Seaform: Search-As-You-Type in Forms

Hao Wu't Guoliang Li*

Chen Li¢ Lizhu Zhou't

* Department of Computer Science and Technology, Tsinghua National Laboratory
for Information Science and Technology, Tsinghua University, Beijing 100084, China

SDepartment of Computer Science, University of California, Irvine 92697, USA

" haowu06@mails.tsinghua.edu.cn, j;{liguoliang;, dcszlz}@tsinghua.edu.cn, §chenli@ics.uci.edu

ABSTRACT

Form-style interfaces have been widely used to allow users
to access information. In this demonstration paper, we de-
velop a new search paradigm in form-style query interfaces,
called Seaform (which stands for Search-As-You-Type in
Forms), which computes answers on-the-fly as a user types
in a query letter by letter and gives the user instant feed-
back. Seaform provides better user experiences compared
with traditional form-based query systems by reducing the
efforts for a user to compose a high-quality query to find
relevant answers. Seaform can also enhance faceted search
and allow users to on-the-fly explore the underlying data.
This search paradigm requires high performance to achieve
an interactive speed. We develop efficient techniques and
use them to implement two systems on real datasets. We
demonstrate the features of these systems.

1. INTRODUCTION

Keyword search is an easy way to access structured and
semi-structured data [2]. By issuing a query with keywords
in an input box, a user can get the results more easily than
using traditional, yet complex, query languages, such as SQL
for relational databases and XQuery for XML documents.

Although single-input-box interfaces for keyword search
are easy to use, often users want an interface that allows
them to specify keyword conditions more precisely. Firstly,
in a relational database, a single keyword may appear in
different attributes. For example, in a publication database
of computer science, the word “pattern” in a query may
appear both in a paper title and in a conference name. Sec-
ondly, multiple keywords can be in the value of a single at-
tribute. For instance, suppose we issue a query “wei wang’
to search for papers written by Wei Wang in a single-input-
box interface, such as CompleteSearch® [1]. The system may
treat each keyword separately and return results with a low
relevance. If the user has a clear idea about the underlying

'http://dblp.mpi-inf.mpg.de/dblp

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.

Proceedings of the VLDB Endowment, Vol. 3, No. 2

Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

semantics of her query, an easy way to formulate the query
is to use a form-based interface. A form has multiple input
boxes, using which a user can fill in keywords. It can also
have drop-down lists for a user to make selections. Forms
have been widely used to access databases [3], especially
by those “Advanced Search” interfaces, such as the IMDB
Power Search? and the PubMed Advanced Search?.

Existing form-based systems require users to compose a
complete query. However, if the user knows little informa-
tion about the underlying data, she has to repeatedly refine
the query, submit a new query, and check the returned re-
sults. To improve the user experience of form-based inter-
faces, we propose a new search paradigm, called “Seaform”,
to enable search-as-you-type in form-based interfaces.

Search-as-you-type is a user-friendly search paradigm that
can reduce the efforts of users to refine their queries by re-
turning the results instantly as they type in queries char-
acter by character. Compared with existing studies [4, 5,
6], which focus on search-as-you-type on single-input-box
interfaces, Seaform allows a user to specify her keywords
in multiple input boxes on a form and get the results in-
stantly. Besides returning the matched records, Seaform
also provide the matched attribute values as well. Seaform
incorporates novel index structures and search algorithms
to support search-as-you-type in multiple attributes. We
have developed two prototype systems based on the pro-
posed techniques to search on two datasets, the DBLP Com-
puter Science Bibliography (DBLP), and the Internet Movie
Database (IMDB). For example, Figure 1(a) shows a screen-
shot of a system on the DBLP dataset.

Another benefit of enabling search-as-you-type in form-
based interfaces is improvement on faceted search. In Fig-
ure 1(a), when the user is currently editing the input box of
the Author attribute, the system dynamically groups the re-
sults by authors, and lists the authors sorted by the sizes of
the corresponding groups. With the help of search-as-you-
type, users can explore the underlying data in real time.

2. SYSTEM OVERVIEW

A Seaform system takes a single relational table as its
underlying data. To allow users to search on different at-
tributes, we partition the original table into several local
tables, each for a specified attribute. A local table stores all
the distinct values of the attribute. Each record in a local
table is called a local record, and is assigned with a local id.

Zhttp://www.imdb.com/list
3http://www.ncbi.nlm.nih.gov/pubmed/advanced

1565

http://dblp.mpi-inf.mpg.de/dblp
http://www.imdb.com/list
http://www.ncbi.nlm.nih.gov/pubmed/advanced

Seaform DBLP ™

Search 1.3 million CS publications in real time
with a form-style user interface.

Title: | pattern

Venue: in

1-200f49 0 =ec

Improved pattern reco
Wei Wang; Shangce Gao
Soft Comput. 13(12): 1209

Graph classification b

Ming Jin: Calvin Young; W
CIKM 2009: 573-562

Seaform IMDB ™

Search 507,363 movies in real time
with a form-style user interface.

Title: godfather in
Actor: | al pacino and
Director: and

<< == Clear

Brando, Marlon
Medeqglia. Father Joseph
King, Morgana

Marley, John

1-60f6 : 0.065 sec

Godfather, The (1972
Brando, Marlon; Pacino, A
Brandt, Mazx (I); Macetta, |
Coppola, Francis Ford

Godfather: Part I, The
Pacino. Al; Duvall, Robert
Cotone, Mario; Medeglia, |
Coppola, Francis Ford

Godfather Trilogy: 19C
Pacino, Al; Duvall, Robert
Al; Moschin, Gastone; Hill
Mazzola, Saveria
Coppola, Francis Ford

Godrather Family: A L

<< =+ ciesr Bridge the gap betwe
and proteome in west
Wei Wang 0010 algorithm.
Wei Wang 3 Wei Wang; Huihui Zhao; J
Wei Wang 0009 - ICMSC 2008 745-750
Wei-Lun Wang
» | A Scheme of Test Pat
Weixing Wang 2

Segment-Fixing Coun
(a) Seaform-DBLP

Coppola, Francis Ford; Pu

Moschin, Gastone Maschin, Gastone; Murch

(b) Seaform-IMDB

Figure 1: Screenshots of two prototypes using our techniques.

Accordingly, the original table is called the global table, in
which each record is called a global record and is assigned
with a global id. We associate each local table with one or
more input boxes in the form. For each query triggered by
a keystroke in an input box, the system returns to the user
not only the global ids (called the global results), but also
the matched local ids in the corresponding local table (called
the local results). For example, in Figure 1(a), if we type in
keywords “wei wang” in the Author input box, the system
returns the names of matched authors below the form (local
results), such as Wei Wang and Weixing Wang, and their
publications on the right-hand side (global results).

A Seaform system uses a client-server architecture. On
the client side, each keystroke in any of the input boxes in-
vokes JavaScript code to issue an AJAX query to the server,
and the client displays the results returned from the server
with query keywords highlighted. The server side has the
following components. The Indexer indexes the underlying
data. When a query is received, the Searcher searches the
index for both the global results and the local results in-
crementally with the help of the Cache component, which
caches the previous queries and their results. The Result
Composer ranks the results and sends them to the client.
All the components are implemented in a FastCGI module.

2.1 Indexer

When the server starts, the Indexer reads the global table
stored in the disk and splits it into local tables. For each
local table, we tokenize each record into words, and build
the following index structures.

1. A trie structure with inverted lists on the leaf nodes.
In the trie structure, a path from the root to a leaf
corresponds to a word. The local ids for the word are
added to the inverted list of the corresponding leaf
node. These structures are used to efficiently retrieve
the id lists according to input query keywords.

2. A local-global mapping table. The ¢-th row of the
mapping table stores the ids of all the global records
containing the ¢-th local record. Given a set of lo-
cal ids, we can obtain the corresponding global ids
using this table. These tables are used to map a lo-

cal id to its corresponding global ids, so that we can
retrieve the local results and the global results simul-
taneously. Take Figure 1(a) as an example. The local
result “Wei Wang” has a local id, say ¢1. Its corre-
sponding global records are the first and third pub-
lications (whose global ids are, say, g1 and g2 respec-
tively). These two global results can be retrieved using
the local-global mapping table.

3. A global-local mapping table. Similar to the table
above, the g-th row of the table stores the ids of all
the local records contained in the g-th global record.
This table could be used to identify those local ids
in a global record efficiently. These tables are used
for the synchronization operations (see Section 2.2).
The synchronization operations are necessary because
the local results of the current editing input box are
determined by both the query string of the current
input box and the query strings of other input boxes.
We can retrieve the correct local results by mapping
the final global results back using these tables.

To achieve a high performance, these structures are as-
sumed to be in memory, and the ids on each inverted list
are sorted.

2.2 Searcher and Cache

When a query is submitted, the system first checks the
Cache to see whether the query can be answered from the
cached results. A query of a form-based interface can be
segmented into a set of fields, each of which contains the
query string of the corresponding input box. If the new
query can be obtained by extending a field of a cached query
with one or more letters, then we have a cache hit. We call
this cached results the base results. The Searcher performs
an incremental search based on the base query and base
results if there is a cache hit. Otherwise, we do a basic
search described as follows.

Basic search. When we cannot find cached results to an-
swer the query, we split the query into a sequence of sub-
queries, in which each query appends a word to the previous
query. Thus the sequence starts from an empty query and
ends with the original query. The final results can be cor-

1566

rectly calculated if we use each of these queries one by one
as the input of the incremental search algorithm (described
below). For example, if a user inputs “jiawei han” in the
Author input box and none prefix of the query is cached,
we split the query into three sub-queries, ¢, “jiawei”, and
“jiawei han”. We send them one by one to the incremental-
search algorithm.

Incremental search. This type of search uses previously
cached results to answer a query, with the following four
steps.

Step 1. Identify the difference between the base query and
the new query. We use f; to denote the currently
edited field (the i-th field), and use w to denote the
newly appended keyword.

Step 2. Calculate the local ids of f; based on the query
string in f;. This is done by merging the id lists
of all leaf nodes on the sub-tree rooted at the node
corresponding to w in the trie, and then intersecting
the merged list with the local base results of f;.

Step 3. Calculate the global results. This is done by first
calculating the set of global ids corresponding to
the local results of f; calculated in Step 2 using
the local-global mappings in the index, and then
intersecting it with the global base results.

Step 4. Calculate the local results of f;. This step is called
“synchronization”. It is done by first calculating the
set of local ids corresponding to the global results
using the global-local mapping table in the index,
and then intersecting it with the local base results

of f,
2.3 Result Composer

The Result Composer ranks both the local results and
global results, and then returns top-ranked results to the
client. The design of the ranking function depends on the
application. Specifically, in our proposed systems, we sim-
ply rank the results according to the values of a specified
attribute, e.g., Year or Rating. Another task of the Result
Composer is to calculate the aggregations of each local re-
sult. With the help of the local-global mapping table in the
index, we can easily calculate the number of occurrences of
a local result in the global result list. For example, in Fig-
ure 1(a), the number “13” on the right of the entry “Wei
Wang” means that “Wei Wang” appears 13 times in the
global results listed on the right-hand side.

3. IMPROVEMENTS

Based on our analysis, steps 3 and 4 in the incremental-
search algorithm can be computationally expensive. In this
section, we present two optimization techniques to improve
the above methods.

3.1 Dual-List Trie Structures

In step 3, to obtain the global results, we map the local
ids calculated in step 2 to lists of global ids, merge these
lists, and then intersect the merged list with the global base
results. The number of lists to be merged is equal to the
number of local ids. As a result, if there are many local ids,
the merge operation could be very time consuming.

To address this problem, we can modify the original tries
to so-called dual-list tries by attaching an inverted list of

global ids to each of the corresponding trie leaf nodes. In
this way, given a keyword prefix, we can identify the global
record that contain the keyword without any mapping op-
eration. In addition, the number of lists to be merged is the
number of complete words, which is often much smaller than
the number of local ids. A smaller number of lists leads to
faster merge operations. So with the help of dual-list tries,
the overall search time can be reduced compared with that
of using original tries, which are called single-list tries.

Since we can identify the global ids efficiently, those local-
global mapping tables are no longer needed by the Searcher.
In addition, for the Result Composer, we have an alternative
method to calculate the aggregations without using those
local-global mapping tables. Given both local results and
global results, we assign each local result a counter, which is
initiated to be 0. We first map each global id back to a list
of local ids using the global-local mapping table. Then, if
a local result appears in the mapped list, its corresponding
counter, i.e., its number of occurrences, is increased by 1.

After using the above new method to calculate the ag-
gregations, we find that the local-global mapping tables are
not needed by any component of the system. As a result, we
can safely remove them to reduce the index size. Meanwhile,
since we still need space to store additional inverted lists, the
total size of the index is still slightly increased (about 10%,
see Section 4).

3.2 On-Demand Synchronization

The synchronization process in step 4 is a brute-force syn-
chronization to keep the local result list of the currently
edited field (f;) up to date. However, the calculation could
be unnecessary in some cases. For instance, if the user does
not switch the input box to another one, then it is unnec-
essary to perform the synchronization process. Intuitively,
since the values of other fields are not changed, the local
results of f; can be derived directly from the cached local
results of the same field, without considering other fields.

Although the local results of f; are always up to date if
the user does not change the input box, we cannot guar-
antee that the local results of other fields are all up to
date. If the user changes her focus to another input box,
we must perform a synchronization operation for (and only
for) the corresponding field at once. We call this mecha-
nism of synchronization the on-demand synchronization. It
requires one merge operation and one intersection opera-
tion. In contrast, the brute-force synchronization requires
one merge operation and one intersection operation when-
ever the user types in a new letter. Experimental results
show that the on-demand synchronization can increase the
search performance (see Section 4).

4. EXPERIMENTS

We have developed two prototype systems using the pro-
posed techniques. (1) Seaform-DBLP, which searches 1.3
million computer-science publications on DBLP by Title,
Authors, Journal Name, and Year. (2) Seaform-IMDB, which
searches over 500 thousand movies on IMDB by Title, Ac-
tors/Actresses, Directors, and Year. All the code were im-
plemented in C++ and compiled using Visual Studio 2008.
All the experiments were ran on a computer with an Intel
Core-2 2.4GHz CPU and 2GB RAM.

We present the results of the Seaform-DBLP system. We
used a workload of 45,276 real queries collected from our

1567

deployed system. Figure 2 shows the comparison of average
search time per query of four algorithms: (1) SL-BF, which
uses Single-List tries and Brute-Force synchronization, (2)
SL-OD, which uses Single-List tries and On-Demand syn-
chronization, (3) DL-BF, which uses Dual-List tries and
Brute-Force synchronization, and (4) DL-OD, which uses
Dual-List tries and On-Demand synchronization.

140

120
100
80
60 |
40
20 |
0

Figure 2: Performances of four algorithms.

Avg. query time (ms.)

The figure shows that both the dual-list tries and on-
demand synchronization can improve the search speed. If
we use these two together, the DL-OD algorithm can an-
swer a query within 50 milliseconds per query.

Figure 3 shows the scalability of Seaform-DBLP. The search
time and index size increased linearly as the dataset in-
creased. The index size increased slightly when we used
dual-list tries compared to that of single-list tries (10% larger).
At the same time, the search became about 2 times faster.

500 f 2 50t
& E
£ 400t < 40t
© £
& 300 S 30
2] j=
% 200 $ 20}
2 s
= 100gx" Dual-list —83— 2 10
_ Single-list -~ <

0 L
2 4 6 8 10 12 14
of records (x 105)

2 4 6 8 10 12 14
of records (x 105)

(a) Index size (b) Performance (DL-OD)

Figure 3: The scalability of Seaform-DBLP.

S. DEMO DESCRIPTION

We describe the main features of Seaform to be demon-
strated in four scenarios®.

Scenario 1 (Precise search paradigm). Suppose a user
wants to find papers by Wei Wang whose titles contain the
word “pattern”. If she types in “wei wang pattern” in
CompleteSearch, many returned results are not very rele-
vant. In contrast, if she types in “wei wang” and “pattern”
in different input boxes in Seaform-DBLP, she can find high-
quality results.

Scenario 2 (Search-as-you-type). Suppose the user wants
to find the movie titled The Godfather made in 1972 using
the IMDB Power Search interface. She is not sure if there is
a space between the word “god” and the word “father”, so
she fills in the Title input box with “god father”. Unfortu-
nately, after waiting for several seconds, the user still does

“http://tastier.cs.tsinghua.edu.cn/seaform. Due to
the copyright policy of IMDB, we cannot publish Seaform-
IMDB as an open service on the Internet.

not get relevant result. So she has to try a new query. In
contrast, in Seaform-IMDB, she can modify the query and
see the new results instantaneously.

Scenario 3 (Faceted search). Suppose the user has lim-
ited prior knowledge about the KDD conference and wants
to know more about it using Seaform-DBLP. At first, she
wants to know how many papers were published in this con-
ference each year. She types in “kdd” in the Venue input
box and then changes the editing focus to the Year input
box. The listed local results show the years sorted by the
number of published papers. Next, she wants to know the
number of published papers of each author in KDD 2009.
To do this, she chooses the year 2009 by clicking on the list,
and changes the focus to the first Author input box. The
list below the form shows the authors. She can see that the
most active author. For instance, the author with the most
publications is Christos Faloutsos. She then chooses “Chris-
tos Faloutsos” and changes the focus to the second Author
input box. Then all the co-authors are listed. After sev-
eral rounds of typing and clicking, the user can get a deeper
understanding about the conference.

Scenario 4 (Ranking of results). In this scenario we
show the different ranking mechanisms of the two proto-
types. For the global results, Seaform-DBLP ranks them by
their years of publications, while Seaform-IMDB ranks them
by their IMDB rating scores. For the local results, both sys-
tems first rank them by the number of occurrences in the
global results. If some of the local results have the same
number of occurrences, Seaform-DBLP further ranks them
by their activeness (the average year of publications), while
Seaform-IMDB ranks them by their average IMDB rating
score. For example, if we input “godfather” in the Title
input box in Seaform-IMDB, the suggested local results are
Godfather Part I, Godfather Part II, etc, which are consis-
tent with their IMDB rating scores.

6. ACKNOWLEDGEMENTS

This work is partially supported by the National Natural
Science Foundation of China under Grant No. 60873065,
the National High Technology Development 863 Program
of China under Grant No. 2009AA011906, and the National
Grand Fundamental Research 973 Program of China under
Grant No. 2006CB303103.

7. REFERENCES

[1] H. Bast and I. Weber. The CompleteSearch engine:
Interactive, efficient, and towards IR & DB integration.
In CIDR, pages 88-95, 2007.

[2] Y. Chen, W. Wang, Z. Liu, and X. Lin. Keyword
search on structured and semi-structured data. In
SIGMOD Conference, pages 10051010, 2009.

[3] M. Jayapandian and H. V. Jagadish. Automated
creation of a forms-based database query interface.
PVLDB, 1(1):695-709, 2008.

[4] S. Ji, G. Li, C. Li, and J. Feng. Efficient interactive
fuzzy keyword search. In WWW, pages 371-380, 2009.

[5] G. Li, S. Ji, C. Li, and J. Feng. Efficient type-ahead
search on relational data: a TASTIER approach. In
SIGMOD Conference, pages 695706, 2009.

[6] G. Li, S. Ji, C. Li, J. Wang, and J. Feng. Efficient fuzzy
type-ahead search in TASTIER. In ICDE, pages
1105-1108, 2010.

1568

http://tastier.cs.tsinghua.edu.cn/seaform

