. Then it is clear thatu1 andu2 were friends and emailed
each other, even without knowing exactly which node in the graph
corresponds tou1 and which corresponds tou2. This inference is
possible because the choice of groups made the subgraph involving
these nodesdense, which implied that there must be a link. The
safety property ensures that such inferences are not possible; and
more strongly, that even if additional information is learned, certain
properties still hold on the remainder of the graph. So we introduce
the following definition:

Definition 2. A division of nodesV into classes satisfies theClass
Safetyproperty if for any nodev∈V, v participates in interactions
with at most one node in any classS⊂V. That is,

∀{v, i},{w, i},{v, j},{z, j} ∈ E : w∈ S∧z∈ S⇒ z= w.

This property holds in the example shown in Figure 2(b). A conse-
quence of this requirement is that ifS is the class ofv itself, thenv
can have no interaction with any other node in the same class;i.e.,

∀{v, i},{w, i} ∈ E : v∈ S∧w∈ S⇒ v = w.

The definition allows two nodes to share multiple interactions
(e.g., to participate in a friendship interaction and an email interac-
tion). But it prohibits the case where an entity has multiplefriends

in the same class. This limits when it is possible to satisfy class
safety: for instance, if there is a single entity which has interactions
with every other entity, it is not possible to achieve class safety for
anym> 1. Similarly, if the fraction of pairs of entities which are
linked by some interaction (out of the|V|2 possible pairs) exceeds
1/m, it is not possible for the safety condition to hold. But in real
social networks a user typically interacts with only a smallfraction
of other entities out of the millions of possibilities.

For privacy, we require a solution which observes the safetycon-
dition. This leaves room to optimize for utility. One approach is to
define a simple utility metric, and try to find an optimal solution
relative to this objective (such as maximizing the similarity of en-
tities in the same class). However, since we evaluate utility based
on the quality of query answering, such effort is not guaranteed to
bring reward. Instead, we use heuristic methods to divide nodes
into classes, and compare their utility empirically.

The problem is simplified because the safety condition only re-
stricts the interactions which connect nodes within and across classes:
it is based solely on the graph structure linking nodes, and not on
any property of the labels of the corresponding entities. Sothe pro-
cess can focus on partitioning the nodes into classes of size(at least)
m without yet considering how to generate the label lists within
these classes and assign them to nodes. A simple greedy approach
is illustrated in Algorithm 1. Here, we take each nodev in turn, and
insert it in the first class that has fewer thanm members, provided
that performing this insertion would not violate the safetycondi-
tion (lines 2–7). This can be checked by ensuring for each node
that participates in an interaction withv that it does not participate
in an interaction with a node already in the class under considera-
tion. If no class can be found which satisfies this condition,or all
classes defined have at leastm members, then a new class contain-
ing only v can be started (line 8); trivially, this class must satisfy
the safety condition. The SAFETYCONDITION test can be imple-
mented efficiently by maintaining for each class a list of allnodes
which have an interaction with any member of the class. It is safe to
insertv into a class if neitherv nor anyw that shares an interaction
with v is present in the list.

LEMMA 1. The cost of Algorithm 1 is at most O(|V||E| log|V|).

PROOF. There can be at mostO(|V|) classes created by the algo-
rithm. In evaluating the SAFETYCONDITION test, we have to test
a nodev and all its neighbors against a list for each class. These
tests can be implemented in timeO(log|V|) using standard data
structures. Over all nodesv, there are a total ofO(|E|) nodes and
neighbors, hence a total ofO(|V||E|) tests. Creating or updating the
list for the class thatV is placed in also takesO(log|V|) time for
each neighbor, but this cost is dominated by the (worst case)cost



of testing the SAFETY CONDITION in each potential class.

It is possible that this heuristic can fail to find a solution when
there is a dense pattern of interconnections. But in our experiments
this approach still has many degrees of freedom, which can be
used to improve the utility of the resulting anonymization.Queries
which involve selections on entity attributes (say, selecting users
located in Japan) will be unsure exactly which nodes these corre-
spond to. But when entities in a class have the same value on this
attribute, the uncertainty in the query answer is reduced, since ei-
ther all nodes in the class are selected by the query, or none of them
are. Such groupings can be created in the anonymized data, subject
to satisfying the safety condition. Given a “workload” describing
which attributes are seen as most important for querying (say, lo-
cation is first, followed by age), the input can be sorted under this
ordering of attributes, and the above greedy partitioning performed
on the resulting list of entities. This sorting step is indicated in
line 1 of Algorithm 1. This aims to place nodes that are adjacent
in the ordering in the same or nearby classes, unless this would vi-
olate safety. Because the safety condition is respected, the privacy
conditions still hold: nodes with very similar properties will have
to be put in different classes if there are interactions between them.
However, such anonymizations may yet be vulnerable to “minimal-
ity attacks” [19]. Note that “structural” attributes, e.g., total degree
of the nodes, or number of emails sent, can also be incorporated in
this scheme for cases that anticipate many queries based on such
graph features. We evaluate the effect of these optimizations on
utility for different query types in our empirical study.

3.2.2 Generating and assigning(k,m)-Uniform lists
After nodes are divided into classes of sizem, we generate lists of

labels to attach to graph nodes in each class drawn from the entities
present in that class. We define a symmetric method of generating
lists for a group of nodes based on a parameterk and a “pattern”p.

Definition 3. Given a class ofmentitiesCj , a collection ofm la-
bel listsis formed based on an integer “pattern”p= {p0, p1 . . . pk−1},
which is a subset of{0. . .m−1} of size exactlyk. The label lists
generated fromp and 0≤ i < m for entities labeledu0 . . .um−1 are:

list(p, i) = {ui+p0 modm,ui+p1 modm, . . .ui+pk−1 modm}.

This definition is chosen to be very symmetric: essentially,there is
a single pattern which is cyclically shifted to generate thelists. This
symmetry is key to proving security properties. After relabelling,
we can assume that the patternp includes 0.

Uniform List Example. Given entitiesu0,u1,u2,u3,u4,u5,u6 and
the pattern 0,1,3, we form label lists to assign to nodes as:

{u0,u1,u3} {u1,u2,u4} {u2,u3,u5} {u3,u4,u6}
{u4,u5,u0} {u5,u6,u1} {u6,u0,u2}

We identify two special cases of uniform lists:

Prefix patterns. A prefix patternoccurs when the patternp =
{0,1,2, . . .k−1}. These have an important symmetric structure
which aids the subsequent analysis.

Full pattern. In thefull patterncasek= mand so the only possible
pattern isp = {0,1,2, . . .m−1}. In this case, each label list in a
class is identical, and consists of all labels of nodes in that class,
similar to the structure designed in [6] for different typesof graph.
This can also be seen as a special case of a prefix pattern.

An example of the full pattern case, with the labels assigned
to nodes, is shown in Figure 2(b). Here, the classes onV are
{u1,u4,u6},{u2,u5} and{u3,u7}.

Subsequently, we use the term(k,m)-uniform list to refer to lists
generated over classes of size (at least)m with a pattern of sizek.
We refer to a(k,k)-uniform list as afull list for short, and talk about
aprefix listto denote the case when a prefix pattern withk < mhas
been used to generate label lists. The two parametersk and m
clearly affect the tradeoff between privacy and utility: a(1,1) uni-
form list associates each node directly with the corresponding en-
tity, allowing full utility but no privacy; a(|V|, |V|) uniform list as-
sociates each node with the list of all possible labels, and represents
an extreme (within this model) of minimal utility and maximal pri-
vacy. The choice of the parametersk andmwill depend on the data
and the degree of privacy desired. As shown below,k intuitively
corresponds to the size of groups in permutation-based anonymiza-
tion of tabular data (and to a lesser extent, ink-anonymity): it is
the size of a group of entities which are indistinguishable.The
parameterm allows a wider range of possible anonymizations to
be considered: for a fixedk, any m≥ k can be chosen. A(k,k)
anonymization generatesk! possible worlds, while(k,m) generate
more possible worlds, giving a different privacy/utility trade off:
for example,(3,3) list gives 6 possibilities, while a(3,4) list gen-
erates 9 possibilities. We investigate the effect of varying settings
of m in the experimental evaluation.

After the sets of label lists have been generated, they must then
be assigned to nodes. Each node must be assigned a list which
includes its true label. Schemes which are completely predictable
should be avoided, else an attacker who learns part of the mapping
could reverse engineer the remainder. The assignment can bemod-
eled as a matching problem on a bipartite graph withm nodes on
each side:m corresponding to entities, andm corresponding to la-
bel lists. Each edge connects a node to a label list in which the true
identity of that node lies, and the goal is to find amatchingin this
graph: a set ofm edges with no common vertices. The problem is
to pick anarbitrary matching from this graph, which corresponds
to assigning the label lists to their matching nodes: if it isnot arbi-
trary, then an attacker knowing the strategy could use this knowlege
to break the privacy. A natural search procedure is to pick anarbi-
trary node, and assign an arbitrary matching list to it, thenrepeat
this procedure after deleting all edges which are incident on the
two matched vertices. Note that the task is simpler in the full pat-
tern case: all nodes in the same class are given the same labellist,
containing the set of all labels in the class.

3.3 Security of Uniform Label Lists
The class safety requirement is chosen to ensure an adversary can-
not make inferences about interactions between nodes from the
anonymized data alone. This is distinct from notions ofk-anonymity,
and is more akin to the security that arises from permutations of
tabular data [20] in conjunction with diversity requirements [13].

THEOREM 1. An attacker who observes data published using
the(k,m)-uniform list approach and who has no knowledge about
the original data can correctly guess which entities participate in
an interaction with probability at most1/k.

PROOF. We prove the theorem by demonstrating that each “pos-
sible world”,W in which an entityv participates in a particular in-
teractioni is matched with at leastk−1 others where this is not the
case. Since each is equally plausible, guessing that any onecorre-
sponds to the interaction in the original data would succeedwith
probability at most 1/k. This relies on the symmetric structure of
(k,m) uniform lists: examples above allowed some assignments to
be ruled out, and by a process of elimination, allowed other associ-
ations to be inferred.

Consider a classScontaining entitiesu0 . . .um−1 and labels gen-
erated by the patternp = {p0 . . . pk−1}. This labeling is consis-



tent with each nodev being given theith label in its listl(v), for
i = 1. . .k. Each such choice of a single label for each node gives
a one-to-one mappingx(v j ) ← u j+pi modm where each label is
picked exactly once. This shows that for each labelu∈ l(v), there
is a possible world wherex(v)← u.

Consider(v, i) ∈ E. The class safety condition ensures it is pos-
sible thatx(v) = u for anyu∈ l(v). By the safety condition, there
is at most one node inS, the class ofv, and hence at most one en-
tity in l(v), which participates in the interaction. Since there is no
information associated with entities which allows the symmetry to
be broken,x(v)← u is consistent∀u∈ l(v). Thus, guessing which
entity has the interaction withi succeeds with probabilityat most
1/|l(v)|= 1/k.3

Lastly, observe that the class safety condition limits the num-
ber of pairs of nodes between a pair of classes that can participate
in interactions. This prevents attacks based on a lack of diversity:
if (almost) every pair of nodes between two groups participates in
some interaction, then an attacker could guess that some pair were
friends and succeed with high probability. Consider the case of
nodesv1 ∈ S1, v2 ∈ S2, where there is some interactioni so that
(v1, i) ∈ E and(v2, i) ∈ E. The class safety condition ensures that
S1 6= S2, and so for every possible worldW wherev1← u1,v2← u2,
there arek−1 possible worlds where this is not the case. In partic-
ular, each ofv1← u1+pi modm andv2← u2+pi modm is possible,
whereinu1 andu2 do not share interactioni. Thus, with no fur-
ther information, the best strategy is again to guess a possible as-
signment of labels to nodes, and this succeeds in correctly placing
entities in an interaction with probability at most 1/k.

This result shows that with no background knowledge, no infer-
ence is possible. But the label lists are also secure againstcertain
kinds of background knowledge. We analyze the case when an at-
tacker is able to use their knowledge to identify a small number of
nodes with their true identity.

THEOREM 2. An attacker who observes data published using a
full list and is able to use background knowledge to find the true
identity of at most r nodes can guess which other entities partici-
pate in an interaction with probability at most1/(k− r).

PROOF. We show the impact on the anonymized data when the
true identityx(v) of some nodev is known. We show that combin-
ing this knowledge with the anonymized data has at least as much
security as a full list on classes of sizem−1 and no background
information. By Theorem 1 then, no further information can be
deduced without further background knowledge. Inductively, with
fewer thanr pieces of information of this form, the attacker has at
most 1/(m− r) probability of correctly guessing interactions.

Whenx(v) is learned, label lists for nodesv′ in the same class
S as v are updated asl ′(v′)← l(v′)\x(v). Now for eachv′ ∈ S,
|l ′(v′)|= m−1, andl ′(v′) corresponds to a full list approach onS\v.
Lastly, we note that the class safety still holds on the reduced data.
If the property holds for a classS, then it must also hold forS\v:
as the property makes statements about nodes in the same class,
splitting a class cannot falsify this property. Therefore,the safety
property is preserved as classes are partitioned by the revelation of
the identity of a node.

Observe that given the true identity of a node in the graph and
data anonymized using the(k,m)-prefix pattern approach, an at-
tacker can see exactly which interactions it was a part of (e.g., how

3Without background knowledge, the attacker’s best strategy is to
guess uniformly over thek possibilities; any other strategy has
lower probability of success.

many emails were sent, how many friends are listed), but no further
information about interactions is revealed—in particular, without
further background information or assumptions, they cannot de-
duce to whom the emails were sent, or with whom the friendships
were made. Under related models of background knowledge, the
impact on the security of uniform list anonymizations can also be
limited. A further observation is that the analysis is somewhat pes-
simistic: it analyzes the worst case when all the knowledge relates
to entities which the algorithm happens to have grouped together
into the same class. Such coincidences seem unlikely in reality, so
even an attacker with information about much more thank entities
may still be unable to guess the ineractions about other entities with
probability higher than 1/(k−1). The desired minimum security
required thus guides the choice of the value ofk (and consequently
m). For some applications, it is sufficient to ensure that eachentity
is classed together with a small number of others, say 5 or 10;in
other applications, higher privacy requirements can lead to larger
values ofk from 20 to 50 or higher.

4. PARTITIONING APPROACH
We have studied the strengths of the label list approach. How-

ever, an attacker who has complete or near complete information
about one node and partial information about other related nodes
can combine this with data anonymized by the uniform list ap-
proach to infer more about the interactions between those nodes
for which partial information is known. A concrete example oc-
curs within a social network, when users know their own interac-
tions, and some properties of the entities that they have interacted
with (for example, they can see the age and location of their OSN
“friends”). Using the exact knowledge of their own number ofin-
teractions, the attacker may be able to identify which node in G′

corresponds to their data. Further, they can see which nodesthey
are connected to via interactions, and potentially identify them. For
example, if the attackerv has only one friend in Alaska, and of all
the classes containing nodes which share an interaction with v, only
one has nodes located in Alaska, then the attacker has found the
node corresponding to that friend. The attacker can learn about the
interactions of any identified nodes, and in particular, about inter-
actions amongst them (such as which have exchanged email).

To preclude such attacks which leverage greater amounts of back-
ground information, we increase the amount of masking of data, at
the expense of utility. This leads us to apartitioning approach,
which partitions the nodes into classes. Instead of releasing the full
edge information, only thenumberof edges between (and within)
each subset is released. This is similar to the “generalization” tech-
nique of Hayet al. [8] for simple graphs; a key difference is that
we require additional structure of the partitions to ensureattacks
are not possible. More context is given in Section 6.

Definition 4. Given a rich interaction graphG, a partition anonymiza-
tion of G consists of a collection of sets of nodesC which partition
the vertex setV. The partition anonymization is a (weighted) bipar-
tite graphG′ on C and I so that the weight of edge(C, i) is |{v∈
C|(v, i) ∈ E}|, the number of edges between nodes in classC and
interactioni. This is anm-partition if for eachC∈ C , |C| ≥m.

Figure 2(c) shows an example 2-partition whereV is partitioned
into {u1,u2,u3},{u4,u5} and {u6,u7}. In the illustration, thick
lines indicate double edges (when there are two edges linking the
interaction on the right to members of the class on the left).

Under the partitioning approach, even if an attacker is somehow
able to identify which node represents an entity, or a particular in-
teraction, there is still uncertainty about other interactions. Never-
theless, a safety condition is necessary to avoid inference. In fact,



we make use of thesamesafety condition as before (Definition 2).
Although the exact connections between nodes and interactions are
not revealed by the partition, the safety condition is needed to pre-
vent the attacker using the density of the graph to conclude that
entities participate in a particular interaction with highprobability.
For example, in Figure 2(c), which does not satisfy the condition,
an attacker can infer that sinceu6 andu7 are in the same class they
alone must share the blog2 interaction. Likewise, if between two
classes of sizem there werem2 friend interactions (and each node
pair can participate in at most one friend interaction), then the at-
tacker can infer that there are friend relations between each pair of
nodes drawn from the two different classes. The safety condition
prevents such inference; more formally:

COROLLARY 1. An attacker who observes data published us-
ing the m-partition approach and who has no background knowl-
edge about the original data can correctly guess which entities par-
ticipate in an interaction with probability at most1/m.

PROOF. The proof of this corollary is immediate from Theo-
rem 1: any partition which satisfies the safety condition corre-
sponds to a uniform list version of the data, but with strictly less
information revealed. Therefore, the impossibility of inference on
the (more informative) uniform list version implies that nothing can
be inferred on the partition version.

The impact of background knowledge is further limited in this case.

THEOREM 3. An attacker with background knowledge about
interactions of an entity, modeled as knowing the true identity of
some nodes, and the fact that these nodes participate in certain in-
teractions, and data anonymized into an m-partition with the safety
condition can correctly guess which entities participate in interac-
tions about which nothing is known with probability at most1/m.

PROOF. Combining the background information with the pub-
lished data is equivalent to applying the same anonymization to the
original data with all the known edges entities removed. This does
not give any further information about the remaining unidentified
interactions, and so the probability of these being associated with
any particular node is uniform across the class. Similarly,if we
assume that the attacker knows all participantsv that share a par-
ticular interactioni this does not determine any other interactioni′

involving this pair. Even if there are nodes in the two classes that
connect toi′ this is consistent with any pair of other members in the
classes sharing the interaction. Lastly, by the safety condition, the
attacker cannot use the density of interactions to infer anything fur-
ther about pairs which must be connected, using a similar argument
to the label list case.

In particular, this extends privacy to the case where a user in a
social network knows a certain amount of information about them-
self and about their OSN friends (as mentioned in Section 1.1).
Under the partition anonymization, they are unable to use this in-
formation to learn anything additional from the anonymizeddata.
This holds even when they interact with a large number of other
users, since the safety condition will place each of these ina sep-
arate class, preventing further inference. The partition approach is
also resilient to attacks based on other information: knowing for
example, that an entity has a certain unique degree, as considered
in [23, 12], cannot help identify any more information aboutit.
However, this additional resilience comes at the cost of reducing
the utility for answering more complex graph queries, as observed
in the experimental analysis in Section 5.

5. EXPERIMENTAL STUDY

5.1 Querying Anonymized Data
The result of the anonymization (either via label lists or partition-

ing) is a graphG′ linking nodes to interactions, with a set of possi-
ble labels for each node. Given such masked data, an end-userhas
to perform their desired analysis upon it. Section 1 detailed a set of
example queries on social networks, based on selecting subpopula-
tions, and identifying the pattern of interactions betweenthem. We
outline approaches to answering such queries on anonymizeddata:

Sampling Consistent Graphs. A probabilistic approach is for
the analyst to randomly sample a graph that is consistent with the
anonymized data, and perform the analysis on this graph. That
is, for each class, they choose an assignment of nodes to entities
consistent with the possible labels (in the style of the methods de-
scribed in Section 3.2.2). The query can be evaluated over the re-
sulting graph; repeating this several times generates an “expected”
answer to the query given the anonymized data. In the full-list and
partition cases, sampling a consistent graph takes time linear in the
size of the anonymized data.

Deterministic Query Bounds.A more costly approach is to search
over all possible graphs that are consistent with the anonymized
data, and report the range of possible answers to the query. In gen-
eral, this could be prohibitively expensive, but for many natural
queries, the problem can be broken down to consider the result of
the query on each class separately, and combine these to get overall
bounds. The example query “how many users in the USA have used
application X?” can be answered by examining how many users in
the USA in each group have used the application. If the group has
no users from the USA, or no links to the application in question,
then its contribution is zero; similarly, if all users of thegroup are
in the US, or all nodes have an interaction with the application, then
the query can be answered exactly for that group.

5.2 Experimental Framework
Our analytical results prove theanonymityproperties of our schemes.

We now present an empirical evaluation of theutility of these ap-
proaches using two datasets: one from the Xanga social network [3],
and the other from a publicly available Speed Dating study con-
ducted by Fismanet al. [7]. The two datasets vary appreciably in
size and graph structure. The crawled subgraph from the Xanga
network consists of about 780K nodes and 3 million edges. Each
node in the graph represents a user of Xanga and his correspond-
ing blog (the social network is based primarily around blogging).
There are two types of edges between nodes representing the in-
teractions: a subscription (or readership) to another Xanga blog
and an explicit friendship relation. Each user has associated pro-
file information, such as the user’s location, age, and gender, which
comprise attributes of the corresponding node in the graph.All
interactions among the users in the dataset are included.

The speed dating dataset has 530 participants, and consistsof
data about 4150 “dates” arranged between pairs of individuals. For
each participant, demographic information was collected (age, race,
field of study), and their level of interest in a number of hobbies on
a scale of 1 to 10. Each interaction node represents a “date”,and
records information about whether each participant was positive or
negative about their counterpart; we call this a “match” if both were
positive. Each individual participated in from 6 to 22 dates.

Queries of interest. Section 1 provides a list of example queries
on social networks. These are primarily based on how varioussub-
populations interact within the social network, and what structures
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Figure 3: Anonymization of Graphs using Label List Approach

are present in the interaction graph. Queries in bullet 1 canbe
answered directly from the unlabeled (i.e. sanitized) data, while
queries in bullets 4 and 5 require temporal information which is
not present in the datasets we study here. So we analyze the utility
of the anonymized data over a variety of queries which address the
second and third bullets in the earlier list:

• Pair Queries. These are single-hop queries of the kind: how
many nodes from one subpopulation interact with nodes of an-
other subpopulation. For instance, how many users from US are
friends with users from Australia?

• Trio Queries. These queries involve two hops in the graph and
query for triples such as, how many Americans are friends with
Chinese users who are also friends with Australian users?

• Triangle Queries. This type counts triangles of individuals (a.k.a.
the transitivity property among nodes, or the clustering coef-
ficient), that is, nodes that have neighbor pairs which are con-
nected. For instance, how many Americans are friends with Chi-
nese and Australians who are friends with each other?

Besides working with specific examples of the above query types,
we present results on a workload comprised of 100 queries. For the
Xanga dataset, the workload consists of a diverse set of queries
of the above three types with a variety of constraints on structural
properties and node attributes. For each of the pair, trio and tri-
angle queries, we set parameters with varying selectivity for each
attribute—age, location (country and continent), gender and de-
gree (number of interactions of a particular type). For instance,
we include queries on highly populated age groups (15-25yrs) as
well as less populous age ranges (30-60yrs). All query instances
mentioned in this section are examples of the queries that form

the workload. For the speed dating dataset, we consider a vari-
ety of pair and trio queries with attribute selections (there are no
triangles in the underlying graph). For instance, “How manypar-
ticipants who love movies (rating>7) date each other?”, or “How
many Asian participants who dated each other had amatch?”.

We answer queries by sampling 10 consistent graphs, as de-
scribed in Section 5.1 and averaging the results. The parameters
k and m are chosen to provide desired privacy levels. The de-
fault parameters for the Xanga dataset for the full list approach are
set tok = m= 10 and those for the prefix list approach are set as
k = 10,m = 20, which guarantees individual’s privacy with prob-
ability at least 90%, similar to previous work [4, 8, 15, 20].On
the smaller speed dating dataset, the parameters chosen arecorre-
spondingly smaller:k = m= 5 for full lists, andk = 5,m= 10 for
the prefix list approach. Both anonymization and query answer-
ing algorithms scale well: anonymization took less than a minute
for the Xanga data on a standard desktop with 1GB RAM, while
queries took under a second each. Our code is available atpaul.
rutgers.edu/∼smbhagat/GraphAnonCode. We compare
the utility of our anonymization approaches by looking at both the
absolute error in the query results, and the relative error.The rel-
ative error is found by scaling the absolute difference between the
true and approximate answers by the true answer, and so can exceed
100%. Comparisons over the workload are performed by com-
puting the median relative error over all the queries in the work-
load. For these results, the error bars show the 25 and 75 percentile
points. We also present utility results over completely anonymized
(sanitized) data: here, the details of the entities and the interactions
are given, along with a completely unlabeled interaction graph.
Query answering on this data is done by evaluating queries after
randomly assigning entities to nodes (as in Section 5.1). For the
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speed dating set, we sampled graphs subject to the integritycon-
straint that only males were paired with females.

5.3 Experimental Results

Uniform List Anonymization. The accuracy of the uniform list
approach was evaluated on several queries, such as thepair query
Q1: “How many Americans in different age groups are friends with
residents of Hong Kong with age less than 20?” on the Xanga
dataset. Figure 3(a) shows the query results for prefix and full list
approaches, alongside the answers on the completely anonymized
(or sanitized) data, and the original unanonymized graph. The fig-
ure illustrates similar query results on anonymized and unanonymized
data, while those on the sanitized data err significantly. Both pre-
fix and full list anonymizations obtain answers which are close to
the true value, even when the query is very selective (e.g., there are
very few users with ages in the range 40-60). For the same query
Q1, Figure 3(b) shows the accuracy for several values of the pa-
rametersm. For fixed values ofk, the relative error is appreciably
smaller for lower values ofm, which correspond to smaller classes.
As one would hope, anonymization with smaller classes results in
higher utility. The error on sanitized data is at least 3 times higher
than that obtained on label list anonymized data. The relative ac-
curacy worsens for age ranges with low support, which we argue is
necessary. Since the query touches fewer individuals, requiring a
highly accurate answer would compromise privacy.

Figure 3(c) shows results on querying node and edge attributes
of the Speed Dating anonymized and sanitized graphs. The query
posed is: “How many pairs with the sameattributehad a match?”,
where attribute is race, field of study or career goals. The prefix
(5,10) list performs slightly better than the full list for the race at-
tribute, while the full (5,5) list performs slightly betterfor field and
career attributes. Our general observation is that while the full list
approach more often yields better accuracy, there are datasets and
queries where the prefix list approach is better. Based on thedesign
of the lists, the full list works well when the data can be formed into
groups of sizem= k where all entities behave similarly; prefix lists
work well when the data can be formed into groups of sizem> k,
where entities close in the group behave similarly but thoseon “op-
posite sides” of the group are less similar.

Figures 3(d) and 3(e) present the median error over the work-
load of 100 queries of various types on the Xanga dataset. The
median relative error for various values of(k,m) tested is in single
digits, while that on sanitized data is 184% (not shown in thefig-
ure). In conjunction with our other experiments including sanitized
data, it seems safe to conclude that there are clear benefits to using

these anonymization methods in preference to trivial sanitization,
and we do not show any further results with sanitized data. The
accuracy for full list anonymization is slightly better than the prefix
list approach with the same values ofk. Indeed, the general trend in
Figure 3(d) is for higher errors with largerm values for the samek.
On these data sets, it is better to arrange nodes into groups of size
k and assume that all entities behave similarly, rather than put them
into larger groups and assume that the similarity varies smoothly
within the group. For the full list approach, Figure 3(e) shows a
clear trend of increase in error with increasingk (= m). This il-
lustrates the privacy-utility tradeoff, since larger lists correspond to
stronger guarantees of privacy. For the Speed Dating dataset, pre-
fix lists perform slightly better than full lists over the Speed Dating
dataset (Figure 3(f)). This seems to occur due to the small range of
each attribute value (typically 10), and the many combinations of
attribute values that are seen. Since the benefits of using prefix lists
with m> k are small, and hard to predict, our general experimental
conclusion is that the full list approach is likely to be preferred in
general, but there are benefits to using prefix lists when the data
and typical usage is well understood.

Partition anonymization. Recall that the partition approach does
not release edge information between nodes, but releases only the
number of edges between groups, sayN. To generate a consistent
graph, we randomly createN edges between nodes from two con-
nected groups that satisfy the safety condition. In the absence of
knowledge of node degrees, the number of edges between a pair
of nodes may be very different in a graph sampled from the data
anonymized by partitioning. For some simple queries that donot
involve node degrees, using data anonymized with the partition ap-
proach gives results similar to uniform lists. Figure 3(f) illustrates
that the partition approach performs as well as the other uniform
list anonymizations over a workload for the Speed Dating graph.
However, this data was generated as part of a controlled exper-
iment where the node degrees were carefully managed. For the
remainder of this section, we focus on the larger Xanga dataset.
Figures 4(a) and 4(b) show the utility of the partition approach on
queries Q1 and Q2 respectively. Q1 is as above, and query Q2
in Figure 4(b) is: “How many Americans are connected to users
with degree greater than 10?” The utility of the partition approach
is similar to the label list approaches when querying for node at-
tributesonly, as seen in Figure 4(a). For query Q2, which involves
node degrees, the partition approach typically has much lower ac-
curacy, as shown in Figure 4(b). The high error for the partition
approach occurs on age ranges 10–30 years, each of which covers
many individuals, who together have high variation in theirdegree.
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The lack of knowledge of the true degrees clearly contributes to the
higher error. It achieves better accuracy on age groups withmuch
fewer individuals (30–60 years), and here most nodes have degree
2. Meanwhile, label lists show the greatest variation over groups
which are the least populous.

Query Selectivity. The selectivity of a query depends on the query
type (number of hops), and the choice of attribute constraints on
each node. In the above figures, the choice of the age groups varied
the selectivity. In Figure 4(c) we show the effect of changing the
number of constraints on attributes of a node. The figure shows the
accuracy ofpair queries on Xanga data with constraints on loca-
tion, age, gender and degree successively added at each query. The
trend is for the error to increase with the number of constraints as
the queries become more selective, and hence the number of match-
ing individuals decrease. The utility of full list is somewhat higher
than the prefix list approach for queries with high selectivity, while
partition is uniformly worse, in line with previous experiments.

Verifying Privacy Guarantees. The analysis of the privacy of the
anonymization schemes gives guarantees in terms of the parameters
k andm. We verify this by evaluating the accuracy with which we
can answer queries that violate the privacy requirements, that is,
reveal whether there was an interaction between particularpairs of
nodes. We posed the query: “Does nodex interact with nodey?”,
which is an instance of a pair query with a very precise selection.
In our experiments, we found there was no statistically significant
difference between answers for pairs which were connected and
those that were not. This indicates that our anonymization does not
leak such interaction information.

Prioritizing Attributes for Utility. Section 3.2.1 suggested that
queries can be answered more accurately if many classes contain

nodes which are identical on the queried attributes; we now study
this experimentally. Such classes can be obtained by sorting the
nodes based on one or more attribute values before grouping them.
We consider a variety of sort orders over the entity attributes and
degree of the nodes:

• Age, Gender, Location, Degree (AGLD)
• Gender, Age, Location, Degree (GALD)
• Location, Gender, Age, Degree (LGAD)
• Degree, Gender, Location, Age (DGLA)

The default sort order used in our experiments is AGLD. Figure 5(a)
evaluates the benefit of performing an additional sort before group-
ing on thepair query Q1. The figure shows a substantial benefit
when using the sorting. We next compare the results when prior-
itizing different attributes. Figure 5(b) shows the resultof a trio
query Q3: “How many users in the age group 15-20yrs (and vary-
ing number of friends) are friends with users in the age group10-
15yrs and also with those in the age group 20-25yrs?” evaluated
by grouping on the four different sort orders. Grouping the nodes
after sorting with the first three sort orders results in query accuracy
of over 99% on query Q3. Figure 5(c) shows the effect of sorting
on sample pair, trio and triangle queries involving two attributes,
age and degree. The error obtained on this query for sort order
AGLD is close to zero. Since the query depends very heavily on
age predicates, the sort order DGLA which puts age last has notice-
ably lower accuracy than orders which rank age higher. The same
query gives better results for the sort order DALG (not shownin
the figure) since this groups nodes together with similar degree and
age. This effect is amplified as the query becomes more complex
and hence selects fewer nodes of the graph. For instance, thetrian-
gle query Q3 shown in Figure 5(c) is very selective with fewerthan



300 users satisfying the query. Consequently, answering the query
using anonymized data with a sort order that emphasizes a different
set of attributes results in a higher percentage error.

To show the effect of sort order more clearly, we consider queries
of the three types (pair, trio, triangle), where each predicate is only
over a single attribute. Figure 5(d) shows the results when all pred-
icates are based on location, while Figure 5(e) gives the case when
all predicates are based on age. The three queries in Figure 5(e)
are: thepair query “How many users of age 20 are friends with
users of age 21?”; thetrio query “How many users of age 20 are
friends with users of age 21 and with users of age 22?”; and the
triangle “How many users of age 20 are friends with users of age
21 and age 22 who are also friends?”. Similar queries based on
locations are used in Figure 5(d): the chosen location queryselects
about 50 nodes, making the relative error quite high. In Figure 5(e),
the error on all three types of age queries is less than 0.1% for the
AGLD sorting. Even sorting (using LGAD) with a lower prior-
ity on the primary query attribute (age) is effective: the error is
less than 1% on all three queries. This is because, in this data set,
there are many values of (location, gender, age) which are shared
by many users. These fill many classes, meaning that the querycan
be answered exactly for these classes, and uncertainty onlyarises
for classes with a mixture of attribute values. These plots clearly
show that when the sort order matches the attributes specified in
the query, the results are substantially improved. When thequery
selects many entities in the same group, the observed error is close
to zero. Thus, to the extent possible, the anonymization should be
crafted with the intended usage in mind.

Finally, Figure 5(f) summarizes the accuracy obtained for the
four attribute priority orders when evaluated over the fullworkload
of 100 queries. Over this wider variety of queries, the overall ac-
curacy is high, since all the sortings place similar users together in
classes. These experiments highlight the fact that choosing a sort
order that matches the expected query workload is necessaryto op-
timize for query accuracy.

6. RELATED WORK
The study of techniques to allow safe anonymization of sensitive

data has been ongoing for many years. It has a long history in statis-
tical areas, since census, survey and medical data should not reveal
personal information about the participants. The work of Sweeney
and Samarati which defined the notion ofk-anonymity [16, 17] led
to much research in the database world. Key subsequent works
have includedℓ-diversity [13],(α,k)-anonymity [18],t-closeness [11],
(c,k)-safety [14], and anonymization via permutation [20, 21]. These
works focused on the core problem of anonymizing a single database
table while preserving the utility of natural SQL-style queries; as a
consequence, they do not immediately provide useful results for in-
teraction graphs. Prior work shows that applying these methods to
appropriately represented graph data retains little utility [6]. Like-
wise, methods based on cryptography give strong privacy guaran-
tees, but have not been shown to be sufficiently general or scalable
for the data publishing scenario we study here.

Our methods can be seen as extending permutation-based ap-
proaches to graph-structured data. On tabular data, a permutation
divides the rows into classes, and for each class asserts that there is
some (unspecified) bijection between the quasi-identifiersand the
set of sensitive attributes in the class. This is similar to our notion
of classes of nodes, where there is an unspecified bijection between
the graph nodes, and the entities (and their attributes). The prin-
cipal differences are that the use of uniform-patterns describes a
different set of possible bijections; and because the graphinforma-
tion requires additional restrictions on which entities can be placed

together in the same classes (leading to the class safety condition).
A general criticism of anonymization techniques is that sometimes
the results offer limited utility gains compared to using data that
has been completely sanitized [4]. In our experimental evaluation,
we observed that this is not the case for the examples we consider.

Due to the popularity of social networking services such as Face-
book, MySpace and LinkedIn, there has been great interest instudy-
ing the structures and features of users’ interactions, andthe impli-
cations this has for the transmission of information and ideas. This
led many to ask how best to share informative and representative
data sets without compromising the privacy of the individuals who
intended their details to be shared only with their social network
“friends”. Privacy issues in existing social networks are surveyed
in [10]. In the past few years there has been much study of what
can and cannot be achieved in anonymizing social network data or,
more generally, graph structured data.

Backstromet al. [2] showed that a powerful attacker with sig-
nificant background knowledge can learn information about some
individuals from an unlabeled graph. In particular, they considered
cases when an attacker “plants” enough nodes in the graph, and can
link them to legitimate users. If the full link structure is revealed,
the “plants” can be reidentified, and the pattern of links between
their legitimate neighbors can be recovered. This attack requires
legitimate users to “accept” the link requests from the plants before
the data is anonymized. A more “passive” attack is when the ad-
versary learns the complete link information of a sufficiently large
close-knit group. This can again be located in the graph, reveal-
ing the links between neighbors of these group members. In all
these scenarios, nothing is learned about individuals not connected
to nodes that are compromised by the attacker.

Several recent works try to thwart attackers by modifying the
link structure of the graph by adding or removing edges. Liu and
Terzi [12] modify the graph by edge additions so that there are
at leastk nodes with the same degree. Zhou and Pei propose the
stronger requirement that each node must havek others with the
same neighborhood characteristics, and focus on the case ofimme-
diate neighbors, with labels drawn from a hierarchy [23]. Hay et al.
study the amount of privacy present when an attacker might have
background knowledge of (multi-hop) neighborhood information
in anonymized graphs when the graph structure is not altered[8].
In a similar setting, Korolovaet al. [9] study the case when the at-
tacker can “buy” information about the neighborhood of nodes, and
analyze the cost necessary to learn about certain individuals.

A criticism of methods which add or remove graph edges is that
simply counting the number of such alterations does not correlate
with any meaningful measure of loss in utility (similar criticisms
apply to tabular data anonymization [4]). In some cases altering a
single edge can have global impact on the graph: changing whether
a component is connected, or affecting the diameter of the graph.
As a result, several more recent works attempt to mask the infor-
mation in the graph without explicitly adding or removing edges.

Zheleva and Getoor model an attacker as a machine learning al-
gorithm, and try to mask the graph data to limit the ability ofsuch
algorithms to correctly predict links [22]. They compare anonymiza-
tions based on removing sometypesof edges, and grouping nodes
so that only the number of edges between groups is revealed. Hay
et al. [8] proposed forming nodes into groups and revealing only
the number of edges between pairs of groups. This is related to
the partitioning method we propose, but is defined only in terms
of simple graphs. Our work differs, in that we study richer classes
of graphs with node attributes, and we identify the need to limit
the density of edges between groups to prevent inference. Inprior
work, there was no analysis of the residual anonymity following



partial revelation.
Extending this approach, Campan and Truta propose building

“clusters” (groups) of nodes, and revealing only the numberof
edges within a group and between pairs of groups [5]. The nodes
have additional properties, which are generalized so that all nodes
in the same cluster have the same generalized representation (but
only a single type of interaction is allowed). Lastly, Cormode et
al. studied anonymization of the subclass of bipartite graphs which
link two different types of entity, and proposed a permutation-based
approach [6]. Our work here differs by studying a much richerclass
of graphs which can handle many different types of entities and
edge types, which allows social network data to be represented, an
open problem in [6]. Our techniques are based on many different
kinds of grouping, and allow representations that are not possible
in prior work.

7. EXTENSIONS

Classes of interactions.Our anonymization methods place enti-
ties together in classes to mask their identity. They leave interac-
tions unmasked since the primary objective is to disguise which
interactions an entity participates in. It is possible to also cre-
ate classes of interactions, which masktheir identity. While we
are concerned with the privacy of individuals, in general there is
less concern about the privacy of inanimate objects such as single
emails or friendship relations per se. However, one can imagine
scenarios where correlations between certain interactions should
also be masked: in the uniform list approach, it is possible to see
which interactions share a common participant, even thoughthe
identity of that participant remains hidden.

Directed Graph Representations.For simplicity, the interaction
graph has been assumed to be undirected. In general, such graphs
contain directional information—that an email was sent from one
person to another, or a set of others; or one user is subscribed to
the blog of another (a “following” relation). These can be en-
coded as directed edges in our setting. Directed graphs can be
anonymized using our techniques without losing the directional-
ity: our methods give the same guarantees. Including directions
may give more chance for an attacker with copious backgroundin-
formation to break the privacy, but it remains safe against attackers
within the background knowledge bounds described.

Temporal information. Interaction graphs, in particular social net-
works, are rapidly evolving objects. Our discussion is focused on
releasing an anonymized “snapshot” version of the data. This al-
lows many queries to be evaluated, but may limit the possibility for
observing how the data changes over time (longitudinal studies).
This is not a concern for historical data: temporal data (to indicate
that a user joined the network on a certain date, or that a message
was sent at a particular time) is treated like any other attribute. Care
is needed: e.g., if a member joined only in 2008, then they cannot
have started a friendship in 2007. This is an instance of the same
type of information being present on both sides of the graph at the
same time, which was precluded in Section 2. Such inference can
be prevented by placing temporal information on one side of the
graph only (entities or interactions), or by ensuring that all interac-
tions are feasible for all entities that they could be assigned to.

8. CONCLUDING REMARKS
The problem of publishing sensitive social network data to allow

complex ad hoc questions to be answered accurately while preserv-
ing privacy of the data subjects remains a challenging one. We have
introduced new representations and techniques which allowrich

data comprising many different interaction types to be anonymized
effectively. Our empirical study validated the privacy-preservation
and utility claims of our anonymization schemes over a variety of
queries on two different datasets. It remains a challenge tofully
understand how to translate the aim of privacy for data subjects
into precise quantifications of privacy goals, and to betterquantify
the utility of a resulting anonymization against an unknownfuture
query workload. It may be profitable to model the inherent trade-
off between privacy and utility via information theoretic methods.
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