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ABSTRACT

Social annotation is an intuitive, on-line, collaboratrecess through
which each element of a collection of resources (e.g., URIcs,
tures, videos, etc.) is associated with a group of deseekey-
words, widely known as tags. Each such group is a concise@and a
curate summary of the relevant resource’s content and &raat
via aggregating the opinion of individual users, as ex@ess the
form of short tag sequences. The availability of this infation
gives rise to a new searching paradigm where resources are re
trieved and ranked based on the similarity of a keyword query
their accompanying tags.

In this paper, we present a principled and efficient search an
resource ranking methodology that utilizes exclusively tiser-
assigned tag sequences. Ranking is based on solid prastiabili
foundations and our growing understanding of the dynamnck a
structure of the social annotation process, which we caftyem-
ploying powerful interpolated-gram models on the tag sequences.
The efficiency and applicability of the proposed solutioriame
data sets is guaranteed through the introduction of a nawl a
highly scalable constrained optimization framework, esgptl both
for training and incrementally maintaining thegram models.

We experimentally validate the efficiency and effectivenet
our solutions compared to other applicable approacheseGu-
ation is based on a large crawl of del.icio.us, numberinglheofs
of thousands of users and millions of resources, thus demaoing)
the applicability of our solutions to real-life, large sealystems. In
particular, we demonstrate that the use of interpolatgglams for
modeling tag sequences results in superior ranking effsugiss,
while the proposed optimization framework is superior imrte of
performance both for obtaining ranking parameters anceimen-
tally maintaining them.

1. INTRODUCTION

Social annotationalso referred to asollaborative tagginghas
been constantly building momentum since its recent inoepind
has now reached the critical mass required for driving exgitew
applications. On September 2006 del.icio.us reported liomileg-
istered users, while YouTube claimed 500 thousand regidtgsers
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and stored 6 million videos; a figure that increased to 83nilby
April 2008. Flickr had 7 million registered users and sto2ekil-

lion images by November 2007. Our own Spring 2007 crawl of
del.icio.us revealed 570 thousand registered users andilRdnm
URLs. Given that the user base and content of such sites leas be
observed to double every few months, these numbers onlglpos
approximate the immense popularity and size of systemsethat
ploy social annotation.

Users of an on-line, collaborative tagging system add ta the
personal collection a number of resources (e.g., URLsusst
videos, etc.) and associate with each of them a short seguenc
keywords, widely known atags Eachtag sequenceeferred to as
anassignmentis a concise and accurate summary of the relevant
resource’s content according to the user’s opinion. Thenfze of
annotating resources in that manner is the subsequent uagf
in order to facilitate the searching and navigation of opessonal
collection.

As an example, del.icio.us users add to their collectiondRés
of interesting Web pages and annotate them with tags sohest t
can subsequently search for them easily. Users can diseoner
add URLs to their collection by browsing the web, searchimg i
del.icio.us or browsing the collections of other users. eBithe
considerable overlap among the individual collectionspteces
accumulate a large number of assignments, each one of thetadpo
by a different individual.

This information is publicly available and gives rise to awne
searching paradigm where resources are retrieved baskd simt-
ilarity of a query to their accompanying tags. The advargagfe
such an approach are immense. When annotating a resouecg, us
distil its complex content into an accurate and concerdrggetual
summary. Subsequent aggregation of the individual op@ioto a
collective wisdom serves to eliminate noise and increaseanfi-
dence, thus offering an accurate textual description obawuee’s
content. Consequently, social annotation (a) enablesxtieagion
of the keyword search model twon-textualobjects of arbitrarily
high complexity, like videos, images and music, and (b) enka
our ability to identify and retrieve relevant textual olfdn re-
sponse to a keyword query, since we no longer need to infer by
means of heuristics which of the words and phrases pres¢héin
text are truly representative of its content.

In this spirit, we propos®adING(Rankingannotateddata us-
ing InterpolatedN-Grams), a principled and efficient search and
ranking methodology that exclusively utilizes the usesigised tag
sequences. The solution employs poweiritgrpolatedr-gramsto
model the tag sequences associated with each resourceatedti
by our growing understanding of the dynamics and structfiteeo
social annotation process. The interpolategrams employed are
a more robust variation of vanilla-gram models — commonly used



to model keyword (and more generally event) sequences Hirthat
early combine information from all lower order-grams, i.en-
grams,(n — 1)-grams and so on. In our application, the use of
interpolatedn-gram models exposes significant and highly infor-
mative tag co-occurrence patterns (correlations) preaghe user
assignments. Our ranking strategy leverages this infeomat or-
der to identify the resources most relevant to a query aridtream
accurately.

In order to guarantee the scalability of our approach toiomi#
of resources, annotated with hundreds to thousands ofessigs,
we also introduce a novel optimization framework, emplopeth
in the training and the incremental maintenance of the poteted
n-gram models. The optimization framework is able to rapidly
identify the optimal weighting that must be assigned to daaler

ordern-gram, as well as efficiently update them as resources accu-

mulate new assignments.
More specifically, we make the following contributions:

into a normal undirected graph whose nodes represent imdisc
inately users, resources and tags, while edge weights emint
occurrences of the entities in the hyper-edges of the @igjraph.
The PageRank algorithm is then applied, producing a totrang
involving all three types of entities. The semantics of thsuiting
ranking (given the transformation of the tri-partite graplan undi-
rected graph) are questionable. In an attempt to rectiéyatithors
suggest a per “keyword” static ranking of the resourcese anore
based on their PageRank adaptation, which is clearly ntdldea
Incremental maintenance issues are not addressed at aralDv
this is a heuristic adaptation of the PageRank algorithnin wit-
clear semantics.

Bao et al. [3] adapt a machine learning approach to ranking,
when the resources are Web pages. A support vector machine is
used to “learn” the ranking function [14] which utilizes fidéfer-
ent features of the pages: the tf/idf similarity of the pagd the
query, two different similarity measures between the qaeny the
tags, its PageRank and the PageRank adaptation that wasssc

¢ We present RadING, a principled search and resource rank- pefore. Their technique however, is only limited to Web saged

ing methodology that utilizes interpolat@dgrams to model

is based on ad-hoc heuristics. Scalability issues and rimeméal

the tag sequences associated with every resource. The apmaintenance issues under dynamic updates are left unspecifi

proach is based on solid probabilistic foundations and our
insight of the collaborative tagging process.

The training and the incremental maintenance of the inter-
polatedn-gram models is performed by means of a novel

constrained optimization framework that employs powerful

numerical optimization techniques and exploits the unique
properties of both the function to be optimized and the pa-
rameter domain. We demonstrate that our framework out-
performs at both tasks and by a large margin other applicable
technigues.

We experimentally validate the effectiveness of the predos
ranking methodology and the efficiency of thegram train-

ing and maintenance framework using data from a large crawl
of del.icio.us, numbering hundreds of thousands of usats an
millions of resources, thus demonstrating the applichili

our approach to real-life, large scale systems.

The rest of the paper is organized as follows. In Section 2 we
review related work. In Section 3 we present and motivatenthe
gram based ranking methodology, while in Section 4 we ptesen
noveln-gram training solution. In Section 5 we briefly discuss how
a real-life system can implement the proposed searchingisol
Section 6 presents our experimental evaluation and, |&#igtion
7 offers our conclusions.

2. RELATED WORK

Research on collaborative tagging has so far followed tvge di
tinct directions. One direction focuses on utilizing thiswiy-
found wealth of information in the form of tags to enhancestrg
applications (like searching) and develop new ones. Thenekat-
tempts to understand, analyze and model the various aspfebes
social annotation process. However, to the best of our kedgé,
our growing insight and understanding of the tagging predes
not been so far utilized in a principled manner.

With respect to searching for and ranking items from a tagged
collection, Hotho et al. [12] propose a static, query-instegent
ranking of the resources (as well as of users and tags) based o
an adaptation of the PageRank algorithm [5]. Users, ressuand
tags are first organized in a tripartite graph, whose hyfges are
links of the form (user,resource,tag). This graph is thdtapsed

Amer-Yahia et al. [2] propose a solution for ranking resesrc
efficiently, under the constraint that only the assignmpntted by
users in social network neighborhoods are to be used, thaempe
alizing query results. Their framework is complementanotws
as it can be used in combination with monotonic ranking fions,
like the one that we propose in this work.

Search using tags can be viewed as a generalization of kdywor
based search of non-textual content (e.g., images) uskigale
hints found in HTML code. While the correspondiagf HTML
attribute or image name provides a single “assignment” ¢ire
scription provided by a single person), which we have nooopibut
to blindly trust, social annotation systems aggregate ffeian of
many users, thus eliminating noise and increasing our cemfigl
that the assignments are relevant to a resource.

Besides ranking, researchers have also looked into otker in
esting problems related to collaborative tagging. Hothal €1 3]
use the PageRank adaptation presented in [12] in order ¢éotoet
variety of trends in a collaborative tagging system. Li ef®I] or-
ganize the tags in a loose hierarchical structure in ordfacititate
browsing and exploration of tags and resources. Chiritd. ¢8p
present a system for automatically suggesting persoitiags for
a Web page.

Another body of work is concerned with the analysis and model
ing of collaborative tagging systems [9, 10, 6, 11]. [9, 163erved
that the distribution of tags assigned to a resource coagaapidly
to aremarkably stable heavy-tailed distribution. [9] camicates on
identifying the user behavior that leads to this phenomendrie
[10] attempts to mathematically model it. [6] on the othendha
explores and models the co-occurrence patterns of tagssacee
sources. Finally, Heyman et al [11] investigate whetheratiei-
tional information provided by the social annotations Haes po-
tential to improve Web Search and offer positive conclusion

Language models for information retrieval have been preshpo
introduced [25, 21]. Our approach is essentially a languagéel;
however it is based on different principles (pertinent togpecific
application) and the resulting ranking strategy is obtitrgough
a different theoretical derivation. Furthermore, unlikeygous ap-
proaches (e.g., [25, 21]), we are also concerned with theiefty
and incremental maintenance issues of the proposed sulutio

Lastly, the optimization of general objective functions, the
presence or absence of domain constraints, is a well-stsdigect
[4, 23, 18]. In this work, we do not introduce a new generid-opt



mization technique, but rather an optimization framewolkial
exploits the unique properties of our problem and enablesitie
of otherwise inapplicable, unconstrained optimizatiarhtéques.

3. PRINCIPLED RANKING OF ANNOTATED
RESOURCES

In this section we derive and motivate the RadING searching
and ranking strategy. We begin by presenting its solid fatinds
in probabilistic information retrieval [25, 21] and our werdtand-
ing of the social annotation process [9, 10], which is subsatly
modeled by employing progressively more sophisticategram
models [16, 20, 15].

3.1 Probabilistic Foundations

The basis of probabilistic information retrieval is the king of
the resources according to the probability of each resobeasg
relevant to the query [25, 21], i.e., given a keyword qu@rand a
collection of tagged resourcdgR}, it is desirable to rank them in
descending order gf( R is relevant|Q). By applying Bayes’ rule
we have that

Q|R is relevan)p(R is relevan)
p(Q)

The termp(R is relevan) is the a-priori probability that resource
R is relevant, independently of the query being posed. Thia te
can potentially be used to bias the ranking towards certaia-c
gories of resources in a domain-, application- or even specific
manner. In what follows, we assume that this prior probibis
constant throughout our resource collection, withoutctiifey the
analysis and results that will be subsequently presented.repd/
visit this issue and offer our suggestions for non-uniforrions
that could be employed in Section 6.

Termp(Q) is the a-priori probability of the query being issued,
which, since the query is given, is constant for all resosiraed
therefore does not affect their relative ranking.

Based on the aforementioned observations, ranking theness
according te(R is relevant|Q) is equivalent to a ranking based on
p(Q|R is relevan). This term captures the intuition that a resource
can be retrieved by a number of different queries, howeveatho
queries are equally likely to be used for this purpose.

p(Ris relevant|Q) = P

ExamMPLE 1. Consider the web page of the Firefox browser.
Perhaps the most reasonable, and therefore probable, keyquery
that one would use in order to retrieve the web page is “firéfox
Nevertheless, it is not the unique query that can potegtibé
used to identify the web page: “mozilla browser” or “open soa
browser” are other perfectly valid query candidates that ean
expect, albeit with a lower probability.

More formally, we established that:

p(Ris relevant|Q) « p(Q|R is relevan)

This simple transformation implies that resources needeto b
modeled so that we can estimate the probability of the query b
ing “generated” by each resource. While the problem of nagki
query results has been viewed from this perspective befehe [
21], the appropriate modeling of the resources is decisivero-
ducing an intuitive ordering and is sensitive to the chanastic of
the application domain. In what follows, we will discuss htivis
probability can be modeled in a meaningful and principlechnest
by studying the social annotation process and motivatiagige of
language models.

3.2 Dynamics and Properties of the Social An-
notation Process

Users annotate resources in order to facilitate their éuter
trieval. We assign to a resource the tags that we would ictstaly
use in the future in order to retrieve it from our personalezion
of resources. Therefore, although we tag resources in @mars
and idiosyncratic manner, the underlying goal of the taggiro-
cess is to describe the resource’s content in a concise andade
manner, so that we can easily locate it when the need arises.

Even though a resource is annotated by hundreds or thousands
of individuals, its content can only be viewed from a limitaam-
ber of perspectives, so that even after witnessing a smaibeu of
assignments, we should be able to identify the annotatends as-
sociated with these perspectives. The annotation of a resevith
additional assignments will increase our confidence in teeds
already identified, but is unlikely to unveil a fresh previlger-
spective.

This intuitive observation has also been validated by jtevi
work on the dynamics of collaborative tagging. [9, 10] demon
strated that the distribution of tags for a specific resoumeerges
rapidly to a remarkably stable, heavy tailed distributioatis lightly
affected by additional assignments. The heavy tailedidigion
ascertains the dominance of a handful of influential tremdde-
scribing a resource’s content. The rapid convergence andgttz
bility of the distribution points to its predictability: naely, after
witnessing a small number of assignments, we should be able t
predict with a high degree of confidence subsequent tagrassig
ments.

Given the fast crystallization of users’ opinion about tbatent
of a resource, we can make a natural assumption that wilessesv
a bridge between our ability to predict the future taggintvéyg of
aresource and our need to comppit€| R is relevany.

Users will use keyword sequences derived from the same
distribution to both tag and search for a resource

This logical link allows us to equate the probabilityQ)| R is relevan)
to the probability of an assignment containing the same kegsv
as(@ being used to tag the resource, i.e.,

p(Q|Ris relevan) = p(Q is used to tagr)

The stability of the tag distribution allows us to accuratesti-
mate the probability of a tag being used in the future, basetthe
resource’s tagging history. However, assignments aréyraom-
prised by a single tag. In our study (Section 6) we observat th
the average length of an assignmen®.i87 tags. It is reasonable
to expect that neither the order in which tags are placed iasan
sighment, nor the co-occurrence patterns of tags in assigtaare
random.

In fact, [9] observed that tags are not used in random positio
within an assignment, but rather progress (from left tot)iflom
more general to more specific and idiosyncratic. ThereBmsign-
ments are not orderless sets of tags, but sequences of tagse w
ordering tends to be consistent across the assignmenthexdtso
a resource, and consequently the queries used to searth for i

Additionally, tags representing different perspectivesi a re-
source’s content, although popular in their own right, essllikely
to co-occur in the same assignment.

EXAMPLE 2. Inour del.icio.us crawl, the Mozilla project main
page is heavily annotated with tags “opensource”, “moZilénd
“firefox”. \We observed that tags “opensource” and “firefox"pa
pear together much less frequently than expected given ek
ularity, demonstrating two different perspectives forwiigg the



web site: as the home of the Firefox browser or as an open sourc  Maximum Likelihood Estimation (MLE). Then, the probabjliof

project. Such statistical deviations, more or less sewerre ob-
served throughout the del.icio.us collection.

Therefore, the assignments comprising the tagging hisibey
resource are sequences of tags exhibiting strong tag aorecce
patterns. In order to accurately estimate the probabifity tag se-
quenceQ being assigned to a resourée we need to capture this
elaborate structure. Simply taking into account the fregies (in
R’s history) of the tags comprisin@ can lead to gross miscalcula-
tions. To this end, we propose the use of sequentigdam models
[16, 20, 15], that can effectively model such co-occurrguetterns
present in the assignments (tag sequences) comprisingurces
tagging history.

3.3 N-gram Models

Consider an assignment comprised of a particular sequeofde
tags,ti, - . ., t;, ordered from left to right. We are interested in cal-
culating the probability of this sequence of tags beinggaed to a
resource. More formally,we are interested in computingpitod-
ability p(t1,...,t). By employing the chain rule of probability,
we can express it as:

p(te, ..., t) = p(t)p(tzlts) - - p(tilts, ..., ti1)

l
= H p(tk|t17 - 7tk,1)
k=1

This formula links the probability of a tag,, appearing in se-
guences to its preceding tags,...,tx—1. In other words, the
probability of a tag appearing in the sequence depends o thié
preceding tags. The intuition behimdgram models is to compute
this probability by approximating the preceding subsegeenith
only the lastn — 1 tags:

p(tk|t17 s 7tk71) i p(tk|tk7n+17 s 7tk71)

The most commonly used-gram models are the 1-gram @n-
igram model, so thap(tx|t1,...,tx—1) = p(tx), the 2-gram or
bigram model, withp(tx|t1,. .., tk—1) = p(tk|ts—1), and the 3-
gram ortrigram model that approximates(tx| t1,...,ts—1)=
p(tr|tk—2,tk—1). Itis clear that the use of-gram models is asso-
ciated with an inherent trade-off. Higher order modeldzgimore
information and are able to approximaté|t1, ..., tk—1) more
accurately, at the expense of an increased storage and tatiopu
overhead.

In order to ease notation we use the bigram model in our exam-

ples and mathematical formulations, since the conceptbe@as-
ily generalized for higher order-gram models. Under the bigram
model, the probability of a tag appearing in the sequencerttip
only on the preceding tag so that:

p(tk|t1, .. ,tkfl)

D(te|te—1)

-~

p(t17"'7tl) = p(tk|tk71)

k=1

a bigramt1, t2 is computed as:

pltalty) = Lhst2)

> et t)

wherec(t1, t2) are the number of occurrences of the corresponding
bigramty, t2 in the training data, that is the assignments associated
with the resource, anl’, c(t1,t) is the sum of the occurrences of
all different bigrams involving as the first tag.

Summarizing our approach, in order to compute the probabil-
ity that a given tag sequeneg = t1,...,t; is used to annotate a
resourceR, which as we discussed in Section 3.2 will enable us
to rank the resources according to their relevancé€)tove use
the past tagging activity of the users in order to train a doigr
model for each resource in our collection. The bigram modats
then be used to evaluate the probabilify) is used to tagk) =
p(t1,...,t|R) for each resourc®.

3.4 Interpolation

A limitation of the plain bigram model presented previousy
the problem of sparse data [25, 16, 20, 15]. Because the &ile o
data used to train the model is typically limited, the praligbof
any bigran, t2 not appearing at least once in the training data will
be zero, since(t¢1,t2) = 0. This is undesirable as any sequence
of tags that contains a bigram never seen before, will etalta
zero probability. As an example, consider a resource hetagged
with the words “Toronto” and “snow”. If for some reason bodlgs
fail to appear in adjacent positions in any assignment, ¢keurce
should intuitively be less relevant to the query “Torontowty but
not completely irrelevant.

To compensate for this limitation, a wealth srhoothingtech-
nigues can be employed [16, 20, 15]. The idea motivatingethes
methods is that the bigram count distribution should be nsateother
by subtracting a bit of probability mass from higher coumtd dis-
tributing it amidst the zero counts, so that no bigram evekiso
zero probability.

For our purposes we employ the widely-used, intuitive ana-po
erful Jelinek-Mercer linear interpolation technique. Lstconsider
a bigramty, t2 and letp(t2|t1) andp(tz) be the MLE bigram and
unigram estimates respectively. The unigram MLE estinssén-
ply the number of times that a tag appears in the training olaa
the total number of tags. Then the bigram probability is ed
by linearly interpolating both MLE estimates:

p(talt1) = Xop(talt1) + Mip(t2), A+ A2 =1

The motivation behind this solution is that when there isifns
ficient data to estimate a probability in the higher-ordedeidbi-
gram), the lower-order model (unigram) can provide useftdri
mation.

Motivated similarly, it is common practise to also interp@ a
bigramty, t2 using the probabilitys,, (t2) of t2 appearing in ran-
dom text. In our case, we interpolate with the backgroundbg@ro
bility of the tag being used by a user, which we estimate atotia¢

Each adjacent pair of tags (words) in a sequence (assighment number of times this tag was used in the context of any resourc
is also known as a bigram, but it will be clear from the context in the collection, over the total number of tags assignedhéoré-
whether we refer to the model or to a pair of adjacent tags.- Sim sources of the collection. By using the background profstof

ilarly, a single tag will be referred to as a unigram. The aigr
probabilitiesp(tx|tr—1) for a resource can be computed from its
tagging history, by using its previously posted assignsasttrain-
ing data. The most natural way to estimafeés|tx—1) is by using

a tag as an interpolation factor, it is possible to assignzero
(but small) probability to sequences (queries) that corti@js not
appearing a resource’s history. Intuitively, a resourcgéa with
“Toronto”, but not “snow”, should be somewhat relevant teu



“Toronto snow” and not completely irrelevant. Finally, thelinek-
Mercer estimate of a bigram is:

p(t2lt1) = A2p(talts) + Mip(tz) + Aopeg(t2)
0< A0, A2 <1, Ao+ +A=1

or

p(ta]ts) = Aap(talts) + Ap(t2) + (1 — A1 — A2)pog(t2)
0< AL, A2<1, AM+Xx<1

3.5 Advantages of Linear Interpolation

Although, as was mentioned, there exists a wealtm-gram
smoothing methods [16, 20, 15], the use of the Jelinek-Mditce
ear interpolation technique offers two unique advantagesides
its great smoothing performance.

The first is our ability to devise a novel and efficient method f
initially setting and subsequently maintaining, as hewggssents
are attached to a resource, the parameters of the corrésgond
per-resource smoothed-gram models. The technique, which we
present in Section 4, guarantees the applicability of topgsed--
gram based ranking approach to real-life systems of immsizse
containing hundred of millions or even billions of resowgce

Secondly, the linearly interpolated bigram models can becis
ated with the social annotation process in a very naturalirtod
itive manner. The probability of a bigram, ¢, is computed as the
weighted average of its MLE bigram probabili#yt2|t1), its MLE
unigram probabilityp(¢2) and its background probability, g (t2).
The values of the interpolation parametaes A1 and Ao, signify
our confidence into each of these three sources of informatio

Consider a resource that has been annotated with almostmand
tags, so that all assignments are in disagreement. In that litle
information can be derived from the assignments’ contedttha
relevant bigram and unigram probabilities that have beémaeted
from them. This should be reflected in the parameters bynsetti
A2 and \; to low values. If the assignments of a resource are in
agreement, but exhibit no correlation in the co-occurrgratéerns
of tags, then we should place high confidence in the unigran-pr
abilities (\1) computed, but lower in the respective bigram proba-
bilities (\2). Lastly, if assignments are in compliance and exhibit
strong tag co-occurrence patterns, we should place ouritrtise
bigram probabilities computed, thus setting param&teo a high
value.

4. PARAMETER OPTIMIZATION

Setting the interpolation parameters to meaningful andapp
ate values is a challenge that needs to be addressed. lectiszns
we discuss the algorithm used currently for setting therpaters,
as well as its limitations, and introduce a novel adaptatiopow-
erful optimization algorithms for handling the problem rhunore
efficiently. In our exposition we use the bigram model andegen
alize our results ta-gram models at the end of the section.

4.1 Likelihood Function

The intuitive parameter setting procedure that we desdribe
Section 3.5 can be performed by dividing the training datgding
history) into two sets. The first is used to compute the MLE-est
mates, while the second, known as held-out set, is useddarrft
ing” the parameters;. The interpolation parameters are set to the
values that maximize the likelihood of the held-out set bejen-
erated by the interpolated bigram model. In our case we cadedi
the assignments into two groups, constituting the traiaimgheld-
out data.

Let us compute the (log)likelihood function that needs totae-
imized. Suppose that the held-out data set contairgssignments
ai,...,a,...,an eachone of them containifgi) tagstii, . . . , tixi)-
The likelihood of an assignment is:

k(4) k()
logp(a;) = log [ [ p(tisltii—1)) = D log p(tislti;-1))

j=1 j=1

Since assignments are generated independently, by diffesers,
the likelihood of all assignments in the held-out data is

m k(i)

log [[ pa:) = logp(ai) => > logp(tis|tij—1))
i=1 i=1

i=1 j=1

Notice that this is the sum of the log-probabilities of atjt@ms
in the held-out set. To ease notation, we will consider thattain-
ing set is comprised df= Z;”:l k(j) bigramst;itiz, i =1...1.
Then, the likelihood can be written 33'_, log p(ti2|ti1)-

Since we are using a bigram mode(tiz|ti1) = Xep(tiz|ti1) +
A1p(tiz) + (1 — A1 — A2)pug (ti2). In order to further ease notation
we write

p(tiz|tin) = Aa2piz + Aipin + pio

wherepiz = p(liz|ti1) — pog(tiz), pir = P(tiz) — prg(ti2) and
Pio = Dug(ti2).
Then, the likelihood function that needs to be maximized is:

l
L(A1,X2) = Z log(A2pi2 + A\ipi1 + pio)
i=1
An important observation that simplifies the maximizatioalp
lem is that the functior.(\1, \2) is concave4].

DEFINITION 1. A functionf : D — R is concave ifVx,y €
D and0 < 6 < 1, we have thatf(0x + (1 — 0)y) > 0f(x) +
(1=0)f(y).

Concavity is essentially the symmetric property of contyexi
function f is concave iff— f is convex. An important property of
concave functions is the following [4].

THEOREM 1. If f : D — R is concave, any point that is a
local maximum is also a global maximum.

Therefore, any optimization procedure that converges tzal |
maximum will identify the global maximum of the function. &h
concavity of L(A1, A2) can be easily demonstrated using the prop-
erties of concave functions [4].

Although the concavity of. (A1, A2) simplifies the optimization
problem due to the absence of local optima, a complicatian th
needs to be considered is the constrained domaik; oh2: re-
member thal < A1, A2 < 1,1 + A2 < 1. We will denote
this constrained domain d3*. The original domainD O D* of
L(X1, A2) depends on the specific valuespef, p:1, pio. Figure 1
illustrates the constrained domai”.

Let us denote with\* = (A], \3) the global maximum (if it
exists) of L(A1, A2), and let\° be the point wherd.(A1, \2) eval-
uates to its maximum value withiB*. If \* € D*, then\* = \°.
However, it is possible thak* ¢ D™ or that L(A1, A2) is un-
bounded, i.e],imhﬂoo L()\17 )\2) = o0 Orlim)@*}oo L()\l, )\2) =
oco. In these casei® must be identified. Our goal in optimizing
L(A1, A2) is locatingA®, regardless whethex® = A° or not.



4.2 EM Algorithm

The standard method [16, 7] for optimizing the likelihooddu
tion and setting the parameters is by using the Expectaiaximization
(EM) algorithm. The EM algorithm is an iterative optimizati
procedure commonly used for optimizing the objective fiors
of probabilistic models in the presence of latent variablEsch
iteration of the EM algorithm, comprised of the so called &xp
tation and Maximization steps, is guaranteed increaseghe \of
the objective function, eventually converging to a locaimpim.

In our case, the probability of a bigram, ¢» is a weighted com-
bination of the bigram probability(¢2|¢1), the unigram probability
p(t2) and the background probabilipye (t2). In other words, we
have modeled the bigram probability asréxture of three mod-
els and the latent variable in this case determines whichese
models will be used to compute the final bigram probabilitiisT
observation is the basis for deriving the EM algorithm itienas for
our application.

For each of the: bigrams in the held-out data set, we introduce
two auxiliary variableg;; andgs2. Then:

M (pi1 + pio)

E-step: ¢~ =
P da /\112“]07;%C + Mpir + pio
qkﬂ _ A5 (pi2 + pio)
2 Aspio + A¥pi1 + pio
n k+1
M-step: M= it
n
AR et a5t
2 n

Another important property of the EM algorithm in our case is
that if the starting point is inD*, then the algorithm during the
search for\° will remain within D*. Therefore, the EM algorithm
(a) increases with every iteration the valuelof\:, A2) and (b)
remains withinD*. Due to these two properties, the algorithm
converges to\“, even if A # A*.

haa

>
>

2=0

M

Figure 1: The constrained search spac®™.

4.3 Adapting Unconstrained Optimization Meth-
ods for Constrained Optimization

The EM algorithm is an attractive solution for optimiziagA, A2).

It is extremely simple to implement and converges to thenogtti
value of the parameters within the constrained domain. kewe
as it has been observed in practice [26] and we will also éxyser-
tally validate in Section 6, its convergence can be sloweGithat
we require the technique for optimizing the interpolati@gme-
ters to be scalable to hundreds of millions of resourcesotaied
with hundreds to thousands of assignments, its speed imtfac
the applicability of the proposed solution.

An extremely promising alternative would be the use of effiti
numerical optimization techniques. Researchers havelajmae
algorithms for both constrained and unconstrained nuraleoiati-
mization problems [4, 23, 18]. However, general constichiogti-
mization techniques are too heavyweight and unconstraineger-
ical optimization methods are not directly applicable t@ prob-
lem, since our goal is to maximize(\1, A2) within its constrained
domainD*.

Additionally, in our problem setting we cannot simply use La
grange Multipliers [4] in order to incorporate tequalityconstraint
(Mo + A1 + A2 = 1) into the objective function and thus enable
the use of unconstrained optimization methods. The reastirat
Lagrange multipliers cannot be used to removeitiegualitycon-
straints of our problem, namely, A1, A2 > 0.

In order to compensate, we introduce the RadING optimiratio
framework which leverages efficient numerical optimizattech-
niques as a primitive in order to maximizg( A1, A2) within its
constrained domai*.

In what follows, we demonstrate how this can be accomplished
depending on whethdr(\+, A2) is bounded (Section 4.3.1) or un-
bounded (Section 4.3.2). Our results are unified into a srbpt
powerful optimization framework (Section 4.3.3). Finallye iden-
tify a particular numerical optimization technique withpaaling
properties and argue that it is an ideal candidate for us@mihe
proposed framework (Section 4.3.4).

4.3.1 Bounded likelihood function

As was discussed in Section 4.1, the global maximum(of, A2)
can either lie inside or outsid®*. The following two theorems
demonstrate that ik* # A\°, then\° must lie on the boundary of
D~ (Figure 1).

THEOREM 2. Let f : D — R be a concave function and*
be its global maximum. Let also € D be a random point. Then
every pointv = kx* + (1 — k)x, 0 < k < 1, thatis located on the
segment connecting andx™ will satisfy f(x) < f(v) < f(x™).

PrRoOOF From the definition of concavity;,(v) = f(kx*+(1—
x) > kf(x*) + (1 — k) f(x). Sincex™ is the global maximum,
) > f(x). Then,f(v) > kf(x") + (1 — k) F(x) > kf(x) +
k)f(x) = f(x). Thereforef(x) < f(v) < f(x). O

THEOREM 3. Let f : D — % be a concave function and
D* C D be a convex subset of the function’s domain.xt‘dve the
value that maximizeg within D* and x* the value that globally
maximizes'. If x* € D — D*, thenx® lies on the boundary ab*.

PROOF Let x“ lie in the interior of D*. Then, according to
Theorem 2, all the points that lie on the line segment cormgct
x¢ andx* will have higher function values thar®. Sincex®
lies insideD* andx* lies outsideD*, this line segment intersects
the boundary of the convex s&t* in a single pointw. Therefore,
f(v) > f(x°) andx® cannot be the optimum withib*. []

The previous theorems give rise to the following strategg.cah
use a two-dimensional numerical optimization algorithnmaxi-
mize L(\1, A2). If the optimum lies insideD*, we have located
A¢. Otherwise, if the procedure converges to an optimum oeitsid
D*, we can search along the boundaryl&f in order to locate\“.

The search along the boundary can be decomposed to threbhegar
along the three sides @™ (Figure 1). Each side can be embedded
in a one-dimensional space, therefore we can maximize aaoly
side using a one-dimensional optimization procedure.

Furthermore, depending on the location\df as was identified
by the two-dimensional optimization algorithm, we only dee



Figure 2: The constrained search spac®™.

search one or two at most sideslof. This is demonstrated in Fig-

The additional constraimt{ + A5 = 1 resulting from utilizing
the Theorem, instructs us to search #6r along the hypotenuse
of D*, while \{ = 0 and)\5 = 0, to search along one of the
perpendicular sides (Figure 1). This can be performed bysef
a one-dimensional optimization technique.

4.3.3 RadING optimization framework

The results derived from the application of Theorems 2, 34nd
can be unified into a simple optimization protocol that a&§ 1D
and 2D unconstrained optimization techniques as its pixiest

1. Use Theorem 4 to checkif(\1, \2) is unbounded and if so
perform 1D optimization to locat&® along the boundary of
D*.

2. If the likelihood function is bounded, apply a 2D optimiza
tion algorithm to identify the global maximurk®.

3. If \* ¢ D*, use Theorem 3 to locate along the boundary
of D*.

As we will experimentally verify in Section 6, the extra caft

ure 2(a) by means of an example. Due to Theorem 2, for any point optimizing twice when\* ¢ D*, does not offset the benefit of

on the perpendicular sides 6f*, there is a point in the hypotenuse
that evaluated.(A1, A2) to a higher value. Based on this obser-
vation, we can partition the plane arouddl” into six areas and
depending on the area whexé is located, only search the relevant
sides ofD* (Figure 2(b)).

4.3.2 Unbounded likelihood function

Due to the nature of our objective functidi{ A1, A2), we can
identify whether the function is unbounded or not only bypiest-
ing the values 0p;2, p;1 andp;o .

Consider a single term in the sum of logarithrsg(A2pi2 +
Aipi1 + pio) = log(ai), wherea; = Aopiz + Aipi1 + pio. If
pi2 > 0 then we can increase the value)af as much as we want
without worrying abouta; becoming negative. Also notice that
as\y — +oo, log(as) — +o0, therefore the term becomes un-
bounded. Similarly, ifr;> < 0, then the term becomes unbounded
as\y — —oo. The same observations hold for the valu@gfand
parameten;.

However,L(\1, A2) is the sum of many such terms. If there ex-
ist for examples, j such thap;> > 0 andp;> < 0, we can neither
increase nor decrease the value\gftowards+oco or —oo respec-
tively. As a consequence, neither théh, nor thej-th term can
become unbounded. But¥i,p;2 > 0, then the objective func-
tion increases arbitrarily as, increases. The following theorem
formalizes and proves this intuition.

THEOREM 4. LetL(A1, A2) = S\ log(Aepia+Xipi1+pio)
be the objective function to be optimized axfd A5 be the optimal
parameter values withi*. Then,

o If Vi, po; > 0andpy; > 0, thenAf + A5 = 1.

e If Vi, p2; > 0 andpy; < 0, then(\{, AS) = (0,1).
o If Vi, p2; > 0andpy; S 0, thenAf + A5 = 1.

o If Vi, p2; < 0andpy; > 0, then(Af, A5) = (1,0).
e If Vi, p2; < 0@andpy; < 0, then(\{, AS) = (0,0).
o If Vi, p2; < 0andpy; < 0, thenAs = 0.

0 andpy; > 0, thenA§ + \§ = 1.

0 andpi; < 0, then\{ = 0.

[ ] |f Vi, P2i §
S

[ ] |f Vi, P2i

PrROOF The proof of the theorem is by simple case analysis and
utilizes a slightly different form of Theorem 2.1

using efficient numerical optimization algorithms.

4.3.4 Newton’'s method

Although the RadING optimization framework is independgint
the specific unconstrained optimization technique thatipleyed
as a primitive, we argue that Newton’s method and its vesiang
ideal candidates for the task.

In brief, the method assumes that the optimization funcison
quadratic and fits the parameters using derivative infaonaat
the current point. It then moves to the point that maximizes t
quadratic being fitted. This process converges quadriptitzst
near the optimum [4, 23, 18].

Newton’s method is considered one of the fastest converging
timization methods, yet it can suffer from two limitation$, [23,
18]. The first is the need to compute the Hessian matrix of the
function at each iteration and then invert it.

DEFINITION 2. The Hessiaril,, «» (f) of a twice differentiable

function f(z1,...,xx»), is the matrix of all second order partial
ivati i 9%
derivatives, i.e.H;; = B 05"

The second limitation is the requirement that the Hessiaa be
negative semi-definite matrix at the current point, in oriderthe
next Newton’s method iteration to increase the value of thiem
tive function.

DEFINITION 3. A matrix X,,x» iS negative semi-definite iff
Unx1, UTXv S 0.

Thus, if the Hessian is not negative semi-definite, it needset
modified by means of a variety of available time-consumirapte
niques [23].

To summarize, the use of additional information about tHe@b
tive function (in the form of its derivatives) to guide theaseh for
the optimum leads to faster convergence but at a potentiagly
cost per iteration. This trade-off has led to the developnaerl
use of the so-called direct search algorithms (e.g., P@nsslhrch,
Nelder-Mead) that utilize minimal information about thgesive
function but demonstrate slower convergence rates [22].

However, none of the two limitations that we discussed pose a
problem for our objective function. The Hessian that needset
computed and inverted is onlyZax 2 matrix and is guaranteed
to be negative semi-definite due to the concavity.Oh1, \2) [4].
Therefore, in our context the cost of a Newton’s method itena
is minimal, justifying its use over alternatives that comges at a
slower pace.



4.4 |Incremental Maintenance

Since the(n — 1)-dimensional optimization is constrained along a

When users continuously annotate resources with new assign facet with domainD;, _,, itis recursively defined.

ments, the efficientaintenancef the interpolation parameters is
critical. After computing the interpolation parameterifrscratch,

The following two theorems demonstrate how to handle thesas
of an unbounded likelihood function (Theorem 5) and a |tkedid

their values should be updated when the number of new assign-function whose optimum.. lies outside domait;, (Theorem 6).

ments attached to the resource exceeds a threshold. Theegtne
values will reflect the updated information provided by tesvras-
signments.

The maintenance of the interpolation parameters is in jplieic
the same procedure as optimizing them from scratch. Therdiff
ence is that we can utilize the parameter values learnedopisty
and use them as the starting values of the optimization igthgos,
instead of a random starting point as in the case of optimifriom
scratch. Given the stability of the user tagging activitg¢on 3),
the updated optimal parameter values are not expected tatelev
much from their previous values. Hence, initiating the miation
from a point close to the optimum will accelerate convergerfss
we will experimentally demonstrate in Section 6, the prebspti-
mization framework is extremely efficient in this criticabk, since
it can leverage the Newton’s method which converges quiadiigt
fast near the optimum [4, 23, 18].

4.5 Generalization for N-gram Models

Even though we demonstrated the entire process using bégram

for simplicity of exposition, the form and properties of thieeli-
hood function and its domain carry over to higher ordegram
models. Namely, in the case of interpolatedyram models, the
likelihood function that needs to be maximized is

1
L(A1,..., ) = Z log(Anpin + - -+ + A1pi1 + pio)
i=1

wherepir = p(tinltin—k+1),-- > titn—1)) — Pog(tin), I-€.,Dik
is the modified maximum likelihood estimate for thegram of tag
tin (Section 4.1). The constrained optimization domai) is de-
fined by inequalities\; > 0,..., A, > 0, A1 +--- + A\, < 1.
In other words, rather than being a triangle, domBif is ann-
dimensional polytope. The polytope is depictedfor= 3 (inter-
polated trigram model) in Figure 3.

Figure 3: Constrained search spacé);.

In the general case, the EM algorithm is extended by simply us
ing one auxiliary variable per interpolation parameter apgro-
priately modifying its two steps.

The generalization of the RadING optimization framework is
also straightforward and intuitive. Domainy;, is an-dimensional
polytope with(n — 1)-dimensional facets. The domain defined by
each of the(n — 1)-dimensional faces is essentially equal to do-
main D;,_, of an equivalentn — 1)-dimensional problem. By
utilizing Theorems 2, 3 and the relevant extension of Thaode
the RadINGoptimization framework now employs-dimensional
and (n — 1)-dimensional versions of the optimization algorithm.

THEOREM 5. Let L(A1,..., An) = ', log(Anpin + -+ +
A1pi1+pio) be the objective function to be optimized axfd. . . , A\,
be the optimal parameter values withi’i*. Then,

e For all k, such thatvz, px; < 0, we have\s, = 0.

o If there existsk, such thatvi, px; > 0, we can have that
§+...+)\5L:1_

For example, if by inspecting constapts we identify that\{ =
OandA{ +---+ A5 =1,wecansef; = 0andls =1 — A3 —
-+ +—An. Then, we need to optimize for variablgs, - - - , A, with
constraintsAs,..., A, > 0andis +--- + A\, < 1, i.e., we need
to address afn — 2)-dimensional optimization problem in domain

*
n—2-

THEOREM 6. Let L(A1,..., \n) = S0, log(Anpin 4 -+ +
A1pi1 + pio) be the objective function to be optimized, . .., Ay,
be the optimal parameter values withib;, and A}, ..., \}; the
optimal parameter values iR". Then,

e If Aj < 0, then facet (boundary); = 0 should be checked
in order to locate\°.

o If AT+---4+ X}, > 1, thenfacet (boundary}; +- - -+X, =1
should be checked in order to locaté.

For instance, if we identify thax] < 0 and\3 < 0, then the
likelihood function’s optimum withirD;, must lie on eithefn—1)-
dimensional faceA; = 0 or (n — 1)-dimensional faceh, = 0. It
is easy to verify that optimizing on these two facets is egjent to
solving a(n — 1)-dimensional version of the optimization problem
on a domain equivalent tb;, _ .

An extremely desirable property of Newton's method, whiah ¢
be employed by the RadING framework, is that the number of ite
ations till convergence remains almost constant, indegrhd of
the dimensionality of the problem [4]. The only consideeaadtdi-
tional overhead is the cost of inverting a larger Hessiapréawtice,
n-gram models witm > 5 offer no additional performance advan-
tages [15] and given the short length of assignments in quiicap
tion, the use of a model more complicated than the trigranaid h
to justify. Therefore, each iteration should involve theeirsion of
an at most x 5 matrix instead of 2 x 2 matrix, which is highly
scalable.

5. SEARCHING

We now have all the machinery in place for ranking a collactio
of tagged resources. The first step required is to train aabigr
model for each resource, which involves the bigram and amigr
probability computation and the optimization of the intagiion
parameters. At query time we can compute the probabilityhef t
query keyword sequence being “generated” by each ressunée’
gram model. More precisely, the score of each resofogiven a
queryQ = qi, - - ., qk, IS

k
pr(ar, - a0) = [ [ plaslas—1)
=1



wherep(g;|gj—1) = A2p(q5lq5-1) + MiP(q;) + Aopeg(g;) s the
interpolated bigram probability. Since the scoring fuoctused is
monotone (a simple multiplication of terms), the Threshaldo-

rithm (TA) [24] can be employed for computing the tépanking
resources.

The whole process is better illustrated with a simple exampl
(Figure 4). The example use®n-interpolated bigram models to
ease exposition, but its extension to the interpolatecnéis sim-
ple. Consider a collection of four resourc®s, . . . , R4 thatis only
annotated with two tagg; andt,. In order to stress the importance
of a tag appearing in the first position of an assignment, wwe-in
duce a “start of assignment” tag, denoted(by*. Then the only
bigrams that can potentially appear in the assignmentsiotti-
lection are(t1|(s)), (t2](s)), (t1|t2) and(t2]t1).

R2 tols>
R1 N R4: 112 P
‘B ©n R3 13 /s N
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R4 bt \ K
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Figure 4: Query evaluation.

The preprocessing step involves going through the cotieetnd
calculating the corresponding bigram probabilities farteesource.
(If interpolated models are used, the unigram probabsligied in-
terpolation parameters are also computed for each respivese
probabilities are subsequently stored in four sorted,listse for
each bigram. Then, suppose a queryt. arrives at the system.
The score of each resouré® is pr, (t1|(s))pr, (t2|t1). The topk
scoring resources can be computed by invoking the TA alyorit
and using the lists for bigrants|(s) and¢z|t1 (Figure 4).

6. EXPERIMENTAL EVALUATION

In order to evaluate the solutions proposed within the cdrag
the RadING methodology, we used data from our crawl of dellis,
one of the most popular social annotation systems, whosedha
resources are URLs. The data are comprised of 70,658,8Bhass
ments, posted by 567,539 users and attached to 24,245, &&un
URLs. The average length of each assignment is 2.77, wheie th
standard deviation and median are 2.70 and 2 respectivalyn-A
teresting observation is that out of all the URLSs in our samap-
proximately 19M of them have only been tagged once. Thisis no
an issue with our sample, but rather a characteristic ofcitels
[11].

6.1 Optimization Efficiency

We compared the performance of the RadING optimizationé&am
work (Section 4.3) against the EM algorithm (Section 4.2}
tasks: optimizing bigram models from scratch and increaignt
updating their interpolation parameters. The RadING ojatition
framework employed Newton’s method. The convergence of the
Newton and EM algorithms was declared when an iteratioedail
to improve the likelihood function by more than—°.

In our first experiment, we used both algorithms to optimipef
scratch the interpolation parameters of every URL in oua dat,

1An “end of assignment” tag can also be introduced.

associated with 10 or more assignments. One fifth of all assig
ments were placed in the held-out data set and used in thaiapti
tion procedure. We discuss techniques that are potentiaihg ap-
propriate for setting the interpolation parameters oftligtagged
resources, or resources that have been tagged only oncegtinrs
6.3.

Figure 5 depicts the total time required by both optimizatio
techniques, to train interpolatedgram models fom = 2 (bi-
gram model) tow = 5 (fivegram model). As it is evident, the pro-
posed RadING optimization framework is approximately 4ntes
faster than the EM algorithm. The speed-up can be attritubéial
to the unique ability of the RadING framework to utilize thie e
ficient Newton’s method, as well as its ability to rapidly iy
unboundedness and reduce the dimensionality of the optiioiz
procedure.
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Figure 5: Total training time.

Figures 6(a) and 6(b) depict the time required by both tech-
niques to optimize a single resource for= 2 (interpolated bi-
gram model), with respect to the number of its assignmenish B
methods scale linearly, but as it is evident, the introdwginiza-
tion framework is about 4 times faster than the EM algoritfiinis
guarantees the applicability of the proposed solution ficiehtly
optimizing resources with any number of assignments.
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Figure 6: Time vs Number of Assignments.

In order to simulate a setting where assignments are coentinu
ously added to the resources and evaluate the incremenitatema
nance efficiency of the algorithms (Section 4.4), we desighe
following experiment. In this experiment only resourcethwnore
than 200 assignments were used. The assignments of eadhoeeso
were sorted in chronological order and the first 100 assigisne
were used for initially setting the parameters. Then wegeigd a
re-optimization every 50 new assignments until all thegrasients



of the resource were exhausted. We measured the total aption
and subsequent re-optimization time for each resource.

Figure 7 presents the total time that was required by eachodet
to incrementally maintain the resources described abonvkfam in-
terpolatedn-gram models of varying sophistication. The RadING
optimization framework offers a large performance benefithie
case of bigram and trigram models. As was discussed in $ectio
4.4, this can be attributed to the quadratic convergencesoftdh’s
method near the optimum. This benefit diminishes for highier o
der n-gram models. For higher ordergrams, it is much more
common for the optimum to lie on a lower dimensional facetef t
constrained optimization regial;,. Hence, multiple lower dimen-
sional facets must be checked for the optimum in order toaqiae
correctness, even though we initiate our search close to it.
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Figure 7: Total incremental maintenance time.

6.2 Ranking Effectiveness

We performed a large scale experiment to evaluate the rgnkin
effectiveness of the RadING ranking strategy. We evaluéted
performance of interpolated-grams — employed by the RadING
methodology — of varying complexity, and compared agairssga
nificant number of competing alternatives. More specificalle
also considered plain (non-interpolatedyram models, in order to
validate the benefits offered by interpolation, and two #atagns
of the widely used tf/idf ranking [19]. As we subsequentlyram-
strate, while tf/idf based approaches are extremely pawarid
constitute the most appropriate alternative in many castdkey
fail to capture the significant and elaborate organizatidags into
assignments, that the proposed solution was explicitljgdesl to
model.

The first method, denoted by Tf/Idf, concatenates the assign
ments of a resource into a “document” and performs the rankin
based on the tf/idf similarity of the query and these “docotee
In the second variation, denoted by Tf/Idf+, we compute fheft
similarity of the query to each individual assignment andkrthe
resources based on theeragesimilarity of the query to their cor-
responding assignments.

The lack of a publicly available and widely-accepted tedieco
tion, comprised of both annotated resources and relevamteg(in
the spirit of the TREC [1] collections), renders the comgani of
the different approaches particularly challenging. Hemaaking
effectiveness was evaluated by asking impartial judgesetide
upon the relevance of the top results returned by the varimts-
ods in response to keyword queries and measuring the mecisi
achieved by each method.

The judges were contacted through the Amazon Mechanic&l Tur

servicé. The Mechanical Turk service is an on-line “marketplace
for work”, bringing together users that need informatiorihga-
ing/processing tasks performed and users willing to perfsuch
tasks in exchange for monetary compensation. The workeraine
anonymous but have every incentive to perform to the bestedf t
ability since the employer retains the right to review anteptally
reject poor work, thus penalizing the worker’s reputation.

More specifically, we designed and executed the following ex
periment. For each keyword que€y that we tested, we retrieved
the top-10 results produced by the various alternatives.rébults
consisted of URLs pointing to web pages. R4 (Q) be the set
of the top-10 results, with respect to a single quéryproduced
by ranking method4. The URLs comprising the unioR(Q) =
U4 Ra(Q) of the top-10 URLSs from all methods considered were
shuffled and presented to 10 impartial, anonymous and unkmmw
us judges (Mechanical Turk workers).

Every one of the judges (workers) was asked to evaluate wheth
the content of each web pagec R(Q) was relevant or not (as
a response to the corresponding keyword qugyy No additional
information was given with respect to which method was usged t
retrievep or its ranking position in the corresponding top-10 rank-
ing. This was done to avoid biasing the judges in favor of tager
technique or high-ranking URLs. Furthermore, no judgetssien
was rejected by us. We compensated for any potential judge mi
conduct by employing a large number of independent judges.

Given that the relevance of each resultvas evaluated by 10
judges, we computed the relevandg) of pagep as the fraction of
the 10 judges that found the page to be relevant, i.e., if ©@bL0
judges foundp to be relevant, its relevance score w#g) = 0.9.
Using the decisions of the judges, we computed the Preciion
10 (Precisiom®10) [19] performance of the various methods for a
number of queries. More formally, for the top-10 resBli (Q) of

method A we computed Precisianl0 = Z r(p), namely

PERA(Q)
the aggregate relevance of the top-10 resulB i Q).

ExamMPLE 3. For instance, a Precisiof10 value of 8.3 for a
particular methodA and in response to a quer®, implies that
approximately 8 of the top-10 results retrieved by metHodere
found to be relevant. Alternatively, 83 of the 100 relevaocige-
ments (10 judges 10 binary decisions each) associated with the
top-10 results computed by were positive.

We submitted to Mechanical Turk for evaluation a large numbe
of diverse queries and present results for a sample camgistil8
representative ones. Similar results were obtained faretmainder
of the submitted queries. Additionally, for our experimer used
a fraction of our original data set comprised of all URLs thvate
tagged at least 5 times (660k URLS), in order to avoid présgnt
URLSs for which a consensus among the users of del.icio.usbad
yet emerged and therefore introducing URLs that were wegie
exclusively due to noise.

Table 1 presents the Precisioh0 performance of 4 different
techniques.12g stands for interpolated bigrani3g for interpo-
lated trigram, while2g and3g stand for plain bigram and trigram
respectively. Two conclusions can drawn from the data.

First, the use of more sophisticated interpolategram than a
simple bigram model does not seem to improve ranking effecti
ness. The performance of ti@g and 73g methods (both part of
the RadING ranking strategy) and the corresponding raskimg-
duced is almost identical. This can be attributed to thetively
short length of tag sequences assigned by users. The medgth |

2www. mturk.com



| Query [ 129 [I3g] 29 | 39 |

birthday gift ideas 741 741 364 | 1.0(0)

college blog 76 | 7.6 | 6.6(10)| 7.6 (10)

trigonometric formulas 791 791 09(0) | 09(2)

stock market bubble 84 ] 84 ] 1.0(Q) | 0.000)

sea pictures 6.7 6.3 ] 21(3) | 09(2)

free music recording software 7.6 | 7.6 | 7.6 (10) | 2.6 (3)

insomnia cure 841 86 ] 19(2 | 09(0)

red wine benefits 82| 82 ] 0.0(0) | 0.0(0

software draw bubbles 6.0 6.2 [ 0.0(0) | 0.0(0)

duck recipe 6.3 ] 6.3 ] 0.7(1) | 0.7(2)

chinese food 8.7 | 87 | 82(10)] 85(10)

recycling tips 9.3 ] 9.3 [8.8(0)| 53(7)

water filter 85 [ 85 [ 9.1(10)] 9.1(10)

economics tutorial 89 | 89 [ 8.0(10)] 8.4(10)

linear algebra book 9.1 ] 91 [9.0(10)| 5.5(6)

f1 technology 79 | 79 0.7(1) | 0.0(0)

coffee machine 74 | 74 | 7.7(10)| 6.7(9)

history books 84 | 84 | 7.9(10)| 7.2 (10)
Average Precision@10 793 7.93 4.65 3.63

Table 1: Precision@10 for a representative query sample.

of a sequence was only 2.7. Hence, an interpolated bigraneimod
is sufficient for capturing tag co-occurrence patterns ichsshort
tag sequences.

Second, the use of interpolatedgrams (2g, 13g) offers sub-
stantial benefit over the use of plaingram modelsZg, 3g). The
reason is that most of the URLs in the collection are assediatth
relatively few assignments, i.e., the training data asgedi with
most URLSs is sparse (Section 3.4). This is not an artifactwf o
data set, but rather a characteristic of social annotagistems in
general [11]. We present in parentheses, next to the PoagGisD
value of the2g and3g methods, the overall number of URLs that
evaluated to non-zero relevance probability and were, dyeres
trieved. In most cases, the number is considerably lessltban

Table 2 contrasts the ranking effectiveness of the RadINt&-ra
ing strategy with that of the tf/idf based alternatives. RE# uti-
lized interpolated bigram models. As it is evident, the josgd
ranking solution is superior to both adaptations of thetgimilar-
ity metric. On average, the bigram-based approach ach&yE%
and 44% better PrecisioR10 score than the Tf/Idf and Tf/Idf+
methods respectively.

The superior ranking effectiveness of RadING can be ateitbu
to the ability of the interpolated bigrams to model and mélihe
tag co-occurrence patterns that are observed in the URggirtg
history. This crucial piece of information cannot be exfgdi by
the tf/idf based approaches. Both Tf/Idf and Tf/Idf+ faildapture
the fact that less-frequent tags can co-occur with highueegy
and instead only rewards high tag frequencies, therefalerasti-
mating the relevance of many URLSs.

Additionally, the improved ranking effectiveness demaosistd
by the RadING solution over the tf/idf based alternativestis
tistically significant and is not an artifact of limited expaenta-
tion. Consider a query) and the top-10 results returned by Rad-
ING and Tf/Idf solutions. Each set of results is associatétth w
n = 100 binary relevance judgements (URL relevant/not rele-
vant). The fraction of positive judgements is intrinsically linked
to the corresponding Precisiani0 value: we simply have that
Precisio®10 = 10 % . Notice thatr is (the maximum likeli-
hood estimate of) the probability of a randomly selectedy@id
ment being positive. In order to demonstrate that the imgrov
ment offered by RadING for quer§) is significant, we need to
demonstrate thatraarncg > T7¢/14¢ With high confidence. This
would imply that the corresponding Precisioh) scores follow the

| Query | I12g (RadING) [ Tfdf | THidf+ |
birthday gift ideas 7.4 2.8 5.8
college blog 7.6 5.9 4.9
trigonometric formulas 7.9 6.3 5.2
stock market bubble 8.4 5.1 6.1
sea pictures 6.7 4.5 2.1
free music recording softwarg 7.6 6.0 55
insomnia cure 8.4 6.5 7.0
red wine benefits 8.2 6.1 6.5
software draw bubbles 6.0 2.1 2.9
duck recipe 6.3 3.4 3.8
chinese food 8.7 7.7 2.2
recycling tips 9.3 8.0 8.2
water filter 8.5 7.1 5.1
economics tutorial 8.9 7.8 6.5
linear algebra book 9.1 7.0 6.4
1 technology 7.9 7.5 7.6
coffee machine 7.4 7.1 5.9
history books 8.4 8.4 7.3
Average Precision@10 7.93 6.07 5.50

[ Average Improvement | n/a | +31% [ +44% |

Table 2: Precision@10 for a representative query sample.

same relation. Using a binomial statistical test the nufidthesis
TradING < Ty 14 CaN be rejected at the 1% confidence level
(p-value) for the first 15 queries presented in Table 2. Henee, w
haverradarng > Ty 1ap With high confidence.

Lastly, Figure 8 presents the average Precigibscores achieved
by the three ranking solutions, on the same query sampleand f
different values ofk. The average Precisi@k values have been
normalized using the value df, i.e., we present the correspond-
ing Precisio®k/k values. As it is evident, the RadING ranking
strategy consistently outperforms the tf/idf based apghvea for
all values ofk. Notice also the extremely high Precisioh score
achieved by RadING: the top-1 query result returned by tbe-te
nigue was found to be highly relevant on all occasions. Adiait
ally, although the Precisiank performance of RadING is consis-
tently high, it is better for smaller values &f This trend implies
that RadING produces an intuitive and desirable rankint) miore
relevant URLs appearing higher in the top-10 result. Tréadris
not observed for the tf/idf based approaches.

T
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Figure 8: Average Precision@Kk.

6.3 Discussion

The introduced RadING methodology offers an additional and
substantial benefit, besides its superior ranking effentgs and
scalability, namely the ability to incorporate a number eittires
affecting ranking in gorincipled manner. This can be performed by
employing non-uniform resource prior probabilities ($&tt3.1)



and modifying, if needed, the interpolation parametersctatain
resources (Section 3.5). In what follows we do not offer cetee
solutions, but rather hint at possibilities for providingeher search-
ing experience in a collaborative tagging context.

As an example, the resource priors can be used to bias the final

ranking towards resources that are popular. Another optiauid
be biasing the ranking in favor of more recent resources.s Thi
would offer the possibility for such resources to be moreilgas
discovered and therefore allow them to build momentum, ipea\/
that users find them interesting enough to tag them. Furiherm
the non-uniform resource priors can also be used to offersope
alized searching experience. This much-desired propertidde
provided in a practical and scalable manner by clusteriegiiers
and employing different priors for different user clusters

Lastly, a significant number of resources in a collection loan

expected to be tagged only once or a handful of times at most.

Whether the assignments associated with those lightlyege-
sources can be trusted is debatable. Regardless, theyinger-
polated models that we utilize offer a principled solutiam &d-
dressing this issue. For such resourdedesired we can skip the
interpolation parameter optimization process and insseadhose
parameters manually. As we discussed in Section 3.5, wes®@n u
parameters\z, A1 and Ao to express our confidence towards the
bigram, unigram and background tag probabilities of a ressi
history respectively. For example, if we lack confidencelands-
signments of lightly-tagged resources, we can set parasgte

and) to low values. This type of reasoning should also be applied

to resources that have been tagged only once. The abilitgridié
lightly-tagged resources in such a flexible and principleshner is
unique to our approach.

Another parameter estimation approach that is appropfiate
lightly-tagged resources (but can also be applied to atie®s)

[4] S. Boyd and L. Vandenbergh€onvex Optimizatian
Cambridge University Press, 2004.

[5] S.Brinand L. Page. The anatomy of a large-scale
hypertextual web search engir@omputer Networks and
ISDN Systems30(1-7):107-117, 1998.

[6] C. Cattuto, V. Loreto, and L. Pietronero. From the Cover:
Semiotic dynamics and collaborative taggiRiNAS
104(5):1461-1464, 2007.

[7] S. F. Chen and J. Goodman. An Empirical Study of
Smoothing Techniques for Language Modeling. Technical
Report TR-10-98, Computer Science Group, Harvard
University, 1998.

[8] P. A. Chirita, S. Costache, W. Nejdl, and S. Handschuh.
P-tag: large scale automatic generation of personalized
annotation tags for the web. WWW pages 845-854, 2007.

[9] S. A. Golder and B. A. Huberman. Usage patterns of

collaborative tagging systemipurnal of Information

Science32(2):198-208, 2006.

H. Halpin, V. Robu, and H. Shepherd. The complex

dynamics of collaborative tagging. WWW pages 211-220,

2007.

[11] P. Heymann, G. Koutrika, and H. Garcia-Molina. Can abci
bookmarking improve web search?\WSDM pages
195-206, 2008.

[12] A.Hotho, R. Jaschke, C. Schmitz, and G. Stumme.
Information retrieval in folksonomies: Search and ranking
In ESWC pages 411-426, 2006.

[13] A. Hotho, R. Jaschke, C. Schmitz, and G. Stumme. Trend
detection in folksonomies. IBAMT, pages 56—70, 2006.

[14] T. Joachims. Optimizing search engines using clickigh
data. INKDD, pages 133-142, 2002.

[10]

is cross-validation The assignments associated with a resource are [15] T. Joshua. A bit of progress in language modeli@gmputer

separated intd disjoint “buckets”. Thenp rounds of parameter
estimation are performed: each bucket is used as the héldata
set, while the remaining — 1 buckets comprise the training data
set. The final interpolation parameter values are caladilbyeav-
eraging the values computed in theptimization rounds.

7. CONCLUSIONS

In this paper we presented a principled, efficient and affect
ranking methodology that utilizes statistical language&letimg tools,
as motivated by our understanding of the collaborativeitagpro-
cess. Training of the language models was performed by nafans
a novel optimization framework that outperforms by a larga-m
gin the optimization techniques employed currently. Thigdity
of our claims was verified using a massive data set extracoed f
a popular social annotation system.
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