
CODS: Evolving Data Efficiently and Scalably
in Column Oriented Databases ∗

Ziyang Liu1, Sivaramakrishnan Natarajan1, Bin He2, HuiI Hsiao2, Yi Chen1

Arizona State University1, IBM Almaden Research Center2

{ziyang.liu,snatara5,yi}@asu.edu1

binhe@us.ibm.com2

hhsiao@almaden.ibm.com2

ABSTRACT
Database evolution is the process of updating the schema of a database
or data warehouse (schema evolution) and evolving the data to
the updated schema (data evolution). Database evolution is often
necessitated in relational databases due to the changes of data or
workload, the suboptimal initial schema design, or the availability
of new knowledge of the database. It involves two steps: updating
the database schema, and evolving the data to the new schema. De-
spite the capability of commercial RDBMSs to well optimize query
processing, evolving the data during a database evolution through
SQL queries is shown to be prohibitively costly. We designed and
developed CODS, a platform for efficient data level data evolution
in column oriented databases, which evolves the data to the new
schema without materializing query results or unnecessary com-
pression/decompression as occurred in traditional query level ap-
proaches. CODS ameliorates the efficiency of data evolution by
orders of magnitude compared with commercial or open source
RDBMSs.

1. INTRODUCTION
Database evolution is the process of updating the schema of a

database or data warehouse (schema evolution) and evolving the
data to the updated schema (data evolution). Database evolution
occurs in relational databases and data warehouses with a good deal
of regularity [5, 7], aiming at adapting the database for optimal
performance up against the emergence and/or change to the data
or workload. The Wikipedia database, for example, has had more
than 170 versions in the past 5 years [4]. The scenarios where a
database evolution is necessitated or highly desirable include but
are not limited to:

1. New Information about the Data. Consider table R in Fig-
ure 1. Suppose originally, it only has attributes Employee and
Skill. If later on the address information emerges, we would
like to add an attribute Address to R. Besides, at the schema

∗This material is based on work partially supported by NSF CA-
REER award IIS-0845647, IIS-0740129, IIS-0915438.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 1317,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

Employee Skill Address

Jones Typing 425 Grant Ave

Jones Shorthand 425 Grant Ave

Roberts Light Cleaning 747 Industrial Way

Ellis Alchemy 747 Industrial Way

Jones Whittling 425 Grant Ave

Ellis Juggling 747 Industrial Way

Harrison Light Cleaning 425 Grant Ave

Employee Address

Jones 425 Grant Ave

Roberts 747 Industrial Way

Ellis 747 Industrial Way

Harrison 425 Grant Ave

Employee Skill

Jones Typing

Jones Shorthand

Roberts Light Cleaning

Ellis Alchemy

Jones Whittling

Ellis Juggling

Harrison Light Cleaning

S

T

R

schema 1

schema 2

Figure 1: Sample Database Evolution

design time, the designer might have believed that each Em-
ployee has a single Skill. When more data tuples are added,
it is revealed that each employee may have multiple skills.
Thus it is better to decompose R to two tables S and T, as
shown in schema 2, in order to prevent data redundancy and
update anomaly.

2. New Information about the Workload. Assume that the
original workload on Figure 1 is update intensive, for which
Schema 2 is desirable. Later workload characteristics change
to become query intensive, and most queries look for ad-
dresses given skills. Now Schema 1 becomes more suitable,
as it avoids joins of two tables. One typical example is in data
warehouse applications, when workload evolves, we choose
to change star schema to snowflake schema, or vice versa.

Database evolution consists of two steps: schema update and
data evolution. Existing work on database evolution mainly studies
the first step, specifically, the interfaces and operators needed for
schema update and the maintenance of associated views/applications.
A system for supporting automatic schema evolution, the PRISM
workbench [5], provides support for predicting the effect of schema
update, implementing logical independence, improving audibility,
rewriting queries, etc. However, efficient algorithms for evolving
the data from the original schema to the new schema is yet to be
investigated. Currently, data evolution is expressed and executed
at query level, i.e., via SQL queries. As an example, the following

1521

compressed data

(old schema)

CODS

platform
compressed data

(new schema)

schema

modification

request

uncompressed data

decompress

query

execution

engine

tuples columns

merge

data level data evolution

query level schema evolution

re-compress

Figure 2: Architecture of Data Level vs. Query Level Data Evolution on Column Oriented Databases

SQL queries are executed to evolve the data from R to S and T in
Figure 1:

1. INSERT INTO S SELECT EMPLOYEE, SKILL FROM R

2. INSERT INTO T SELECT DISTINCT EMPLOYEE, ADDRESS
FROM R

Such a query level approach is notoriously costly for two rea-
sons. First, it has excessive data accesses; every (distinct) attribute
value in every tuple is accessed. Second, after the query results are
loaded into the new tables, indexes have to be built from scratch
on the new table. This approach makes data evolution prohibitively
expensive and even inapplicable, as to be shown in this paper and is
also observed in [5]. The inflexibility of schema change on current
database systems not only results in degraded system performance
over time, but forces schema designers to be highly cautious and
thus severely limits the database usability.

To tackle this challenge, we observe that, when evolving the data
to the new schema, usually many columns in a table remain un-
changed. Therefore, data evolution can potentially be much more
efficient on column oriented databases, where each column is stored
separately, and thus unchanged columns can be reused.1 In the
simplest case, to add (or drop) a column in a column store, other
columns do not need to be affected at all. However, to fully op-
timize data evolution on column stores in supporting of general
schema updates, two technical challenges need to be addressed.
First, is it possible to directly evolve the data from column ori-
ented storage to column oriented storage? In other words, can we
do better than query-level data evolution that requires to generate
the query results and re-build the indexes on the results? Second,
values in a column store are typically compressed; is it possible to
evolve the data without decompression and re-compression?

To address these challenges, we present CODS (Column Oriented
Database Schema update) in this demo, a platform that handles data
evolution on column oriented databases efficiently. It allows users
to specify a schema update using one of the Schema Modification
Operators [5], and evolves the data to the new schema with orders
of magnitude of improved efficiency compared with query level ap-
proaches on commercial and open source RDBMSs.

By enabling efficient data evolution, CODS makes databases
more flexible and agile to handle evolving data and workload. Be-
sides, CODS also guides the choice between row oriented databases
and column oriented databases when schema changes are poten-
tially wanted, and brings opportunities for research on further uti-
lization of efficient data evolution.
1“column oriented database” and “column store” are used inter-
changeably in this paper.

Table 1: Operations for Schema Update
SMO Description
DECOMPOSE TABLE Decompose a table into two tables. The

union of the attributes in the two output
tables equals to the attributes of the in-
put table

MERGE TABLES Create a new table on storage by joining
two tables

CREATE TABLE Create a new table in the database
DROP TABLE Delete a table from the database
RENAME TABLE Rename a table, keeping its data un-

changed
COPY TABLE Create a copy of an existing table
UNION TABLES Combine the tuples of two tables with

the same schema into one table
PARTITION TABLE Partition the tuples into a table into two

tables with the same schema with a con-
dition

ADD COLUMN Create a new column for a table and load
the data from user input or by default

DROP COLUMN Delete an existing column and its asso-
ciated data

RENAME COLUMN Change the name of a column without
changing data

2. SYSTEM OVERVIEW

2.1 Architecture of CODS
The architecture of data level data evolution adopted in CODS

and that of traditional query level data evolution on column oriented
databases are shown in Figure 2. As we can see, query-level data
evolution in a column oriented database is very expensive. First,
we need to generate query results, during which the columns need
to be materialized into tuples. Then, the tuples have to be broken
up into columns, and finally, each column of the results needs to
be compressed and stored, which incurs high costs. On the other
hand, CODS directly operates on the compressed columns (usu-
ally encoded as compressed bitmaps [8, 9]) which are affected by
the schema change, and generates the compressed columns corre-
sponding to the new schema without the need of decompression or
re-compression.

2.2 Data Storage
In column stores, the data in each column are stored contigu-

ously on the storage. As values in a column are often duplicate
and/or similar, compression and/or encoding technologies can be
applied in column stores to reduce the storage size. Bitmap is the
most common encoding scheme used in column stores [3, 9]. A

1522

bitmap for a column can be viewed as a v×r matrix, where v is the
number of distinct values and r is the number of rows. Each value
in the column corresponds to a vector of length r in the bitmap, in
which the kth position is 1 if this value appears in the kth row, and
0 otherwise. To reduce the storage size and improve performance,
a bitmap is typically compressed when a column has a reasonable
number of duplicate values. Among existing compression schemes
for bitmaps, WAH [9] is the state-of-the-art which support query
processing on compressed data directly, and is adopted in our im-
plementation. Other compression schemes are sometimes used for
special columns, such as run length encoding for sorted columns.
Supporting other compression/encoding schemes is one of our fu-
ture works.

2.3 Operations in Schema Update
We support all the Schema Modification Operators (SMO) as

introduced in [5], which are listed in Table 1. Among these op-
erations, Decompose Table and Merge Tables are the most chal-
lenging ones, as they involve major change to the underlying data.
Create, Drop, and Rename Table operations incur mainly schema
level operations while Copy, Union and Partition Table operations
require data movement, but no data change. Thus, they are rela-
tively straightforward. For column-level SMO, Add Column and
Drop Column can also be supported easily. Due to space reasons,
in the following we focus the discussion on Decompose and Merge
operations.

2.4 Decomposition Operation
This operation decomposes a table into two tables. As an ex-

ample, see Figure 1. Table R is decomposed into two tables, S
and T. We assume that a decomposition is lossless, since only a
lossless-join decomposition ensures that the original table can be
reconstructed based on the decomposed tables. In a lossless-join
decomposition of table R into S and T, the common attributes of S
and T must include a candidate key of either S or T, or both. De-
composing a table into multiple tables can be done by recursively
executing this operation.

We observe two properties of a lossless-join decomposition, which
are exploited for efficient decompositions.

1. In a lossless-join decomposition which decomposes a table
into two, at least one of the two output tables is unchanged
from the original one.

2. For a changed output table, its non-key attributes have func-
tional dependency on its key attributes in the original table.

The proof is omitted and can be found in [6].
Property 1 can be effectively utilized by column stores. Since

each column is stored separately, the unchanged output table can
be created right away using the existing columns in R without any
data operation. Column-store makes it possible to only access the
data that is necessary to change in a data evolution, and thus save
computation time.

Without loss of generality, let the set of attributes in R, S,T be
(A1, · · · , Ak, Ak+1, · · · , An), (A1, · · · , Ak, Ak+1, · · · , Am),
and (A1, · · · , Ak, Am+1, · · · , An) respectively. Assume that the
common attributes of S and T, A1, · · · , Ak, comprise the key of T,
which means S is the unchanged output table. Then, to generate T,
we can take the following steps:

1) For each distinct value v of T’s key attributes A1, · · · , Ak, we
locate a tuple position in R that contains v. The result of this step
is a list of tuple positions in R, one for each distinct value of T’s
key attributes. This step is referred to as “distinction”.

2) Given the list of positions of the key attribute values of T in R,
we can directly generate new bitmaps of T’s attributes from their
corresponding bitmaps in R. Each v presents a list of k values from
T’s key attributes. Using Property 2, all tuples in R with the same
v have the same values on Am+1, · · · , An. We thus can choose
any one of these tuples and do not need to access all of them. For
each attribute, we shrink their bitmap in R by only taking the bits
specified in the position list. We name such an operation as “bitmap
filtering”.

2.5 Mergence Operation
The mergence operation joins two tables to form a new table,

such as joining S and T in Figure 1 into R. There are two scenarios
of mergence: 1) At least one of the input tables can be reused in
the mergence (i.e., the columns in this table are the same as the
corresponding ones in the output table), and 2) Neither of the input
tables can be reused. For scenario 1, the join attributes of the two
input tables comprise the key of one input table, and thus the other
input table’s columns are reusable, such as the mergence of tables S
and T in Figure 1 into table R. This type of mergence is referred to
as key-foreign key based mergence. Scenario 2 involves other types
of equi-joins, named as general mergence.

Without loss of generality, we use S (A1, · · · , Ak, Ak+1, · · · ,
Am), T (A1, · · · , Ak, Am+1, · · · , An) to denote the two input
tables, and our goal is to merge S and T into table R (A1, · · · , An).

2.5.1 KeyForeign Key Based Mergence
Suppose the common attributes of S and T comprise the key of

T. Thus instead of generating all columns in R, we can reuse the
columns in S (i.e., A1, · · · , Ak, Ak+1, · · · , Am) and only generate
columns Am+1, · · · , An for R. The new bitmap of each Ai (m+1
≤ i ≤ n) in R can be obtained by deploying the original bitmap of
Ai in S and the bitmap of the key attributes in T. To generate a new
bitmap vector of a value u in R, we can examine u’s bitmap vector
in T to find the key values co-occurred with u, and then combine
the bitmap vectors of these key values in S with OR operations.

However, such an approach needs to find the key value corre-
sponding to each value of attribute Ai (m+1 ≤ i ≤ n). Doing so
for each value requires the key values in S to be randomly accessed,
which is not efficient. Therefore, instead of scanning each vector
of each attribute, we can sequentially scan each attribute value of
each tuple in S, which can generate the same result. Specifically,
we perform a sequential scan of S, and for each attribute value of
Ai (m+1 ≤ i ≤ n) in row j of S, we take the bitmap vector of row
j’s key value in T and do an OR operation with the existing new
vector of that value.

2.5.2 General Mergence
This scenario is more challenging. We are not only unable to

reuse existing tables, but face difficulties to efficiently determining
the positions of attribute values in R, as we cannot compute the
positions of a value in R using only the vectors of the value in S
and T. We design a two-pass algorithm to quickly generate the
target table for this scenario.

The first pass is performed on the join attributes of S and T. In
this pass, we compute the number of occurrences of each distinct
join value in S and T. After this pass, we are able to easily gen-
erate the bitmaps for the join attributes: If a join value v has n1

occurrences in S and n2 occurrences in T, then it has n1 × n2 oc-
currences in R. Further, we can cluster R by the join attributes,
thus the bitmap vector of each value can be directly derived from
the occurrence counts.

In the second pass, for each distinct join value, we find the match-

1523

ing non-key attributes in S and T. For values of non-key attributes
in S, we put them in a consecutive way and thus can correspond-
ingly compute the positions for each value. For values of non-key
attributes in T, we put them in a non-consecutive way but with the
same distance and thus can also correctly compute the positions for
each value. In this way, we generate the output table R efficiently.
Due to space constraints, we omit the details of our algorithms,
which are presented in [6].

2.6 Empirical Evaluation
We have empirically evaluated CODS in comparison with a com-

mercial row-oriented RDBMS product, SQLite [2] (an open source
row oriented RDBMS), and MonetDB [1] (an open source column-
oriented RDBMS). The test results of decomposing a table R with
10 million tuples into S and T, and merging them back to R, are pre-
sented in Figure 3. Although full-fledged RDBMSs offer a much
large number of functionalities which will likely affect their perfor-
mance of data evolution, these experiments can serve as an initial
empirical study on the data-level approach for data evolution. As
can be seen, CODS has a significantly better efficiency and scal-
ability than query-level data evolution on row-oriented databases
and column-oriented databases. More experimental evaluations are
reported in [6].

0

100

200

300

400

100 1K 10K 100K 1M

T
im

e
(s

)

of Distinct Values
D C C+I S M

0

20

40

60

80

100

100 1K 10K 100K 1M

T
im

e
(s

)

of Distinct Values
D C C+I M

 (a) Decomposition (b) Mergence

Figure 3: Evaluation. D = Data-Level Approach (CODS), C
= Commercial RDBMS, C+I = Commercial RDBMS with In-
dexes, S = SQLite, M = MonetDB.

3. DEMONSTRATION OUTLINE
In our demonstration we present CODS, the first platform that

supports efficient data-level data evolution. The goal of our demon-
stration is to showcase how CODS can be used to perform data
evolutions upon schema changes.

A snapshot of CODS is shown in Figure 4, where a set of opera-
tions are supported.

Specifying and Executing Operators for Data Evolution. First,
tables need to be specified by clicking the “create/drop table” but-
ton. Users will specify the attributes of a table, in the same way
they create tables using SQL. In Figure 4, for example, three tables
are already created. Then, the users can load data into the tables
from data files. When clicking “load data”, users will choose the
file location and the table to which the data are loaded. CODS will
build a bitmap index for each non-key attribute of a table. The tu-
ples in the tables can be shown by clicking “display table”.

Then, users need to specify one or more schema modification
operators by clicking the “add” button. CODS supports the opera-
tors for schema update listed in Table 1. Each operator takes some
parameters, e.g., if the user chooses “decompose”, then s/he needs
to specify three tables: one input table and two output tables. In
Figure 4, one schema modification operator is specified.

Finally, the schema modification operators will be executed by
clicking the “execution” button.

Figure 4: CODS Snapshot

Tracking Data Evolution Status. During the data evolution
process, the detailed status will be shown in the “Data Evolution
Status” part. It shows each step that is taken by CODS during the
data evolution, such as “distinction” and “filtering”, as introduced
in Section 2.4. The users will see that CODS directly generates the
output tables from the original ones. On the other hand, the query-
level approach first executes queries, then import the results into
the new tables, and re-build the indexes if needed.

After a data evolution is finished, the users can choose to display
the generated tables (by clicking “display table”), or specify further
schema modification operators and run them on the new tables.

In summary, since the demands of database evolution occur quite
often in databases and data warehouses in order to achieve opti-
mized performance upon change of data or workload, a system for
efficiently evolving data to the new schema is remarkably helpful.
The buildup of the CODS platform fills a gap in the development
of database management systems with high flexibility in terms of
schemas. CODS presents the good feasibility of data evolution
in column oriented databases, and illustrates how data evolution
can be efficiently and scalably achieved. It is of both theoretical
and practical use for database researchers, designers, administra-
tors as well as users, guides the choice of row oriented databases
versus column oriented databases in applications, and encourages
researches on further utilization of efficient data evolution.

4. REFERENCES
[1] MonetDB. http://monetdb.cwi.nl/.
[2] SQLite. http://www.sqlite.org/.
[3] D. J. Abadi, S. R. Madden, and M. C. Ferreira. Integrating

Compression and Execution in Column-Oriented Database Systems.
In SIGMOD, 2006.

[4] R. B. Almeida, B. Mozafari, and J. Cho. On the Evolution of
Wikipedia. In ICWSM, 2007.

[5] C. Curino, H. Moon, and C. Zaniolo. Graceful Database Schema
Evolution: the PRISM Workbench. In VLDB, 2008.

[6] Z. Liu, B. He, H.-I. Hsiao, and Y. Chen. Agile Schema Evolution on
Column Oriented Databases. Technical Report TR-09-016, Arizona
State University, 2009.

[7] H. Moon, C. Curino, A. Deutsch, C.-Y. Hou, and C. Zaniolo.
Managing and Querying Transaction-time Databases under Schema
Evolution. In VLDB, 2008.

[8] M. Stonebraker, D. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil,
A. Rasin, N. Tran, and S. Zdonik. C-Store: A Column Oriented
DBMS. In VLDB, 2005.

[9] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing Bitmap Indices with
Efficient Compression. ACM Trans. Database Syst., 31(1):1–38, 2006.

1524

