
Improved Search for Socially Annotated Data

Nikos Sarkas
University of Toronto

nsarkas@cs.toronto.edu

Gautam Das
University of Texas at Arlington

gdas@cse.uta.edu

Nick Koudas
University of Toronto

koudas@cs.toronto.edu

ABSTRACT
Social annotation is an intuitive, on-line, collaborativeprocess through
which each element of a collection of resources (e.g., URLs,pic-
tures, videos, etc.) is associated with a group of descriptive key-
words, widely known as tags. Each such group is a concise and ac-
curate summary of the relevant resource’s content and is obtained
via aggregating the opinion of individual users, as expressed in the
form of short tag sequences. The availability of this information
gives rise to a new searching paradigm where resources are re-
trieved and ranked based on the similarity of a keyword queryto
their accompanying tags.

In this paper, we present a principled and efficient search and
resource ranking methodology that utilizes exclusively the user-
assigned tag sequences. Ranking is based on solid probabilistic
foundations and our growing understanding of the dynamics and
structure of the social annotation process, which we capture by em-
ploying powerful interpolatedn-gram models on the tag sequences.
The efficiency and applicability of the proposed solution tolarge
data sets is guaranteed through the introduction of a novel and
highly scalable constrained optimization framework, employed both
for training and incrementally maintaining then-gram models.

We experimentally validate the efficiency and effectiveness of
our solutions compared to other applicable approaches. Ourevalu-
ation is based on a large crawl of del.icio.us, numbering hundreds
of thousands of users and millions of resources, thus demonstrating
the applicability of our solutions to real-life, large scale systems. In
particular, we demonstrate that the use of interpolatedn-grams for
modeling tag sequences results in superior ranking effectiveness,
while the proposed optimization framework is superior in terms of
performance both for obtaining ranking parameters and incremen-
tally maintaining them.

1. INTRODUCTION
Social annotation, also referred to ascollaborative tagging, has

been constantly building momentum since its recent inception and
has now reached the critical mass required for driving exciting new
applications. On September 2006 del.icio.us reported 1 million reg-
istered users, while YouTube claimed 500 thousand registered users

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09,August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

and stored 6 million videos; a figure that increased to 83 million by
April 2008. Flickr had 7 million registered users and stored2 bil-
lion images by November 2007. Our own Spring 2007 crawl of
del.icio.us revealed 570 thousand registered users and 24 million
URLs. Given that the user base and content of such sites has been
observed to double every few months, these numbers only loosely
approximate the immense popularity and size of systems thatem-
ploy social annotation.

Users of an on-line, collaborative tagging system add to their
personal collection a number of resources (e.g., URLs, pictures,
videos, etc.) and associate with each of them a short sequence of
keywords, widely known astags. Eachtag sequence, referred to as
an assignment, is a concise and accurate summary of the relevant
resource’s content according to the user’s opinion. The premise of
annotating resources in that manner is the subsequent use oftags
in order to facilitate the searching and navigation of one’spersonal
collection.

As an example, del.icio.us users add to their collection theURLs
of interesting Web pages and annotate them with tags so that they
can subsequently search for them easily. Users can discoverand
add URLs to their collection by browsing the web, searching in
del.icio.us or browsing the collections of other users. Given the
considerable overlap among the individual collections, resources
accumulate a large number of assignments, each one of them posted
by a different individual.

This information is publicly available and gives rise to a new
searching paradigm where resources are retrieved based on the sim-
ilarity of a query to their accompanying tags. The advantages of
such an approach are immense. When annotating a resource, users
distil its complex content into an accurate and concentrated textual
summary. Subsequent aggregation of the individual opinions into a
collective wisdom serves to eliminate noise and increase our confi-
dence, thus offering an accurate textual description of a resource’s
content. Consequently, social annotation (a) enables the extension
of the keyword search model tonon-textualobjects of arbitrarily
high complexity, like videos, images and music, and (b) enhances
our ability to identify and retrieve relevant textual objects in re-
sponse to a keyword query, since we no longer need to infer by
means of heuristics which of the words and phrases present inthe
text are truly representative of its content.

In this spirit, we proposeRadING(Rankingannotateddata us-
ing InterpolatedN-Grams), a principled and efficient search and
ranking methodology that exclusively utilizes the user-assigned tag
sequences. The solution employs powerfulinterpolatedn-gramsto
model the tag sequences associated with each resource, motivated
by our growing understanding of the dynamics and structure of the
social annotation process. The interpolatedn-grams employed are
a more robust variation of vanillan-gram models – commonly used

to model keyword (and more generally event) sequences – thatlin-
early combine information from all lower ordern-grams, i.e,n-
grams,(n − 1)-grams and so on. In our application, the use of
interpolatedn-gram models exposes significant and highly infor-
mative tag co-occurrence patterns (correlations) presentin the user
assignments. Our ranking strategy leverages this information in or-
der to identify the resources most relevant to a query and rank them
accurately.

In order to guarantee the scalability of our approach to millions
of resources, annotated with hundreds to thousands of assignments,
we also introduce a novel optimization framework, employedboth
in the training and the incremental maintenance of the interpolated
n-gram models. The optimization framework is able to rapidly
identify the optimal weighting that must be assigned to eachlower
ordern-gram, as well as efficiently update them as resources accu-
mulate new assignments.

More specifically, we make the following contributions:

• We present RadING, a principled search and resource rank-
ing methodology that utilizes interpolatedn-grams to model
the tag sequences associated with every resource. The ap-
proach is based on solid probabilistic foundations and our
insight of the collaborative tagging process.

• The training and the incremental maintenance of the inter-
polatedn-gram models is performed by means of a novel
constrained optimization framework that employs powerful
numerical optimization techniques and exploits the unique
properties of both the function to be optimized and the pa-
rameter domain. We demonstrate that our framework out-
performs at both tasks and by a large margin other applicable
techniques.

• We experimentally validate the effectiveness of the proposed
ranking methodology and the efficiency of then-gram train-
ing and maintenance framework using data from a large crawl
of del.icio.us, numbering hundreds of thousands of users and
millions of resources, thus demonstrating the applicability of
our approach to real-life, large scale systems.

The rest of the paper is organized as follows. In Section 2 we
review related work. In Section 3 we present and motivate then-
gram based ranking methodology, while in Section 4 we present our
noveln-gram training solution. In Section 5 we briefly discuss how
a real-life system can implement the proposed searching solution.
Section 6 presents our experimental evaluation and, lastly, Section
7 offers our conclusions.

2. RELATED WORK
Research on collaborative tagging has so far followed two dis-

tinct directions. One direction focuses on utilizing this newly-
found wealth of information in the form of tags to enhance existing
applications (like searching) and develop new ones. The second at-
tempts to understand, analyze and model the various aspectsof the
social annotation process. However, to the best of our knowledge,
our growing insight and understanding of the tagging process has
not been so far utilized in a principled manner.

With respect to searching for and ranking items from a tagged
collection, Hotho et al. [12] propose a static, query-independent
ranking of the resources (as well as of users and tags) based on
an adaptation of the PageRank algorithm [5]. Users, resources and
tags are first organized in a tripartite graph, whose hyper-edges are
links of the form (user,resource,tag). This graph is then collapsed

into a normal undirected graph whose nodes represent indiscrim-
inately users, resources and tags, while edge weights countco-
occurrences of the entities in the hyper-edges of the original graph.
The PageRank algorithm is then applied, producing a total ordering
involving all three types of entities. The semantics of the resulting
ranking (given the transformation of the tri-partite graphto an undi-
rected graph) are questionable. In an attempt to rectify, the authors
suggest a per “keyword” static ranking of the resources, once more
based on their PageRank adaptation, which is clearly not scalable.
Incremental maintenance issues are not addressed at all. Overall
this is a heuristic adaptation of the PageRank algorithm with un-
clear semantics.

Bao et al. [3] adapt a machine learning approach to ranking,
when the resources are Web pages. A support vector machine is
used to “learn” the ranking function [14] which utilizes fivediffer-
ent features of the pages: the tf/idf similarity of the page and the
query, two different similarity measures between the queryand the
tags, its PageRank and the PageRank adaptation that was discussed
before. Their technique however, is only limited to Web pages and
is based on ad-hoc heuristics. Scalability issues and incremental
maintenance issues under dynamic updates are left unspecified.

Amer-Yahia et al. [2] propose a solution for ranking resources
efficiently, under the constraint that only the assignmentsposted by
users in social network neighborhoods are to be used, thus person-
alizing query results. Their framework is complementary toours
as it can be used in combination with monotonic ranking functions,
like the one that we propose in this work.

Search using tags can be viewed as a generalization of keyword-
based search of non-textual content (e.g., images) using textual
hints found in HTML code. While the correspondingalt HTML
attribute or image name provides a single “assignment” (thede-
scription provided by a single person), which we have no option but
to blindly trust, social annotation systems aggregate the opinion of
many users, thus eliminating noise and increasing our confidence
that the assignments are relevant to a resource.

Besides ranking, researchers have also looked into other inter-
esting problems related to collaborative tagging. Hotho etal. [13]
use the PageRank adaptation presented in [12] in order to detect a
variety of trends in a collaborative tagging system. Li et al. [17] or-
ganize the tags in a loose hierarchical structure in order tofacilitate
browsing and exploration of tags and resources. Chirita et al. [8]
present a system for automatically suggesting personalized tags for
a Web page.

Another body of work is concerned with the analysis and model-
ing of collaborative tagging systems [9, 10, 6, 11]. [9, 10] observed
that the distribution of tags assigned to a resource converges rapidly
to a remarkably stable heavy-tailed distribution. [9] concentrates on
identifying the user behavior that leads to this phenomenon, while
[10] attempts to mathematically model it. [6] on the other hand,
explores and models the co-occurrence patterns of tags across re-
sources. Finally, Heyman et al [11] investigate whether theaddi-
tional information provided by the social annotations has the po-
tential to improve Web Search and offer positive conclusions.

Language models for information retrieval have been previously
introduced [25, 21]. Our approach is essentially a languagemodel;
however it is based on different principles (pertinent to our specific
application) and the resulting ranking strategy is obtained through
a different theoretical derivation. Furthermore, unlike previous ap-
proaches (e.g., [25, 21]), we are also concerned with the efficiency
and incremental maintenance issues of the proposed solution.

Lastly, the optimization of general objective functions, in the
presence or absence of domain constraints, is a well-studied subject
[4, 23, 18]. In this work, we do not introduce a new generic opti-

mization technique, but rather an optimization framework which
exploits the unique properties of our problem and enables the use
of otherwise inapplicable, unconstrained optimization techniques.

3. PRINCIPLED RANKING OF ANNOTATED
RESOURCES

In this section we derive and motivate the RadING searching
and ranking strategy. We begin by presenting its solid foundations
in probabilistic information retrieval [25, 21] and our understand-
ing of the social annotation process [9, 10], which is subsequently
modeled by employing progressively more sophisticatedn-gram
models [16, 20, 15].

3.1 Probabilistic Foundations
The basis of probabilistic information retrieval is the ranking of

the resources according to the probability of each resourcebeing
relevant to the query [25, 21], i.e., given a keyword queryQ and a
collection of tagged resources{R}, it is desirable to rank them in
descending order ofp(R is relevant|Q). By applying Bayes’ rule
we have that

p(R is relevant|Q) =
p(Q|R is relevant)p(R is relevant)

p(Q)

The termp(R is relevant) is the a-priori probability that resource
R is relevant, independently of the query being posed. This term
can potentially be used to bias the ranking towards certain cate-
gories of resources in a domain-, application- or even user-specific
manner. In what follows, we assume that this prior probability is
constant throughout our resource collection, without affecting the
analysis and results that will be subsequently presented. We re-
visit this issue and offer our suggestions for non-uniform priors
that could be employed in Section 6.

Termp(Q) is the a-priori probability of the query being issued,
which, since the query is given, is constant for all resources and
therefore does not affect their relative ranking.

Based on the aforementioned observations, ranking the resources
according top(R is relevant|Q) is equivalent to a ranking based on
p(Q|R is relevant). This term captures the intuition that a resource
can be retrieved by a number of different queries, however not all
queries are equally likely to be used for this purpose.

EXAMPLE 1. Consider the web page of the Firefox browser.
Perhaps the most reasonable, and therefore probable, keyword query
that one would use in order to retrieve the web page is “firefox”.
Nevertheless, it is not the unique query that can potentially be
used to identify the web page: “mozilla browser” or “open source
browser” are other perfectly valid query candidates that wecan
expect, albeit with a lower probability.

More formally, we established that:

p(R is relevant|Q) ∝ p(Q|R is relevant)

This simple transformation implies that resources need to be
modeled so that we can estimate the probability of the query be-
ing “generated” by each resource. While the problem of ranking
query results has been viewed from this perspective before [25,
21], the appropriate modeling of the resources is decisive in pro-
ducing an intuitive ordering and is sensitive to the characteristic of
the application domain. In what follows, we will discuss howthis
probability can be modeled in a meaningful and principled manner
by studying the social annotation process and motivating the use of
language models.

3.2 Dynamics and Properties of the Social An-
notation Process

Users annotate resources in order to facilitate their future re-
trieval. We assign to a resource the tags that we would instinctively
use in the future in order to retrieve it from our personal collection
of resources. Therefore, although we tag resources in a personal
and idiosyncratic manner, the underlying goal of the tagging pro-
cess is to describe the resource’s content in a concise and accurate
manner, so that we can easily locate it when the need arises.

Even though a resource is annotated by hundreds or thousands
of individuals, its content can only be viewed from a limitednum-
ber of perspectives, so that even after witnessing a small number of
assignments, we should be able to identify the annotation trends as-
sociated with these perspectives. The annotation of a resource with
additional assignments will increase our confidence in the trends
already identified, but is unlikely to unveil a fresh prevalent per-
spective.

This intuitive observation has also been validated by previous
work on the dynamics of collaborative tagging. [9, 10] demon-
strated that the distribution of tags for a specific resourceconverges
rapidly to a remarkably stable, heavy tailed distribution that is lightly
affected by additional assignments. The heavy tailed distribution
ascertains the dominance of a handful of influential trends in de-
scribing a resource’s content. The rapid convergence and the sta-
bility of the distribution points to its predictability: namely, after
witnessing a small number of assignments, we should be able to
predict with a high degree of confidence subsequent tag assign-
ments.

Given the fast crystallization of users’ opinion about the content
of a resource, we can make a natural assumption that will serve as
a bridge between our ability to predict the future tagging activity of
a resource and our need to computep(Q|R is relevant).

Users will use keyword sequences derived from the same
distribution to both tag and search for a resource.

This logical link allows us to equate the probabilityp(Q|R is relevant)
to the probability of an assignment containing the same keywords
asQ being used to tag the resource, i.e.,

p(Q|R is relevant) = p(Q is used to tagR)

The stability of the tag distribution allows us to accurately esti-
mate the probability of a tag being used in the future, based on the
resource’s tagging history. However, assignments are rarely com-
prised by a single tag. In our study (Section 6) we observed that
the average length of an assignment is2.77 tags. It is reasonable
to expect that neither the order in which tags are placed in anas-
signment, nor the co-occurrence patterns of tags in assignments are
random.

In fact, [9] observed that tags are not used in random positions
within an assignment, but rather progress (from left to right) from
more general to more specific and idiosyncratic. Therefore,assign-
ments are not orderless sets of tags, but sequences of tags, whose
ordering tends to be consistent across the assignments attached to
a resource, and consequently the queries used to search for it.

Additionally, tags representing different perspectives about a re-
source’s content, although popular in their own right, are less likely
to co-occur in the same assignment.

EXAMPLE 2. In our del.icio.us crawl, the Mozilla project main
page is heavily annotated with tags “opensource”, “mozilla” and
“firefox”. We observed that tags “opensource” and “firefox” ap-
pear together much less frequently than expected given their pop-
ularity, demonstrating two different perspectives for viewing the

web site: as the home of the Firefox browser or as an open source
project. Such statistical deviations, more or less severe,were ob-
served throughout the del.icio.us collection.

Therefore, the assignments comprising the tagging historyof a
resource are sequences of tags exhibiting strong tag co-occurrence
patterns. In order to accurately estimate the probability of a tag se-
quenceQ being assigned to a resourceR, we need to capture this
elaborate structure. Simply taking into account the frequencies (in
R’s history) of the tags comprisingQ can lead to gross miscalcula-
tions. To this end, we propose the use of sequentialn-gram models
[16, 20, 15], that can effectively model such co-occurrencepatterns
present in the assignments (tag sequences) comprising a resource’s
tagging history.

3.3 N-gram Models
Consider an assignment comprised of a particular sequences of l

tags,t1, . . . , tl, ordered from left to right. We are interested in cal-
culating the probability of this sequence of tags being assigned to a
resource. More formally,we are interested in computing theprob-
ability p(t1, . . . , tn). By employing the chain rule of probability,
we can express it as:

p(t1, . . . , tl) = p(t1)p(t2|t1) · · · p(tl|t1, . . . , tl−1)

=
l∏

k=1

p(tk|t1, . . . , tk−1)

This formula links the probability of a tagtk appearing in se-
quences to its preceding tagst1, . . . , tk−1. In other words, the
probability of a tag appearing in the sequence depends on allof the
preceding tags. The intuition behindn-gram models is to compute
this probability by approximating the preceding subsequence with
only the lastn − 1 tags:

p(tk|t1, . . . , tk−1) ≃ p(tk|tk−n+1, . . . , tk−1)

The most commonly usedn-gram models are the 1-gram orun-
igram model, so thatp(tk|t1, . . . , tk−1) = p(tk), the 2-gram or
bigram model, withp(tk|t1, . . . , tk−1) = p(tk|tk−1), and the 3-
gram or trigram model that approximatesp(tk| t1, . . . , tk−1)=
p(tk|tk−2, tk−1). It is clear that the use ofn-gram models is asso-
ciated with an inherent trade-off. Higher order models utilize more
information and are able to approximatep(tk|t1, . . . , tk−1) more
accurately, at the expense of an increased storage and computation
overhead.

In order to ease notation we use the bigram model in our exam-
ples and mathematical formulations, since the concepts canbe eas-
ily generalized for higher ordern-gram models. Under the bigram
model, the probability of a tag appearing in the sequence depends
only on the preceding tag so that:

p(tk|t1, . . . , tk−1) = p(tk|tk−1)

p(t1, . . . , tl) =
l∏

k=1

p(tk|tk−1)

Each adjacent pair of tags (words) in a sequence (assignment)
is also known as a bigram, but it will be clear from the context
whether we refer to the model or to a pair of adjacent tags. Sim-
ilarly, a single tag will be referred to as a unigram. The bigram
probabilitiesp(tk|tk−1) for a resource can be computed from its
tagging history, by using its previously posted assignments as train-
ing data. The most natural way to estimatep(tk|tk−1) is by using

Maximum Likelihood Estimation (MLE). Then, the probability of
a bigramt1, t2 is computed as:

p(t2|t1) =
c(t1, t2)∑

t

c(t1, t)

wherec(t1, t2) are the number of occurrences of the corresponding
bigramt1, t2 in the training data, that is the assignments associated
with the resource, and

∑
t c(t1, t) is the sum of the occurrences of

all different bigrams involvingt1 as the first tag.
Summarizing our approach, in order to compute the probabil-

ity that a given tag sequenceQ = t1, . . . , tl is used to annotate a
resourceR, which as we discussed in Section 3.2 will enable us
to rank the resources according to their relevance toQ, we use
the past tagging activity of the users in order to train a bigram
model for each resource in our collection. The bigram modelscan
then be used to evaluate the probabilityp(Q is used to tagR) =
p(t1, . . . , tl|R) for each resourceR.

3.4 Interpolation
A limitation of the plain bigram model presented previouslyis

the problem of sparse data [25, 16, 20, 15]. Because the size of the
data used to train the model is typically limited, the probability of
any bigramt1, t2 not appearing at least once in the training data will
be zero, sincec(t1, t2) = 0. This is undesirable as any sequence
of tags that contains a bigram never seen before, will evaluate to
zero probability. As an example, consider a resource heavily tagged
with the words “Toronto” and “snow”. If for some reason both tags
fail to appear in adjacent positions in any assignment, the resource
should intuitively be less relevant to the query “Toronto snow”, but
not completely irrelevant.

To compensate for this limitation, a wealth ofsmoothingtech-
niques can be employed [16, 20, 15]. The idea motivating these
methods is that the bigram count distribution should be madesmoother
by subtracting a bit of probability mass from higher counts and dis-
tributing it amidst the zero counts, so that no bigram evaluates to
zero probability.

For our purposes we employ the widely-used, intuitive and pow-
erful Jelinek-Mercer linear interpolation technique. Letus consider
a bigramt1, t2 and letp̂(t2|t1) andp̂(t2) be the MLE bigram and
unigram estimates respectively. The unigram MLE estimate is sim-
ply the number of times that a tag appears in the training dataover
the total number of tags. Then the bigram probability is provided
by linearly interpolating both MLE estimates:

p(t2|t1) = λ2p̂(t2|t1) + λ1p̂(t2), λ1 + λ2 = 1

The motivation behind this solution is that when there is insuf-
ficient data to estimate a probability in the higher-order model (bi-
gram), the lower-order model (unigram) can provide useful infor-
mation.

Motivated similarly, it is common practise to also interpolate a
bigramt1, t2 using the probabilitypbg(t2) of t2 appearing in ran-
dom text. In our case, we interpolate with the background proba-
bility of the tag being used by a user, which we estimate as thetotal
number of times this tag was used in the context of any resource
in the collection, over the total number of tags assigned to the re-
sources of the collection. By using the background probability of
a tag as an interpolation factor, it is possible to assign non-zero
(but small) probability to sequences (queries) that contain tags not
appearing a resource’s history. Intuitively, a resource tagged with
“Toronto”, but not “snow”, should be somewhat relevant to query

“Toronto snow” and not completely irrelevant. Finally, theJelinek-
Mercer estimate of a bigram is:

p(t2|t1) = λ2p̂(t2|t1) + λ1p̂(t2) + λ0pbg(t2)
0 ≤ λ0, λ1, λ2 ≤ 1, λ0 + λ1 + λ2 = 1

or

p(t2|t1) = λ2p̂(t2|t1) + λ1p̂(t2) + (1 − λ1 − λ2)pbg(t2)
0 ≤ λ1, λ2 ≤ 1, λ1 + λ2 ≤ 1

3.5 Advantages of Linear Interpolation
Although, as was mentioned, there exists a wealth ofn-gram

smoothing methods [16, 20, 15], the use of the Jelinek-Mercer lin-
ear interpolation technique offers two unique advantages,besides
its great smoothing performance.

The first is our ability to devise a novel and efficient method for
initially setting and subsequently maintaining, as new assignments
are attached to a resource, the parameters of the corresponding
per-resource smoothedn-gram models. The technique, which we
present in Section 4, guarantees the applicability of the proposedn-
gram based ranking approach to real-life systems of immensesize,
containing hundred of millions or even billions of resources.

Secondly, the linearly interpolated bigram models can be associ-
ated with the social annotation process in a very natural andintu-
itive manner. The probability of a bigramt1, t2 is computed as the
weighted average of its MLE bigram probabilitŷp(t2|t1), its MLE
unigram probabilityp̂(t2) and its background probabilitypbg(t2).
The values of the interpolation parametersλ2, λ1 andλ0, signify
our confidence into each of these three sources of information.

Consider a resource that has been annotated with almost random
tags, so that all assignments are in disagreement. In that case, little
information can be derived from the assignments’ content and the
relevant bigram and unigram probabilities that have been extracted
from them. This should be reflected in the parameters by setting
λ2 andλ1 to low values. If the assignments of a resource are in
agreement, but exhibit no correlation in the co-occurrencepatterns
of tags, then we should place high confidence in the unigram prob-
abilities (λ1) computed, but lower in the respective bigram proba-
bilities (λ2). Lastly, if assignments are in compliance and exhibit
strong tag co-occurrence patterns, we should place our trust in the
bigram probabilities computed, thus setting parameterλ2 to a high
value.

4. PARAMETER OPTIMIZATION
Setting the interpolation parameters to meaningful and appropri-

ate values is a challenge that needs to be addressed. In this section
we discuss the algorithm used currently for setting the parameters,
as well as its limitations, and introduce a novel adaptationof pow-
erful optimization algorithms for handling the problem much more
efficiently. In our exposition we use the bigram model and gener-
alize our results ton-gram models at the end of the section.

4.1 Likelihood Function
The intuitive parameter setting procedure that we described in

Section 3.5 can be performed by dividing the training data (tagging
history) into two sets. The first is used to compute the MLE esti-
mates, while the second, known as held-out set, is used for “learn-
ing” the parametersλi. The interpolation parameters are set to the
values that maximize the likelihood of the held-out set being gen-
erated by the interpolated bigram model. In our case we can divide
the assignments into two groups, constituting the trainingand held-
out data.

Let us compute the (log)likelihood function that needs to bemax-
imized. Suppose that the held-out data set containsm assignments
a1, . . . , ai, . . . , am each one of them containingk(i) tags,ti1, . . . , tik(i).
The likelihood of an assignment is:

log p(ai) = log

k(i)∏

j=1

p(tij |ti(j−1)) =

k(i)∑

j=1

log p(tij |ti(j−1))

Since assignments are generated independently, by different users,
the likelihood of all assignments in the held-out data is

log

m∏

i=1

p(ai) =

m∑

i=1

log p(ai) =

m∑

i=1

k(i)∑

j=1

log p(tij |ti(j−1))

Notice that this is the sum of the log-probabilities of all bigrams
in the held-out set. To ease notation, we will consider that the train-
ing set is comprised ofl =

∑m
j=1 k(j) bigramsti1ti2, i = 1 . . . l.

Then, the likelihood can be written as
∑l

i=1 log p(ti2|ti1).
Since we are using a bigram model,p(ti2|ti1) = λ2p̂(ti2|ti1) +

λ1p̂(ti2)+ (1−λ1 −λ2)pbg(ti2). In order to further ease notation
we write

p(ti2|ti1) = λ2pi2 + λ1pi1 + pi0

wherepi2 = p̂(ti2|ti1) − pbg(ti2), pi1 = p̂(ti2) − pbg(ti2) and
pi0 = pbg(ti2).

Then, the likelihood function that needs to be maximized is:

L(λ1, λ2) =
l∑

i=1

log(λ2pi2 + λ1pi1 + pi0)

An important observation that simplifies the maximization prob-
lem is that the functionL(λ1, λ2) is concave[4].

DEFINITION 1. A functionf : D → ℜ is concave if∀x,y ∈
D and0 ≤ θ ≤ 1, we have thatf(θx + (1 − θ)y) ≥ θf(x) +
(1 − θ)f(y).

Concavity is essentially the symmetric property of convexity. A
functionf is concave iff−f is convex. An important property of
concave functions is the following [4].

THEOREM 1. If f : D → ℜ is concave, any point that is a
local maximum is also a global maximum.

Therefore, any optimization procedure that converges to a local
maximum will identify the global maximum of the function. The
concavity ofL(λ1, λ2) can be easily demonstrated using the prop-
erties of concave functions [4].

Although the concavity ofL(λ1, λ2) simplifies the optimization
problem due to the absence of local optima, a complication that
needs to be considered is the constrained domain ofλ1, λ2: re-
member that0 ≤ λ1, λ2 ≤ 1, λ1 + λ2 ≤ 1. We will denote
this constrained domain asD∗. The original domainD ⊇ D∗ of
L(λ1, λ2) depends on the specific values ofpi2, pi1, pi0. Figure 1
illustrates the constrained domainD∗.

Let us denote withλ∗ = (λ∗

1, λ
∗

2) the global maximum (if it
exists) ofL(λ1, λ2), and letλc be the point whereL(λ1, λ2) eval-
uates to its maximum value withinD∗. If λ∗ ∈ D∗, thenλ∗ = λc.
However, it is possible thatλ∗ 6∈ D∗ or that L(λ1, λ2) is un-
bounded, i.e.,limλ1→∞ L(λ1, λ2) = ∞ or limλ2→∞ L(λ1, λ2) =
∞. In these casesλc must be identified. Our goal in optimizing
L(λ1, λ2) is locatingλc, regardless whetherλ∗ = λc or not.

4.2 EM Algorithm
The standard method [16, 7] for optimizing the likelihood func-

tion and setting the parameters is by using the Expectation-Maximization
(EM) algorithm. The EM algorithm is an iterative optimization
procedure commonly used for optimizing the objective functions
of probabilistic models in the presence of latent variables. Each
iteration of the EM algorithm, comprised of the so called Expec-
tation and Maximization steps, is guaranteed increase the value of
the objective function, eventually converging to a local optimum.

In our case, the probability of a bigramt1, t2 is a weighted com-
bination of the bigram probabilityp(t2|t1), the unigram probability
p(t2) and the background probabilitypbg(t2). In other words, we
have modeled the bigram probability as amixture of three mod-
els and the latent variable in this case determines which of these
models will be used to compute the final bigram probability. This
observation is the basis for deriving the EM algorithm iterations for
our application.

For each of then bigrams in the held-out data set, we introduce
two auxiliary variablesqi1 andqi2. Then:

E-step: qk+1
i1 =

λk
1(pi1 + pi0)

λk
2pi2 + λk

1pi1 + pi0

qk+1
i2 =

λk
2(pi2 + pi0)

λk
2pi2 + λk

1pi1 + pi0

M-step: λk+1
1 =

∑n
i=1 qk+1

i1

n

λk+1
2 =

∑n
i=1 qk+1

i2

n

Another important property of the EM algorithm in our case is
that if the starting point is inD∗, then the algorithm during the
search forλc will remain withinD∗. Therefore, the EM algorithm
(a) increases with every iteration the value ofL(λ1, λ2) and (b)
remains withinD∗. Due to these two properties, the algorithm
converges toλc, even ifλc 6= λ∗.

λ1

λ2

λ1+λ2=1

λ1=0

λ2=0

D*

λ
*

λ
c

Figure 1: The constrained search spaceD∗.

4.3 Adapting Unconstrained Optimization Meth-
ods for Constrained Optimization

The EM algorithm is an attractive solution for optimizingL(λ1, λ2).
It is extremely simple to implement and converges to the optimal
value of the parameters within the constrained domain. However,
as it has been observed in practice [26] and we will also experimen-
tally validate in Section 6, its convergence can be slow. Given that
we require the technique for optimizing the interpolation parame-
ters to be scalable to hundreds of millions of resources, annotated
with hundreds to thousands of assignments, its speed is crucial for
the applicability of the proposed solution.

An extremely promising alternative would be the use of efficient
numerical optimization techniques. Researchers have developed
algorithms for both constrained and unconstrained numerical opti-
mization problems [4, 23, 18]. However, general constrained opti-
mization techniques are too heavyweight and unconstrainednumer-
ical optimization methods are not directly applicable to our prob-
lem, since our goal is to maximizeL(λ1, λ2) within its constrained
domainD∗.

Additionally, in our problem setting we cannot simply use La-
grange Multipliers [4] in order to incorporate theequalityconstraint
(λ0 + λ1 + λ2 = 1) into the objective function and thus enable
the use of unconstrained optimization methods. The reason is that
Lagrange multipliers cannot be used to remove theinequalitycon-
straints of our problem, namelyλ0, λ1, λ2 ≥ 0.

In order to compensate, we introduce the RadING optimization
framework which leverages efficient numerical optimization tech-
niques as a primitive in order to maximizeL(λ1, λ2) within its
constrained domainD∗.

In what follows, we demonstrate how this can be accomplished,
depending on whetherL(λ1, λ2) is bounded (Section 4.3.1) or un-
bounded (Section 4.3.2). Our results are unified into a simple but
powerful optimization framework (Section 4.3.3). Finally, we iden-
tify a particular numerical optimization technique with appealing
properties and argue that it is an ideal candidate for use within the
proposed framework (Section 4.3.4).

4.3.1 Bounded likelihood function
As was discussed in Section 4.1, the global maximum ofL(λ1, λ2)

can either lie inside or outsideD∗. The following two theorems
demonstrate that ifλ∗ 6= λc, thenλc must lie on the boundary of
D∗ (Figure 1).

THEOREM 2. Let f : D → ℜ be a concave function andx∗

be its global maximum. Let alsox ∈ D be a random point. Then
every pointv = kx∗ +(1−k)x, 0 ≤ k ≤ 1, that is located on the
segment connectingx andx

∗ will satisfyf(x) ≤ f(v) ≤ f(x∗).

PROOF. From the definition of concavity,f(v) = f(kx∗+(1−
k)x) ≥ kf(x∗) + (1 − k)f(x). Sincex∗ is the global maximum,
f(x∗) ≥ f(x). Then,f(v) ≥ kf(x∗) + (1− k)f(x) ≥ kf(x) +
(1 − k)f(x) = f(x). Therefore,f(x) ≤ f(v) ≤ f(x∗).

THEOREM 3. Let f : D → ℜ be a concave function and
D∗ ⊂ D be a convex subset of the function’s domain. Letx

c be the
value that maximizesf within D∗ andx

∗ the value that globally
maximizesf . If x∗ ∈ D−D∗, thenxc lies on the boundary ofD∗.

PROOF. Let xc lie in the interior ofD∗. Then, according to
Theorem 2, all the points that lie on the line segment connecting
x

c and x
∗ will have higher function values thanxc. Sincex

c

lies insideD∗ andx
∗ lies outsideD∗, this line segment intersects

the boundary of the convex setD∗ in a single pointv. Therefore,
f(v) ≥ f(xc) andx

c cannot be the optimum withinD∗.

The previous theorems give rise to the following strategy. We can
use a two-dimensional numerical optimization algorithm tomaxi-
mize L(λ1, λ2). If the optimum lies insideD∗, we have located
λc. Otherwise, if the procedure converges to an optimum outside
D∗, we can search along the boundary ofD∗ in order to locateλc.

The search along the boundary can be decomposed to three searches
along the three sides ofD∗ (Figure 1). Each side can be embedded
in a one-dimensional space, therefore we can maximize alongeach
side using a one-dimensional optimization procedure.

Furthermore, depending on the location ofλ∗, as was identified
by the two-dimensional optimization algorithm, we only need to

λ1

λ2

D*

λ
*

λ
c

(a)

λ1

λ2

D*

λ
*

λ
*

λ
*

λ
*

λ
*

λ
*

(b)

Figure 2: The constrained search spaceD∗.

search one or two at most sides ofD∗. This is demonstrated in Fig-
ure 2(a) by means of an example. Due to Theorem 2, for any point
on the perpendicular sides ofD∗, there is a point in the hypotenuse
that evaluatesL(λ1, λ2) to a higher value. Based on this obser-
vation, we can partition the plane aroundD∗ into six areas and
depending on the area whereλ∗ is located, only search the relevant
sides ofD∗ (Figure 2(b)).

4.3.2 Unbounded likelihood function
Due to the nature of our objective functionL(λ1, λ2), we can

identify whether the function is unbounded or not only by inspect-
ing the values ofpi2, pi1 andpi0 .

Consider a single term in the sum of logarithms,log(λ2pi2 +
λ1pi1 + pi0) = log(ai), whereai = λ2pi2 + λ1pi1 + pi0. If
pi2 > 0 then we can increase the value ofλ2 as much as we want
without worrying aboutai becoming negative. Also notice that
asλ2 → +∞, log(ai) → +∞, therefore the term becomes un-
bounded. Similarly, ifpi2 < 0, then the term becomes unbounded
asλ2 → −∞. The same observations hold for the value ofpi1 and
parameterλ1.

However,L(λ1, λ2) is the sum of many such terms. If there ex-
ist for examplei, j such thatpi2 > 0 andpj2 < 0, we can neither
increase nor decrease the value ofλ2 towards+∞ or −∞ respec-
tively. As a consequence, neither thei-th, nor thej-th term can
become unbounded. But if∀i, pi2 > 0, then the objective func-
tion increases arbitrarily asλ2 increases. The following theorem
formalizes and proves this intuition.

THEOREM 4. LetL(λ1, λ2) =
∑l

i=1 log(λ2pi2+λ1pi1+pi0)
be the objective function to be optimized andλc

1, λc
2 be the optimal

parameter values withinD∗. Then,

• If ∀i, p2i > 0 andp1i > 0, thenλc
1 + λc

2 = 1.

• If ∀i, p2i > 0 andp1i < 0, then(λc
1, λ

c
2) = (0, 1).

• If ∀i, p2i > 0 andp1i ≶ 0, thenλc
1 + λc

2 = 1.

• If ∀i, p2i < 0 andp1i > 0, then(λc
1, λ

c
2) = (1, 0).

• If ∀i, p2i < 0 andp1i < 0, then(λc
1, λ

c
2) = (0, 0).

• If ∀i, p2i < 0 andp1i ≶ 0, thenλc
2 = 0.

• If ∀i, p2i ≶ 0 andp1i > 0, thenλc
1 + λc

2 = 1.

• If ∀i, p2i ≶ 0 andp1i < 0, thenλc
1 = 0.

PROOF. The proof of the theorem is by simple case analysis and
utilizes a slightly different form of Theorem 2.

The additional constraintλc
1 + λc

2 = 1 resulting from utilizing
the Theorem, instructs us to search forλc along the hypotenuse
of D∗, while λc

1 = 0 and λc
2 = 0, to search along one of the

perpendicular sides (Figure 1). This can be performed by means of
a one-dimensional optimization technique.

4.3.3 RadING optimization framework
The results derived from the application of Theorems 2, 3 and4,

can be unified into a simple optimization protocol that utilizes 1D
and 2D unconstrained optimization techniques as its primitives.

1. Use Theorem 4 to check ifL(λ1, λ2) is unbounded and if so
perform 1D optimization to locateλc along the boundary of
D∗.

2. If the likelihood function is bounded, apply a 2D optimiza-
tion algorithm to identify the global maximumλ∗.

3. If λ∗ 6∈ D∗, use Theorem 3 to locateλc along the boundary
of D∗.

As we will experimentally verify in Section 6, the extra costof
optimizing twice whenλ∗ 6∈ D∗, does not offset the benefit of
using efficient numerical optimization algorithms.

4.3.4 Newton’s method
Although the RadING optimization framework is independentof

the specific unconstrained optimization technique that is employed
as a primitive, we argue that Newton’s method and its variants are
ideal candidates for the task.

In brief, the method assumes that the optimization functionis
quadratic and fits the parameters using derivative information at
the current point. It then moves to the point that maximizes the
quadratic being fitted. This process converges quadratically fast
near the optimum [4, 23, 18].

Newton’s method is considered one of the fastest convergingop-
timization methods, yet it can suffer from two limitations [4, 23,
18]. The first is the need to compute the Hessian matrix of the
function at each iteration and then invert it.

DEFINITION 2. The HessianHn×n(f) of a twice differentiable
functionf(x1, . . . , xn), is the matrix of all second order partial

derivatives, i.e.,Hij = ∂2f
∂xi∂xj

.

The second limitation is the requirement that the Hessian bea
negative semi-definite matrix at the current point, in orderfor the
next Newton’s method iteration to increase the value of the objec-
tive function.

DEFINITION 3. A matrix Xn×n is negative semi-definite iff∀
vn×1, vT Xv ≤ 0.

Thus, if the Hessian is not negative semi-definite, it needs to be
modified by means of a variety of available time-consuming tech-
niques [23].

To summarize, the use of additional information about the objec-
tive function (in the form of its derivatives) to guide the search for
the optimum leads to faster convergence but at a potentiallyhigh
cost per iteration. This trade-off has led to the development and
use of the so-called direct search algorithms (e.g., Powell’s search,
Nelder-Mead) that utilize minimal information about the objective
function but demonstrate slower convergence rates [22].

However, none of the two limitations that we discussed pose a
problem for our objective function. The Hessian that needs to be
computed and inverted is only a2 × 2 matrix and is guaranteed
to be negative semi-definite due to the concavity ofL(λ1, λ2) [4].
Therefore, in our context the cost of a Newton’s method iteration
is minimal, justifying its use over alternatives that converge at a
slower pace.

4.4 Incremental Maintenance
When users continuously annotate resources with new assign-

ments, the efficientmaintenanceof the interpolation parameters is
critical. After computing the interpolation parameters from scratch,
their values should be updated when the number of new assign-
ments attached to the resource exceeds a threshold. The renewed
values will reflect the updated information provided by the new as-
signments.

The maintenance of the interpolation parameters is in principle
the same procedure as optimizing them from scratch. The differ-
ence is that we can utilize the parameter values learned previously
and use them as the starting values of the optimization algorithms,
instead of a random starting point as in the case of optimizing from
scratch. Given the stability of the user tagging activity (Section 3),
the updated optimal parameter values are not expected to deviate
much from their previous values. Hence, initiating the optimization
from a point close to the optimum will accelerate convergence. As
we will experimentally demonstrate in Section 6, the proposed opti-
mization framework is extremely efficient in this critical task, since
it can leverage the Newton’s method which converges quadratically
fast near the optimum [4, 23, 18].

4.5 Generalization for N-gram Models
Even though we demonstrated the entire process using bigrams

for simplicity of exposition, the form and properties of thelikeli-
hood function and its domain carry over to higher ordern-gram
models. Namely, in the case of interpolatedn-gram models, the
likelihood function that needs to be maximized is

L(λ1, . . . , λn) =
l∑

i=1

log(λnpin + · · · + λ1pi1 + pi0)

wherepik = p̂(tin|ti(n−k+1), . . . , ti(n−1)) − pbg(tin), i.e.,pik

is the modified maximum likelihood estimate for thek-gram of tag
tin (Section 4.1). The constrained optimization domainD∗

n is de-
fined by inequalitiesλ1 ≥ 0, . . . , λn ≥ 0, λ1 + · · · + λn ≤ 1.
In other words, rather than being a triangle, domainD∗

n is ann-
dimensional polytope. The polytope is depicted forn = 3 (inter-
polated trigram model) in Figure 3.

λ2

λ1

λ3

D3
*

Figure 3: Constrained search spaceD∗

3 .

In the general case, the EM algorithm is extended by simply us-
ing one auxiliary variable per interpolation parameter andappro-
priately modifying its two steps.

The generalization of the RadING optimization framework is
also straightforward and intuitive. DomainD∗

n is an-dimensional
polytope with(n − 1)-dimensional facets. The domain defined by
each of the(n − 1)-dimensional faces is essentially equal to do-
main D∗

n−1 of an equivalent(n − 1)-dimensional problem. By
utilizing Theorems 2, 3 and the relevant extension of Theorem 4,
theRadINGoptimization framework now employsn-dimensional
and (n − 1)-dimensional versions of the optimization algorithm.

Since the(n − 1)-dimensional optimization is constrained along a
facet with domainD∗

n−1, it is recursively defined.
The following two theorems demonstrate how to handle the cases

of an unbounded likelihood function (Theorem 5) and a likelihood
function whose optimumλ∗ lies outside domainD∗

n (Theorem 6).

THEOREM 5. LetL(λ1, . . . , λn) =
∑l

i=1 log(λnpin + · · · +
λ1pi1+pi0) be the objective function to be optimized andλc

1, . . . , λ
c
n

be the optimal parameter values withinD∗. Then,

• For all k, such that∀i, pki < 0, we haveλc
k = 0.

• If there existsk, such that∀i, pki > 0, we can have that
λc

1 + · · · + λc
n = 1.

For example, if by inspecting constantspji we identify thatλc
1 =

0 andλc
1 + · · · + λc

n = 1, we can setλ1 = 0 andλ2 = 1 − λ3 −
· · ·−λn. Then, we need to optimize for variablesλ3, · · · , λn, with
constraints,λ3, . . . , λn ≥ 0 andλ3 + · · · + λn ≤ 1, i.e., we need
to address an(n−2)-dimensional optimization problem in domain
D∗

n−2.

THEOREM 6. LetL(λ1, . . . , λn) =
∑l

i=1 log(λnpin + · · · +
λ1pi1 + pi0) be the objective function to be optimized,λc

1, . . . , λ
c
n

be the optimal parameter values withinD∗

n and λ∗

1, . . . , λ
∗

n the
optimal parameter values inRn. Then,

• If λ∗

i < 0, then facet (boundary)λi = 0 should be checked
in order to locateλc.

• If λ∗

1+· · ·+λ∗

n > 1, then facet (boundary)λ1+· · ·+λn = 1
should be checked in order to locateλc.

For instance, if we identify thatλ∗

1 < 0 andλ∗

2 < 0, then the
likelihood function’s optimum withinD∗

n must lie on either(n−1)-
dimensional facetλ1 = 0 or (n − 1)-dimensional facetλ2 = 0. It
is easy to verify that optimizing on these two facets is equivalent to
solving a(n− 1)-dimensional version of the optimization problem
on a domain equivalent toD∗

n−1.
An extremely desirable property of Newton’s method, which can

be employed by the RadING framework, is that the number of iter-
ations till convergence remains almost constant, independently of
the dimensionality of the problem [4]. The only considerable addi-
tional overhead is the cost of inverting a larger Hessian. Inpractice,
n-gram models withn > 5 offer no additional performance advan-
tages [15] and given the short length of assignments in our applica-
tion, the use of a model more complicated than the trigram is hard
to justify. Therefore, each iteration should involve the inversion of
an at most5 × 5 matrix instead of a2 × 2 matrix, which is highly
scalable.

5. SEARCHING
We now have all the machinery in place for ranking a collection

of tagged resources. The first step required is to train a bigram
model for each resource, which involves the bigram and unigram
probability computation and the optimization of the interpolation
parameters. At query time we can compute the probability of the
query keyword sequence being “generated” by each resource’s bi-
gram model. More precisely, the score of each resourceR, given a
queryQ = q1, . . . , qk, is

pR(q1, . . . , qk) =
k∏

j=1

p(qj |qj−1)

wherep(qj |qj−1) = λ2p̂(qj |qj−1) + λ1p̂(qj) + λ0pbg(qj) is the
interpolated bigram probability. Since the scoring function used is
monotone (a simple multiplication of terms), the ThresholdAlgo-
rithm (TA) [24] can be employed for computing the top-k ranking
resources.

The whole process is better illustrated with a simple example
(Figure 4). The example usesnon-interpolated bigram models to
ease exposition, but its extension to the interpolated variant is sim-
ple. Consider a collection of four resourcesR1, . . . , R4 that is only
annotated with two tags,t1 andt2. In order to stress the importance
of a tag appearing in the first position of an assignment, we intro-
duce a “start of assignment” tag, denoted by〈s〉1. Then the only
bigrams that can potentially appear in the assignments of this col-
lection are(t1|〈s〉), (t2|〈s〉), (t1|t2) and(t2|t1).

‹s›,t1
‹s›,t1

R4: 1/2

R3: 1/3

R1: 0

R2: 0

‹s›,t1,t2
‹s›,t1,t2
‹s›,t2,t1

‹s›,t1
‹s›,t2

TA

t2|‹s›

R1: 1

R2: 1

R3: 2/3

R4: 1/2

t1|‹s›

R3: 1/3

R1: 0

R2: 0

R4: 0

t1|t2

R3: 2/3

R2: 1/3

R1: 0

R4: 0

t2|t1

Preprocessing

p(t1,t2|‹s›)=

‹s›,t1
‹s›,t1,t2
‹s›,t1

R1
R2

R3
R4

p(t1|‹s›)p(t2|t1)

R3: 4/9

R2: 1/3

Figure 4: Query evaluation.

The preprocessing step involves going through the collection and
calculating the corresponding bigram probabilities for each resource.
(If interpolated models are used, the unigram probabilities and in-
terpolation parameters are also computed for each resource.) These
probabilities are subsequently stored in four sorted lists, one for
each bigram. Then, suppose a queryt1, t2 arrives at the system.
The score of each resourceRi is pRi(t1|〈s〉)pRi(t2|t1). The top-k
scoring resources can be computed by invoking the TA algorithm
and using the lists for bigramst1|〈s〉 andt2|t1 (Figure 4).

6. EXPERIMENTAL EVALUATION
In order to evaluate the solutions proposed within the context of

the RadING methodology, we used data from our crawl of del.icio.us,
one of the most popular social annotation systems, whose shared
resources are URLs. The data are comprised of 70,658,851 assign-
ments, posted by 567,539 users and attached to 24,245,248 unique
URLs. The average length of each assignment is 2.77, while their
standard deviation and median are 2.70 and 2 respectively. An in-
teresting observation is that out of all the URLs in our sample, ap-
proximately 19M of them have only been tagged once. This is not
an issue with our sample, but rather a characteristic of del.icio.us
[11].

6.1 Optimization Efficiency
We compared the performance of the RadING optimization frame-

work (Section 4.3) against the EM algorithm (Section 4.2) intwo
tasks: optimizing bigram models from scratch and incrementally
updating their interpolation parameters. The RadING optimization
framework employed Newton’s method. The convergence of the
Newton and EM algorithms was declared when an iteration failed
to improve the likelihood function by more than10−9.

In our first experiment, we used both algorithms to optimize from
scratch the interpolation parameters of every URL in our data set,

1An “end of assignment” tag can also be introduced.

associated with 10 or more assignments. One fifth of all assign-
ments were placed in the held-out data set and used in the optimiza-
tion procedure. We discuss techniques that are potentiallymore ap-
propriate for setting the interpolation parameters of lightly-tagged
resources, or resources that have been tagged only once, in Section
6.3.

Figure 5 depicts the total time required by both optimization
techniques, to train interpolatedn-gram models forn = 2 (bi-
gram model) ton = 5 (fivegram model). As it is evident, the pro-
posed RadING optimization framework is approximately 4-5 times
faster than the EM algorithm. The speed-up can be attributedboth
to the unique ability of the RadING framework to utilize the ef-
ficient Newton’s method, as well as its ability to rapidly identify
unboundedness and reduce the dimensionality of the optimization
procedure.

2 3 4 5
0

100

200

300

400

500

600

Interpolated n-gram
T

ra
in

in
g

T
im

e
(m

s)

RadING

EM

Figure 5: Total training time.

Figures 6(a) and 6(b) depict the time required by both tech-
niques to optimize a single resource forn = 2 (interpolated bi-
gram model), with respect to the number of its assignments. Both
methods scale linearly, but as it is evident, the introducedoptimiza-
tion framework is about 4 times faster than the EM algorithm.This
guarantees the applicability of the proposed solution in efficiently
optimizing resources with any number of assignments.

(a) (b)

Figure 6: Time vs Number of Assignments.

In order to simulate a setting where assignments are continu-
ously added to the resources and evaluate the incremental mainte-
nance efficiency of the algorithms (Section 4.4), we designed the
following experiment. In this experiment only resources with more
than 200 assignments were used. The assignments of each resource
were sorted in chronological order and the first 100 assignments
were used for initially setting the parameters. Then we triggered a
re-optimization every 50 new assignments until all the assignments

of the resource were exhausted. We measured the total optimization
and subsequent re-optimization time for each resource.

Figure 7 presents the total time that was required by each method
to incrementally maintain the resources described above, and for in-
terpolatedn-gram models of varying sophistication. The RadING
optimization framework offers a large performance benefit in the
case of bigram and trigram models. As was discussed in Section
4.4, this can be attributed to the quadratic convergence of Newton’s
method near the optimum. This benefit diminishes for higher or-
der n-gram models. For higher ordern-grams, it is much more
common for the optimum to lie on a lower dimensional facet of the
constrained optimization regionD∗

n. Hence, multiple lower dimen-
sional facets must be checked for the optimum in order to guarantee
correctness, even though we initiate our search close to it.

2 3 4 5
0

500

1000

1500

Interpolated n-gram

In
cr

em
en

ta
l M

ai
nt

en
an

ce
 T

im
e

(s
)

RadING

EM

Figure 7: Total incremental maintenance time.

6.2 Ranking Effectiveness
We performed a large scale experiment to evaluate the ranking

effectiveness of the RadING ranking strategy. We evaluatedthe
performance of interpolatedn-grams – employed by the RadING
methodology – of varying complexity, and compared against asig-
nificant number of competing alternatives. More specifically, we
also considered plain (non-interpolated)n-gram models, in order to
validate the benefits offered by interpolation, and two adaptations
of the widely used tf/idf ranking [19]. As we subsequently demon-
strate, while tf/idf based approaches are extremely powerful and
constitute the most appropriate alternative in many contexts, they
fail to capture the significant and elaborate organization of tags into
assignments, that the proposed solution was explicitly designed to
model.

The first method, denoted by Tf/Idf, concatenates the assign-
ments of a resource into a “document” and performs the ranking
based on the tf/idf similarity of the query and these “documents”.
In the second variation, denoted by Tf/Idf+, we compute the tf/idf
similarity of the query to each individual assignment and rank the
resources based on theaveragesimilarity of the query to their cor-
responding assignments.

The lack of a publicly available and widely-accepted test collec-
tion, comprised of both annotated resources and relevant queries (in
the spirit of the TREC [1] collections), renders the comparison of
the different approaches particularly challenging. Hence, ranking
effectiveness was evaluated by asking impartial judges to decide
upon the relevance of the top results returned by the variousmeth-
ods in response to keyword queries and measuring the precision
achieved by each method.

The judges were contacted through the Amazon Mechanical Turk

service2. The Mechanical Turk service is an on-line “marketplace
for work”, bringing together users that need information gather-
ing/processing tasks performed and users willing to perform such
tasks in exchange for monetary compensation. The workers remain
anonymous but have every incentive to perform to the best of their
ability since the employer retains the right to review and potentially
reject poor work, thus penalizing the worker’s reputation.

More specifically, we designed and executed the following ex-
periment. For each keyword queryQ that we tested, we retrieved
the top-10 results produced by the various alternatives. The results
consisted of URLs pointing to web pages. LetRA(Q) be the set
of the top-10 results, with respect to a single queryQ, produced
by ranking methodA. The URLs comprising the unionR(Q) =⋃

A RA(Q) of the top-10 URLs from all methods considered were
shuffled and presented to 10 impartial, anonymous and unknown to
us judges (Mechanical Turk workers).

Every one of the judges (workers) was asked to evaluate whether
the content of each web pagep ∈ R(Q) was relevant or not (as
a response to the corresponding keyword queryQ). No additional
information was given with respect to which method was used to
retrievep or its ranking position in the corresponding top-10 rank-
ing. This was done to avoid biasing the judges in favor of a certain
technique or high-ranking URLs. Furthermore, no judge’s decision
was rejected by us. We compensated for any potential judge mis-
conduct by employing a large number of independent judges.

Given that the relevance of each resultp was evaluated by 10
judges, we computed the relevancer(p) of pagep as the fraction of
the 10 judges that found the page to be relevant, i.e., if 9 outof 10
judges foundp to be relevant, its relevance score wasr(p) = 0.9.
Using the decisions of the judges, we computed the Precisionat
10 (Precision@10) [19] performance of the various methods for a
number of queries. More formally, for the top-10 resultRA(Q) of

methodA we computed Precision@10 =
∑

p∈RA(Q)

r(p), namely

the aggregate relevance of the top-10 results inRA(Q).

EXAMPLE 3. For instance, a Precision@10 value of 8.3 for a
particular methodA and in response to a queryQ, implies that
approximately 8 of the top-10 results retrieved by methodA were
found to be relevant. Alternatively, 83 of the 100 relevancejudge-
ments (10 judges× 10 binary decisions each) associated with the
top-10 results computed byA were positive.

We submitted to Mechanical Turk for evaluation a large number
of diverse queries and present results for a sample consisting of 18
representative ones. Similar results were obtained for theremainder
of the submitted queries. Additionally, for our experimentwe used
a fraction of our original data set comprised of all URLs thatwere
tagged at least 5 times (660k URLs), in order to avoid presenting
URLs for which a consensus among the users of del.icio.us hadnot
yet emerged and therefore introducing URLs that were irrelevant
exclusively due to noise.

Table 1 presents the Precision@10 performance of 4 different
techniques.I2g stands for interpolated bigram,I3g for interpo-
lated trigram, while2g and3g stand for plain bigram and trigram
respectively. Two conclusions can drawn from the data.

First, the use of more sophisticated interpolatedn-gram than a
simple bigram model does not seem to improve ranking effective-
ness. The performance of theI2g andI3g methods (both part of
the RadING ranking strategy) and the corresponding rankings pro-
duced is almost identical. This can be attributed to the relatively
short length of tag sequences assigned by users. The median length
2www.mturk.com

Query I2g I3g 2g 3g

birthday gift ideas 7.4 7.4 3.6 (4) 1.0 (1)
college blog 7.6 7.6 6.6 (10) 7.6 (10)

trigonometric formulas 7.9 7.9 0.9 (1) 0.9 (1)
stock market bubble 8.4 8.4 1.0 (1) 0.0 (1)

sea pictures 6.7 6.3 2.1 (3) 0.9 (1)
free music recording software 7.6 7.6 7.6 (10) 2.6 (3)

insomnia cure 8.4 8.6 1.9 (2) 0.9 (1)
red wine benefits 8.2 8.2 0.0 (0) 0.0 (0)

software draw bubbles 6.0 6.2 0.0 (0) 0.0 (0)
duck recipe 6.3 6.3 0.7 (1) 0.7 (1)
chinese food 8.7 8.7 8.2 (10) 8.5 (10)
recycling tips 9.3 9.3 8.8 (10) 5.3 (7)
water filter 8.5 8.5 9.1 (10) 9.1 (10)

economics tutorial 8.9 8.9 8.0 (10) 8.4 (10)
linear algebra book 9.1 9.1 9.0 (10) 5.5 (6)

f1 technology 7.9 7.9 0.7(1) 0.0 (0)
coffee machine 7.4 7.4 7.7 (10) 6.7 (9)
history books 8.4 8.4 7.9 (10) 7.2 (10)

Average Precision@10 7.93 7.93 4.65 3.63

Table 1: Precision@10 for a representative query sample.

of a sequence was only 2.7. Hence, an interpolated bigram model
is sufficient for capturing tag co-occurrence patterns in such short
tag sequences.

Second, the use of interpolatedn-grams (I2g, I3g) offers sub-
stantial benefit over the use of plainn-gram models (2g, 3g). The
reason is that most of the URLs in the collection are associated with
relatively few assignments, i.e., the training data associated with
most URLs is sparse (Section 3.4). This is not an artifact of our
data set, but rather a characteristic of social annotation systems in
general [11]. We present in parentheses, next to the Precision@10
value of the2g and3g methods, the overall number of URLs that
evaluated to non-zero relevance probability and were, hence, re-
trieved. In most cases, the number is considerably less than10.

Table 2 contrasts the ranking effectiveness of the RadING rank-
ing strategy with that of the tf/idf based alternatives. RadING uti-
lized interpolated bigram models. As it is evident, the proposed
ranking solution is superior to both adaptations of the tf/idf similar-
ity metric. On average, the bigram-based approach achievesa31%
and 44% better Precision@10 score than the Tf/Idf and Tf/Idf+
methods respectively.

The superior ranking effectiveness of RadING can be attributed
to the ability of the interpolated bigrams to model and utilize the
tag co-occurrence patterns that are observed in the URLs’ tagging
history. This crucial piece of information cannot be exploited by
the tf/idf based approaches. Both Tf/Idf and Tf/Idf+ fail tocapture
the fact that less-frequent tags can co-occur with high frequency
and instead only rewards high tag frequencies, therefore underesti-
mating the relevance of many URLs.

Additionally, the improved ranking effectiveness demonstrated
by the RadING solution over the tf/idf based alternatives issta-
tistically significant and is not an artifact of limited experimenta-
tion. Consider a queryQ and the top-10 results returned by Rad-
ING and Tf/Idf solutions. Each set of results is associated with
n = 100 binary relevance judgements (URL relevant/not rele-
vant). The fractionr of positive judgements is intrinsically linked
to the corresponding Precision@10 value: we simply have that
Precision@10 = 10 ∗ r. Notice thatr is (the maximum likeli-
hood estimate of) the probability of a randomly selected judge-
ment being positive. In order to demonstrate that the improve-
ment offered by RadING for queryQ is significant, we need to
demonstrate thatrRadING > rTf/Idf with high confidence. This
would imply that the corresponding Precision@10 scores follow the

Query I2g (RadING) Tf/Idf Tf/Idf+

birthday gift ideas 7.4 2.8 5.8
college blog 7.6 5.9 4.9

trigonometric formulas 7.9 6.3 5.2
stock market bubble 8.4 5.1 6.1

sea pictures 6.7 4.5 2.1
free music recording software 7.6 6.0 5.5

insomnia cure 8.4 6.5 7.0
red wine benefits 8.2 6.1 6.5

software draw bubbles 6.0 2.1 2.9
duck recipe 6.3 3.4 3.8
chinese food 8.7 7.7 2.2
recycling tips 9.3 8.0 8.2
water filter 8.5 7.1 5.1

economics tutorial 8.9 7.8 6.5
linear algebra book 9.1 7.0 6.4

f1 technology 7.9 7.5 7.6
coffee machine 7.4 7.1 5.9
history books 8.4 8.4 7.3

Average Precision@10 7.93 6.07 5.50

Average Improvement n/a +31% +44%

Table 2: Precision@10 for a representative query sample.

same relation. Using a binomial statistical test the null hypothesis
rRadING < rTf/Idf can be rejected at the 1% confidence level
(p-value) for the first 15 queries presented in Table 2. Hence, we
haverRadING > rTf/Idf with high confidence.

Lastly, Figure 8 presents the average Precision@k scores achieved
by the three ranking solutions, on the same query sample and for
different values ofk. The average Precision@k values have been
normalized using the value ofk, i.e., we present the correspond-
ing Precision@k/k values. As it is evident, the RadING ranking
strategy consistently outperforms the tf/idf based approaches for
all values ofk. Notice also the extremely high Precision@1 score
achieved by RadING: the top-1 query result returned by the tech-
nique was found to be highly relevant on all occasions. Addition-
ally, although the Precision@k performance of RadING is consis-
tently high, it is better for smaller values ofk. This trend implies
that RadING produces an intuitive and desirable ranking, with more
relevant URLs appearing higher in the top-10 result. This trend is
not observed for the tf/idf based approaches.

Precision@1 Precision@3 Precision@5 Precision@10
0.0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 P
re

ci
si

on
@

k/
k

RadING

Tf/Idf

Tf/Idf+

Figure 8: Average Precision@k.

6.3 Discussion
The introduced RadING methodology offers an additional and

substantial benefit, besides its superior ranking effectiveness and
scalability, namely the ability to incorporate a number of features
affecting ranking in aprincipledmanner. This can be performed by
employing non-uniform resource prior probabilities (Section 3.1)

and modifying, if needed, the interpolation parameters forcertain
resources (Section 3.5). In what follows we do not offer concrete
solutions, but rather hint at possibilities for providing aricher search-
ing experience in a collaborative tagging context.

As an example, the resource priors can be used to bias the final
ranking towards resources that are popular. Another optionwould
be biasing the ranking in favor of more recent resources. This
would offer the possibility for such resources to be more easily
discovered and therefore allow them to build momentum, provided
that users find them interesting enough to tag them. Furthermore,
the non-uniform resource priors can also be used to offer a person-
alized searching experience. This much-desired property could be
provided in a practical and scalable manner by clustering the users
and employing different priors for different user clusters.

Lastly, a significant number of resources in a collection canbe
expected to be tagged only once or a handful of times at most.
Whether the assignments associated with those lightly-tagged re-
sources can be trusted is debatable. Regardless, the linearly inter-
polated models that we utilize offer a principled solution for ad-
dressing this issue. For such resources,if desired, we can skip the
interpolation parameter optimization process and insteadset those
parameters manually. As we discussed in Section 3.5, we can use
parametersλ2, λ1 andλ0 to express our confidence towards the
bigram, unigram and background tag probabilities of a resource’s
history respectively. For example, if we lack confidence on the as-
signments of lightly-tagged resources, we can set parameters λ1

andλ2 to low values. This type of reasoning should also be applied
to resources that have been tagged only once. The ability to handle
lightly-tagged resources in such a flexible and principled manner is
unique to our approach.

Another parameter estimation approach that is appropriatefor
lightly-tagged resources (but can also be applied to all resources)
is cross-validation. The assignments associated with a resource are
separated intob disjoint “buckets”. Then,b rounds of parameter
estimation are performed: each bucket is used as the held-out data
set, while the remainingb − 1 buckets comprise the training data
set. The final interpolation parameter values are calculated by av-
eraging the values computed in theb optimization rounds.

7. CONCLUSIONS
In this paper we presented a principled, efficient and effective

ranking methodology that utilizes statistical language modeling tools,
as motivated by our understanding of the collaborative tagging pro-
cess. Training of the language models was performed by meansof
a novel optimization framework that outperforms by a large mar-
gin the optimization techniques employed currently. The validity
of our claims was verified using a massive data set extracted from
a popular social annotation system.

Acknowledgements:The work of Gautam Das was supported in
part by the US National Science Foundation under grants 0845644
and 0812601, unrestricted gifts from Microsoft Research and Nokia
Research, and start-up funds from the University of Texas atAr-
lington.

8. REFERENCES
[1] Text retrieval conference (trec). http://trec.nist.gov/.
[2] S. Amer-Yahia, M. Benedikt, L. V. Lakshmanan, and

J. Stoyanovich. Efficient network-aware search in
collaborative tagging sites. InVLDB, 2008.

[3] S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing
web search using social annotations. InWWW, pages
501–510, 2007.

[4] S. Boyd and L. Vandenberghe.Convex Optimization.
Cambridge University Press, 2004.

[5] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine.Computer Networks and
ISDN Systems, 30(1–7):107–117, 1998.

[6] C. Cattuto, V. Loreto, and L. Pietronero. From the Cover:
Semiotic dynamics and collaborative tagging.PNAS,
104(5):1461–1464, 2007.

[7] S. F. Chen and J. Goodman. An Empirical Study of
Smoothing Techniques for Language Modeling. Technical
Report TR-10-98, Computer Science Group, Harvard
University, 1998.

[8] P. A. Chirita, S. Costache, W. Nejdl, and S. Handschuh.
P-tag: large scale automatic generation of personalized
annotation tags for the web. InWWW, pages 845–854, 2007.

[9] S. A. Golder and B. A. Huberman. Usage patterns of
collaborative tagging systems.Journal of Information
Science, 32(2):198–208, 2006.

[10] H. Halpin, V. Robu, and H. Shepherd. The complex
dynamics of collaborative tagging. InWWW, pages 211–220,
2007.

[11] P. Heymann, G. Koutrika, and H. Garcia-Molina. Can social
bookmarking improve web search? InWSDM, pages
195–206, 2008.

[12] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme.
Information retrieval in folksonomies: Search and ranking.
In ESWC, pages 411–426, 2006.

[13] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Trend
detection in folksonomies. InSAMT, pages 56–70, 2006.

[14] T. Joachims. Optimizing search engines using clickthrough
data. InKDD, pages 133–142, 2002.

[15] T. Joshua. A bit of progress in language modeling.Computer
Speech & Language, 15(4):403–434, 2001.

[16] D. Jurafsky and J. Martin.Speech and Language Processing:
An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition. MIT
Press.

[17] R. Li, S. Bao, Y. Yu, B. Fei, and Z. Su. Towards effective
browsing of large scale social annotations. InWWW, pages
943–952, 2007.

[18] D. Luenberger.Linear and Nonlinear Programming. Kluwer
Academic Publishers, 2003.

[19] C. Manning, P. Raghavan, and H. Schütze.Introduction to
Information Retrieval. Cambridge University Press, 2008.

[20] C. Manning and H. Schütze.Foundations of Statistical
Natural Language Processing. The MIT Press, 1999.

[21] D. R. H. Miller, T. Leek, and R. M. Schwartz. A hidden
markov model information retrieval system. InSIGIR, pages
214–221, 1999.

[22] O. Nelles.Nonlinear System Identification. Springer, 2000.
[23] J. Nocedal and S. Wright.Numerical Optimization, 2nd

Edition. Springer, 2006.
[24] R. Fagin and A. Lotem and M. Naor. Optimal Aggregation

Algorithms For Middleware.PODS, June 2001.
[25] F. Song and W. B. Croft. A general language model for

information retrieval. InCIKM, pages 316–321, 1999.
[26] L. Xu and M. Jordan. On convergence properties of the EM

algorithm for Gaussian mixtures.Neural Computation,
8(1):129–151, 1996.

