
Peer coordination through distributed triggers

Verena Kantere
∗

Ecole Polytechnique Fédérale
de Lausanne

verena.kantere@epfl.ch

Maher Manoubi
University of Ottawa

mmano090@uottawa.ca

Iluju Kiringa
University of Ottawa

kiringa@site.uottawa.ca

Timos Sellis
National Technical University

of Athens

timos@dblab.ece.ntua.gr

John Mylopoulos
University of Toronto

jm@cs.toronto.edu

ABSTRACT
This is a demonstration of data coordination in a peer data
management system through the employment of distributed
triggers. The latter express in a declarative manner indi-
vidual security and consistency requirements of peers, that
cannot be ensured by default in the P2P environment. Peers
achieve to handle in a transparent way data changes that
come from local and remote actions and events. The dis-
tributed triggers are implemented as an extension of the
active functionality of a centralized commercial DBMS. The
language and execution semantics of distributed triggers are
integrated in the kernel of the DBMS such that the latter
handles transparently and simultaneously both centralized
and distributed triggers. Moreover, the management of dis-
tributed triggers is associated with a set of peer acquain-
tance and termination protocols which are incorporated in
the centralized DBMS.

1. INTRODUCTION
Emerging distributed applications need to coordinate the

exchange of data among autonomous sources. In many cases
the managed data are structured and stored in databases.
This kind of applications is called peer data management
systems (hereafter PDMSs).

Hyperion is an architecture of a PDMS overlay that is de-
scribed in [4]. Hyperion enables data sharing among peer
databases that establish or abolish acquaintances, come on-
or off-line while acquainted. Data sharing is performed ei-
ther by explicit data querying between acquaintees, or by the
enforcement of coordination rules that add active function-
ality on local and remote data. A Hyperion demo that dis-
poses peer query functionality has been presented in [8]. In

∗This research was conducted while the first author was
a Ph.D. candidate at the National Technical University of
Athens.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

that demo all the associative functionality for the manage-
ment of peer acquaintances is realized. However, that demo
did not present the automatic data coordination among peers.

In [5] we have presented an approach that employs dis-
tributed triggers to enable and coordinate data exchange
between peer databases by propagating appropriate updates
to acquainted peer DBMSs. To do so, we have extended
the syntax of SQL3 to provide a rule language for the def-
inition of Event-Condition-Action (herafter ECA) rules in
a PDMS. We delineate a distributed trigger language with
simple events, conditions destined to one single peer database,
and actions destined to various peer databases. Though
simple, this language nevertheless allows realistic coordi-
nation of peer data. The execution semantics of the dis-
tributed triggers extends the standard semantics of central-
ized SQL3 triggers by dealing with the autonomous nature
of peer databases. The following is a motivating example
from the medicine domain that exposes the necessity of dis-
tributed triggers in a PDMS.

Motivating example. Assume a PDMS in which there
are three peer databases as in Figure 1. There is DavisDB
- the database of the private doctor Dr. Davis, LabDB -
the database of a laboratory and StuartDB - the database
of the pharmacist, Mr Stuart. Dr. Davis is collaborating
with the lab and the pharmacist, such that the lab performs
all the tests and the pharmacist fulfills the medicine pre-
scriptions for his patients. When a regular patient visits Dr.
Davis, the latter wants to get automatically from the P2P
system all the recent lab tests and medicine prescriptions
of this patient. This automatic exchange of data between
acquainted peer databases can be realized with triggers that
can be distributedly executed on all the involved databases.
The following is a distributed trigger:

Trigger 1. When information about a new test is in-
serted in LabDB about a regular patient of Dr Davis, DavisDB
is appropriately updated.

Demonstration proposal. This demonstration presents
the real implementation of the distributed triggers that are
proposed in [5]. Distributed triggers are implemented liter-
ally as an extension of the core centralized triggers of a real
commercial DBMS, specifically the well-established, open-
source PostgreSQL [1]. This implementation will be incor-
porated in the Hyperion project and fullfil the requirement
for automatic data coordination using generic rules [10].

1561

DavisDB :
Patients (ohip#, name, phone#, primarydr)
Tests (tid, type, class, test, result, ohip#)
Prescription (ohip#, drug name, date, dose, qty)

LabDB StuartDB

DavisDB

acq
uaintance

P2P Layer

P2P Layer

P2P Layer

StuartDB :
Prescription (ohip#, drug name,
date, dose, qty)

LabDB :
Patients (ohip#, name, phone#, primarydr)
Tests (tid, type, class, test, result, ohip#)

acquaintance

Figure 1: A network of peer databases

The demonstration shows the viability of our distributed
trigger solution for the automatic coordination of data ex-
change among autonomous databases. Towards this end,
we also employ the instantiation of templates that declare
individual a priori requirements for data security and con-
sistency. Such requirements are easily fulfilled by the dis-
tributed triggers. Moreover, we will demonstrate the adapt-
ability of the triggers to local or distributed execution se-
mantics according to the overlay state of the peers. Overall,
we will present example situations that exhibit the life-cycle
of the distributed triggers, as well as their interaction.

2. DISTRIBUTED TRIGGERS.
In order to coordinate data exchange in a systematic au-

tomatic way, there is a need for a trigger mechanism that
can realize a rule of the ECA form that comprises parts
from different acquainted peer-databases. This mechanism
should realize a distributed trigger language, as well as the
appropriate execution semantics.

Distributed trigger language To express Trigger 1, we
use a language that extends centralized SQL3 triggers [6].
A distributed SQL3 trigger mentions the databases in which
event occurrence, condition evaluation, and action execution
take place. Distributed triggers are associated at definition
time not only with a specific table, but also with a specific
peer database. Like in the traditional SQL3 triggers, con-
ditions are SQL queries, and actions are SQL statements to
be executed on database instances. Finally, BEFORE and
AFTER triggers are defined as in the SQL3 standard.

The event, condition and actions are defined on given peer
databases. The trigger action time is BEFORE or AFTER
the actual occurrence of the respective SQL statement. The
optional DETACHED keyword is added for specialization of
the execution semantics of the AFTER triggers and denotes
that a trigger should be executed in a distributed AFTER
way if involved peers are on-line or in a centralized AFTER
way if such a peer is off-line. Also, the condition remains
simple, and, thus, it is to be evaluated in a single database.
However, the action is a set of separate sets of transactions;
each one of these sets is executed atomically in one database.
It is obvious that in case all parts and subparts of the trig-
ger are declared to be executed in a single database, our
extended semantics are reduced to the centralized SQL3 se-
mantics.

Trigger 1 is defined as follows:

CREATE TRIGGER testInsertion
AFTER INSERT ON Tests

REFERENCING NEW AS NewTest IN LabDB
FOR EACH ROW
WHEN EXISTS SELECT P.ohip#

FROM Patients P
WHERE P.ohip# = NewTest.ohip#

AND P.primarydr =’F’
IN DavisDB

BEGIN
INSERT INTO Tests VALUES NewTest IN DavisDB

END

Distributed trigger execution semantics. We have
extended the processing mechanism of the centralized SQL3
triggers (without considering constraints) in a way appropri-
ate to deal with the heterogeneous and autonomous nature
of peer databases. We deal with autonomy by considering
the transient character of peer databases.

The trigger processing mechanism consists of an execution
semantics, a set of termination protocols, and a set of pro-
tocols for each one of the following tasks: establishing and
abolishing acquaintances, connecting to and disconnecting
from a P2P network, and joining and leaving a P2P net-
work. For simplicity, we call the third component acquain-
tance protocols. The execution semantics specifies how the
distributed triggers are executed. For details on the execu-
tion of all kinds of triggers and especially the DETACHED
triggers see [5]. Termination protocols are similar to those
used for commitment in distributed DBMSs [7]: Whenever
a peer involved in the processing of a trigger disconnects,
the rest of the peers should be able to gracefully terminate
trigger processing. Finally, acquaintance protocols address
how the trigger execution process at the disconnected peer
recovers when the peer reconnects.

3. PEER DATA COORDINATION
A big concern in a database environment is security and

consistency. On the opposite of distributed DBMSs, P2P
DBMSs do not require or ensure by default either restricted
access or consistency of data in an inherent way. Concern-
ing security, the acquaintance of two peers w.r.t. to a part
of their schemas implies by default full access to the ac-
quainted schema part by the acquaintee. Concerning consis-
tency, peer autonomy retracts the guarantee (of distributed
databases) that data in acquainted peers are consistent at
any time.

Distributed triggers can be employed in order to customize
the security and consistency degrees according to the re-
quirements of the PDMS or the individual needs of peer
databases. For example, it is the case that a doctor would
not like his data on prescriptions to be changed by another
acquainted database, even if the latter has access to the
respective part of the schema of the doctor’s database (as
part of their acquaintance). Concerning the network of Fig-
ure 1, the table Prescriptions of DavisDB should not be
changed by its acquaintees, without first notifying Dr Davis;
the latter will or not approve this change. As another ex-
ample, a laboratory would not like updates on the local test
data performed by doctors without first checking the on-
coming update for mistakes or inconsistencies. In Figure 1
LabDB would like to be notified and locally approve updates
or inserts on the Test relation, to be done by acquainted
databases.

1562

<template definition> ::=

CREATE COORDINATION TEMPLATE <template name>

FOR <db name>

BEGIN <coordination declaration>+ END

<coordination declaration> ::=

<table name>:<single declaration>+

<single declaration> ::=

[NO] <distributed trigger>(<trigger part>+ [| <time>])

<distributed trigger> ::= BEFORE | AFTER |

DETACHED AFTER

<trigger part> ::= EVENT: | ACTION: <db operation>

<db operation> ::= INSERT | DELETE | UPDATE

Figure 2: Structure of the basic template for P2P
database coordination

In the same way, acquainted databases may desire differ-
ent degrees of consistency for their peer data. Some data
between acquaintees should be always consistent, whereas
other may tolerate inconsistency for some limited or not
time. Since peer autonomy precludes the solution of consis-
tency enforcement on peer data (e.g. a peer database may
be offline), specifications on alternative actions of database
operations on local/peer data or notifications should be en-
abled. For example, Dr Davis would probably like to be
notified if a new prescription inserted in DavisDB is not
propagated to StuartDB in a limited time, so that he can
take an alternative action, such as contacting another phar-
macist or handing the prescription to the patient. Moreover,
probably Dr Davis would like different or additional actions
in case that consistency can be enforced right away or not.

Coordination templates. Coordination of data that
require different degrees of consistency and security can be
achieved using the distributed triggers. The latter can be
employed in order for peers to denote in a declarative straight-
forward manner their preference degrees of security and con-
sistency enforcement for special parts of their peer schema
and data. Thus, parts of the peer schema that is involved
in an acquaintance can be associated a priori, at the time
of the acquaintance or before, with a set of security and/or
consistency requirements.

It is easy to create templates that can be used for this pur-
pose. The structure of such a basic template is presented in
Figure 2 and with the help of it we can declare what types
of distributed triggers should or should not be imposed in
case of an acquaintance. Of course it is possible to extend
the structure of the basic template in order to support dec-
larations customized for each acquaintance of a peer or to
support events other than database operations. We call the
declarations that can be created with such a template coor-
dination declarations. Note that these declarations refer to
database operations that are candidate events or actions for
distributed triggers. The following are example templates
for the peer databases:

CREATE COORDINATION TEMPLATE Template1
FOR LabDB
BEGIN
Tests: BEFORE (ACTION: Insert, Update, Delete)
END
CREATE COORDINATION TEMPLATE Template2
FOR DavisDB
BEGIN
Prescriptions: BEFORE (ACTION: Insert, Update)

DETACHED AFTER (EVENT: Insert | 1 Day)
END

CREATE COORDINATION TEMPLATE Template3
FOR StuartDB
BEGIN
Prescriptions: NO DETACHED AFTER (ACTION: Delete)
END

The above templates define the a priori security and con-
sistency requirements of the peer databases of Figure 1.
Database LabDB declares that no external (i.e. by acquain-
tees) operations can be performed on its data about tests
without any prior notification of the local administration.
Similarly, DavisDB does not want any alterations in his pre-
scriptions without his approval. Also propagations of his
prescriptions to the pharmacist must be performed within a
day, otherwise he may want to take a different action. Fi-
nally, in order for Mr Stuart to avoid to give out obsolete
or withdrawn prescriptions, StuartDB declares that there
should be not any external deletions of prescriptions made
offline (i.e. by detached after triggers).

Flexible acquaintances based on templates. Tem-
plates can be employed in order for a peer to adopt alterna-
tive acquaintance attitudes concerning consistency but also
security, according to the overlay status of itself or its ac-
quaintees. Mr Stuart may wish to use Template3 defined
above for periods that he is working and the following when
he is on vacation:

CREATE COORDINATION TEMPLATE Template4
FOR StuartDB
BEGIN
Prescriptions: NO DETACHED AFTER (ACTION: Insert)
END

In this case, Dr Davis may wish to be notified before he
inserts a prescription, in order to hand the prescription to
the patient, instead of automatically propagate it to the
pharmacist:

CREATE COORDINATION TEMPLATE Template5
FOR DavisDB
BEGIN
Prescriptions: BEFORE (EVENT: Insert, Update)
END

Note, that local and distributed triggers are managed in
a transparent way by the extended peer DBMS.

4. IMPLEMENTATION
We have chosen to implement the proposed distributed

triggers as an extension of the trigger mechanism of an exist-
ing active DBMS. Specifically, we have chosen PostgreSQL
8.3.6[1, 9], since it is open-source and widely used. Overall,
our extension in the kernel of the aDBMS includes:

• The definition of triggers that are triggered by an event
(limited to a database operation: insert/delete/update)
on the local database, but the corresponding action is
to be executed on a remote acquainted database.

• The execution of actions on the local database that
are defined by a remote trigger (i.e. a trigger that is
defined by an acquainted database).

• The definition of the execution mode of the trigger
with respect to the databases that are involved.

1563

Get the next
element of
executing
triggers

Deferred
execution

One more
executing

detached trigger

Execute Trigger
& Write the result

Online
remote

peer

Local
trigger

Detached
trigger

Send to remote
peer &

Wait for reply

Remove
trigger
from

executing
triggers

Local
 trigger

execution

noyes

yes yes

yes

nono

no

Figure 3: Execution flow of detached triggers

• The addition of a new execution mode for the pair
event-action: beyond adapting the deferred and imme-
diate modes, we implement the new mode: detached.

• The execution of the distributed trigger according to
the corresponding execution mode. This involves the
adaptable execution of a trigger in an immediate or
deferred mode, automatically, if the detached mode is
defined.

The above extension of PostgreSQL is implemented as a
modification in the (a) module that allows the definition of
a trigger, but also in the modules that parse a trigger defini-
tion in order to proceed with execution (for example storage
and activation); (b) the execution mechanism, such that: (i)
execution of remote actions is enabled, (ii) the new execu-
tion mode detached is supported; and (c) the catalog of the
centralized DBMS is extended, such that it supports storage
of data and meta-data that refer to remote databases.

Extending the trigger execution mechanism. We
extended the trigger execution mechanism such that:

• Triggers can be executed in detached mode.

• Functions/actions on remote databases can be exe-
cuted.

Beyond extending the two established trigger execution modes:
BEFORE and AFTER, we have implemented the new DE-
TACHED mode. In the last case, if an involved database
is off-line, trigger actions are executed in a new transaction
when this database comes on-line. Databases that either
manage a detached trigger or have to execute related ac-
tions, keep respective logs of the tasks to be fulfilled when
the appropriate combination of databases is on-line again.
Figure 3 summarizes the general execution flow of triggers in
detached mode. In the current implementation the default
mode of distributed triggers is the detached mode.

Implementing communication In order to make dis-
tributed triggers operational for peer databases located in
computers with physically separate networks, we add a vir-
tual DBMS layer on each peer. Beyond offering a GUI for
easy declaration of the distributed triggers using the tem-
plates, it deploys the appropriate triggers, tables, views and
functions in the respective peer database. The GUI also
enables the initiation of local database operations. The vir-
tual DBMS layer maintains the P2P communication among
databases during object deployment and runtime transac-
tions and termination protocol.

The communication uses configuration functions imple-
mented employing PL/PROXY [2] and PL/PGSQL [3]. The
functions hold information about acquainted peers such as
the database name, the host and the password. On trigger
execution, the remote database name is matched with the
cluster name, and the connection information is returned
and used to connect to the remote database.After the con-
nection establishment, the trigger passes all the necessary
data as argument to a function in the remote database.

5. DEMONSTRATION
The aim of the proposed demo is to make apparent the

viability of our solution for data coordination among ac-
quainted peer databases employing the distributed triggers.
Using a PDMS scenario from the medicine domain, as in
our motivating example, we will present the interaction of
several real peer DBMSs through the employment of dis-
tributed triggers.

We intend to show how peers can define or annul auto-
matic data exchange through the procedure of acquaintance
establishment or abolishment, respectively. Beyond this, we
will present a basic and some more elaborated templates
that can be easily instantiated even by end-users in order
to express security and consistency requirements for differ-
ent peer schema parts. Moreover, we intend to show how
distributed and centralized triggers can be executed simul-
taneously and interact in our extended PostgreSQL DBMS.
Finally, the demonstration will include examples of leave
of peers that require termination of distributed triggers as
well as rollback of their actions already executed. These
situations will display the effectiveness of our termination
protocols.

6. REFERENCES
[1] PostgreSQL. http://www.postgresql.org/.

[2] PL/PROXY. http://plproxy.projects.postgresql.org/.

[3] PL/PGSQL.
http://www.postgresql.org/docs/8.3/static/plpgsql.html.

[4] M. Arenas, V. Kantere, A. Kementsietsidis, I. Kiringa,
R. J. Miller, and J. Mylopoulos. The hyperion project:
from data integration to data coordination. SIGMOD
Record, 32(3):53–58, 2003.

[5] V. Kantere, I. Kiringa, Q. Zhou, J. Mylopoulos, and
G. McArthur. Distributed triggers for peer data
management. In CoopIS, 2006.

[6] K. Kulkarni, N. Mattos, and R. Cochrane. Active
database features in sql-3. In N. Paton, editor, Active
Rules in Database Systems, pages 197–219. Springer
Verlag, 1999.

[7] M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems. Prentice Hall, Upper Saddle River,
2 edition, 1999.

[8] P. Rodriguez-Gianolli, M. Garzetti, L. Jiang,
A. Kementsietsidis, I. Kiringa, M. Masud, R. Miller,
and J. Mylopoulos. Data sharing in the hyperion peer
database system. In VLDB, 2005.

[9] M. Stonebraker, E. Hanson, and C. Hong. The design
of the postgres rules system. In dataeng, Los Angeles,
CA, feb 1987.

[10] D. Zhao, J. Mylopoulos, I. Kiringa, and V. Kantere.
An eca rule rewriting mechanism for peer data
management systems. In EDBT, 2006.

1564

