
Just-in-time Data Integration in Action

Martin Hentschel
ETH Zurich

hemartin@inf.ethz.ch

Laura Haas
IBM Almaden Research

laura@almaden.ibm.com

Renée J. Miller
University of Toronto

miller@cs.toronto.edu

ABSTRACT
Today’s data integration systems must be flexible enough to
support the typical iterative and incremental process of inte-
gration, and may need to scale to hundreds of data sources.
In this work we present a novel data integration system that
offers great flexibility and scalability. Our approach to data
integration is unique in that it executes mapping rules at
query runtime using annotations. On top, we have built the
People People People application. It allows users to search
for people, display information about people, and browse
through a network of related people, where the data is in-
tegrated from local and remote data sources. The demo
presents all features of our underlying data integration en-
gine through a set of motivating scenarios.

1. INTRODUCTION
Setting up a data integration system typically involves

an iterative process of exploration and integration. In the
beginning the user explores the data to get familiar with
its content and structure. This enables him to integrate
a first chunk of data, and proceed to further exploration
of the same or additional data sources, eventually expand-
ing and refining the integration. Data integration systems
should be flexible enough to support such an iterative pro-
cess. Furthermore, today’s businesses deal with hundreds of
data sources containing similar data. For example, Novartis,
a global pharmaceutical company, has over 170 sources of
person-related data. Thus, data integration systems should
be scalable in the number of data sources.

In this work we present a novel data integration engine
that offers great flexibility and scalability. Our approach is
flexible in that it executes schema-level and instance-level
integration rules (mapping rules) together in a single frame-
work. As we will show, this allows an integrated view of
diverse data to be built in an incremental and iterative fash-
ion.

In our approach the integration of data takes effect at
the runtime of a query while the data that needs to be in-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

tegrated is being processed. We call this just-in-time data
integration. During runtime the data is annotated with ad-
ditional information that is introduced by processing the
mapping rules. We are able to execute schema and instance
mapping rules using these annotations. Only mapping rules
that match the data being processed are executed. We call
our technique Mapping Data to Queries (MDQ) [9, 10]. Our
approach scales well in the number of source schemas and ul-
timately outperforms state-of-the-art approaches by orders
of magnitude [10].

In order to present this new approach to data integration,
we have created an application that highlights the features
of our underlying data integration engine. We call the ap-
plication People People People. It allows users to search
for people, display information about people, and browse
through a network of related people. All information is ag-
gregated from the DBLP data set [14] and Wikipedia using
our novel integration technique.

Section 2 provides an overview of our data integration
engine. Section 3 reviews related work. Section 4 describes
our demo, including the system set-up (Section 4.1) and
several usage scenarios (Section 4.2).

2. MAPPING DATA TO QUERIES
The MDQ engine can integrate locally stored data with

data fetched dynamically from remote sources, resolving
both schema-level and instance-level conflicts. It works with
data represented as XML, and supports XQuery. Figure 1
shows sample documents from Wikipedia and DBLP. All
documents contain namespaces (i.e., prefixes) to associate
data items with their respective sources. Figure 2 shows
the schemas of the sample documents (source schemas) as
well as the schema of the People People People application
(target schema). Mapping rules in Figure 3 map the source
schemas to the target schema. Note that we show only a
subset of input data, schemas, and mapping rules, just to
explain our data integration approach. We will present the
complete set of data, schemas, and mapping rules to the
demo audience.

The basic idea of Mapping Data to Queries is that when a
query is executed, each data item touched is annotated using
any mapping rules that apply. The annotations provide new
paths through the XML data. Consider the tree on the
left side of Figure 4. It shows (in black) the Wikipedia
document of Figure 1. Take schema mapping rule R1 in
Figure 3, w:table → p:person (w:table “is a” p:person), and
a query such as //p:person (i.e., find all persons). When
query processing reaches this document, the rule will fire,

1621

<w:table xmlns:w="...">
 <w:tr>
 <w:th id="#2">
 Hector Garcia-Molina
 </w:th>
 <w:td>...</w:td>
 </w:tr>
</w:table>

<d:article xmlns:d="...">
 <d:author id="#8">
 Hector Garcia-Molina
 </d:author>
 <d:title>Simrank++</d:title>
 <d:year>2008</d:year>
</d:article>

Wikipedia DBLP DBLP
d:article
 d:author
 d:title
 d:year

w:table
 w:tr
 w:th
 w:td

Wikipedia
p:person
 p:name

People R1 w:table → p:person
R2 w:tr/w:th → p:name
R3 d:author as $a →

 <p:person><p:name>
 {$a/text()}
 </p:name></p:person>

R4 #2 ← #8

Figure 1: Data Snippets Figure 2: Source and Target Schemas Figure 3: Mapping Rules

w:th w:td

d:author d:yearw:tr

d:articlew:table

p:person

p:person

p:name

p:name

Hector
Garcia-Molina

Hector
Garcia-Molina

2008Simrank++

...

#2

#8

d:title

Figure 4: Data Snippets from Wikipedia and DBLP anno-
tated to match the People People People Schema

and the bold red edge labeled “p:person” will be added.
Similarly, the other red lines represent the firing of other
schema mapping rules mapping the Wikipedia and DBLP
schemas to our application schema.

These new edges provide additional access paths to data
nodes. The query processor traverses these edges in the
same way as it traverses the original (black) edges. In Fig-
ure 4 for example, to find all names of persons, the en-
gine traverses the red person and name edges to return
the correct results. Mapping rule R2 specifies that the
nested structure w:tr/w:th should be unnested (flattened)
into p:name. In Figure 4 this rule introduces an annota-
tion (labelled p:name) that points from w:table directly to
w:th. Schema mapping rules may also create new nodes if
needed for the target schema. For example, the author en-
tries in DBLP do not have a child element “name”. Schema
mapping rule R3 causes the introduction of a new child. In
particular, rule R3 constructs a “p:name” child containing
the text value of the original author (through the variable
binding $a). In general, our MDQ approach handles all
schema mapping scenarios in the STBenchmark [2].

To merge two data instances, a new type of mapping rule
is added. These rules are of the form nodeId1 ← nodeId2,
specifying that the node with id nodeId2 should be merged
into (be seen as part of) the node identified by nodeId1.
For example in Figure 3, mapping rule R4 merges the node
with id #8 into node #2. Whenever either of these nodes
is accessed for the first time, the data is annotated with a
new composite node that contains the original nodes. In
Figure 4 the composite node is represented by the bold red
dashed line. This composite node will be handled by the
query processor in the same way as any original node. The
new composite node keeps all of the inbound and outbound
arcs. That means that the composite node in Figure 4 will be
reached twice by the query looking for all persons. Duplicate
elimination is thus needed. After duplicate elimination only
one (merged) person record will be output.

Mapping Data to Queries is a fundamentally new ap-
proach to data integration. The difference between MDQ
and any other data integration system is that the process-
ing of mapping rules forms a virtual data layer (the annota-
tions). We are able to produce (portions of) this layer just-
in-time. Of course, we only generate the relevant portions
taking into account both the data and the queries. Because
we index the mapping rules, this just-in-time generation is
very fast. Just-in-time data integration is particularly effec-
tive if the workload or data characteristics are unpredictable.
Examples are scenarios in which many data sources need to
be integrated, continuous query processing on data streams,
or Web mash-ups in which the characteristics of the data
sources frequently change in an unpredictable way. In these
scenarios MDQ outperforms state-of-the-art approaches in
throughput by orders of magnitude [10].

This paper claims no novelty with regard to the integra-
tion rules. There are many integration frameworks and ways
to define data integration logic (e.g., Clio [11] and others).

3. RELATED WORK
The state-of-the-art approaches to data integration are

federation and transformation [16]. Federation engines (aka
mediators [17]) provide a virtual view of underlying data,
as if it were already integrated [8, 13, 4]. With the help
of mapping rules, federation engines rewrite a query (writ-
ten against the virtual view) to match the different data
sources. The rewrite happens at compile-time and without
knowledge of the data. In environments where data charac-
teristics are unpredictable (e.g., schema-less input data or
schema mixes), the rewrite has to provide for all possible
input data, leading to query complexity and potentially ex-
ponential runtime inefficiency [10]. In Figure 5 for example,
the query p:person[1]/p:name (i.e., get the name of the first
person) must be rewritten to match data from Wikipedia,
DBLP, transformed data, and mixes thereof.

The transformation approach (aka extract-transform-
load, ETL) transforms all data to match the local schema,
here the People schema. All major database vendors pro-
vide tools to support ETL. The research community has
mostly focussed on the problem of maintaining materialized
views [7, 18, 1]. The transformation approach integrates
data in advance of query processing. Because the query
is not known, all data has to be transformed regardless of
whether it is needed to produce the query result. In Fig-
ure 5, the complete document is transformed (highlighted
in red) even though the query only asks for the name of the
first person.

In contrast to these two approaches, just-in-time data
integration takes effect at runtime of a query. It is able
to adapt the integration to the query and the data. Our
technique for just-in-time data integration, MDQ, does not

1622

Approach Query Document

(p:person | a:author | w:table)[1]/
 (p:name | text() | w:tr/w:tr)

Federation

Transformation p:person[1]/p:name

p:person[1]/p:nameMDQ

Figure 5: Different approaches to execute query p:person[1]/
p:name (get the name of the first person)

rewrite the query (as the federation approach does) nor does
it transform all data. MDQ ignores mapping rules that are
not applicable to the input data and annotates only those
parts of the data that are touched by the query. In Fig-
ure 5, only the first part of the document is annotated and
the query is able to return the correct result.

There has been work on adapting query execution to the
actual input data [3, 12]. These techniques gather statis-
tics (e.g., selectivity estimates) at runtime of a query to dy-
namically re-plan the query execution. In particular, Tuk-
wila [12] employs a federated approach to integrate differ-
ent data sources. In this work queries are still rewritten
at compile-time but later optimized during query runtime.
Potter’s Wheel [15] allowed incremental cleansing of data;
MDQ allows incremental refinement of the overall integra-
tion (Scenario 3).

People People People is inspired by the community portal
DBLife [6]. DBLife is an application of Cimple [5]. Cim-
ple focuses on automatically generating mapping rules and
employs an ETL approach to integrate data. Our applica-
tion is only meant to demonstrate the functionality of the
underlying MDQ engine. We do not automatically generate
mapping rules. In our work we focus on the execution of
(previously generated) mapping rules.

4. PEOPLE PEOPLE PEOPLE
To demonstrate our MDQ engine, we have built an ap-

plication that lets users integrate data about computer sci-
ence researchers as they explore: People People People. In
our demo there are three different data schemas: the DBLP
schema, the Wikipedia schema, and the schema of our ap-
plication (Figure 2). Rules to map the DBLP and Wikipe-
dia schemas to the application’s schema are created before
the start of the demo. A (semi-)automatic schema mapping
tool could be used to create this initial set of mapping rules,
though ours are hand-written. On the instance level, there
are scientists that are present in DBLP as well as in Wi-
kipedia. For most scientists there are multiple data entries
in DBLP. These data entries may be merged using instance
mapping rules. Since DBLP uniquely identifies authors [14],
we were able to create an initial set of instance mapping
rules. More mapping rules are generated whenever the user
merges results (see Scenario 2 below). All mapping rules in
the demo, schema and instance, may be freely edited.

4.1 System Setup
The demo system consists of a client and a server. The

client runs People People People as a web application in a
standard browser. The application connects to the server

through remote procedure calls. It sends XQuery queries
to the server and the server answers with XML. The appli-
cation presents the results as figures and text. Clicking on
a figure or on the text generates a new query, which is in
turn sent to the server and answered quickly to provide an
interactive user interface.

The server runs our data integration engine, an XQuery
processor enhanced to integrate data using MDQ. The en-
gine is loaded with the pre-defined mapping rules. Two
types of data access are supported, standard file input/
output to local storage, and connections to web servers on
the internet over standard HTTP. Local storage consists of a
directory structure containing data files, indexes, and meta-
data, and is loaded with parts of the DBLP data set, avail-
able in XML. The DBLP data set is stored on the server
without any modifications to the data. In particular, it has
not been transformed to any other schema. In the demo, the
engine will retrieve Wikipedia web pages in an on-demand
fashion. The web pages are returned by Wikipedia in the
XHTML format – a variant of XML. Therefore it is possible
to process these web pages using standard XQuery process-
ing techniques.

4.2 Demonstration Scenarios
The scenarios below deal with three methods of inter-

action with the system, ranging from simple to complex.
They demonstrate finding information about people and dis-
playing their relationships, manually merging duplicate data
records, and integrating a third new data source by adding
mapping rules and modifying existing queries.

Scenario 1: Searching and Browsing Information
A fresh PhD student wants to know more about famous sci-
entists in his area of research. He logs on to the People Peo-
ple People web application and “searches” for a researcher
he has heard of: Hector Garcia-Molina. (Each search trans-
lates into an XQuery query under the covers). The system
returns three results, displayed as small figures tagged with
name and id (Figure 6a). The student clicks on the last
result. The system provides the student with additional,
structured information about this person (Figure 6b). The
student further wants to know what people Hector Garcia-
Molina is related to. He double-clicks on the last search re-
sult. The system displays the data record of Hector and four
persons Hector is related to. The related persons are again
shown as small figures tagged with name and id. Further-
more, there are now red labels in between Hector and each
of the related persons stating the type of relationship (Fig-
ure 6c). For example, Gio Wiederhold was Hector’s doctoral
advisor. Clicking on any of the related persons allows the
student to display information about them. Double-clicking
on one of the persons will result in displaying their relation-
ships. In this way, the student is able to browse through a
network of related scientists.

Scenario 2: Merging Duplicate Records
Judging from the additional information in two of the data
records found for Hector Garcia-Molina, the PhD student
decides that these two data records refer to the same real
world person with name Hector Garcia-Molina. The student
wants to add this knowledge to the system. He therefore se-
lects both data records by clicking on them while pressing
the shift key. The system provides a button that lets the user
merge data records. The student clicks this “merge” button.
Immediately, the system updates the view to display only

1623

#0.190
Hector Garcia-Molina

#0.294
Hector Garcia-Molina

#2.105
Hector Garcia-Molina

(a) Search Results

Hector Garcia-Molina
#2.105 #0.362
Fields Computer Science
Institutions Stanford University
Residence United States
Publication Simrank++: query

rewriting through
link analysis of...

(b) Aggregated Information

#0.449
Chi-Chao Chang

#2.105
Hector

Garcia-Molina
#2.1026

Robert Abbott

#2.999
Gio Wiederhold

#0.503
Ioannis Antonellis

doctoral
advisor

doctoral
student

co-author

co-author

(c) Relationships

Figure 6: Screenshots of Integrated Data from DBLP (stored locally) and Wikipedia (fetched on demand)

one data record instead of the previous two records. Inter-
nally, a new instance mapping rule has been added to the
system. The student may continue to use the merged data
record as described in Scenario 1.

Note that Figures 6b and 6c already display information
from such a merged data record. In Figure 6b the merged
data record’s identifier shows the identifiers of the individ-
ual records #2.105 and #0.362. The data items: fields,
institutions, and residence stem from Wikipedia while the
publication data stems from the DBLP data set. Similarly,
in Figure 6c, the relationships doctoral advisor and doctoral
student are retrieved from Wikipedia while the co-author
relationships stem from DBLP.

Scenario 3: Adding a New Data Source
The third scenario highlights the internals of the system.
The People People People web application offers two addi-
tional tabs Rules and Query. The Rules tab lets users view
and edit all mapping rules stored in the system. This allows
the user to refine current mapping rules, to delete mapping
rules in case of mistakes (e.g., false merges), or to incorpo-
rate additional data sources. The Query tab lets users post
individual queries as well as modify existing queries used by
the web application.

After a while the PhD student thinks that there is im-
portant information missing. He wants to incorporate an
additional data source. He therefore opens the Query tab
to modify the existing “search” query. He adds a look up
of Amazon webpages to the search query, so that data from
Amazon will be included in the results. The student then
queries for Hector again. No additional data appears in
the result view. The student recognizes that he must map
the Amazon schema to the People People People schema.
Therefore he opens the Rules tab and adds the schema level
rule a:h1 → p:person (let a: be the namespace of Amazon).
This rule views the webpage (the headline of the webpage)
as a person. As the student queries for Hector again, he will
notice an additional data record. Yet, this additional record
is empty. The student goes back to add another mapping
rule to include all books of people as additional information.
Revisiting the last search result of Hector, the student finds
that all of Hector’s books show up in the information box.
Now, he merges this record with the existing records for Hec-
tor. The aggregated data record now contains information
gathered from DBLP, Wikipedia, and Amazon.

Incrementally, the PhD student was able to include a new
data source. Iteratively, he mapped information from that
source to the People People People web application schema.
Finally, he merged data from the new source with data that
already existed in the database. Integrated data!

5. REFERENCES
[1] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. L.

Wiener. Incremental Maintenance for Materialized Views
over Semistructured Data. In VLDB Conf., pages 38–49,
1998.

[2] B. Alexe, W. C. Tan, and Y. Velegrakis. STBenchmark:
towards a benchmark for mapping systems. PVLDB,
1(1):230–244, 2008.

[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously
Adaptive Query Processing. In ACM SIGMOD Conf.,
pages 261–272, 2000.

[4] S. Chawathe et al. The TSIMMIS Project: Integration of
Heterogeneous Information Sources. In Proc. of the 100th
Anniversary Meeting of the Information Processing Society
of Japan(IPSJ), pages 7–18, Tokyo, Japan, Oct. 1994.

[5] P. DeRose, W. Shen, F. Chen, A. Doan, and
R. Ramakrishnan. Building Structured Web Community
Portals: A Top-Down, Compositional, and Incremental
Approach. In VLDB, pages 399–410, 2007.

[6] P. DeRose, W. Shen, F. Chen, Y. Lee, D. Burdick,
A. Doan, and R. Ramakrishnan. DBLife: A Community
Information Management Platform for the Database
Research Community. In CIDR, pages 169–172, 2007.

[7] A. Gupta and I. S. Mumick. Maintenance of Materialized
Views: Problems, Techniques, and Applications. IEEE
Data Eng. Bull., 18(2):3–18, 1995.

[8] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang.
Optimizing Queries across Diverse Data Sources. In VLDB
Conf., pages 276–285, 1997.

[9] L. M. Haas, R. J. Miller, M. Hentschel, and D. Kossmann.
A First Step Towards Integration Independence. In NTII,
2010.

[10] M. Hentschel et al. Scalable Data Integration by Mapping
Data to Queries. Technical Report 633, ETH Zurich,
Systems Group, Dept. of Computer Science, 2009.

[11] M. A. Hernández, R. J. Miller, and L. M. Haas. Clio: A
Semi-Automatic Tool For Schema Mapping. In ACM
SIGMOD Conf., page 607, 2001.

[12] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and D. S.
Weld. An adaptive query execution system for data
integration. In ACM SIGMOD Conf., pages 299–310, 1999.

[13] A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
Heterogeneous Information Sources Using Source
Descriptions. In VLDB Conf., pages 251–262, 1996.

[14] M. Ley. DBLP - Some Lessons Learned. PVLDB,
2(2):1493–1500, 2009.

[15] V. Raman and J. M. Hellerstein. Potter’s Wheel: An
Interactive Data Cleaning System. In VLDB Conf., pages
381–390, 2001.

[16] J. Widom. Integrating Heterogeneous Databases: Lazy or
Eager? ACM Computing Surv., 28(4es):article 91, 1996.

[17] G. Wiederhold. Mediators in the Architecture of Future
Information Systems. IEEE Computer, 25(3):38–49, 1992.

[18] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom.
View Maintenance in a Warehousing Environment. In ACM
SIGMOD Conf., pages 316–327, 1995.

1624

