
Active Complex Event Processing: Applications in
Real-Time Health Care

Di Wang, Elke A. Rundensteiner,
Han Wang

Worcester Polytechnic Institute

{wangdi,rundenst,wanghan}@cs.wpi.edu

Richard T. Ellison III
Univ. of Massachusetts Medical School

richard.ellison@umassmemorial.org

ABSTRACT
Our analysis of many real-world event based applications has
revealed that existing Complex Event Processing technol-
ogy (CEP), while effective for efficient pattern matching on
event stream, is limited in its capability of reacting in real-
time to opportunities and risks detected or environmental
changes. We are the first to tackle this problem by provid-
ing active rule support embedded directly within the CEP
engine, henceforth called Active Complex Event Process-
ing technology, or short, Active CEP. We design the Active
CEP model and associated rule language that allows rules
to be triggered by CEP system state changes and correctly
executed during the continuous query process. Moreover
we design an Active CEP infrastructure, that integrates the
active rule component into the CEP kernel, allowing fine-
grained and optimized rule processing. We demonstrate the
power of Active CEP by applying it to the development of a
collaborative project with UMass Medical School, which de-
tects potential threads of infection and reminds healthcare
workers to perform hygiene precautions in real-time.

1. BACKGROUND AND MOTIVATION
Complex patterns of events often capture exceptions, threats

or opportunities occurring across application space and time.
Complex Event Processing (CEP) technology has thus in-
creasingly gained popularity for efficiently detecting such
event patterns in real-time. For example CEP has been
employed by diverse applications ranging from healthcare
systems , financial analysis , real-time business intelligence
to RFID based surveillance. However, existing CEP tech-
nologies [3, 7, 2, 5], while effective for pattern matching, are
limited in their capability of supporting active rules. We mo-
tivate the need for such capability based on our experience
with the development of a real-world hospital infection con-
trol system, called HygieneReminder, or short HyReminder.

Application: HyReminder. According to the U.S.
Centers for Disease Control and Prevention [8], healthcare-
associated infections hit 1.7 million people a year in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

United States, causing an estimated 99,000 deaths. HyRe-
minder is a collaborated project between WPI and Univer-
sity of Massachusetts Medical School (UMMS) that uses ad-
vanced CEP technologies to solve this long-standing public
health problem. HyReminder system aims to continuously
track healthcare workers (HCW) for hygiene compliance (for
example cleansing hands before entering a H1N1 patient’s
room), and remind the HCW at the appropriate moments
to perform hygiene precautions - thus preventing spread of
infections.

CEP technologies are adopted to efficiently monitor event
patterns, such as the sequence that a HCW left a patient
room (this behavior is measured by a sensor reading and
modeled as “exit” event), did not sanitize his hands (re-
ferred as “!sanitize”, where ! represents negation), and
then entered another patient’s room (referred as “enter”).
Such a sequence of behaviors, i.e. SEQ(exit,!sanitize,enter),
would be deemed as a violation of hand hygiene regulations.

Besides detecting complex events, the HyReminder sys-
tem requires the ability to specify logic rules reminding
HCWs to perform the respective appropriate hygiene upon
detection of an imminent hand hygiene violation or an ac-
tual observed violation. A condensed version of example
logic rules derived from HyReminder and modeled using
CEP semantics is depicted in Figure 1. In the figure, the
edge marked “Q1.1” expresses the logic that “if query Q1.1
is satisfied for a HCW, then change his hygiene status to
warning and change his badge light to yellow”. This logic
rule in fact specifies how the system should react to the ob-
served change, here meaning the risk being detected by the
continuous pattern matching query Q1.1, during the long
running query process. The system’s streaming environment
requires that such reactions be executed in a timely fashion.
An additional complication arises in that the HCW status
changed by this logic rule must be used as a condition by
other continuous queries at run time, like Q2.1 and Q2.2.

We can see that active rules and continuous queries over
streaming data are tightly-coupled: continuous queries are
monitoring the world while active rules are changing the
world, both in real-time. Yet contrary to traditional databases,
data is not persistently stored in a DSMS, but rather streamed
through the system in fluctuating arrival rate. Thus process-
ing active rules in CEP systems requires precise synchroniza-
tion between queries and rules and careful consideration of
latency and resource utilization.

Limitations of Existing CEP Technology. In sum-
mary, the following active functionalities are needed by many
event stream applications, but not supported by the existing

1545

Figure 1: Condensed HCW Hygiene Status Logic

CEP technology.
(1) Build-in support for declaring a continuous query’s

status, condition and action. In existing CEP systems, a
CEP query is running in a passive way not able to react to
the changes happening during the long-running query pro-
cess. Those changes may include semantic information being
updated, risks or opportunities being detected, and gener-
ally any condition critical for solving real-world problems.

Nowadays, business intelligence products [9, 10] tend to
tackle the problem by providing an external software layer
on top of CEP systems. This solution reaps bad performance
as efforts have to be made for crossing the border between
the CEP engine and the application layer repeatedly for the
handling of possibly a single rule. Moreover, the upper layer
lacks the access to the CEP kernel, which limits the oppor-
tunity for fine-grained optimization. All these limitations
prevent this hard-coded “application-logic-on-top-of-CEP”
solution from achieving near-real responsiveness required by
most real-time event-based applications.

(2) Active semantic binding on input data. Combining
semantic knowledge about the application space with in-
coming stream data is important in CEP applications for
extracting meaningful information from the raw data. Be-
yond the need of static semantic knowledge, there is a need
to change the semantic information based on the outcome of
queries, and to make the most updated semantic knowledge
both readable and writable by queries in real-time.

Proposed Solution: Active CEP. We are the first
to extend complex event processing with build-in logic rule
support. In other words, we embed active rule semantics
directly within the CEP context to build an active CEP
infrastructure. The active rule components are integrated
into the CEP kernel, which allows fine-granularity event no-
tification, deterministic rule behavior enforcement and op-
timized rule processing.

Our Contributions. (1) We propose an Active CEP
model and associated Active CEP rule language for the spec-
ification and semantics of Active CEP. This significantly ex-
tends the existing CEP model to meet the needs of diverse
event stream based applications. (2) We provide an infras-
tructure to implement the Active CEP model which inte-
grates the active rule extension into the CEP kernel. This
approach is in sharp contrast to existing CEP based systems
that build an external software layer on top of the CEP en-
gine. (3) We develop a large suite of optimization techniques
that achieve scalable and efficient Active CEP execution. (4)
We show the feasibility of our proposal by implementing all
the techniques above within the full-fledged WPI/HP CEP
engine [4]. We demonstrate the effectiveness of our Active
CEP through a real-world application, the HyReminder sys-

tem, which is being deployed into Intense Care Units at the
UMass Memorial Hospital.

2. ACTIVE CEP SYSTEM ARCHITECTURE
Figure 2 illustrates the system architecture of our ACEP

system, where three core components, i.e. semantic reposi-
tory, complex event processor and rule manager, are coher-
ently connected.

Figure 2: Active CEP System Architecture

Semantics Repository is responsible for maintaining the
contextual knowledge model that captures relevant informa-
tion about the environment into which the application is de-
ployed. The semantic knowledge in the semantic repository
can be either static (e.g. the physical layout of the hospi-
tal such as the position of rooms and sanitizers) or dynamic
(such as the hygiene performance status of a HCW that is
dynamically updated based on his behaviors over time).

Complex Event Processor supports long-running pat-
tern matching queries with negation, nested query and spatio-
temporal features over event streams [4]. The processor
in our system also handles CEP queries that integrate re-
lational database lookup, typically access to the semantic
repository. Queries issued by the application are rewritten
by the query optimizer using plan based cost estimation,
and then passed to the CEP engine for execution.

Rule Manager is tightly integrated with the CEP pro-
cessor. The rule rewriter co-works with the query optimizer
to convert a rule into an alternate, potentially more eco-
nomical form. Rule event detection is implemented by plac-
ing the checking and notification code inside the kernel of
the CEP Processor. The rule scheduler executes a triggered
rule’s action, which directly affects the semantic repository
and the CEP processor.

3. ACTIVE CEP TECHNOLOGY

3.1 Semantics
Data Model. Our abstract semantics is based on two

data types: (1) An event stream S is an unbounded sequence
of events; while an event represents an instantaneous occur-
rence of interest [6], and is assigned a timestamp from a
discrete ordered time domain. An event contains the name
of its event type (defined in a schema) and a set of attribute
values. (2) A relation R is a static bag of tuples that all
conform to the same schema associated with R.

1546

All data in the CEP system constitute the CEP system
state. Formally, let S be the domain of CEP system states.
If s is a state in S, the s = {e1, e2, ..., en; t1, t2, ..., tm} where
ei is an event tuple in event streams and ti is a relational
tuple in relations.
Operators. We adopt the syntax for CEP queries com-

monly used in the literatures, [4], [7] and [3] 1:

PATTERN (event-pattern) ON event-stream
[WHERE qualification]
[WITHIN window]
RETURN <output-specification>

The event pattern describes an event pattern to be matched
over the input event-stream. For example, PATTERN(A,B)
will find instances of event B that follow event A. The
qualification defines value constraints on the event pat-
tern. The window describes the time window during which
events that match the pattern must occur. The
output-specification specifies the construction of com-
plex events being output into the output stream. pattern
is considered as a high-level operator over event streams. An
event tuple arrival is modeled as an append operator that
inserts the event instance into the event stream.

Operators on relations include a subset of DML operators
defined in SQL: select, insert, delete and update.

All operators being executed on the CEP system compose
the CEP system changes. Formally, let ∆ be the domain of
CEP system changes. If δ is a set of changes in ∆, then δ =
[Pattern, Append, Select, Insert, Delete, Update]. Namely δ
describes the operations on s.

Active Rules. Active rules in our system must be able to
respond to complex events being detected by CEP queries,
semantic information being updated and more generally to
any possible CEP system change. Hence the semantics for
an Active CEP rule is defined as a function that maps a
CEP system change and a CEP system state into the new
CEP system state that results from processing those rules.

Formally, let R be the domain of rules. If r is a rule in R,
then r is a function that takes as arguments a CEP system
change δ and a CEP system state s. It returns a boolean
value, a new set of changes and a new system state; that is:
r : ∆× S → {true, false} ×∆× S

3.2 Active CEP Rule Definition
We now present our proposal of a declarative CEP rule

language implementing the semantics described above. The
syntax of defining a rule in our Active CEP system is:

CREATE [OR REPLACE] RULE <rule-name>
{BEFORE|AFTER} {APPEND|RETURN} ON <stream-name>
[REFERENCING NEW AS <new-tuple-name>]
[FOR EACH TUPLE]
[WHEN <trigger-condition>]
<action-body>

For example, to express the logic rule described in the
HyReminder application in Section 1, we can first define
the CEP query, named Q1-1, and then define an active rule,
named R1-1, on query Q1-1’s output, as shown below:

CREATE QUERY Q1-1 ON STREAM sanitize, enter, exit
PATTERN SEQ(!sanitize, enter, !exit)
WHERE [workerID] AND

1
Our CEP engine [4] can also support advanced pattern features

such as negation and Kleene closure. Due to space limit, we omit
those advanced features in this work.

time-distance(sanitize, enter) < 2min AND
time-distance(enter, exit) < 10sec AND
’green’=(SELECT status FROM workerStatus

WHERE workerID=enter.workerID)
RETURN enter.workerID, enter.location

CREATE RULE R1-1
AFTER RETURN ON Q1-1
REFERENCING NEW AS newTuple
FOR EACH TUPLE
WHEN newTuple.location = ’H1N1 room’
BEGIN

UPDATE workerStatus SET status = ’yellow’
WHERE workerID = newTuple.workerID

END

3.3 Integrated Rule and Query Execution
For query processing, our Active CEP system employs a

NFA-based approach for complex event sequence construc-
tion (as in [3, 4]). It adopts customized optimizations that
push predicates and window constraints down into the se-
quence construction. For query predicates containing lookup
on relations, we execute the embedded query for each tuple
that needs to be evaluated. This simple strategy makes
sure the value retrieved from the relation is the most up-
dated one, but brings large I/O costs. In next section we
will present an optimized approach for improving the per-
formance. When an active rule is defined on the CEP query,
each matched complex event result emitted from the CEP
query engine is passed to the rule manager right away. Such
build-in-kernel mechanism is crucial for the rule manager to
react in a timely fashion. The rule processing pipelines the
event detection, condition verification, rule scheduling and
action execution, as described in Section 2.

3.4 Optimization
We tackle two salient challenges in event-stream-centric

rule processing: large amount of triggering events and fluc-
tuating semantic information that is frequently accessed by
queries and updated by rule actions over time. Since stream-
based applications have strict performance requirements,
solving the above issues is of paramount importance.

Rule Rewriter. An important optimization for prevent-
ing unnecessary events from being passed to the rule man-
ager is to evaluate the rule conditions as early as possible.

In the example rule R1-1, the output tuples of query Q1-1

will be passed to rule processing, but only very few of the tu-
ples will end up triggering the rule to execute its action (sup-
pose the rule condition newTuple.location=’H1N1 room’ is
selective). Intuitively, it would be much more efficient to
evaluate the condition in the query first. Hence we can re-
move the condition defined in the rule and add it into the
query’s qualification list. By doing this we have two CEP
queries: the original query with no modification (Q1-1), and
the query with newly-added qualification (named Q1-1-R).
And the rule is rewritten to be defined on Q1-1-R. These
two queries will be run in the CEP engine, assuming the
output of the former is still consumed by some other rules
or returned to end users.

The overhead of the above rewriting algorithm would be
the extra new query registered in the CEP engine. Our
system hence performs a cost-based analysis for each rule
before executing the rewriting. The detailed cost analysis
can be found in our technical report.

Caching sub-query result. Fetching the result of a sub-
query in advance from a data source outside the CEP engine
and caching it for the query’s lookup, instead of executing

1547

the sub-query for every (qualified) tuple, reduces the query
evaluation cost. Hence we propose to create a Dynamically
Cached Index (DCI) for multiple CEP query conditions that
have the same parameter-list. The parameter-list is com-
posed of: (1) the target attribute of the relation to access
in the outside source, (2) the attribute of the event used as
an argument for the sub-query, (3) the value of (2). DCI is
hash-based with the key as the parameter-list and value as
the according sub-query result.

A cost-based analysis will be applied to DCI. Generally
speaking, DCI is preferred when many sub-queries share the
same contents and/or the number of updates on the outside
relations is smaller compared to the total number of event
tuples processed.

4. SOFTWARE DEMONSTRATION
The HyReminder implemented by using Active CEP tech-

nology will be deployed in Intense Care Units at UMass
Memorial Hospital. We use this application scenario to
demonstrate how Active CEP solves real-world problems.

Datasets, Queries and Rules. Referring to the hand
hygiene regulations applied in most US hospitals [1], we
create CEP queries and active rules for HyReminder using
the following methodology: (1) model the specific sequence
of HCW behaviors using pattern queries; (2) model the
HCW’s hand hygiene performance with three status, namely
compliance (or safe, or “green”), intermediate (or warning,
or “yellow”) and violation (or “red”); (3) model the logic
of a HCW status transitions, namely a certain sequence of
behaviors leads the worker to another status as stipulated
in the hand hygiene regulations, using active rules.

Application Interfaces. In our demonstration, audi-
ences will be able to see and perform the following features.

A. Define and View Rules and Queries
The internal interface enables the system administrators

to specify and debug queries and rules. As shown in Figure
3, the system administration interface offers the window for
editing queries and rules in textual form. It also displays
the input event streams, output streams for each query and
the real-time system performances. The audiences will get
an insight view of our Active CEP language. Also, they can
submit his/her own queries and test them against both live
and persistent event data.

Figure 3: System Administration Console

B. Real-time Rule Execution Monitoring

We provide the real-time monitoring console that dis-
plays the current hygiene compliance state of every HCW
in the specified ICU for the head nurses to supervise . The
map-based monitoring window chronologically displays each
worker as a moving object in the ICU map (Figure 4). The
moving object is indicated by different colors to represent
the worker’s most updated status, determined by the ac-
tive rules defined in the system. Moreover, real-time statis-
tics about the hand hygiene violations can be accessed by
specifying conditions in the “view control” panel. Our audi-
ences can explore the particular active rules associated with
a HCW’s status by clicking the HCW’s icon. And audiences
can for instance modify some parameters of the active rules
and then view any immediate changes in terms of HCW’s
status transition in real-time.

Figure 4: Real-time Hand Hygiene Monitoring

C. Complex Event Analysis and Report
We also provide a suite of graphic Complex Event Process-

ing and Analysis tools for biostatisticians to conduct clinical
research. The audience can use the tool to see the trends of
hygiene performance over time, navigate the query results,
aggregate the results and interactively re-run the queries for
different time ranges.

5. ACKOWLEDGEMENTS.
This work is partially supported by NSF-IIS #0917017

and by UMMS-WPI CCTS Collaborative Grant 2009/2011
for a collaboration between WPI and Univ. of Massachusetts
Medical School. We are grateful to HP Labs for access to
their CHAOS stream engine.

6. REFERENCES
[1] J. M. Boyce and D. Pittet. Guideline for hand hygiene in

healthcare settings. MMWR Recomm Rep., 51:1–45, 2002.

[2] A. Demers et al. Cayuga: A general purpose event monitoring
system. CIDR, pages 412–422, 2007.

[3] E. Wu et al. High-performance complex event processing over
stream. SIGMOD, pages 401–418, 2006.

[4] M. Liu et al. E-cube: Multi-dimensional event sequence
processing using concept and pattern hierarchies. ICDE Demo,
pages 1097–1100, 2010.

[5] R. S. Barga et al. Consistent streaming through time: A vision
for event stream processing. CIDR, pages 363–374, 2007.

[6] S. Chakravarthy et al. Composite events for active databases:
Semantics, contexts and detection. VLDB, pages 606–617, 1994.

[7] Y. Mei et al. Zstream: A cost-based query processor for
adaptively detecting composite events. SIGMOD, pages
193–206, 2009.

[8] U.S. Centers for Disease Control and Prevention. Estimates of
healthcare-associated infections.
http://www.cdc.gov/ncidod/dhqp/hai.html.

[9] Aleri Inc. Aleri cep. http://www.aleri.com/.

[10] StreamBase Inc. Cep product. http://www.streambase.com/.

1548

