
Deep Web Integration with VisQI

Thomas Kabisch
Humboldt-Universität zu Berlin

Berlin, Germany

kabisch@informatik.hu-
berlin.de

Eduard C. Dragut,
Clement Yu

University of Illinois at Chicago
Chicago, USA

{edragut, yu}@cs.uic.edu

Ulf Leser
Humboldt-Universität zu Berlin

Berlin, Germany

leser@informatik.hu-
berlin.de

ABSTRACT
In this paper, we present VisQI (VISual Query interface In-
tegration system), a Deep Web integration system. VisQI is
capable of (1) transforming Web query interfaces into hier-
archically structured representations, (2) of classifying them
into application domains and (3) of matching the elements
of different interfaces. Thus VisQI contains solutions for the
major challenges in building Deep Web integration systems.

The system comes along with a full-fledged evaluation sys-
tem that automatically compares generated data structures
against a gold standard. VisQI has a framework-like archi-
tecture such that other developers can reuse its components
easily.

1. INTRODUCTION
There are millions of Deep Web sources. Building sys-

tems which would be able to automatically use all or a large
fraction of all Deep Web sources of a given domain, such as
airline reservation in the USA, would offer great benefit, but
also poses serious challenges to its developers.

The most advocated approach to integrate Deep Web sources
is to perform integration domain-wise. First, query inter-
faces are extracted from relevant Web pages [4]. Second,
they are clustered on application domains [1]. Third, fields
of different interfaces in the same domain are matched [6].
Query interfaces are integrated for further applications such
as merging to form a unified interface [2] or constructing
federated information systems. These systems allow a user
to query a number of underlying data sources at once. Re-
turned data of the individual sources is extracted and the re-
sults ranked in descending order of desirability (e.g., price).

In this demonstration, we describe our system VisQI (VI-
Sual Query interface Integration system) that implements
the steps enumerated above. First, the system extracts
HTML query interfaces into hierarchical representations [4].
Second, the system classifies previously unseen query inter-
faces to their application domains. Finally, it matches and
clusters elements of different interfaces according to their in-
tended meaning [6]. For example, the field Departure city

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

Figure 1: A Web query interface in the airline do-
main along with its extracted interface tree.

Extraction

Evaluation

Mapping
Schema
 Repos

GS- Repos

Web Pages

Classification

Web Pages

Figure 2: Architecture of VisQI

of interface finnair.com matches the field Leaving From in
Fig. 1 and thus they are placed into the same cluster. VisQI
has a sophisticated testing component which is accompanied
by large gold standard sets for both query interface extrac-
tion and matching. An intuitive visualization component
eases the work of the integrator. VisQI is a cornerstone in
our effort to provide a comprehensive solution to the prob-
lem of integrating Deep Web sources (see [2, 3]).

VisQI does not address end users, but developers of Deep
Web integration systems. Such developers may use VisQI
as a standalone application to support their own Deep Web
integration systems. They may use the intermediate results
of VisQI (e.g., extracted schema trees, domain-wise map-
pings) as input to their own projects. Due to the modular
architecture of the system, they may also reuse the com-
ponents (e.g., the extraction component) to build their own
systems. Finally, developers may use VisQI to evaluate their
extraction and matching algorithms.

To this end, VisQI offers several important features. It
is capable of rendering arbitrary Web query interfaces to-
gether with the extracted structures. If extraction errors
are detected, the system can help to debug the algorithm by
using the graphical representation. Furthermore, it offers a
built-in feature to automatically perform large-scale evalua-
tions against a gold standard data set. We built the system
as a framework of loosely-coupled components (rendering,
extraction, gold standard management, etc.), each having a

1613

Figure 3: A snapshot of the system showing the schema view.

clean interface. Thus, other developers may take advantage
of our development by simply replacing the extraction algo-
rithm, getting all other components such as the visualization
and evaluation for free.

Though there has been a considerable number of propos-
als to Deep Web integration (see, among others, WISE-
Integrator [5] and MetaQuerier [7]), very few of these are
available as running and extensible systems. Furthermore,
none of them supports all three steps of integration, none
is equipped with a data set for testing as large as that of
VisQI. In addition, as shown in [4], our system outperforms
previous methods [5, 7] in terms of quality of the extracted
data structure.

2. SYSTEM ARCHITECTURE
The system is designed as a framework consisting of loosely-

coupled components. The architecture of VisQI is depicted
in Figure 2. The key functionalities of the system are:

A rendering and extraction component that first
converts a Web page into a list of tokens. Briefly, a token
corresponds to a visible element of the page, e.g., a label
or a field. Each token has an associated list of properties.
One such property is a rectangular box describing the vi-
sual placement of the token (element) in the page, another
property is the horizontal/vertical alignment of the tokens.
Second, this component uses the various properties of the
tokens to infer a tree structure for the elements of the query
interface (called schema tree). An example of a schema tree
is depicted in Figure 1.

A classification component. This component deter-
mines the application domain (e.g., car rental, real estate) of
a query interface. There are two scenarios for classification.
On the one hand, a set of interfaces of different domains is
already known and a new unseen interface needs to be clas-
sified by considering this knowledge. VisQI finds the best
matchings between the nodes of the new schema tree and
the clusters (to be defined below) of interface nodes of the
known interfaces. The algorithm classifies the new interface
to the domain that best matches its schema tree nodes.

On the other hand, VisQI clusters a set of query inter-
faces of unknown domains by finding alignments of their
schema trees. Properly aligned trees are clustered together
and therefore form a domain.

A matching component that identifies semantically
equivalent nodes among a number of interfaces. The match-

ing component takes as input a set of schema trees and out-
puts a set of clusters. A cluster contains a number of schema
tree nodes from different interfaces that all denote the same
semantic concept (e.g., departure city).

The clustering is based on a novel multi-phase algorithm
which combines several evidences for semantic equivalence,
such as label similarity, value overlaps, and the neighbor-
hood of nodes in their trees. The algorithm also uses tran-
sitivity of the equivalence relation to infer novel mappings.

We evaluated the mapping on 150 interfaces from 7 do-
mains. In contrast to [6] our algorithm fully exploits the
hierarchical representation of interfaces and also computes
mappings between internal nodes; thus, both systems can-
not be directly compared.

Figure 4 depicts the mapping between the nodes of two
query interfaces. Query interfaces are shown in the hierar-
chical representation. An arrow between the nodes of two
distinct schema trees represents that the two nodes may be
semantically equivalent. A user can delete incorrect map-
pings, add missed mappings and edit a mapping. If a match-
ing golden standard is present, the system highlights the in-
correct and the missed mappings to a user. The system can
also be used to manually define the matching between two
query interfaces from scratch. To our knowledge, none of
the existing Deep Web integration systems (e.g. [5, 7]) has
such a component.

An evaluation component which allows for the assess-
ment of the results of the other components. The evalu-
ation utilizes manually defined gold standards. Currently,
the system is equipped with schema trees of more than 500
interfaces in 15 application domains (see [4] for details on
this data set). For about 200 interfaces of the data set, the
gold standard provides manually defined mappings among
the elements of the interfaces.

Users may run the system in one of two modes: the ex-
traction mode, and the mapping and classification mode.

In the extraction mode users interactively select a list
of Web pages (URLs or files) which are then analyzed by
the extraction algorithm. Analyzing a Web page consists of
identifying the query interface, if present, and extracting the
schema tree from the form. The result of the extraction is
displayed graphically. The extraction takes on the average
5 seconds per interface, where a significant portion of this
time is spent on loading and rendering the Web page (about
4 seconds). If a gold standard schema tree for the user inter-

1614

Figure 4: A snapshot of the system showing the mappings between two query interfaces. Blue arrows depict
mappings computed by the algorithm whereas green arrows denote mappings added by the user.

face is available, the evaluation component can be invoked.
The evaluation component calculates various statistics such
as precision and recall of the extracted elements or the over-
all accuracy of the tree structure.

In the mapping and classification mode the system first
extracts the vocabulary of the loaded set of interfaces based
on labels and names of query interface elements (see also
[3]). Second, the system estimates similarities for all pairs
of schema tree nodes of the loaded query interfaces based
on their labels, names, values and tree positions. It clus-
ters semantically similar nodes together. In contrast to
other works, in this work the presence of schema trees al-
lows to simplify the mapping problem. For instance, 1:m
mappings between fields (leaves) can be represented as 1:1
mappings between fields and internal nodes (internal nodes
represent a group of leaf nodes). For example, the field
Passengers in the query interface of delta.com is mapped
1:1 to the internal node Passengers in the query interface of
aa.com, which is the parent of the fields Adults, Seniors
and Children. This mapping is equivalent to a 1:3 mapping
between the field Passengers in delta.com and the fields
Adults, Seniors and Children in aa.com. The user may
invoke the evaluation component to request precision, re-
call and F-measure of the identified mappings utilizing the
mapping portion of the gold standard.

Finally, a user may utilize the system in the mapping and
classification mode to check whether a new interface matches
a learned domain. The system utilizes the estimated node
clusters for this purpose. It estimates a best matching clus-
ter for each node of the interface tree. If the number of possi-
ble matches meets a threshold, the system assumes that the
new interface belongs to the learned application domain.

3. USAGE OF VISQI
The main window of the application has two vertical pan-

els. The panel on the left shows the list of currently loaded
interfaces. The content of the panel on the right changes
depending on usage scenarios. For example, if the user se-
lects a particular query interface from the list, the panel on
the right shows the schema view. In the following, we de-

scribe the user interface of VisQI along several typical usage
scenarios.

Rendering Web Pages. The visual coordinates (e.g.
semantic scope, bounding box) of the objects within Web
query interfaces are quite difficult to obtain; e.g., the bounded
rectangle of the internal node denoted by Where Do You
Want to Go? is shown in Figure 3. Many applications, es-
pecially Web extraction and integration tools, rely on the
graphical rendering information to understand the input
Web pages. Those applications may reuse our rendering
component as an easy-to-use module that delivers this in-
formation for HTML pages.

Extracting Interfaces. The system may be used to ex-
tract schema trees interactively or in the background. The
result, primarily an XML file containing the tree, can be
directly used as input to other systems/components, such
as query interface matching and merging [2]. It can also be
used as an analysis/debugging extraction tool. When used
in this fashion for a given web page, the middle panel shows
the hierarchical representation of the currently active query
interface as inferred by our algorithm and the right panel
contains a tab-folder that holds different views of the cur-
rent interface such as the rendered version of the Web page
(see Figure 3) enriched with other visual clues. For example,
the extracted elements are highlighted, the bounding boxes
(shown in dotted lines) of the fields and labels are empha-
sized, etc. During extraction the user can specify either a
set of URLs (batch mode) or a single URL of a page to be
analyzed on-line.

Domain Classification of Interfaces. Many applica-
tions, such as the construction of vertical meta search en-
gines require the identification of the application domain
(e.g., hotel) of each Deep Web search engine. VisQI pro-
vides a classification algorithm which automatically infers
the domain of a search engine using the query interface of
the search engine. It has an easy to use user interface to
check whether a given Web page that contains a Web query
interface belongs to a given application domain. As alluded
in the previous section, the intuition of the classification al-
gorithm is that an interface that has the “best” matchings

1615

with the interfaces in an application domain A than with
the interfaces in any other domain is likely to belong to A.
For example, in Figure 3 the panel on the left shows the
interfaces grouped by their application domains.

Matching Query Interfaces. For integration purposes,
such as the generation of an integrated interface or query
translation, a user might be interested in determining the
equivalent fields in different query interfaces. When the sys-
tem is used for matching, the match view is shown. It dis-
plays information about nodes and pairs of nodes. Figure
4 shows the match view. There is an alternative match-
ing view which displays the mappings in a tabular format.
A row in the table of mappings represents a pair of can-
didate matching nodes from two schema trees. One of the
columns in the table of mappings shows the aggregate sim-
ilarities for each pair. To ease the analysis of automatically
retrieved matches VisQI classifies the matches into several
classes such as all predicted matches, missed matches and
gold standard matches.

Managing Deep Web Repository. The system allows
to manage a repository of Deep Web sources. This contains
the source files, the schema trees and interface mapping in-
formation. A user may store these pieces of information in
files, edit and reload them. She may add the schema tree of
a new interface to the gold standard. Furthermore, she can
easily update the mapping to reflect the addition of the new
interface to the repository.

Testing Extraction Algorithms. Due to its modular
architecture, it is fairly easy to replace the extraction algo-
rithm with another one. This feature can be used by every
developer to make use of the other components of our soft-
ware. She simply plugs-in her extraction algorithm into our
system, which then displays the extracted interface graphi-
cally. By comparing the extracted interface against a gold
standard (possibly produced by herself as described above),
she can analyze differences as highlighted by our system.
This makes testing a lot easier. Alternatively, a developer
may partition the gold standard of interfaces into two sub-
sets, one for training and the other for testing.

Performing Batch Evaluations. Although VisQI can
perform one interface at a time experiments, this is not prac-
tical when the goal is to integrate hundreds of Deep Web
source. The large gold standard set that accompanies the
system permits large-scale experiments. A batch mode is
implemented to support large experiments, which generates
detailed statistics. A user can evaluate either the extraction
of a set of query interfaces or the matching between a set of
query interfaces.

User interfaces were developed to support this step, too.
For example, for a given query interface, it displays the gold
standard and the extracted schema trees side-by-side and it
highlights the differences between the two.

During evaluation of mappings the system shows the cor-
rect matches using a checkbox in the first column of the
table. Additionally, the evaluation component adds sepa-
rate tables of mappings to the user interface that visualize
the gold standard mappings and the missed mappings.

Performing Analytical Studies. We provide a way
for a tester or developer to devise better evaluation sce-
narios. This is helpful to understand the weaknesses and
strengths of a given algorithm as well as to perform compar-
ative studies of competing algorithms. For example, we com-
pare WISE-Extractor and our system on using several sce-
narios. In one of them only “flat” query interfaces were con-

sidered while in another scenario complex interfaces (trees
with depth larger than three) were used. The former sce-
nario showed that WISE-Extractor and our tool have com-
parable accuracies on “flat” interfaces whereas the latter
scenario showed that our tool is significantly better than
WISE-Extractor for complex interfaces. Testing along cer-
tain properties (such as “flatness”) of the gold standard
draws better conclusions about the results. Note that this
is also valuable for other problems, such as schema match-
ing. For example, one can devise a study about the quality
(deterioration) of matching over interfaces whose fields lack
instances.

4. DEMO PLAN
We shall illustrate all components of VisQI, which to-

gether are sufficient as algorithmic basis for the building
of Deep Web integration systems. We shall demonstrate the
entire range of functionalities of VisQI using URL’s of real
Deep Web sources. The visitor will be encouraged to par-
ticipate in an interactive mode. For instance, the visitor
can supply Deep Web sources of his/her choice. We shall
analyze these sources with VisQI. First, the result of the
extraction will be inspected together with the visitor. Then
we will illustrate the classification component. We will ask
the system to classify the interface chosen by the user. Then
the matching is demonstrated. The new interface is matched
against existing interfaces. We will guide the visitor through
the process of verifying the matching candidates. To demon-
strate the usage of the batch mode, the visitor may select a
number of interfaces, new or existing ones.

If the gold standard for the Deep Web sources chosen by
the visitor is present in our system, then the evaluation com-
ponent is exhibited. We will illustrate how the results of the
extraction, classification and matching algorithms are evalu-
ated. If no gold standard is present, we will guide the visitor
to the creation of her own (small) gold standard.

We also plan to provide example sets from different appli-
cation domains. This will demonstrated that our solution is
generic and applicable across many application domains on
the Deep Web.

5. REFERENCES
[1] L. Barbosa, J. Freire, and A. S. da Silva. Organizing

hidden-web databases by clustering visible web
documents. In ICDE, 2007.

[2] E. Dragut, W. Wu, A. P. Sistla, C. T. Yu, and
W. Meng. Merging source query interfaces on web
databases. In ICDE, 2006.

[3] E. C. Dragut, F. Fang, A. P. Sistla, C. T. Yu, and
W. Meng. Stop word and related problems in web
interface integration. In VLDB, 2009.

[4] E. C. Dragut, T. Kabisch, C. Yu, and U. Leser. A
hierarchical approach to model web query interfaces for
web source integration. In VLDB, 2009.

[5] H. He, W. Meng, C. T. Yu, and Z. Wu. Constructing
interface schemas for search interfaces of web
databases. In WISE, 2005.

[6] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive
clustering-based approach to integrating source query
interfaces on the deep web. In SIGMOD, 2004.

[7] Z. Zhang, B. He, and K. C.-C. Chang. Understanding
web query interfaces: best-effort parsing with hidden
syntax. In SIGMOD, 2004.

1616

