
SQL QueRIE Recommendations

Javad Akbarnejad
Computer Engineering Dept.

San Jose State Univ.

Gloria Chatzopoulou
∗

Computer Science Dept.
Univ. of California, Riverside

Magdalini Eirinaki
Computer Engineering Dept.

San Jose State Univ.

Suju Koshy
Computer Engineering Dept.

San Jose State Univ.

Sarika Mittal
Computer Engineering Dept.

San Jose State Univ.

Duc On
Computer Engineering Dept.

San Jose State Univ.

Neoklis Polyzotis
Computer Science Dept.

Univ. of California, Santa Cruz

Jothi S. Vindhiya Varman
Computer Engineering Dept.

San Jose State Univ.

ABSTRACT
This demonstration presents QueRIE, a recommender system that
supports interactive database exploration. This system aims at as-
sisting non-expert users of scientific databases by tracking their
querying behavior and generating personalized query recommen-
dations. The system is supported by two recommendation engines
and the underlying recommendation algorithms. The first identi-
fies potentially “interesting” parts of the database related to the
corresponding data analysis task by locating those database parts
that were accessed by similar users in the past. The second identi-
fies structurally similar queries to the ones posted by the current
user. Both approaches result in a recommendation set of SQL
queries that is provided to the user to modify, or directly post to
the database. The demonstrated system will enable users to query
and get real-time recommendations from the SkyServer database,
using user traces collected from the SkyServer query log.

Keywords: recommender systems, collaborative filtering, relational
databases, interactive exploration

1. INTRODUCTION
Relational database systems are becoming increasingly popular

in the scientific community. For example the Genome browser1

provides access to a genomic database, and SkyServer2 stores large
volumes of astronomical measurements. Those databases usually
employ a web-based interface that allows a broad user base to sub-
mit SQL queries and retrieve the results. Even though such database
systems offer the means to run complex queries over large data sets,
the discovery of useful information remains a big challenge. As an
example, users who are not familiar with the database may over-
look queries that retrieve interesting data, or they may not know

∗The author worked on this project while affiliated with UC Santa
Cruz
1http://genome.ucsc.edu/
2http://cas.sdss.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

what parts of the database provide useful information. Moreover,
most of the users of such databases do not have the required SQL
background that would allow them to run complex queries and re-
trieve otherwise interesting results. Not being able to fully exploit
the capabilities of such systems hinders data exploration, and thus
reduces the benefits of using a database system.

To address this important problem of assisting users when ex-
ploring a database, we designed the QueRIE (Query Recommen-
dations for Interactive data Exploration) system. Our inspiration
draws from the successful application of recommender systems in
the exploration of Web data. The premise on which the system is
built is simple: If a user A has similar querying behavior to user B,
then they are likely interested in retrieving the same data. Hence,
the queries of user B can serve as a guide for user A.

Transferring the collaborative filtering paradigm to the database
context presents several challenges. First, SQL is a declarative lan-
guage, thus the same data can be retrieved in more than one way.
This complicates the evaluation of similarity among users, since
contrary to the web paradigm where the similarity between two
users can be expressed as the similarity between the items they
visit/rate/purchase, we cannot rely directly on the SQL queries. A
second important issue is how to create implicit user profiles that
measure the level of importance of the same data for different users.
Finally, contrary to the user-based collaborative filtering approach,
the recommendations to the users have to be in the form of SQL
queries, since those actually describe what the retrieved data rep-
resent. Thus, we need to “close the loop” by first decomposing
the user queries into lower-level components in order to compute
similarities and make predictions, and then re-construct them back
to meaningful and intuitive SQL queries in order to recommend
them. All those issues make the problem of interactive database
exploration very different from its web counterpart.

The first results of this work have been presented in [1]. In this
demonstration we will showcase the QueRIE system. The demon-
strated system will enable users to query the SkyServer database,
obtaining real-time personalized query recommendations that are
generated using traces collected from the SkyServer query log. The
users will be able to use any of the two recommendation engines,
one based on similarities of the content retrieved by the queries,
and the other based on similarities between the queries themselves.
The users will be provided with various demonstration scenarios,
exhibiting different information needs and various querying styles.
They will be able to retrace the steps of such scenarios and evaluate
the usefulness of the query recommendations by looking at the re-
sults. Apart from the graphical user interface of the system we will

1597

also demonstrate the underlying functionality of the system.

2. SYSTEM OVERVIEW
The information flow of the QueRIE personalization system is

shown in Figure 1. The active user’s queries are forwarded through
the database query interface to both the DBMS and the recommen-
dation engine. The DBMS processes each query and returns a set
of results. At the same time, the query is stored in the query log.
This query log is processed offline in order to create the predictive
model. Each time a user accesses the system, the recommendation
engine combines her input with the predictive model and generates
a set of query recommendations. In what follows, we provide a
very brief overview of the QueRIE framework and the underlying
algorithms, since the demonstration will follow the same informa-
tion flow.

QueRIE currently has two distinct recommendation engines, each
using a different notion of similarity in order to compute the recom-
mendation set of queries. Our motivation behind the first, “tuple-
based” recommendation engine, was to define the similarity be-
tween two users in terms of their information needs. In essence,
the tuple-based recommendation engine identifies which parts of
the database have been “touched” by the current user’s queries and
retrieves users who have explored overlapping parts of the database
in the past. These, along with the current user’s queries, define a
superset of the database parts covered so far by the user’s queries.
The final set of recommendations consists of queries that best cover
this extended part of the database. However, two queries might be
semantically similar but retrieve different results due to some filter-
ing conditions. This was our motivation for the second, “fragment-
based” recommendation engine. In essence, we deconstruct each
query into fragments and discover other fragments that co-appear
with them in sessions of different users (an indication of structural
similarity). We use these fragments to identify the most similar
queries and generate the final recommendation set.

A detailed technical description of the proposed framework and
the tuple-based engine can be found at [1]. The tuple-based rec-
ommendation engine component was demonstrated in [7]. In this
demonstration, we will present the enhanced QueRIE system, in-
tegrating both the tuple-based and the fragment-based recommen-
dation engines. The audience will benefit by comparing the two
approaches in terms of performance and accuracy, and will be able
to select the engine that fits better to their needs and preferences.

3. RECOMMENDATION ALGORITHMS
The queries of each user touch a subset of the database that is

relevant to the analysis the user wants to perform. We assume that
this subset is modeled as a session summary Si for user i. We use
{1, . . . , h} to denote the set of past users based on which recom-
mendations are generated and 0 to identify the current user. To
generate recommendations, our framework extends the summary
S0 of the active user to a “predicted” summary Spred

0 . This ex-
tended summary captures the predicted degree of interest of the
active user with respect to all the parts of the database, including
those that the user has not explored yet, and thus serves as the seed
for the generation of recommendations.

To summarize, our framework consists of three components: (a)
the construction of a session summary Si for each user i, (b) the
computation of a “predicted” summary Spred

0 for the active user,
based on the active user’s and the past users’ summaries, and (c)
the generation of queries based on Spred

0 . Those queries will be
presented to the user as recommendations. The details of each
step differ for each recommendation engine. We provide a brief

overview of both approaches in what follows.

3.1 Tuple-based recommendations
Session summaries. We define the session summary Si as a vector
of tuple weights that covers all the database tuples. The weight
of each vector element represents the importance of the respective
tuple in the exploration performed by user i. For this purpose we
employ two different weighting schemes which are detailed in the
accompanying paper [1]. Using the session summaries of the past
users, we can define the conceptual session-tuple matrix that, as in
the case of the user-item matrix in web recommender systems, will
be used as input in our collaborative filtering process.

Computing the “predicted” summary. Similarly to session sum-
maries, the extended summary Spred

0 is a vector of tuple weights.
In order to compute this summary, we assume the existence of
a function sim(Si, Sj) that measures the similarity between two
summaries and takes values in [0, 1]. Using this function, we com-
pute the extended summary as a weighted sum of the existing sum-
maries: Spred

0 =
P

0≤i≤h(sim(S0, Si)×Si). The similarity func-
tion sim can be realized with any vector-based metric, such as the
cosine similarity measure.

Generating recommendations. The final step is to generate queries
that cover the interesting tuples in Spred

0 . In order to provide the
users with intuitive, easily understandable recommendations, we
use the queries of past users. We assign to each past query Q an
importance with respect to Spred

0 , computed as rank(Q, Spred
0) =

sim(SQ, Spred
0). Hence, a query has high rank if it covers the im-

portant tuples in Spred
0 . The top ranked queries are then returned as

the recommendation.

Accelerating the online computations. To ensure that the afore-
mentioned approach generates real-time recommendations for the
active users of a database, we need to compress the session-tuple
matrix and to speed up the computation of similarities. For this
reason, we employ the MinHash probabilistic clustering technique
that maps each session summary Si to a “signature” h(Si) [2]. The
Jaccard similarity between vectors is thus reduced to the similarity
of their signatures: JaccardSim(Si, S0) = sim(h(Si), h(S0)).

3.2 Fragment-based recommendations
Session summaries. This approach is based on the pair-wise sim-
ilarity of query fragments (attributes, tables, joins and predicates).
We need to identify fragments that co-appear in several queries
posed by different users. The session summary vector Si for a user
i consists of all the query fragments φ of the user’s past queries. Let
Qi represent the set of queries posed by i and F represent the set
of distinct query fragments recorded in the query logs. For a given
fragment φ ∈ F , its importance in session Si is represented by
Si[φ] and depends on its importance in the session. We can define
SQ[φ] as a weighted or binary variable that represents the impor-
tance of φ in a session’s query Q. Then, Si is defined respectively
as a sum (Si =

P
Q∈Qi

SQ), or OR-ed (Si =
W

Q∈Qi
SQ).

Computing the “predicted” summary. Using the session sum-
maries of the past users and a vector similarity metric, we construct
the (|F | × |F |) fragment-fragment matrix that contains all simi-
larities sim(ρ, φ), ρ, φ ∈ F . The recommendation seed, modeled
by Spred

0 , represents the estimated importance of each query frag-
ment with regard to the active user’s behavior S0. Similarly to the
item-to-item collaborative filtering approach of web recommender
systems, we employ the fragment-to-fragment similarities that are
computed in the previous step: Spred

0 [φ] =
P

ρ∈R S0[ρ]∗sim(ρ,φ)P
ρ∈R sim(ρ,φ)

,

1598

Figure 1: System Architecture

where R represents the set of top-k similar query fragments (k ≤
|F |). We should note that all pair-wise similarities can be computed
and stored off-line. This results in a very efficient execution of the
algorithm in terms of computational time.

Generating recommendations. Once the predicted summary Spred
0

has been computed, the top-n fragments Fn (i.e. the fragments that
have received the higher weight) are selected. Then all past queries
Q, Q ∈

S
i Qi receive a rank QR based on a normalized metric

measuring the number of common query fragments of each query
Q to the top-n list. Finally, the top-m ranked queries are used as
the recommendation set.

4. DEMONSTRATION SCENARIO
As shown in Figure 1, QueRIE consists of two main building

blocks, namely the database query interface and the recommen-
dation engine, and uses two information repositories, namely the
database itself, as well as its query logs. The database query in-
terface module is built using HTML, JSP and JavaScript. The rec-
ommendation engine module is built using Java. The two modules
interact through the JNI framework. The demonstrated system in-
teracts real-time with the SkyServer database and uses real user
traces as the query logs of past users.

The demonstration shows the functionality of the system and the
internal operations of the recommendation engine. In that way, we
are able to demonstrate the usefulness of such a system from the
user’s perspective, and at the same time allow someone to under-
stand and evaluate how the various data inputs are manipulated in
order to generate the final recommendations.

Once a user logs in the system, she is able to select one of the
two recommendation engines. The user can author and submit an
SQL query to SkyServer. QueRIE sends the request to the database,
and presents the user with the results. At the same time, the system
records the active user’s queries, creating an implicit user profile.
This user profile is used as input to the algorithm, along with the
predictive model to generate real-time, personalized query recom-
mendations. The recommended queries are presented to the user
in a list, as shown in Figure 2. For each recommended query, the
user is able to examine a sample of the results that will be retrieved,
in order to decide whether it addresses his needs, prior to actually
submitting it to the DBMS.

At all times, the active user is able to: (a) formulate a query
from scratch, (b) select a recommended query and submit it as it is,
or (c) select a recommended query and edit it before submitting it
to the database. All the aforementioned options result in an SQL
query being submitted to the SkyServer database, which is handled
by the system as described before. Moreover, the interface allows
the user to browse the database schema in order to find more infor-

mation on the tables and the respective attributes and formulate the
queries. The user is also able to review and re-submit queries that
were posed during her recent history. Those options are available
through the “Schema Browser” and “Show My History” menu tabs
respectively.

Apart from demonstrating the user interface of our system, we
also incorporate a “back-end” console that enables users to observe
and understand how the underlying algorithms work, as well as
evaluate the usefulness of the recommendations in terms of predic-
tion accuracy. This is available through the “Recommendation de-
tails” and “Test Harness” consoles for the tuple-based and fragment-
based engine respectively. The prototype also allows, through the
“Administration” tab, to tune the parameters of the algorithm, such
as the number of recommended queries, and the weighted scheme
(fragment-based engine).

In order to evaluate the usefulness of the system and the accu-
racy of the recommendations, we follow the “recommended vs.
actual queries” approach. More specifically, we will demonstrate
several scenarios, represent different information needs, or query-
ing styles. Each scenario reflects a real user session consisting of
k > 3 queries, as recorded in the pre-processed query logs of Sky-
Server. After submitting the first k − n queries to the system, the
users will be able to see both QueRIE’s recommendations and the
actual n last queries of the user side by side, and compare them. In
what follows, two different scenarios of accessing the database are
given. Their difference lies on the information need of the users,
the structure and complexity of the queries involved, and the poten-
tial challenges that hinder data exploration in each case. The user
sessions shown in both scenarios are real and belong to the query
logs of SkyServer.

Scenario 1. The first scenario reflects the case where a user might
not be able to locate the information that interests her as a result
of the large size of the database. Assume that the user needs to
access some data related to a specific object located in four differ-
ent relations. Such queries are simple SELECT-FROM-WHERE
queries so formulating the query is not a challenge even for novice
users. If the user is unfamiliar with the database, she will have to
first browse the schema, locate the information and then go back
and post the queries. This situation inhibits a potential danger of
missing some important data:

Query 1: SELECT * FROM specline WHERE specob-
jid=0x014acc9281400000

Query 2: SELECT * FROM speclineindex WHERE specob-
jid=0x014acc9281400000

Query 3: SELECT * FROM specobjall WHERE specob-
jid=0x014acc9281400000

Query 4: SELECT * FROM xcredshift WHERE specob-
jid=0x014acc9281400000

1599

Figure 2: QueRIE interface after a query has been submitted (fragment-based engine)

Scenario 2. In this scenario the case where a user who needs to
formulate complex SQL queries but does not have the required ex-
pertise, is examined. Assume that the user needs to perform some
specific analysis which requires the use of aggregations in order to
return the desirable results. A novice user might not be able to re-
trieve the desired information because of lack of experience. Such
a user will start by posting simpler queries. If, however, another
user in the past has gone through this process, and the respective
user session is recorded in the query logs, the system will be able
to recommend the correct query to the current user:

Query 1: SELECT count(*) FROM region WHERE type like
’tiprimary’

Query 2: SELECT count(distinct id) FROM region WHERE
type like ’tiprimary’

Query 3: SELECT id, count(*) FROM region WHERE type
like ’tiprimary’ GROUP BY id

Query 4:
SELECT id, count(*) FROM region WHERE
type like ’tiprimary’ GROUP BY id HAVING
count(*)> 1

5. RELATED WORK
Contrary to keyword-based query recommendation systems [6],

QueRIE is meant to assist users who need to pose complex SQL
queries to large relational databases. Moreover, QueRIE does not
require from the users to explicitly declare their preferences before-
hand in order to generate recommendations. A multidimensional
query recommendation system is proposed in [3, 4]. In this work
the authors address the related problem of generating recommen-
dations for data warehouses and OLAP systems. The challenges
of applying data mining techniques to the database query logs are
addressed in [5]. In this work, the authors outline the architec-
ture of a query management system and propose that data mining
techniques can be used in order to provide the users with query
suggestions. Contrary to our work the authors do not provide any
technical details on how such a recommendation system could be
implemented. To the best of our knowledge, QueRIE is the first
framework to address the problem of generating SQL query rec-
ommendations proposing a fully-fledged solution.

6. CONCLUSIONS
We have described the functionalities that we demonstrate for

QueRIE, a recommender system that assists users when interact-
ing with large database systems. QueRIE enables users to query a
relational database, while generating real-time personalized query
recommendations for them. The system incorporates two recom-
mendation engines, a tuple-based one that recommends queries that
touch similar parts of the database, and a query fragment-based one
that recommends structurally similar queries. Currently QueRIE
interacts with the SkyServer database but it is evident that the sys-
tem can be easily adapted to interact with any relational database
given that its query logs are available for analysis. QueRIE does
not require an explicit user profile or keyword-based queries. On
the contrary, it “closes the loop” by accepting SQL queries as in-
put, decomposing them in order to identify interesting database ar-
eas for each user, and re-transforms them in SQL queries that are
presented as recommendations.

7. REFERENCES
[1] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Collaborative

filtering for interactive database exploration. In SSDBM ’09.
[2] E. Cohen. Size-estimation framework with applications to

transitive closure and reachability. Journal of Computer and
System Sciences, 55:441–453, 1997.

[3] A. Giacometti, P. Marcel, and E. Negre. Recommending
Multidimensional Queries. In DaWaK’09.

[4] A. Giacometti, P. Marcel, E. Negre, and A. Soulet. Query
recommendations for olap discovery driven analysis. In
DOLAP ’09.

[5] N. Khoussainova, M. Balazinska, W. Gatterbauer, Y. Kwon,
and D. Suciu. A case for a collaborative query management
system. In CIDR ’09.

[6] G. Koutrika and Y. Ioannidis. Personalized queries under a
generalized preference model. In ICDE ’05.

[7] S. Mittal, J. S. V. Varman, G. Chatzopoulou, M. Eirinaki, and
N. Polyzotis. QueRIE: A Recommender System supporting
Interactive Database Exploration. In ICDM ’09 (to appear in
ICDM ’10 proceedings because of editor’s error).

1600

