The Performance of MapReduce: An In-depth Study

Dawei Jiang

Beng Chin Ooi

Lei Shi Sai Wu

School of Computing
National University of Singapore
{jlangdw, ooibc, shilei, wusaii@comp.nus.edu.sg

ABSTRACT

MapReduce has been widely used for large-scale data analy-
sis in the Cloud. The system is well recognized for its elastic
scalability and fine-grained fault tolerance although its per-
formance has been noted to be suboptimal in the database
context. According to a recent study [19], Hadoop, an open
source implementation of MapReduce, is slower than two
state-of-the-art parallel database systems in performing a
variety of analytical tasks by a factor of 3.1 to 6.5. MapRe-
duce can achieve better performance with the allocation of
more compute nodes from the cloud to speed up computa-
tion; however, this approach of “renting more nodes” is not
cost effective in a pay-as-you-go environment. Users desire
an economical elastically scalable data processing system,
and therefore, are interested in whether MapReduce can of-
fer both elastic scalability and efficiency.

In this paper, we conduct a performance study of MapRe-
duce (Hadoop) on a 100-node cluster of Amazon EC2 with
various levels of parallelism. We identify five design factors
that affect the performance of Hadoop, and investigate al-
ternative but known methods for each factor. We show that
by carefully tuning these factors, the overall performance of
Hadoop can be improved by a factor of 2.5 to 3.5 for the
same benchmark used in [19], and is thus more compara-
ble to that of parallel database systems. Our results show
that it is therefore possible to build a cloud data processing
system that is both elastically scalable and efficient.

1. INTRODUCTION

In cloud systems, a service provider delivers elastic com-
puting resources (virtual compute nodes) to a number of
users. The details of the underlying infrastructure are trans-
parent to the users. This computing paradigm is attracting
increasing interest from both academic researchers and in-
dustry practitioners because it enables users to scale their
applications up and down seamlessly in a pay-as-you-go man-
ner.

To unleash the full power of cloud computing, it is widely

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.

Proceedings of the VLDB Endowment, Vol. 3, No. 1

Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

472

accepted that a cloud data processing system should provide
a high degree of elasticity, scalability and fault tolerance. In
this paper, we argue that besides the above three features, a
cloud data processing system should also deliver efficiency.
Even though better performance can be achieved by “rent-
ing” more compute nodes from the cloud to speed up com-
putation, this solution is not really cost effective and may in
fact offset the benefits of cloud computing. An ideal cloud
data processing system should offer elastic data processing
in the most economical way.

MapReduce [13] is recognized as a possible means to per-
form elastic data processing in the cloud. Compared to other
designs, MapReduce provides a few distinguished features
such as:

e The programming model of MapReduce is simple yet
expressive. Although MapReduce only provides two
functions map () and reduce(), a large number of data
analytical tasks can be expressed as a set of MapRe-
duce jobs, including SQL query, data mining, machine
learning and graph processing. The programming model
is also independent of the underlying storage system
and is able to process various types of data, structured
or unstructured. This storage-independent design is
considered to be indispensable in a production envi-
ronment where mixed storage systems are deployed
[14].

MapReduce achieves elastic scalability through block-
level scheduling. The runtime system automatically
splits the input dataset into even-sized data blocks and
dynamically schedules the data blocks to the available
compute nodes for processing. MapReduce is proven
to be highly scalable in real systems. Installation of
MapReduce on a shared-nothing cluster with 4,000
nodes has been reported in [3].

MapReduce provides fine-grained fault tolerance whereby
only tasks on failed nodes have to be restarted.

With the above features, MapReduce has become a pop-
ular tool for processing large-scale data analytical tasks.
However, the performance of MapReduce is still far from
ideal in the database context. According to a recent bench-
marking study, Hadoop [4], the open source implementation
of MapReduce, is slower than two parallel database systems
by a factor of 3.1 to 6.5 [19]. MapReduce can deliver bet-
ter performance with the use of more compute nodes [14];
however, this scheme is not really cost effective in a pay-
as-you-go cloud environment. Users want a data processing

system which is not only elastically scalable but also effi-
cient. An interesting question is thus whether MapReduce
must trade off performance to achieve elastic scalability.

In this paper, we conduct an in-depth performance study
of MapReduce. Following [19], we choose Hadoop as the
target MapReduce system for evaluation since it closely re-
sembles Google’s original MapReduce implementation. We
aim to address the following two questions:

e What factors affect the performance of MapReduce?

e Can we eliminate the negative impact of these factors
by proper implementation, and what performance im-
provement can we gain as a result?

To answer the first question, we consider the impact of the
architectural design of MapReduce, including programming
model, storage-independent design and scheduling. In par-
ticular, we identify five factors that affect the performance
of MapReduce: 1/O mode, indexing, data parsing, grouping
schemes and block-level scheduling. To answer the second
question, we conduct extensive experiments on a 100-node
cluster of Amazon EC2 with various levels of parallelism us-
ing the same benchmark published in [19] and a new bench-
mark tailored for our comparison purposes. Our findings are
summarized as follows:

e While MapReduce is independent of the underlying
storage system, it still requires the storage system to
provide I/O interfaces for scanning data. We iden-
tify two types of I/O modes: direct I/O and stream-
ing I/O. Benchmarking on HDFS (Hadoop Distributed
File System) shows that direct I/O outperforms stream-
ing 1/0 by 10%.

e Like existing database systems, MapReduce can actu-
ally exploit the index to improve the performance of
data processing. In particular, MapReduce can effi-
ciently process three kinds of index structures: sorted
files with range-index, BT -tree files and database in-
dexed tables. Our experiments show that by enabling
an index, the performance of MapReduce improves by
a factor of 2.5 in the selection task and a factor of up
to 10 in the join task, depending on the selectivity of
filtering conditions.

e Record parsing is not the source of the poor perfor-
mance of MapReduce. Our finding is somewhat dif-
ferent from those reported in [19], [20] and [10]. In
this study, we evaluate two kinds of record decoding
schemes: mutable decoding and immutable decoding.
We find that only immutable decoding introduces high
performance overhead. To handle database-like work-
load, MapReduce users should strictly use mutable de-
coding. We show that a mutable decoding scheme is
faster than an immutable decoding scheme by a factor
of 10, and improves the performance of MapReduce in
the selection task by a factor of 2.

e The MapReduce programming model focuses on data
transformation. Data transformation logic is specified
in the map() and reduce() functions. However, the
programming model itself doest not specify how inter-
mediate data produced by map () functions are grouped
for reduce() functions to process. The default sort-
merge grouping algorithm is not efficient for certain

kinds of analytical tasks such as aggregation and join.
We observe that different grouping algorithms can sig-
nificantly improve performance, but the Hadoop core
may need to be modified for an efficient grouping al-
gorithm to be implemented.

e Block-level scheduling incurs considerable overhead in
MapReduce. In general, the more data blocks to sched-
ule, the higher the cost the scheduler will incur. A
micro-benchmark shows that the processing time for
scanning a 10GB file with 5GB block size is more than
thrice faster than scanning the same file with 64MB
block size. Furthermore, the scheduling algorithm,
which determines the assignment of map tasks to the
available nodes, also affects performance. The current
scheduling strategy in Hadoop is sensitive to the pro-
cessing speed of slave nodes, and may slow down the
execution time of the entire job by 20%~30%.

In summary, by carefully tuning the above factors, the
overall performance of MapReduce (Hadoop in this paper)
can be improved by a factor of 2.5 to 3.5. This means that,
contrary to some recent studies, MapReduce-based systems
are not inferior to parallel database systems in terms of per-
formance; instead, they can offer a competitive edge as they
are elastically scalable and efficient.

The rest of this paper is organized as follows: Section 2
discusses the factors that affect the performance of MapRe-
duce. In Section 3, we show the combinations of factors that
we will evaluate in the experiments. Section 4 presents the
implementation details. We present our benchmark results
in Section 5. We briefly review related work in Section 6,
and we conclude the paper in Section 7.

2. PERFORMANCE FACTORS

In this section, we conduct a performance profile for MapRe-
duce. We start our analysis by reviewing the MapReduce
programming model and the execution flow of a MapReduce
job. Then, from an architectural perspective, we figure out
what design factors may hurt the performance and discuss
possible fixes. Implementation details of our improvement
on Hadoop will be presented in Section 4.

2.1 MapReduce Background

According to [13], MapReduce is a programming model
for processing large-scale datasets in computer clusters. The
MapReduce programming model consists of two functions,
map() and reduce(). Users can implement their own pro-
cessing logic by specifying a customized map () and reduce ()
function. The map() function takes an input key/value pair
and produces a list of intermediate key/value pairs. The
MapReduce runtime system groups together all intermedi-
ate pairs based on the intermediate keys and passes them
to reduce() function for producing the final results. The
signatures of map() and reduce() are as follows [13]:

— list(k2,v2)
— list(v2)

map (k1,v1)
reduce (k2,list(v2))

A MapReduce cluster employs a master-slave architecture
where one master node manages a number of slave nodes.
In the Hadoop, the master node is called JobTracker and
the slave node is called TaskTracker (since the evaluation
is performed on Hadoop, we will use Hadoop’s terms in

473

the remaining of the paper). Hadoop launches a MapRe-
duce job by first splitting the input dataset into even-sized
data blocks. Each data block is then scheduled to one Task-
Tracker node and is processed by a map task. The task
assignment process is implemented as a heartbeat protocol.
The TaskTracker node notifies the JobTracker when it is
idle. The scheduler then assigns new tasks to it. The sched-
uler takes data locality into account when it disseminates
data blocks. It always tries to assign a local data block to a
TaskTracker. If the attempt fails, the scheduler will assign a
rack-local or random data block to the TaskTracker instead.
When map () functions complete, the runtime system groups
all intermediate pairs and launches a set of reduce tasks to
produce the final results. We investigate three design com-
ponents of MapReduce: programming model, storage inde-
pendent design and runtime scheduling. The three designs
result in five factors that affect the performance of MapRe-
duce: grouping schemes, I/O modes, data parsing, indexing,
and block-level scheduling. We shall next describe each of
them in detail.

2.2 Programming Model

The MapReduce programming model mainly focuses on
enabling users to specify data transformation logic (via map ()
and reduce() functions). The programming model itself
does not specify how intermediate pairs produced by map()
functions are grouped for reduce () functions to process. In
the MapReduce paper [13], the designers considered that
specifying a data grouping algorithm is a difficult task and
such complexity should be hidden by the framework. There-
fore, a sort-merge algorithm is employed as the default group-
ing algorithm and few interfaces are provided to change the
default behavior.

However, sort-merge algorithm is not always the most ef-
ficient algorithm for performing certain kinds of analytical
tasks, especially for those which do not care about the order
of intermediate keys. Examples of such tasks are aggrega-
tion and equal-join. Therefore, in these cases, we need to
switch to alternative schemes. In this paper, we evaluate
the performance of adopting alternative grouping schemes
to perform aggregation and join tasks. Exhausting all pos-
sible grouping algorithms is impossible. Our aim is to study
whether “typical” grouping strategies can be efficiently im-
plemented within the MapReduce framework.

For the aggregation task, we evaluate a fingerprinting
based grouping algorithm. In particular, a 32-bit integer
is generated as the fingerprint of the key for each interme-
diate key/value pair. When a map task sorts the interme-
diate pairs, it first compares the fingerprints of keys. If two
keys have the same fingerprint, we will further compare the
original keys. Similarly, when a reduce task merges the col-
lected intermediate pairs, it first groups the pairs by the
fingerprints and then for each group, the key-value pairs are
merged via the original keys.

For the join task, we evaluate different join algorithms.
Details of these algorithms can be found in Section 5.11.

We find that it is hard to efficiently implement finger-
printing based grouping in map() and reduce() interfaces.
Our final implementation modifies the Hadoop core. The
implementation details are described in Section 4. Our ex-
periences show that MapReduce may need to extend its pro-
gramming model to allow users to specify their customized
grouping algorithms.

474

2.3 Storage Independence

The MapReduce programming model is designed to be
independent of storage systems. Namely, MapReduce is a
pure data processing system without a built-in storage en-
gine. MapReduce reads key/value pairs from the underlying
storage system through a reader. The reader retrieves each
record from the storage system and wraps the record into a
key /value pair for further processing. Users can add support
for a new storage system by implementing a corresponding
reader.

This storage independent design is considered to be ben-
eficial for heterogenous systems since it enables MapRe-
duce to analyze data stored in different storage systems [14].
However, this design is quite different from parallel database
systems. All the commercial parallel database systems are
shipped with both a query processing engine and a storage
engine. To process a query, the query engine directly reads
records from the storage engine. No cross-engine calls are
therefore required. It appears that the storage independent
design may hurt the performance of MapReduce, since the
processing engine needs to call the readers to load data. By
comparing MapReduce and parallel database systems, we
identify three factors that may potentially affect the perfor-
mance of MapReduce: 1) I/O mode, the way of a reader
retrieving data from the storage system; 2) data parsing,
the scheme of a reader parsing the format of records; and 3)
indexing.

2.3.1 1I/0 mode

A reader can choose two modes to read data from an un-
derlying storage system: 1) direct I/O and 2) streaming 1/0O.
Using direct I/O, the reader reads data from a local disk. In
this case, the data are directly shipped from the disk cache
to the reader’s memory through DMA controller. No inter-
process communication costs are required. On the other
hand, a reader can also adopt the streaming I/O scheme. In
this case, the reader reads data from another running pro-
cess (typically the storage system process) through certain
inter-process communication schemes such as TCP/IP and
JDBC.

From a performance perspective, we would expect direct
I/0O to be more efficient than streaming I/O when a reader
retrieves data from the local node. This could be a possible
reason on the choice of the design of most parallel database
systems and the fact that they are shipped with both a query
engine and a storage engine. In parallel database systems,
the query engine and storage engine run inside the same
database instance and thus can share the memory. When
a storage engine fills its memory buffer with the retrieved
data, it directly passes the memory buffer to query engine
for processing.

On the other hand, streaming I/O enables MapReduce
execution engine to read data from any processes, such as
distributed file system processes (e.g. DataNode in Hadoop)
and database instances (e.g. PostgreSQL). Furthermore, if
a reader needs to read data from a remote node, stream-
ing I/O is the only choice. The features collectively make
MapReduce storage independent.

In this paper, we enhance the HDFS with a direct I/O
support and benchmark the reading performance of different
I/0O modes when a reader reads data from the local node.
This benchmark serves for the purpose of quantifying the
performance impact of different I/O modes.

2.3.2 Data Parsing

When a reader retrieves data from the storage system,
it needs to convert the raw data into the key/value pairs
for processing. This conversion process is known as data
parsing. The essence of data parsing is to decode the raw
data from their native storage format and transform the
raw data into data objects which can be processed by a
programming language, e.g. Java. Since Java is the default
language of Hadoop, our discussion is therefore Java specific.
However, the insights should also apply to other languages.

There are two kinds of decoding schemes: immutable de-
coding and mutable decoding. The immutable decoding
scheme transforms raw data into immutable Java objects.
Immutable Java objects are read-only objects and cannot
be modified. One example is Java’s string object. Accord-
ing to SUN’s document, setting a new value to a string ob-
ject causes the original string object to be discarded and
replaced by a new string object. Hence, in immutable decod-
ing scheme, a unique Java object is created for each record.
Therefore, parsing four million records generates four mil-
lion immutable objects. Since the Java string object is im-
mutable, most text record decoders adopt the immutable
decoding scheme. By default, the Google’s protocol buffer
also decodes records as immutable objects [2].

An alternative method is the mutable decoding scheme.
Using this approach, a mutable Java object is reused for de-
coding all records. To parse the raw data, the mutable de-
coding scheme decodes the native storage format of a record
according to the schema and fills the mutable object with
new values. Thus, no matter how many records are decoded,
only one data object is created.

We note that the poor performance of record parsing ob-
served in [19], [20] and [10] is most likely due to the fact
that all these studies adopt the immutable scheme for de-
coding text records. The immutable decoding scheme is sig-
nificantly slower than the mutable decoding scheme as it
produces a huge number of immutable objects in the de-
coding process. Creation of those immutable objects incurs
high overheads on CPUs. In this study, we design a micro-
benchmark to quantify the performance gap between the the
two decoding schemes.

2.3.3 Indexing

The storage independent design implies that MapReduce
doest not assume the input dataset to have an available
index. At the first glance, MapReduce may not be able to
utilize indexes [19]. However, we found that there are three
methods for MapReduce to utilize indexes for speeding up
data processing.

First, MapReduce offers an interface for users to spec-
ify the data splitting algorithm. Therefore, one can imple-
ment a customized data splitting algorithm, which applies
the index to prune the data blocks. In Hadoop, this can be
achieved by providing a specific InputFormat implementa-
tion. This customized data splitting technique can be used
in two scenarios: 1) if the input of a MapReduce job is a
set of sorted files (stored in HDFS or GFS), one can adopt
a range-index to prune redundant data blocks; 2) if each
file name of the input files follows certain naming rule, such
naming information can also be used for data splitting. An
example of this scheme is presented in [14]. Suppose a log-
ging system periodically rolls over to a new log file and em-
beds the rollover time in the name of each log file, then to

475

analyze logs within a certain period, one can filter unneces-
sary log files based on the file name information.

Second, if the input of MapReduce is a set of indexed files
(B*-tree or hash), we can efficiently process these input files
by implementing a new reader. The reader takes certain
search condition as input (e.g. a date range) and applies it
to the index to retrieve records of interest from each file.

Finally, if the input of MapReduce consists of indexed ta-
bles stored in n relational database servers, we can launch
n map tasks to process those tables. In each map task,
the map() function submits a corresponding SQL query to
one database server and thus transparently utilizes database
indexes to retrieve data. This scheme is first presented in
the original MapReduce paper [13] and subsequently demon-
strated in a recent work [10].

2.4 Scheduling

MapReduce adopts a runtime scheduling scheme. The
scheduler assigns data blocks to the available nodes for pro-
cessing one at a time. This scheduling strategy introduces
runtime cost and may slow down the execution of the MapRe-
duce job. On the contrary, parallel database systems ben-
efit from a compiling-time scheduling strategy [20]. When
a query is submitted, the query optimizer generates a dis-
tributed query plan for all the available nodes. When the
query is executed, every node knows its processing logic ac-
cording to the distributed query plan. Therefore, no schedul-
ing cost is introduced after the distributed query plan is pro-
duced. In [20], the authors note that the MapReduce’s run-
time scheduling strategy is more expensive than the DBMS’s
compiling-time scheduling. However, the runtime schedul-
ing strategy enables MapReduce to offer elastic scalability,
namely the ability of dynamically adjusting resources during
job execution.

In this paper, we quantify the impact of runtime schedul-
ing cost through a micro-benchmark and a real analytical
task, i.e., Grep. We find that runtime scheduling affects the
performance of MapReduce in two ways: 1) the number of
map tasks need to be scheduled and 2) the scheduling al-
gorithm. For the first factor, it is possible to tune the size
of data blocks to alleviate the cost. For the second factor,
more research work is required to design new algorithms.
Detailed discussions will be presented in Section 5.

3. PRUNING SEARCH SPACE

Different possible combinations of the above five factors
result in a huge search space. Moreover, as all benchmarks
are conducted on Amazon EC2, the budget for the use of
EC2 also imposes a constraint on us. Thus, we narrow down
the search space into a representative but tractable set.

First, we limit the performance evaluation of MapRe-
duce on two kinds of storage systems, a distributed file sys-
tem (namely HDFS) and a database system (namely Post-
greSQL). These two storage systems should sufficiently rep-
resent the typical input data sources of MapReduce appli-
cations. For HDFS, we report the performance of all tasks
in a designed benchmark. For PostgreSQL, we only perform
a subset of the tasks, as loading data into PostgreSQL and
building cluster index consumes a lot of time. We only run
the tasks on those datasets whose loading time is within
three hours.

Second, we choose proper record formats and decoding
schemes for the evaluation. For text records, we only con-

sider one encoding format where each record occupies one
line and the fields are separated by a vertical bar, i.e., “|”.
This record format is used with both mutable and immutable
decoding schemes. For binary records, we consider three
popular record formats: 1) Hadoop’s Writable format, 2)
Google’s protocol buffer format [2], and Berkeley DB’s record
format [8]. We conduct a micro-benchmark to evaluate the
performance of parsing records encoded in these three for-
mats with different decoding schemes. The combination of
the record format and the decoding scheme that achieves
the best performance is chosen for the final benchmark.

Finally, we implement a KeyValueSequenceFile data struc-
ture to store binary records in HDFS files. We do not
use Hadoop’s SequenceFile, since it only stores records in
Writable format. We do not consider data compression in
this paper as Hadoop does not support compression well at
this moment. The impact of data compression to the per-
formance of MapReduce will be investigated in the future
work.

4. IMPLEMENTATION DETAILS

We use Hadoop v0.19.2 as the code base®. All MapReduce
programs are written in Java. The source code is available
in our project’s website [6].

4.1 Handling Databases

Hadoop provides APIs (e.g. DBInputFormat) for the MapRe-

duce programs to analyze data stored in relational databases.
However, HadoopDB [10] is more efficient and easy to use.
Therefore, HadoopDB is adopted for illustrating the perfor-
mance of MapReduce on processing relational data stored
in database systems. We tune HadoopDB based on the set-
tings described in [10]; we have also benefited from pointers
given by two of the authors through email exchanges.

4.2 Direct I/0 in HDFS

HDFS stores a large file among the available DataNodes
by chopping the file into even-sized data blocks and storing
each data block as a local file in one DataNode. We enhance
HDFS with the support of direct I/O when a reader reads
data from a local DataNode. In the HDFS, a data access-
ing process works as follows. A reader first calls open() to
inform the HDFS which file it intends to read, and then it
invokes seek() to move to the file position where data re-
trieval starts. Following that, the reader invokes a sequence
of read() to retrieve data.

When the reader opens a file, it contacts the NameNode
for gathering information of the data blocks belonging to
that file. Then, the reader checks which data block contains
the data of interest based on the file position provided by
seek(). Finally, the reader makes the connection to the
DataNode storing the data block and begins data streaming.
To support direct I/O, we only change the final step. When
a DataNode receives a data retrieval request, it first checks
whether the request is from a local reader (by examining IP
address). If this is the case, the data node passes the local
file name of the data block to the reader. The reader, then,
reads data from local disk directly. If the request is not from

!The Hadoop (v0.19.2) we evaluated in this paper is slightly
different from the Hadoop (v0.19.0) studied in [19]. There
is no difference between the two versions in performance.
Compared to v0.19.0, Hadoop v0.19.2 only fixes some bugs.

476

a local reader, the DataNode applies the default streaming
1/0 mode to handle the data retrieval request. Using this
approach, we implement a hybrid I/O mode in HDFS: direct
I/O for local reads and streaming I/O for remote reads.

4.3 Data Parsing

For the immutable decoding scheme, we use the same code
released in [19] for decoding text and Writable records. We
also use the compiler shipped with Google’s protocol buffer
for generating the record decoder. According to the proto-
col buffer’s document, the decoder decodes a record as an
immutable record.

We implement mutable decoding schemes for text, Writable,

protocol buffer and Berkeley DB’s record format. For the
text decoding, the decoder treats the input record as a byte
array. It iterates each byte in the array to find the field
delimiters and converts bytes between two successive field
delimiters into the corresponding data type defined by the
schema. To avoid using a Java string (as it is an immutable

object) as the target data type, we implement a VarCharWritable

data structure, which is used for decoding text strings.

Binary records are stored in our own data structure,
KeyValueSequenceFile, which is a read-optimized row store
[16][17]. KeyValueSequenceFile stores records sequentially,
one after another, in a set of pages. The page size is 128KB
with a five-byte header recording the offsets of the first and
last record in the page. Our KeyValueSequenceFile is ef-
ficient for data splitting since the splitting boundary only
occurs at multiples of page size (as KeyValueSequenceFile
stores records in fixed-size pages).

4.4 Indexing

We evaluate the performance of MapReduce on processing
two kinds of index structures: 1) sorted files with range
index and 2) indexed database tables. For the second case,
we apply HadoopDB as the data storage engine.

We implement a simple range-indexing scheme for sorted
files. Suppose a file stores sorted key/value pairs, the index-
ing scheme creates an index entry for every B-bytes data
page where B is defined by the user and is not necessarily
equal to the block size of HDFS. Each index entry is of the
form (ks, ke, Ds) where kp and k. are the start key and end
key of the indexed data page, and D is the offset of the
data page in the HDFS file. Index entries are sorted on k;
and stored in an index file.

To utilize the range-index for processing sorted files, we
develop a data splitting algorithm in our own InputFormat
implementation. The data splitting algorithm takes a key
range as input and searches the index entries to locate which
data pages contain the records of interest. For each data
page, the splitting algorithm fills a Hadoop’s InputSplit
data structure with offset and length of that data page. The
InputSplits are then collected and will be used by the Job-
Tracker to schedule map tasks to process, one InputSplit
for each map task. Using our approach, only data pages
containing the records of interest will be processed. Other
data pages are discarded after the data splitting process.

We also plan to evaluate the performance of MapReduce
on processing BT -tree files. In this setting, we store Berkeley
DB’s BT -trees in HDF'S files, one file for each B*-tree. Each
file will then be processed by one map task. We implement a
Berkeley DB reader which accepts a filtering condition and
uses Berkeley DB’s API to retrieve qualified records. How-

ever, in each launch, Berkeley DB automatically checks the
input file’s integrity for recovery purposes. This checking in-
curs huge runtime overhead. Thus, the result of this scheme
is intentionally omitted in this paper.

4.5 Fingerprinting Based Grouping

It is challenging to efficiently implement fingerprinting
based grouping in map() and reduce() functions. In prin-
ciple, one can emit original key k and its fingerprint p as a
compound intermediate key I = (k, p) and provide a special
compare () function to the system for comparing intermedi-
ate keys. The compare () function first compares fingerprints
of two intermediate keys and if the two fingerprints are the
same, a further comparison of the original keys is performed.

However, it is not very efficient since to compare two inter-
mediate keys, a compare() functions must be invoked and
the function must deserialize the intermediate keys I into
k and p for comparison. The costs of function invocation
and deserialization are not negligible when we have to sort
millions of intermediate pairs.

To alleviate this problem, we modify Hadoop’s MapTask
implementation. When the original key k is emitted by the
map function and is placed in the MapTask’s output buffer,
we store the fingerprint p in an additional array. When
MapTask sorts intermediate pairs in the output buffer, we
compare fingerprints stored in the additional array corre-
spondingly. The fingerprinting function we used is djb2 de-
scribed in [7].

S. BENCHMARKING

In this section, we report our performance evaluation re-
sults. Our benchmarking entails the evaluation of seven
tasks. Four tasks are the same tasks studied in [19]. The
other three tasks are designed for our comparison purposes.

5.1 Benchmarking Environment

The benchmarking is conducted on Amazon EC2 [1]. We
use EC2’s large instance as our compute node. Each large
instance is equipped with 7.5 GB memory, 2 virtual cores
and 2 disks with 850 GB storage (2 x 420 GB plus 10 GB
root partition). The operating system is 64-bit Fedora 8.
The large instance automatically mounts one 420 GB disk
to “/mnt”, when the system is booted. We manually mount
the other 420 GB disk to the system to improve the I/O
performance.

After some experiments, we find that the I/O performance
of EC2 is not stable. According to hdparm, the throughput
of buffered reads ranges from 100~140 MB/sec (when the
instance is launched at off-peak hours) to 40~70 MB/sec
(when the instance is launched at peak hours). In order to
make the benchmark results consistent, we launch instances
at off-peak hours over the weekends. The average disk per-
formance that we measured is approximately 90~95 MB /sec
when conducting the experiments. The network bandwidth
that we measured is approximately 100MB/s. As presented
in Section 4, we use Hadoop v0.19.2 for all the experiments.
For the Berkeley DB and protocol buffer, we use their Java
Edition v4.0.9 and v2.3.0, respectively. The JVM version is
version 1.6.0_16.

5.2 Hadoop Settings

We have tested various configurations of Hadoop to choose
the one with the best observed performance. Our configu-

477

rations are as follows: 1) The JVM runs in the server mode
with maximal 1024 MB heap memory for either the map
or reduce task; 2) We enable the JVM reuse. 2) The I/O
buffer is set to 128 KB; 3) The available memory for map-
side sorting is 512 MB; 4) The space ratio regarding to the
metadata of the intermediate results is set to 0.25; 5) The
merge factor is 300.

Besides, we also set the block size of the HDF'S to 512 MB,
which is different from the setting (256MB) in the previous
study [19][10]. Section 5.5 will illustrate why we choose this
setting. In the experiments, each TaskTracker is allowed to
run two map tasks and one reduce task concurrently. To
speed up the reducer-side merge, we use all the heap mem-
ory of a reducer to hold the merged results. We store data in
the HDFS with no replication. For all the analytical tasks,
we configure HDFS to run in hybrid I/O mode, namely di-
rect I/O for processing local reads and streaming 1/O for
handling remote reads.

For the HadoopDB settings, we strictly follow the guide-
lines given in [10]. Thus, we use PostgreSQL version 8.2.5
and store data in PostgreSQL without compression. The
shared buffer of PostgreSQL is set to 512MB, while the
working memory size is set to 1GB. Furthermore, we did not
manage to utilize two disks for PostgreSQL. For HadoopDB
experiments, the number of concurrent map tasks in each
TaskTracker node is set to one according to [10].

We run all the experiments on an EC2 cluster with one ad-
ditional node acting as the JobTracker and NameNode. For
micro-benchmark (e.g. I/O modes, scheduling and record
parsing), we only run one slave node. For analytical tasks,
we evaluate the performance of MapReduce programs by
varying the cluster size from 10 nodes to 100 nodes. One
exception is the Grep task where we only report the results
of Grep task on a 100-node cluster. As an EC2’s node may
fail at anytime, we only report the results when all the nodes
are available and operate correctly. Each experiment is run
for three times and we report the average result.

5.3 Datasets

For analytical tasks, we use three datasets (Grep, Rankings,
and UserVisits) which are identical to [19]. The schemas
of these three datasets are as follows.

CREATE TABLE Grep(
key VARCHAR(10) PRIMARY KEY,
field VARCHAR(90));

CREATE TABLE Rankings(
pageURL VARCHAR(100) PRIMARY KEY,
pageRank INT,
avgDuration INT);

CREATE TABLE UserVisits(
sourceIP VARCHAR(16),
destURL VARCHAR(100),
visitDate DATE,
adRevenue FLOAT,
userAgent VARCHAR(64),
countryCode VARCHAR(3),
languageCode VARCHAR(6),
searchWord VARCHAR(32),
duration INT);

We also use the same data generator released in [19] for
data generation. For the Grep dataset, we generate a 1TB
dataset for the 100-node cluster. For Rankings and UserVisits
datasets, we generate 18 million records (~1GB) and 155

4,500 T T
L. |E HadoopText | & ===j-- - § ,,,,,,,,,,,
4,000 §
E] HadoopBinary ==
3500 - Z N .
3,000 -y = B NN 7 NN
@ 2500 - § """""""""""""""
@
£
[| e O N] S e B S o R
B L e N 7 I S s B Ss oo R
B e N -] S o B s e |
LSO e e s e e 2 E R S = I
0
10nodes 50nodes 100nades

Figure 1: Loading Times — UserVisits Dataset

million records (~20GB) respectively in each slave node.
These settings are also identical to those used in [19]. The
generated datasets are stored as plain text files in the slave
nodes.

5.4 Data Loading

This Section describes the procedures for loading the datasets.

We first copy the raw data files from each slave node to the
HDFS. This simple loading scheme is sufficient for most of
the MapReduce programs that we will evaluate in this pa-
per. For Rankings and UserVisits datasets, to evaluate the
performance of MapReduce on processing sorted files with
range index, we sort the datasets and build a range-index
on them. We develop a data loader to perform this task.

The data loader is a MapReduce job which takes a parti-
tion column p and an index column ¢ as input and partitions
the input dataset into n partition files. For each partition
file the loader sorts the records and builds a range-index
on the index column. For Rankings dataset, we partition
the dataset on pageURL column and build a range-index on
pageRank column. For UserVisits dataset, we partition the
dataset on destURL column and build index on visitDate
column. We adopt the range-index scheme described in Sec-
tion 4.4 and set data page size B to 128MB. Figure 1 reports
the elapsed time for loading UserVisits dataset of two for-
mats: text format (HadoopText) and Berkeley DB’s record
format (HadoopBinary). The index file size generated is
rather small: 0.15KB per partition file for Rankings and
1.12KB per partition file for UserVisits.

We only load Rankings dataset to HadoopDB. The load-
ing process is separated into three phases. First, HadoopDB’s
Global Hasher is launched to partition the dataset into n
files (n is the cluster size) via the pageURL column. Then,
each slave node downloads a unique partition file. Finally, in
each slave node, we load the partition file into PostgreSQL
and build a cluster index on pageRank. The last phase is
performed by first loading the raw partition file into a temp
table T in PostgreSQL by a SQL COPY command. Then,
we sort T' by pageRank and store the results as the Rankings
table. Finally, we build a B*-tree index on the pageRank
column of the Rankings table?.

5.5 Scheduling Micro-Benchmark

It is not trivial to directly measure the cost of Hadoop’s
scheduling. Therefore, we estimate the cost of scheduling

2The procedure of last loading phase was suggested by the
HadoopDB'’s authors.

478

250

200 g

L O

Time (s)

100 [

50 [

64MB 256MB 512MB 1GB 5GB

Block Size

Figure 2: Results for Scheduling Micro-benchmark

by measuring the performance of running a dummy MapRe-
duce job with different numbers of map tasks. The dummy
MapReduce job scans through the input dataset without
further processing. We implement a special reader for the
dummy job. The reader repeatedly reads data from the in-
put dataset until all data are consumed. Each time, the
reader reads 128KB data from the HDFS into an array L
and generates a random integer [for L. Then, the key/value
pair (L, I) is used as the input of the map() function. The
map () function simply discards the input pair, i.e., a no-op
operation. There is no reduce() function involved in the
dummy job.

We generate a 10GB file using TestDFSIO, a tool shipped
with Hadoop for writing random bytes to HDFS. The data
file is split based on different block sizes, from 64MB to 5GB.
This strategy results in the number of data chunks (also the
number of map tasks) that the scheduler needs to manage
ranges from 160 (64MB of each chunk) to 2 (5GB of each
chunk). Since the TaskTracker can run two concurrent map
tasks, in the 5GB block size setting, the scheduler can sched-
ule two map tasks in one phase. Therefore, the scheduling
cost is minimized. We can therefore estimate the schedul-
ing cost by comparing the dummy job’s execution time on
other settings with this 5GB setting. Hadoop’s streaming
I/0 mode dose not support streaming a data chunk beyond
5GB. Thus, we run the benchmark in direct I/O mode.

Figure 2 shows the execution time of scanning the 10GB
file with different block sizes. A larger block size will lead to
less number of map tasks. From Figure 2, we clearly see that
the performance of the dummy job is significantly affected by
the total number of map tasks. The execution time (197s) of
processing the 10GB file with 160 map tasks (64MB block
size) is more than three times longer than the execution
time (65s) of scanning the same file with two map tasks
(5GB block size). Increasing the block size improves the
scanning performance, but it may also lead to a long failure
recovery process. In Figure 2, 512MB block size achieves
a good balance. Further increasing the block size will not
improve the performance significantly. Therefore, we use
512MB block size in the remaining benchmark studies.

5.6 Comparison of Different I/O Modes

In this experiment, we evaluate the performance of differ-
ent I/O modes in HDFS. All data are stored on a unique
DataNode. We use TestDFSIO to generate four datasets:
5GB, 10GB, 20GB, and 40GB. We launch the dummy MapRe-
duce job described above on the four datasets and measure

350 T T

=,
[DireclO |77 e T
S S o B
L R o R
g
B B0 e NN
200 [~ NP RSN
I §§ 77 7 % 77 % VV % VVVVVVV % 77777777777777777
0
5G 10G 20G 40G
Figure 3: I/O Micro-benchmark Results
3,500
& Immutable Text
LB MutableText | ¥]
8,000 Immutable Writable EZ
(=] Mutable Writable
2,500 (-1l Immutable ProtocolBuffer |- Vol
Mutable Protocol Buffer
O BDB
B 2000 [
g =
Fo0500 [SRR
1,000 [~ RS e [
500 - RN
. = S

Figure 4: Decoding Results — Rankings Dataset

the scanning performance.

Figure 3 shows the result of this benchmark. The perfor-
mance gap between direct I/O and streaming I/O is small,
approximately 10%. We conclude that the I/O mode is not
the major factor of the poor performance of MapReduce.

5.7 Record Parsing Micro-Benchmark

‘We now evaluate the performance of parsing different records

formats with different decoding schemes. The datasets that
we use are Rankings and UserVisits. For each dataset, we
consider four record formats, text format, Writable format,
protocol buffer and Berkeley DB’s record format. For the
first three formats, we evaluate both immutable decoding
and mutable decoding schemes. For the last format, i.e.,
Berkeley DB’s record format, we only report results of mu-
table decoding as Berkeley DB does not support immutable
decoding scheme. Thus, we evaluate seven decoders in total.

Unlike the other benchmark tasks studied in this paper,
we run the record parsing benchmark using a stand-alone
Java program instead of a MapReduce job. This is because
we need to eliminate other additional overheads introduced
by the MapReduce framework. In addition, we read the
whole datasets into memory for parsing to eliminate I/O
cost. Thus, we finally parse roughly 512MB raw data for
each dataset, which is respectively equivalent to 4 millions
UserVisits records and 8 millions Rankings records.

The average time of decoding a record of both datasets
is respectively shown in Figure 4 and Figure 5. The results
indicate that despite of the record format, the performance
of the mutable decoding scheme is always faster than the
immutable decoding scheme, by a factor up to ten. Pro-
filing the decoding program further reveals that the large
performance gap between immutable decoding and mutable

7,000
& Immutable Text
E Mutable Text
6,000 - § """"""""""" E Immutable Writable
[=] Mutable Writable
[Immutable Protocol Buffer
5,000 =Ry [Mutable Protocol Buffer
O sDB

T A000 e R e

@

£ —

T S R B
2,000 |- NS B
R T ot

0 5 E E

Figure 5: Decoding Results — UserVisits Dataset

Block Size: 512MB
Block Size: 5GB

250

200 e

150 [~

Time(s)

L

R

Hadoop HadoopMT

Figure 6: Grep Task Results — 1TB/cluster

decoding is due to the CPU overhead. Using immutable
decoding scheme, the CPU spends 80~90% time on object
creations. For the four mutable decoders, we observe that
the performance difference between the text decoder with
the other three binary decoders is small, within a factor of
two. We conclude that record parsing is not the source of
the poor performance of MapReduce. Parsing a text record
is not significantly slower than parsing a binary record. The
key point for efficient decoding is using the mutable decod-
ing scheme.

5.8 Grep Task

Our first analytical task is the Grep task. For this task,
we scan through the input dataset searching for a three-
character pattern “XYZ”.

We generate a 1TB Grep dataset for the 100-node clus-
ter, namely 10GB data per node. The pattern appears once
in every 10,000 records. Therefore, the performance of this
work is mainly limited by the sequential scan speed of the
data processing system. The MapReduce job that performs
Grep task only involves the map() function, which searches
the pattern in the input value string and outputs the match-
ing records as results.

We evaluate two implementations of the above MapRe-
duce job. One is the original implementation described in
[19]. In this implementation, a reader reads a line from the
input file and wraps the offset and contents of the line as a
key/value pair. In the alternative implementation, as each
Grep record is of 100-byte length, the reader reads a 100-
byte string from the file and applies the offset and the string
as a key/value pair for further processing.

We measure the performance of the above two MapReduce
implementations in two settings: 1) 512MB block size and
2) 5GB block size. Using the 5GB setting, the input file in

479

60

Hadoop

HadoopDB
HadoopMT | 7|
HadoopMTi

50

30

Time(s)

20

10

Y|
ENDBO0| |

HadoopBDB
HadoopBDBI| -

10nodes

50nodes

100nodes

Figure 7: Selection Task Results

each node can be processed by two concurrent map tasks in
one phase, resulting in the minimal scheduling cost. We are
therefore free to understand the scheduling cost in the real
analytical workload.

Figure 6 shows the results of this benchmark. Our al-
ternative MapReduce implementation (e.g. HadoopMT) is

slightly faster than the original implementation (e.g. Hadoop)

used in [19]. This is because our implementation directly
wraps a 100-byte string instead of a line as a record. The
latter case requires the reader to search for the end of line
character, which incurs additional runtime cost. However,
the performance difference between the two implementa-
tions is not significant, only 8%. The scheduling cost af-
fects the performance significantly, 30% in Hadoop and 35%
in HadoopMT. The scheduling costs are introduced by two
factors 1) the number of map tasks to schedule; and 2) the
scheduling algorithm. The first factor is studied in Sec-
tion 5.5, and we shall only discuss the second factor here.
When the TaskTracker informs the JobTracker that it is
idle, Hadoop’s scheduler will assign a map task to that Task-
Tracker if it holds any unassigned map tasks. However, in
the cloud, the processing speed of compute nodes may not
be the same. A fast node which completes its tasks quickly
will be assigned data blocks from the slow nodes. In this
case, the fast node will contend the disk bandwidth with
the running map tasks on the slow nodes since it needs to
read data from the slow nodes. This resource contention
slows down the whole data processing, by 20% (Hadoop)
and 25% (HadoopMT) in this task. The scheduling problem
we found is similar but not identical to the straggler prob-
lem presented in [13]. We turn on the Hadoop’s speculative
execution strategy, but enabling this option fails to solve
the problem. On the contrary, the observed performance is
even worse since scheduling many speculative tasks results
in more resource contention.

5.9 Selection Task

In the second analytical task, we need to find records in
the Rankings dataset (1GB per node) whose pageRank is
above a given threshold. The threshold is set to 10, which
results in approximately 36,000 records out of 18 millions
records in each node. The SQL command of this task is as
follows:

SELECT pageURL, pageRank
FROM Rankings
WHERE pageRank > 10

The corresponding MapReduce job only involves the map ()
function, which produces qualified records as the output.

480

160

140

120

100

80

Time(s)

HadoopMT
HadoopMTi
HadoopBDB
HadoopBDBi|

HadoopDB
Hadoop

0'0;0'0'0'0'0'0';'0'

-
QAR

7
X

E

Figure 8: Selection Task with Various Selectivity

Three implementation schemes are compared in the experi-
ment: 1) Hadoop, the scheme described in [19]; 2) Hadoop
with mutable decoding; 3) Hadoop with mutable decoding
and index pruning.

For 2) and 3), we consider processing text record format
(HadoopMT and HadoopMTi) and Berkeley DB’s record
format (HadoopBDB and HadoopBDBi). We also evalu-
ate the performance of HadoopDB on this task. To perform
selection task, the map() function of HadoopDB’s program
pushes the SQL query to the PostgreSQL instances for exe-
cution and retrieves the results from PostgreSQL instances
through JDBC. Therefore, we evaluate the performance of
six implementations in total.

Figure 7 illustrates the results of this benchmark. The
original Hadoop has the worst performance, due to its in-
efficient immutable decoding scheme. By adopting muta-
ble text decoding, HadoopMT improves the performance of
Hadoop by a factor of two. The same performance is also ob-
served in HadoopBDB. Since the filtering condition is highly
selective (0.002), by using index pruning, HadoopMTi and
HadoopBDBi improves the performance of their non-index
counterparts by a factor of 2.5 to 3.0. The performance of
HadoopDB is similar to HadoopMTi and HadoopBDBi.

We are also interested in the performance of HadoopDB.
Although the SQL query can be efficiently processed by
PostgreSQL, the map() function still needs to retrieve the
resulting records through JDBC. Unfortunately, the JDBC
parses the returned records (encoded in database’s native
format) as immutable Java objects. Therefore, we expect
the performance of HadoopDB to degrade when many records
are returned. Consequently, we vary the selectivity of the
filtering condition from 0.002 to 1.0 and rerun the exper-
iment to study the scalability of the six implementations.
When the selectivity is 1.0, we intentionally remove the re-
sults of HadoopMTi and HadoopBDBI4 since it is impossible
to speed up data processing through index in this setting.

Figure 8 summarizes the results for the scalability bench-
mark. As expected, the performance of HadoopDB is af-
fected by the filtering selectivity. When the selectivity is set
to 1, namely the whole dataset is returned, the performance
of HadoopDB is worse than that of Hadoop by a factor of
40%. The main reason for this result is that HadoopDB only
launches one map task in each node and thus limits the de-
gree of parallelism (e.g., only one out of the two disks on
the EC2 node is used for I/O). However, in the long term,
we expect HadoopDB can solve the “multiple concurrent
map tasks” problem since this issue is not fundamental to
HadoopDB. In an additional micro-benchmark, we configure

B Hadooy
B Hadooy
1,000 = -e gy T Iy | Hadooy

PMT
PMT(FP=true)
pBDB

<3 | (@ HadoopBDB(FP=true)

200 [~

Figure 9:
Groups)

1,000 T

- pMT
HadoopM T(FP=true)
HadoopBDB
A1 HadoopBDB(FP=true) [

Time(s)

Small

Figure 10: Aggregation Results (2,000

groups)

both Hadoop and HadoopDB to launch a single map task
to perform the selection task, the performance gap between
the two systems is small, only 7%. However, in this set-
ting, HadoopDB is still slower than HadoopMT by a factor
of 30%. We believe the cost of JDBC (particularly decod-
ing cost) contributes a lot to the performance gap between
HadoopDB and HadoopMT.

5.10 Aggregation Task

In the third analytical task, we use MapReduce to cal-
culate the total adRevenue for each unique sourceIP in
the UserVisits dataset. This analytical task consists of
two subtasks, large aggregation and small aggregation. The
large aggregation task generates 2 million unique groups and
the small one generates 2,000 unique groups. The SQL com-
mands of this benchmark are as follows:

Large: SELECT sourceIP, SUM(adRevenue)
FROM UserVisits GROUP BY sourcelP;

Small: SELECT SUBSTR(sourcelIP, 1, 7), SUM(adRevenue)
FROM UserVisits
GROUP BY SUBSTR(sourceIP, 1, 7)

The MapReduce program of this task consists of both a
map() function and a reduce() function. The map() func-

tion generates an intermediate key /value pair with the sourceIP

(large Task) or its seven-character prefix (small task) as the
key and adRevenue as the value. The reduce() function
sums up adRevenues for each unique key. We also enable
a combiner function to perform map-side partial aggrega-
tion. The logic of the combiner is identical to the reduce ()
function.

For this task, we compare three implementation schemes:
1) Hadoop, the scheme implemented in [19]; 2) Hadoop with
mutable decoding schemes; and 3) Hadoop with mutable

481

T
Hadoop

HadoopM T
HadoopMT (FP=true)
[HadoopWTi
21 HadoopMTi (FP=true)

Time (s)

11:

Figure Large Aggregation Results with a Date

Range

decoding schemes and fingerprinting based grouping. For 2)
and 3), we consider both text record format and Berkeley
DB’s record format. We set the number of reducers to be
the same as the number of slave nodes in the cluster.

Figure 9 and Figure 10 present the results of this bench-
mark. We found that record parsing contributes a large
part of the overall execution cost in Hadoop. The muta-
ble Hadoop implementation (HadoopMT) runs faster than
Hadoop by 63%. Different grouping schemes lead to dif-
ferent performance results. In Figure 9, the fingerprinting
based grouping implementation (HadoopMT(fp=ture)) runs
faster than mutable Hadoop implementation by a factor 20%
to 25% in the large task. One interesting observation is that
the record format (text or binary) does not affect the perfor-
mance of MapReduce significantly. This observation holds
for the results of all the analytical benchmarks in this paper.

We also design an additional benchmark to study the per-
formance of MapReduce-based aggregation by using indexes.
This task calculates the total adRevenue for each unique
sourcelIP in a given date range. The date range that we se-
lect yields 10% of records in the UserVisits dataset, which
is roughly 2GB in each node. The SQL command is as fol-
lows:

SELECT sourceIP, SUM(adRevenue) FROM UserVisits
WHERE visitDate BETWEEN Date(’1984-1-1’)

AND Date(’1987-1-1°)
GROUP BY sourcelP;

We only consider text record format in this task. Other
settings are similar to those in the large and small tasks.
Figure 11 summarizes the results of this benchmark. The
results show that index based implementations (HadoopMTi
and HadoopMTi(fp=true)) outperform their non-index coun-
terparts (HadoopMT and HadoopMT (fp=true)) by a factor
of 3.7 to 4.5. Since only a small number of data are required
to be processed, the performance gain from fingerprinting
based grouping is not significant.

5.11 Join Task

The join task computes the average pageRank of the pages
accessed by the sourceIP, which generates the most revenue
during the given date range. The date range is set to (2000-
01-15, 2000-01-22), which yields 134,000 records from the
UserVisits table in each node. The SQL query for this
task is as follows.

SELECT INTO Temp sourcelIP, AVG(pageRank) as avgPageRank,
SUM(adRevenue) as totalRevenue

FROM Rankings as R, UserVisits as UV

WHERE R.pageURL = UV.destURL AND
UV.visitDate BETWEEN Date(’2000-01-15’) AND

1,000 T

= Hadoop

EJ Hadoop Mutable|
E3 SimpleIndex
“|Bx] HadoopMTi

[7] HadoopBDBi

800

600

Time (9)

400

200

10nodes 50nodes 100nodes

Figure 12: Join Task Results

Date(’2000-01-22)
GROUP BY UV.sourcelIP;

SELECT sourceIP, totalRevenue, avgPageRank
FROM TempORDER BY totalRevenue DESC LIMIT 1;

Four implementation schemes are compared for this task.
Hadoop: This scheme is the same one presented in [19].
Hadoop Mutable: The processing logic of this scheme is
identical to Hadoop’s. The difference is that we use the mu-

table text decoding scheme to decode Rankings and UserVisits

records. The join task is evaluated by two MapReduce jobs.
The first job joins the two tables in the reducer side and
outputs a joined record in the key/value format with the
sourcelIP as the key and the record (pageURL, pageRank,
adRevenue) as the value. The second MapReduce job com-
putes the total adRevenue and the average pageRank for each
unique sourceIP and outputs the record with the largest
totalRevenue. Only one reducer is launched in the second
MapReduce job.

Simple Index: The evaluation process of this scheme is
identical to the Hadoop Mutable. The only difference is that
we use index to prune redundant data pages of UserVisits
in the first MapReduce job.

Partition Join: This scheme performs the join task in one
MapReduce job. This is achieved by utilizing the partition
information. Recall in Section 5.4, the data loader partitions
the Rankings and UserVisits datasets into the same num-
ber of partition files based on pageURL and destURL columns
respectively. These partition files follow the same naming
rule and are stored in two directories: one for Rankings
and the other for UserVisits. Therefore, for each pair of
Ranking and UserVisits partition files, the records in the
two files can be joined only if the two partition files share
the same file name.

We launch map tasks for the partition files of Rankings.
The map() function reads qualified data pages from the
UserVisits partition file with the same file name through
the range-index built on visitDate column. The map()
function loads the qualified records of UserVisits into an
in-memory hash table. Then, it joins records from the two
datasets and outputs the joined records. The reduce () func-
tion is identical to the one adopted in the second job of
the Hadoop Mutable. Also, only one reducer is launched.
For the Partition Join, we evaluate both text record format
(HadoopMTi) and Berkeley DB’s record format (HadoopB-
DBi).

Figure 12 describes the performance of all five implemen-
tations. From Figure 12, it can be clearly observed that sig-

482

Table 1: Indirect Comparison with Parallel
Database Systems
DBMS-X | Vertica | HadoopOpt
Grep 1.5x 2.6x 1.47x
Aggregation (Large) 1.6x 4.3x 1.54x
Join 36.3x 21.0x 14.68x

nificant performance improvement is achieved by adopting
1) mutable decoding schemes, 2) indexing, and 3) an effi-
cient grouping algorithm (partition map-side join). Overall,
with all three optimizations, the performance of MapReduce
(HadoopMTi and HadoopBDBIi) improves the original im-
plementation (Hadoop) by a factor of more than 14.

5.12 Comparison to Parallel Database Systems

We have no parallel database systems on hand and can-
not conduct a direct performance comparison between those
systems and Hadoop. Therefore, we only compare the per-
formance of the two types of systems in reference to what
have been reported in [20]. In [20], the authors report the
performance advantages of two parallel database systems
(DBMS-X and Vertica[9]) over Hadoop in three analytical
tasks on a 100-node cluster. Due to the similar settings we
used, we indirectly compare our results with the two paral-
lel database systems in terms of improvement ratio over the
original Hadoop implementation used in [19] and [20].

Table 1 presents the performance gains for reference pur-
poses only. The numbers of DBMS-X and Vertica are ex-
tracted from [20]. The number of HadoopOpt is calculated
by Hadoop/Hadoop-X, where Hadoop is the performance of
original implementation and Hadoop-X is the performance
of our best implementation on a 100-node cluster. The in-
direct comparison results shown in Table 1 reveal that by
tuning the factors studied in this paper, the performance
of Hadoop/MapReduce is fairly similar to DBMS-X’s on
Grep and Aggregation tasks, and approaches to Vertica's
on the Join task. Another point to note is that both par-
allel database systems enabled data compression, which im-
proves the performance significantly [20]. However in all
our benchmarking experiments, we did not use compression
since the current version of Hadoop cannot support com-
pression efficiently. Suppose full-fledged compression is sup-
ported in Hadoop, we would expect the performance gap
between Hadoop and parallel database systems to be even
smaller.

6. RELATED WORK

MapReduce was proposed by Dean and Ghemawat in [13]
as a programming model for processing and generating large
datasets. The ability of using MapReduce as a data analysis
tool for processing relational queries has been demonstrated
in [22][21][18][12][15].

In [19] and [20], the authors compared the performance
of MapReduce with two parallel database systems. The au-
thors noted that while the process to load data into DBMSs
and the tuning of DBMSs incurred much longer time than
a MapReduce system, the performance of parallel DBMSs
is significantly better. This work is closely related to ours.
However, our study focuses on identifying the design factors
that affect the performance of a MapReduce system and ex-
amining alternative solutions.

In [14], the authors described the differences between MapRe-

duce and parallel database systems. They also presented
some techniques to improve the performance of MapReduce,
including using a binary record format, indexing, merging
the results etc. This work is also closely related to ours.
Compared to this work, our study covers more factors such
as programming model and scheduling. Furthermore, we
also provide benchmarking results to quantify the impact of
the factors that we have examined.

In [11], an extensive experiment was performed to study
how the job configuration parameters affect the observed
performance of Hadoop. This work is nevertheless comple-
mentary to ours. Our work focuses on the architectural
design issues and possible solutions while [11] focuses on the
system parameter tuning. The results from both work (ours
and [11]) can indeed be combined to improve the overall
performance of Hadoop.

Some issues and techniques presented in this paper have
also been studied in the literature. [23] investigated the

scheduling algorithm of Hadoop and proposed a LATE schedul-

ing algorithm which improves Hadoop response times by
a factor of two. We do not evaluate this scheduling algo-
rithm since the implementation is not available to us. Data
partition is also adopted in Hive [21]. However, Hive does
not support the partition join technique in current version.
The issue of record decoding has also been examined in the
Hadoop community recently [5]. The users are advised to
avoid using a text record format, and reuse the Writable ob-
jects for parsing. The suggestion is similar to the immutable
decoding scheme that we evaluated. However, we show that
the performance of record parsing is not very related to the
record format. It is also efficient to decode a text record
with the mutable decoding scheme.

7. CONCLUSIONS

In this paper, we have conducted an in-depth performance
study of MapReduce in its open source implementation,
Hadoop. We have identified five factors that affect the
performance of MapReduce and investigated alternative im-
plementation strategies for each factor. We have evaluated
the performance of MapReduce with representative combi-
nations of these five factors using a benchmark consisting of
seven tasks. The results show that by carefully tuning each
factor, the performance of Hadoop can approach that of par-
allel database systems for certain analytical tasks. We hope
that the insights and experimental results presented in this
paper would be useful for the future development of Hadoop
and other MapReduce-based data processing systems.

8. ACKNOWLEDGEMENTS

The work described in this paper is part of the epiC
project [6]. It was in part supported by the Singapore Min-
istry of Education Grant No. R-252-000-394-112 under the
project name of Utab. We would also like to thank the
AWS (Amazon Web Services) in Education for a research
grant that supports our experiments on EC2, Kamil Bajda-
Pawlikowski and Daniel Abadi for sharing with us the details
of HadooopDB, and VLDBI10 reviewers for their insightful
comments.

9. REFERENCES

[1] Amazon elastic compute cloud (Amazon EC2)
http://aws.amazon.com/ec2/.

483

[2]
3]
[4]
[5]

=

]
]

[9]
(10]

‘oI

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

http://code.google.com/p/protobuf.
http://developer.yahoo.net/blogs/hadoop,/2008,/09/.
http://hadoop.apache.org.
http://www.cloudera.com/blog/2009/12/7-tips-for-
improving-mapreduce-performance/.
http://www.comp.nus.edu.sg/~epic/.
http://www.cse.yorku.ca/ oz/hash.html.
http://www.oracle.com/database/berkeley-
db/je/index.html.

http://www.vertica.com.

A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,

A. Silberschatz, and A. Rasin. Hadoopdb: an
architectural hybrid of mapreduce and dbms
technologies for analytical workloads. Proc. VLDB
Endow., 2(1):922-933, 2009.

S. Babu. Towards automatic optimization of
mapreduce programs. In SoCC, pages 137-142. ACM,
2010.

R. Chaiken, B. Jenkins, P.-A. Larson, B. Ramsey,

D. Shakib, S. Weaver, and J. Zhou. Scope: easy and
efficient parallel processing of massive data sets.
PVLDB, 1(2):1265-1276, 2008.

J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In OSDI, pages
137-150, 2004.

J. Dean and S. Ghemawat. Mapreduce: a flexible data
processing tool. Commun. ACM, 53(1):72-77, 2010.
D. J. DeWitt, E. Paulson, E. Robinson, J. Naughton,
J. Royalty, S. Shankar, and A. Krioukov. Clustera: an
integrated computation and data management system.
Proc. VLDB Endow., 1(1):28-41, 2008.

S. Harizopoulos, V. Liang, D. J. Abadi, and

S. Madden. Performance tradeoffs in read-optimized
databases. In VLDB, pages 487-498. VLDB
Endowment, 2006.

A. L. Holloway and D. J. DeWitt. Read-optimized
databases, in depth. Proc. VLDB Endow.,
1(1):502-513, 2008.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and

A. Tomkins. Pig latin: a not-so-foreign language for
data processing. In SIGMOD, pages 1099-1110. ACM,
2008.

A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J.
DeWitt, S. Madden, and M. Stonebraker. A
comparison of approaches to large-scale data analysis.
In SIGMOD, pages 165-178. ACM, 2009.

M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden,
E. Paulson, A. Pavlo, and A. Rasin. Mapreduce and
parallel dbmss: friends or foes? Communications of
the ACM, 53(1):64-71, 2010.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wychoff, and R. Murthy. Hive
- a warehousing solution over a map-reduce
framework. PVLDB, 2(2):1626-1629, 20009.

H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker.
Map-Reduce-Merge: simplified relational data
processing on large clusters. In SIGMOD, 2007.

M. Zaharia, A. Konwinski, A. Joseph, R. Katz, and
I. Stoica. Improving mapreduce performance in
heterogeneous environments. In OSDI, pages 2942,
2008.

