
Data Auditor: Exploring Data Quality and Semantics
using Pattern Tableaux

Lukasz Golab, Howard Karloff, Flip Korn and Divesh Srivastava
AT&T Labs - Research

180 Park Avenue, Florham Park NJ, 07932, USA
{lgolab, howard, flip, divesh}@research.att.com

ABSTRACT
We present Data Auditor, a tool for exploring data quality and data
semantics. Given a rule or an integrity constraint and a target re-
lation, Data Auditor computes pattern tableaux, which concisely
summarize subsets of the relation that (mostly) satisfy or (mostly)
fail the constraint. This paper describes 1) the architecture and user
interface of Data Auditor, 2) the supported constraints for testing
data consistency and completeness, 3) the heuristics used by Data
Auditor to “tune” a given constraint or its associated parameters
for better fit with the data, and 4) several demonstration scenarios.
using real data sets.

1. INTRODUCTION
Large-scale databases and data warehouses often appear to be

haphazardly thrown together, owing to a variety of reasons from
an inadequate understanding of data semantics (leading to poor
schema design), to evolution of the database over time (due to inte-
grating new sources) to error-prone data collection. Understanding
the semantics of such data is useful for making sense of analysis
results as well as detecting data quality problems. Recently, new
integrity constraints have been proposed for capturing certain se-
mantics of data (rather than schema). These include Conditional
Functional Dependencies (CFDs) [4], Conditional Inclusion De-
pendencies (CIDs) [1], and Conditional Sequential Dependencies
(CSDs) [6]. The key concept behind these constraints is the notion
of conditioning: rather than requiring the constraint to hold over the
entire relation, it need only be satisfied over conditioned subsets of
the data. We view these constraints as rules which are capable of
expressing consistency and completeness properties of the data.

This paper describes Data Auditor, a tool for exploring data se-
mantics using conditional constraints. Data Auditor allows users to
“try out” various types of constraints (including those listed above,
and many more) to see if they hold or fail to a specified degree at
least on some fraction of the data. Given a constraint, Data Audi-
tor computes a pattern tableau that meaningfully summarizes the
satisfying or failing subsets. Each pattern in a tableau may identify
temporal intervals within the data or attribute values that most (but
not necessarily all) satisfying or violating tuples have in common.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

In addition to discovering a pattern tableau for a user-specified
constraint and associated parameters, Data Auditor attempts to
“tune” the constraint and its parameters for better fit with the data.
One general tuning method decreases the specified degree to which
the constraint needs to be satisfied, which may allow a larger frac-
tion of the data and/or more meaningful subsets to be reported in the
tableau. Data Auditor also supports many constraint-specific tuning
strategies; for example, it may suggest to “relax” a functional de-
pendency by removing an attribute from its right-hand-side if doing
so gives a better representation of the underlying data semantics.

A great deal of work exists on data quality and data cleaning, and
many systems have been proposed in this area, including Ajax [5],
Bellman [2] and Potter’s Wheel [9]. Data Auditor belongs to the
class of constraint-driven systems, which also includes SEMAN-
DAQ [3] and StreamClean [8]. SEMANDAQ employs CFDs and
pattern tableaux to analyze data quality. It assumes that pattern
tableaux are specified by the user, and focuses of on identifying
violating tuples and suggesting ways to repair them. StreamClean
focuses on constraint-based data cleaning and automatic error cor-
rection, and it requires each constraint to hold on the whole data set.
Data Auditor complements tools like SEMANDAQ and Stream-
Clean which assume that the data semantics are known apriori. By
automatically discovering and tuning pattern tableaux for a variety
of constraints, our system can provide a quick and user-friendly
overview of the semantics and quality of the data.

2. OVERVIEW OF DATA AUDITOR
Figure 1 presents the architecture of Data Auditor. The Web-

based user interface consists of a set of parameter screens, one for
each supported constraint type (for example, one parameter may be
the extent to which the subsets reported in the tableau must satisfy
the constraint). Data Auditor then executes one of several algo-
rithms (based on recent tableau discovery research [6, 7]) to ef-
ficiently generate concise tableaux for the selected constraint and
associated parameters. The user receives a page containing the
discovered tableau, as well as some tuning suggestions on how to
“tweak” some of the parameters or the constraint itself in order
to obtain a more concise tableau. Clicking on a particular pattern
reveals more information about it, while clicking on a tuning sug-
gestion displays the tableau for the tweaked constraint/parameters.

2.1 Supported Constraints
Data Auditor supports CIDs, CFDs, CSDs [6], as well as Pred-

icate Constraints that specify conditions which should be satisfied
by every tuple in a given relation. Functional and inclusion depen-
dencies are well known; we describe the others below.

Our predicate constraints are of the form ∀t ∈ R, c → p, which
we write as:

1641



Figure 1: Overview of Data Auditor

FOREACH t in R [WHERE c] ASSERT p

Here, t is a tuple, R is a relation, and c and p are predicates of
any form allowed in the SQL WHERE clause. The meaning of the
constraint is that if a tuple satisfies predicate c, it must also satisfy
p; if c is not specified, then every tuple is expected to satisfy p.
These types of constraints are useful for asserting predicates on the
attribute values of every tuple (data consistency) and for asserting
the existence of tuples (data completeness). For example, suppose
that table TICKETS stores customer trouble tickets, with ticket id
being the primary key and timestamp being the ticket submission
time, and table RESOLUTIONS contains a row for every ticket id
that has been resolved with its timestamp denoting the resolution
time. The following constraint specifies that all trouble tickets must
be resolved within 24 hours:

FOREACH t in TICKETS
ASSERT EXISTS (

SELECT * FROM RESOLUTIONS u
WHERE t.ticket_id = u.ticket_id
AND u.timestamp >= t.timestamp
AND u.timestamp - t.timestamp <= 24 )

Note that these predicate constraints can express functional and
inclusion dependencies. For convenience, Data Auditor provides
separate parameter screens for functional and inclusion dependen-
cies so that users do not have to write them in predicate form.

Conditional Sequential dependencies (CSDs) have recently been
proposed to express ordering properties in timestamped data such
as the expected periodicity. A CSD takes two integer parameters,
G1 and G2, and asserts that the “gaps” between the timestamps
of consecutive tuples must be no less than G1 and no more than
G2 (we allow G1 to be as small as zero and G2 to be as large
as infinity). Here, an obvious tuning strategy that Data Auditor
supports is to reduce G1 and/or increase G2.

In practice, constraints are rarely satisfied exactly. We employ
the notion of confidence to measure the extent to which a relation
or a data set satisfies a constraint. For predicate constraints, the
confidence is defined simply as the fraction of rows of R satisfy-
ing c that additionally satisfy p. For CFDs and CSDs, we use the
definitions from [7] and [6], respectively.

2.2 Pattern Tableaux
In addition to approximate constraint satisfaction, real data are

often heterogeneous in the sense that certain subsets may satisfy

Table 1: Example ROUTER COUNTS table

name location time num responses
router1 New York 10:00 0
router2 New York 10:00 0
router3 Chicago 10:00 1
router4 Chicago 10:00 1
router1 New York 10:05 1
router2 New York 10:05 0
router3 Chicago 10:05 1
router4 Chicago 10:05 1
router1 New York 10:10 1
router2 New York 10:10 1
router3 Chicago 10:10 1
router4 Chicago 10:10 1
router1 New York 10:15 0
router2 New York 10:15 1
router3 Chicago 10:15 0
router4 Chicago 10:15 0

a given constraint with very high (or very low) confidence. We
employ pattern tableaux to summarize this valuable information.
We discuss tableaux for predicate constraints and CFDs below
(see [6] for details on tableaux for CSDs). Consider a set A =
a1, a2, . . . , aj of conditioning attributes, chosen from amongst the
attributes in a relation. A pattern tableau consists of a set of pat-
terns over A, each containing j symbols, one for each conditioning
attribute. Each symbol is either a value in the corresponding at-
tribute’s domain or a special “wildcard” symbol ’-’. Let pi[aj ] de-
note the symbol corresponding to the jth conditioning attribute of
the ith pattern, and let t[aj ] be the value of the jth conditioning at-
tribute of a tuple t. A tuple t is said to match a pattern pi if, for each
aj in A, either pi[aj ] = ’-’ or t[aj ] = pi[aj ]. Note that the pattern
consisting of only the ’-’ symbols matches the entire relation.

To compute a tableau, the user must specify the constraint itself,
a set of conditioning attributes A, and two threshold parameters, ŝ
and ĉ (for CFDs, we assume that A consists of its left-hand side
attributes). The output is a tableau over A with (almost) as few
patterns as possible whose union covers a fraction of ŝ of the data,
each of which has a confidence of at least ĉ. We refer to such a
tableau as a hold tableau since it summarizes subsets on which the
constraint holds. The user may also request subsets on which the
constraint fails, in which case Data Auditor generates a fail tableau,
where each pattern has confidence below ĉ.

We now give an example from the network monitoring domain.
Suppose that each router within a network is expected to respond to
a status query in every five-minute time bucket. Table 1 shows an
example ROUTER COUNTS relation that counts the number of re-
sponses per router in each five-minute period. One way to measure
the completeness of these data is to try the following constraint.

FOREACH t in ROUTER_COUNTS
ASSERT num_responses > 0

The confidence of this constraint on Table 1 is 10
16

since ten of 16
rows satisfy the given predicate.

Now suppose that we want to generate a fail tableau using the
conditioning attribute set {name, location, time}, with
a confidence upper bound ĉ = 0.25, and support (coverage)
threshold ŝ = 0.4. This tableau is shown in Table 2, along
with the confidence of each pattern and the number of tuples
that match it. Note that this tableau summarizes subsets of
ROUTER_COUNTS that are responding, on average, 25 percent of
the time. For example, the first pattern has a confidence of 0.25

1642



Table 2: Tableau for ROUTER CPU COUNTS

name location time conf. matches
- - 10:15 0.25 4
- New York 10:00 0 2

router2 - 10:05 0 1

since it matches the four tuples with time=10:15, of which only
one has num_responses > 0. As a result, this fail tableau is a
useful tool for summarizing the “worst offenders” of a constraint,
and is easier to interpret than a (possibly very long) list of all viola-
tions. In fact, one can generate several fail tableaux with different ĉ
values to discover subsets with varying degrees of violations. Ad-
ditionally, by changing ĉ to be a lower bound, say, at least 0.9, the
resulting hold tableau identifies “well behaved” subsets that sat-
isfy the constraint with high confidence. For example, the pattern
(- - 10:10) may be identified in such a tableau, which has a
confidence of 1 since no responses were missing at time 10:10.

3. DEMONSTRATION SCENARIOS
So far, we have given examples of predicate constraints on

network monitoring data. Many other constraints and data
sets will be demonstrated, among them CFDs on sales data
obtained from amazon.com. This data set contains 300,000
records, including fields such as type, itemid, title,
price, vat, quantity, userid, street, city,
areacode, region, country, zip. We hypothesize
CFDs that hold in this data set. We start with the attribute
set {type, title, country} and hypothesize that it
strongly functionally determines {price, vat, id} on
many subsets. (type and title together distinguish most
items, and sales within the same country should have the
same price and VAT charged.) On the full data, the FD
{type, title, country} → {price, vat, id} has confidence 0.72.

Figure 2 displays the parameter screen for CFDs. We specify the
target table, the antecedent (left-hand-side) and consequent (right-
hand-side) of the FD, the confidence threshold of (to generate a fail
tableau, we write a minus in front of the confidence threshold), and
the coverage (support) threshold. We also need to choose a tun-
ing option: “none”, “confidence” (i.e., generate a second tableau
using a slightly lower confidence threshold), or “confidence and
attributes” (i.e., in addition to tweaking the confidence, generate
tableaux for similar FDs by removing an attribute from the conse-
quent or adding an attribute to the antecedent). There is also an
optional filter parameter, which serves a similar purpose to the c
predicate in predicate constraints. That is, Data Auditor will com-
pute a tableau over only those tuples from the specified table which
satisfy c. Other types of constraints have slightly different parame-
ter screens, depending on the necessary parameters.

Given the parameters in Figure 2, Data Auditor computes a
tableau shown in Figure 3 (in the background), which contains 40
patterns. We can click on an individual pattern and drill down into
more specific patterns by expanding any wildcards into all possi-
ble constants. In the foreground of Figure 3, we show the result of
clicking on the tableau pattern “-,-,GER”, which lists all the pos-
sible item types and item titles purchased in Germany (GER). An-
other way of interactively exploring the data is to choose a pattern,
say “-,-,GER”, and generate another tableau using this pattern as
a filter parameter (recall Figure 2). This new tableau summarizes
subsets of items purchased in Germany that satisfy the related FD
{type, title} → {price, vat, id}.

Figure 2: Specifying a Functional Dependency in Data Auditor

The user can also view tuned tableaux that were generated by
Data Auditor in parallel with the original tableau. Links to tuned
tableaux appear at the bottom of Figure 3, along with their sizes.
The first link leads to a tuned tableau that was created by lowering
the confidence threshold to 0.88. This tuned tableau only contains
two patterns, meaning that we can summarize this data set much
better by decreasing the extent to which the specified FD must hold.
On the other hand, the second link indicates that using a consequent
of Vat and Item id (but not Price), is not helpful since the resulting
tableau has the same size (40 patterns) as the original tableau. How-
ever, the third link shows that removing Vat from the consequent,
which changes the original FD to {type, title} → {price, id},
allows the new FD to fit much better since the resulting tableau,
illustrated in Figure 4, only contains two patterns.

We can test other interesting rules on this data set and ob-
tain tuning suggestions, e.g., that zip codes functionally deter-
mine geographic attributes. For example, starting with the FD
{country, zip} → {areacode, city, region, street}, Data Au-
ditor suggests that we remove both city and areacode from
the consequent to improve the fit.

4. REFERENCES
[1] L. Bravo, W. Fan, and S. Ma. Extending dependencies with

conditions. VLDB 2007, 243-254.
[2] T. Dasu, T. Johnson, S. Muthukrishnan and V. Shkapenyuk.

Mining database structure; or, how to build a data quality
browser. SIGMOD 2002, 240-251.

[3] W. Fan, F. Geerts and X. Jia. Semandaq: A Data Quality
System Based on Conditional Functional Dependencies.
PVLDB, 1(2): 1460-1463, 2008.

[4] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis.
Conditional functional dependencies for capturing data
inconsistencies. TODS, 33(2):1-48, 2008.

[5] H. Galhardas, D. Florescu, D. Shasa, E. Simon and C.-A.
Saita. Declarative data cleaning: language, model, and
algorithms. VLDB 2001, 371-380.

[6] L. Golab, H. Karloff, F. Korn, A. Saha, and D. Srivastava.
Sequential dependencies. VLDB 2009.

[7] L. Golab, H. Karloff, F. Korn, D. Srivastava, and B. Yu. On
generating near-optimal tableaux for conditional functional
dependencies. PVLDB, 1(1):376-390, 2008.

[8] N. Khoussainova, M. Balazinska, and D. Suciu. Towards
correcting input data errors probabilistically using integrity
constraints. MobiDE 2006, 43-50.

[9] V. Raman and J. Hellerstein. Potter’s wheel: An interactive
data cleaning system. VLDB 2001, 381-390.

1643



Figure 3: Generating a tableau in Data Auditor

Figure 4: Tuning a tableau in Data Auditor

1644




