
UASMAs (Universal Automated SNP Mapping Algorithms):
a set of algorithms to instantaneously map SNPs in real

time to aid functional SNP discovery
James T.L. Mah

Data Mining Department, Institute for
Infocomm Research (I2R), A*STAR,

Singapore

tlmah@i2r.a-star.edu.sg

Danny C.C. Poo

Department of Information Systems,
National University of Singapore

dannypoo@nus.edu.sg

Shaojiang Cai

Department of Information Systems,
National University of Singapore

caishaojiang@gmail.com

ABSTRACT
Currently, submission of new SNP entries into SNP repositories
such as dbSNP by NCBI is done by manual curation. This gives
rise to errors and ambiguities in SNP data entries. Due to the expo-
nential increase in SNP discovery, there is a necessity to create
algorithms to accurately and rapidly map SNPs as they are discov-
ered in real time and depositing these entries automatically into a
central SNP database. UASMAs are a set of algorithms to instan-
taneously map SNPs efficiently and accurately by their unique
chromosome position in real time. It is the result of integration of
structures and algorithms in state of the art alignment methods
MAQ, BWT-SW, Bowtie, SOAP2 and BWA.
 Using BLAST employed by NCBI as benchmark where recall
was at most 91%, recall performance of components Bowtie and
BWA were much better at up to 99% for longer reads. Similarly,
Bowtie and BWA performed better in terms of precision at greater
than 91 % whereas BLAST was only 78 – 88%. BLAST performed
poorly in terms of recall and precision for longer reads. Bowtie and
BWA algorithms in UASMAs were superior in terms of perfor-
mances in alignment of longer sequences and locating the precise
chromosome position of any SNP with respect to the NCBI refer-
ence assembly. Results obtained are fast, instantaneous and accu-
rate.

Using UASMAs prove to be fast and optimal in mapping new
variants onto the genome in view of depositing these entries accu-
rately into a central database. Because it is done in real-time and
with increased accuracy, recall and precision, the database created
will be complete, up-to-date and devoid of ambiguities and redun-
dancies.

1. INTRODUCTION
Single-Nucleotide Polymorphisms (SNPs) are the most prevalent
type of DNA sequence variation and of research interest because of
their applications in personalized medicines and genome wide
association (GWA) studies. Currently, submission of new SNP
entries into SNP repositories such as dbSNP by NCBI [20] is done
by manual curation. It is not real time nor automated. As a result,
redundant, incomplete and inaccurate SNP records abound, with-
out an efficient feedback system to detect, correct and prevent this
from occurring. Our preliminary experiments on dbSNP data veri-
fied the inadequacy (see Section 3.2). These errors and ambiguities
in SNP data entries, inaccuracies and redundancies in dbSNP are
difficult to resolve afterwards due to the magnitude of the number
of stored SNPs. Due to the exponential increase in the discovery of
SNPs, there is an increasing necessity to create algorithms to accu-
rately and rapidly map SNPs as they are discovered in real time
and depositing these entries automatically into a central SNP data-
base. The resulting SNP database created will be complete, up-to-
date and without redundancies or ambiguities.

UASMAs (Universal Automated SNP Mapping Algorithms) are
a set of algorithms developed to instantaneously map SNPs effi-
ciently and accurately by their unique chromosome positions in
real time. It is the result of integration of structures and algorithms
in state of the art alignment methods MAQ, BWT-SW, Bowtie,
SOAP2 and BWA.

2. METHODS
Our proposed theory assumes that any SNP sequence can be given
an identity instantaneously. This is because the identifier of a SNP
is the characteristic of the SNP itself, which can be easily found by
performing local alignment of the SNP sequence against the chro-
mosome the SNP resides in, thus giving us the absolute chromo-
some position of the SNP. Local alignment of a SNP against the
NCBI reference assembly can be achieved efficiently with pro-
grams such as BWT-SW by Lam et al.[10], and Bowtie by
Langmead et al.[11].

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Articles from this volume were presented at The 36th International
Conference on Very Large Data Bases, September 13-17, 2010, Singa-
pore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
© 2010 VLDB Endowment 2150-8097/10/09... $10.00

We assume that the identifier for a single-base polymorphism
would be unique because it can only be found in a specific base
position in a chromosome. To locate the chromosome position of a
SNP, we integrated state-of-art data structures and algorithms in-
spired by MAQ [12], BWT-SW [10], Bowtie [11], SOAP2 [14]

1406

and BWA [13]. We provide an efficient system for finding accu-
rate alignments. In the pipeline is a front end product which can
easily be presented in a web browser in the form of a user-friendly
tool, from which a user is able to submit newly discovered SNP
sequences. The resultant tool will then automatically and accurate-
ly map and immediately deposit the submitted SNPs into a central
SNP database or repository. This would also work for SNPs sub-
mitted online by the scientific community, as it does not require an
independent administrator to curate and manually allocate SNP
RefSeq numbers present in dbSNP which could lead indirectly to
errors, artefacts and redundant entries.

Given a variant sequence, we want to map the SNP by finding
its chromosome position and all its local alignment and choosing
the one with the best similarity score. The local alignment problem
is as follows. Let T be the entire text of the chromosome sequence
of length n, and P be the pattern of the SNP sequence of length m,
and m < n. We want to find a region of text within T to align with
P such that it maximizes the alignment score. A popular dynamic-
programming algorithm for finding optimal local alignment is the
Smith-Waterman algorithm [21], which takes O(nm) time and
space complexity for aligning the entire text T against the pattern P.
This would be unfeasible for finding local alignments on large
texts such as the human genome, which contains approximately 3
billion bases [8]. In such a case, the amount of memory required
for such an alignment would be:

(bases) * (2bits per base) * m ≈750mMB 910*3

For practical purposes, we exploited currently popular alignment
tools MAQ, BWT-SW, Bowtie, SOAP2 and BWA. Among them
MAQ and SOAP2 mainly make use of hashing, while BWT-SW,
Bowtie and BWA are based on Burrows-Wheeler Transform
(BWT) [4]. Since BWT has been proved to be efficient for short
read alignment [5, 6, 10, 11, 13, 14], here we introduce relevant
data structures and local alignment algorithms in detail.

2.1 Suffix Trie
Because T is large, there are potentially many identical substrings
that we want to avoid aligning repeatedly with P. We can treat
these substrings as a common set of sub-problems which we only
want to solve once. This can be done with the use of a search tree
data structure such as the suffix tree suggested by McCreight [17].
Also, as a suffix tree is a compact representation of a suffix trie
where all nodes with one child are merged with their parents, we
can easily obtain its suffix trie.

If M1, M2 and M3 ≤ 0
otherwise

Let Σ be the alphabet of characters in T. Each edge of the suffix
trie is labeled with a character z from Σ and the concatenation of
the characters on a path from the root to a node represents a unique
suffix of T. Each leaf node stores the starting position of the cor-
responding suffix it represents. The preorder traversal of this suffix
trie will generate all suffices of T.

Suffix trees have been used to solve a variety of problems in bio-
logical sequence analysis. Suffix trees can be constructed in time
and space linear in the sequence length. However, it suffers se-
riously from its inefficiency of space usage. The best known im-
plementation of a suffix tree on human genome requires 12.5n
bytes for storage, which is approximately 40GB [15]. The figure
far exceeds the 4G capacity of a standard PC nowadays. Disk
based implementations have been introduced to deal with large

suffix trees [1, 3], but they slow down the alignment process by
orders of magnitude.

2.2 Dynamic Programming: Smith-
Waterman

The Smith-Waterman algorithm solves the local alignment prob-
lem using dynamic programming [21]. Dynamic programming is
performed at each node of the suffix trie to compute the best possi-
ble alignment score corresponding to the suffix represented by the
path from the root to the node. Each node of the suffix trie will
keep a set of dynamic programming tables defined by its recur-
rence relation for alignment of a pattern P against the suffix string
formed by traversing from root to the node.

Let u be a node on this suffix trie and X be the suffix of length d
represented by the path from the root to the node u, and we want to
align a pattern P of length m with X. Also, let the character in the
strings be specified by X[i] and P[j] such that 1 ≤ i ≤ d and 1 ≤ j ≤
m. We define a table M such that every cell M(i, j) has the maxi-
mum score for alignment of X[1, …, i] with P[1, …, j]. For local
alignments, the scoring scheme is the as follows:

(1) X[i] = P[i]; Matched pair has a score of a.
(2) X[i] ≠ P[i]; Mismatched pair has a score of b.
Either X[i, …, j] or P[i, …., j] is a gap of length r, and has a

score of g + s * r, where a = 1, b = -3, g = -5 and s = -2.

Any cell M(i, j) is the maximum of the follow three cases of
alignment M1, M2 and M3.

(1) Let M1 be the case where X[i] is aligned P[j].
(2) Let M2 be the case where X[i] is aligned with a gap.
(3) Let M3 be the case where P[i] is aligned with a gap.

M, M1, M2 and M3 can be represented as memorized functions
such that each function stores its results in a dynamic programming
table. We can then express the above as a recurrence relation as
follows.

(1) M1(i, j) = M(i – 1, j – 1) + S(X[i], P[j])
(2) M2(i, j) = max { M2(i – 1, j) + s, M(i – 1, j) + g + s }
(3) M3(i, j) = max { M3(i, j – 1) + s, M(i, j-1) + g + s }
(4)

 M i ⎨
⎩ 1 2 3

(,)
max(, , ,0)

j
M M M

−∞⎧
=

Where S(X[i], P[j]) = a if X[i] = P[j], or b otherwise.

The best alignment score at node u is given by the cell M[i, j]
with the highest alignment score and tracing backwards to the
maximum of M[i – 1, j – 1], M[i – 1, j] and M[i, j – 1].

Also, we consider a child node v of node u, such that the sub-
string of v is X[1, …, d]c, where c is the edge label between u and
v. A dynamic programming table of a node and its child differs
only by a single row. To compute the dynamic programming table
of child node v, the corresponding table of node u is extended by a
new row for aligning character c against T. Thus only the new row
has to be computed. Similarly, to traverse up the suffix trie to a
parent node, we delete the last row from the dynamic programming
table of the child node.

Lam et al.[10] proposes a pruning strategy to stop traversing a
path when the dynamic programming tables of a node u shows that

1407

a positive similarity score cannot be obtained for the path and pat-
tern being aligned. If the rows of all the dynamic programming
tables do not have a positive entry, the values in the remaining
rows will also be negative. Thus the entire subtree of node u can be
pruned away.

Despite of above strategies, SW algorithm consumes too much
memory for maintaining the dynamic tables. Especially for large
genomes like human genome, its inefficiency becomes bottleneck.

2.3 Backward Search on BWT
In this section we describe the algorithm for string matching on
Burrows-Wheeler Transform (BWT) [4]. At first we will introduce
suffix array (SA) [16], which is another famous data structure for
efficient string matching. Then we will describe FM-index [5], an
algorithm to simulate a variant of SA based on BWT to further
boost the performance. We illustrate the backward search process
using an example through this section.
 Let T be a string of length n that is comprised of characters from
a set of alphabets Σ. We assume T ends with a special character ‘$’
and that ‘$’ is lexicographically smaller than all other characters in
Σ. In a typical DNA context, Σ would be the set ‘$’, ‘A’, ‘C’, ‘G’,
‘T’, sorted in ascending lexical order. A suffix of a sequence is a
substring that begins at any position of the sequence and extends to
the end of the zero sequence. For example, if T = “ACAACG$”,
then all the possible suffices of T sorted in ascending order and in
0-based indexing will be as follows:

Table 1. Example of sorted suffices of T

0-based index Sorted suffices Starting position of suffix in T

0 $ 6
1 AACG$ 2

2 ACAACG$ 0

3 ACG$ 3

4 CAACG$ 1

5 CG$ 4
6 G$ 5

Table of suffices of T = ‘ACAACG$’ and their starting positions, sorted by lexical
value. Note that the index starts counting from zero.

Next, we define the suffix array SA[0 … n - 1] of T as an array,
where SA[i] contains the starting position for the ith smallest suffix
of T. For example, referring to Table 1 above, the 5th smallest suf-
fix of T is ‘CG$’ and its starting position in T is index 4. The rest
of the suffix array values of T follow in Table 2.

Table 2. Example of suffix array values of T

0-based Index Values of suffix array SA[]

0 SA[0] = 6
1 SA[1] = 2

2 SA[2] = 0

3 SA[3] = 3

4 SA[4] = 1

5 SA[5] = 4
6 SA[6] = 5

The resulting suffix array is the positions of the suffices concatenated together, which
is “6203145”.

The resulting suffix array of T is simply the starting positions of
the sorted suffixes in T concatenated together. Continuing from the
previous example in Table 1, the suffix array of T is SA[] =
“6203145”.

Now that we have seen the suffix array of T, we shall define the
BWT of T. The BWT of T is the set of all cyclic shifts of T sorted
in ascending lexical order, and then taking the last column of cha-
racters from the set gives us its BWT. Using the previous example
T = “ACAACG$”, we illustrate the BWT of T in Table 3.

Table 3. Example of the Burrow-Wheeler Transform of T

0-based index Sorted cyclic shifts of T Last column of characters

0 $ACAACG G
1 AACG$AC C

2 ACAACG$ $
3 ACG$ACA A

4 CAACG$A A

5 CG$ACAA A

6 G$ACAAC C

Table of BWT of T is BWT(T) = ‘GC$AAAC’. Note that the cyclic shifts of T are the
same as its sorted suffixes after wrapping around.

From our example in Table 3, the BWT of T is ‘GC$AAAC’.
The resulting BWT of T is the concatenation of the last column of
characters. Notice that the cyclic shifts of T in Table 3 is the
sorted suffixes of T in Table 2 after wrapping around. This estab-
lishes the relationship between BWT and suffix arrays, and which
can be expressed as BWT[i] = T[SA[i] – 1].

We can now perform the backward search technique as follows
([5, 6, 9]). Given a string X, let the SA range of X be [i, j] such that
SA[i] and SA[j] are the smallest and largest suffices of T respec-
tively that have X as the prefix. Given the SA range of X, we can
obtain the SA range [p, q] of zX for any character z in Σ by using
the backward search algorithm. The backward search algorithm
uses the following definitions:

(1) Let C(z) be the total number of characters in T that are smaller than z.

(2) Let Occ(z, i) be the total number of character z in BWT[0, …, i].

(3) Given the SA range [i, j] of X, the SA range [p, q] of zX can be found
with:

p = C(z) + Occ(z, i – 1)
q = C(z) + Occ(z, j) – 1

Referring to the previous example in Table 3, if X is the prefix
‘AC’, then the SA range of X would be [2, 3]. Now let us assume z
= ‘A’, then the string zX = ‘AAC’. Then, from the state of variables
shown in Table 4, we find the SA range [p, q]of zX to be [1, 1].

1408

Table 4. Variable states for finding SA range of zX = ‘AAC’.

Variables Values Description

X “AC” Given string.
i 2 Start of SA range of X

j 3 End of SA range of X

BWT[0, …, n] ‘GC$AAAC’ BWT of T.

z “A” X is extended by character z

C(z) 1 Number of characters in Σ
smaller than z.

Occ(z, i - 1) 0 Number of z in BWT[0, …, 1]

Occ(z, j) 1 Number of z in BWT[0, …, 3]

p = C(z) + Occ(z, i – 1) 1 Start of SA range of zX

q = C(z) + Occ(z, j) - 1 1 End of SA range of zX

Table of variable states used to find p and q, which is the SA range of zX.

Ferragina and Manzini [5] also introduced an auxiliary data
structure for precomputing Occ(z, i) in constant time. C(z) can also
be precomputed and found in constant time. This implies that [p, q]
can be obtained from [i, j] in constant time, and we can quickly
check for the existence of a suffix zX from X in constant time by
substituting z with the four possible nucleotide bases A, C, T, G.
Since we the reverse of T is used instead, we instead check for the
existence of zX-1 in T-1. This can be done by finding the SA range
[p, q] of zX-1 using the BWT of T-1. This edge exists if p ≤ q.

According to Ferragina and Manzini [5], in FM-indexing suffix
array is not needed to be stored explicitly for backward search.
Only some auxiliary arrays are needed, which can be accessed in
constant time. That overcomes largest problem of SA, which is
eager consuming of memory for large genomes. FM-index con-
sumes only 3n bits, i.e., 0.375n bytes in practice. For human ge-
nome, it is less than 1G. It is an ideal utility for our application, in
which we would like to keep the whole index in main memory of
PCs, meanwhile performing batch alignments efficiently. In addi-
tion, for matching a pattern P with length m, the time complexity is
O(m+occlogεu), where occ is occurrence times in T and ε is a fixed
constant between 0 and 1. This performance is competitive against
all other approaches.

2.4 Backward Search with Substitution
Backward search on BWT introduced in Section 2.2 is just fit for
exact string matching, which is insufficient for short read align-
ment. Instead of SW algorithm, Bowtie employs substitution dur-
ing backward search process to allow mismatches. Each character
in the read is assigned a numeric quality value, with lower value
indicating higher error probability. It prefers alignments where the
sum of the quality values at all mismatched positions are low. Sim-
ilar to exact matching, it calculates SA ranges for successively
longer query suffixes. In exact matching, the process stops when-
ever the SA range becomes empty. However, to allow inexact
alignment, the algorithm would substitute current unmatched base
with a different base, introducing one mismatch. If finally there are
multiple alignments satisfying the alignment policy, Bowtie will
pick the one with lowest quality value.

 Bowtie introduces ‘double indexing’ to avoid excessive back-
tracking, which happens when the aligner spends useless effort on
the positions close to the 3’ end of the query. In addition to the
forward index, Bowtie maintains ‘mirror’ index as well, which is
the BWT of the reversed sequence. Then the read is split into
halves, each searched with the forward and mirror indexes respec-
tively. However, it works only when single mismatch is allowed, if
there are multiple mismatches, Bowtie sets a threshold to stop
excessive backtracking.

3. EXPERIMENTS
To determine the performance of the components in UASMAs, we
compare alignment tools BWT-SW (bwtsw-x64-linux-20070916),
Bowtie (Bowtie 0.12.1), MAQ (Maq 0.6.6), SOAP2 (SOAP2 2.20)
and BWA (Bwa-0.5.5) in terms of parameters flexibility, functio-
nality, memory usage, alignment time and alignment accuracy
based on real SNPs data from largest public database dbSNP by
NCBI Sherry et al.[20]. Different parameters and read lengths were
tried to evaluate their performance. Meanwhile, BLAST [2], the
tool currently employed by NCBI, acted as a benchmark.

All our experiments were conducted on a desktop with Duo
Core 2.53Hz, 4G memory and 64-bit Linux Fedora 11 installed.

3.1 Data Source
Our experiments are based on real data, which are SNPs on chro-
mosomes Y and 1 from dbSNP [20]. The unprocessed flat files
acting as data source can easily be downloaded from the following
three public databases:

(1) The UCSC reference genome (HG18) 1.
The database files are named “chr*.fa.gz” and they are available
publicly. This database is stable and is not expected to change.
The original human genome is 2.9G, including 24 chromosomes.
(2) dbSNP (build 130) SNPChrPosOnRef database2.
The chromosome positions of SNPs relative to the reference ge-
nome are available at FTP of NCBI. This database is expected to
change quarter-yearly due to clustering by dbSNP.

(3) SNPs in dbSNP in FASTA format3.
The FASTA files include the RefSeq number, length, position,
orientation and the sequence of SNPs, etc. We here choose SNPs
on chromosomes 1 and Y, which contain 1393418 and 38340
SNPs respectively.

The basic procedures of our experiments are as follows: take the
SNPs sequences as input, align them against reference genome,
and check the returned positions against recorded positions in
SNPChrPosOnRef.

3.2 Pre-processing
One important thing to note is that there are noises in SNPChrPo-
sOnRef database. Firstly, position values of some SNPs were zero.
We referred to the dbSNP online and found that the recorded posi-
tion had two numbers in the form of <pos, pos+1>. Secondly, ac-

1 http://hgdownload.cse.ucsc.edu/goldenPath/hg18/chromosomes/
2ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/database/organism_data/
b130_SNPChrPosOnRef_36_3.bcp.gz
3 ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/rs_fasta/

1409

http://i.cs.hku.hk/%7Eckwong3/bwtsw/bwtsw-x64-linux-20070916.tar.gz
https://sourceforge.net/projects/bowtie-bio/files/bowtie/0.12.1
http://sourceforge.net/project/showfiles.php?group_id=191815&package_id=229423&release_id=595346
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/chromosomes/
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/database/organism_data/b130_SNPChrPosOnRef_36_3.bcp.gz
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/database/organism_data/b130_SNPChrPosOnRef_36_3.bcp.gz
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/rs_fasta/

cording to the strict definition of single nucleotide polymorphism,
only SINGLE mutations (one-base substitution / insertion / deletion)
will be counted. We filtered out these noises in the experiments.
The breakdown is shown in Table 5.

Table 5. Breakdown of Raw SNPs Data.

Chr Raw # Pos 0 Non SNPs SNPs Counted

1 1393418 26988 169134 1199566
Y 38340 5324 2284 31198

SNPs on chromosomes 1 and Y. Note that there are some records those are non SNPs
as well as having position 0.

In order to investigate the sensitivity to query length, we con-
ducted separate experiments with various maximum lengths. They
are 36, 50, 63, 76, 128, 256, 512 and 1024bp. If the original SNP
sequence is longer than length considered, we truncate it to maxi-
mum allowed size, meanwhile of course, reserving the mutation
position of the SNP. The metadata position and query length are
also modified accordingly. Table 6 illustrates the distribution of
different lengths of counted SNPs. We can see that around 94%
(97% for Chr1) of the query sequences have length longer than
256bp, meaning that successively increasing the considered lengths
does make sense.

We first perform the alignment using BLAST as the benchmark.
For SNPs on chromosome Y, in best case (length 128) 91% are
aligned successfully, with loose precision 97.7%. The result sup-
ports our opinion that current SNP entries in dbSNP could be inac-
curate and confusing. Actually, some SNPs have been removed or
renamed in dbSNP, for example, rs3893 [18]. But these names
could still be cited in published papers and lead to confusion and
ambiguities.

Table 6. Lengths of SNP Sequences

 <256 [256, 512) [512, 1024) >=1024

Chr Y 2.98% 26.44% 57.58% 12.99%

Chr 1 5.23% 34.36% 55.17% 5.25%

3.3 Indexing
Compressed indexing is able to reduce memory requirements for
the human genome such that it is small enough to fit into primary
memory limitations. Lam et al.[10] reports that among FM-index
[6], CSA (Compressed Suffix Array) [19, 7] and Burrow-Wheeler
transform (BWT), BWT is the most efficient compression algo-
rithm and it is possible to reduce memory requirements to approx-
imately 0.25n bytes. This means that using BWT, the human ge-
nome can be compressed to fit into 1GB of memory which easily
fits within the 4GB memory limitation in commodity computers.
The indexing results of different tools are shown in Figure 1.

We find that algorithms those based on BWT, including BWT-
SW, Bowtie, SOAP2 and BWA, create indexes in more than one
hour, meanwhile occupying much more virtual memory (more than
3G). However, the final sizes of the indexes are quite close, which
are slightly larger than original genome chromosomes, except for
SOAP2, which is roughly twice. But indexing process runs only
once, so the time complexity is not very important.

Figure 1. Indexing4.

0
2000
4000
6000
8000

10000
12000
14000
16000

BLAST MAQ BWT-SW BOWTIE SOAP2 BWA

Index Size (MB)

Peak VM (MB)

Time (s)

3.4 Parameter Flexibility
UASMAs have the ability to provide online SNP mapping service
in real-time. Such a service must satisfy the following require-
ments to be efficient. It has to be responsive, flexible parameters
and able to perform batch processing. However, our experiments
found that none of the five components are perfect in every re-
quirement. Table 7 looks into the parameter flexibility in each of
them.

Table 7. Parameter Flexibility of components of UASMAs.

Tool Latest
Version

Server
Process

of
mis-

match

of
align
ment

Gap Paired-
end

Multi-
format

Multi-
thread

MAQ 04/08 - + + - + - -

BWT-SW 09/07 + - - + - + -

Bowtie 01/10 - + + - + + +

SOAP2 08/09 - + - - + - +

BWA 11/09 - + + + + - +

BWT-SW will not be updated any more. Column “server process” indicates a process
running in background, loading the index in memory already.

The server process is critical, since it will save much time spent
in loading indexes into memory. BWT-SW supports server/client
model, with server process performing alignment tasks and client
process interacting with users. However, the server process will
keep searching alignments even if the client side has aborted the
query. When it is stuck, the server process does not response any-
more until killed. In the experiments, BWT-SW hanged when
processing certain queries. We doubt that some bugs exist. In addi-
tion, BWT-SW has stopped updating, with latest version released
two years ago.

Currently the best performers seem to be Bowtie and BWA.
Both Bowtie and BWA support flexible parameters for usage, al-
though they do not support server process. Bowtie does not im-
plemented gapped alignment, which is a disadvantage compared
with BWA. But BWA outputs the alignment in SAM form [14].

3.5 Time and Space Complexity
Time and Space efficiency are big concerns. Currently, NCBI pro-
vides online alignment service based on BLAST. Processing time

4 The indexes could be in different formats and the amounts of indexes files
vary. The original genome size is 2996MB.

1410

for a single query is about one minute. We claim that the system
should response within 10 seconds for a single query, meanwhile
occupying memory affordable for desktops nowadays. We can
conclude from Table 8 that Bowtie outperforms others by around
50 times faster, meanwhile with the memory usage remaining ac-
ceptable.

Table 8. Time and Space Complexity on Chromosome Y.

Tool Load Index (s) Total Time (s) Peak VM (MB) Reads/sec

MAQ - ~1200 ~330 ~60

BWT-SW ~40 - - -

Bowtie ~30 ~35-80 ~2400 ~1800-2100

SOAP2 ~120 ~1000-2000 ~5700 ~30-70

BWA - ~100-200 ~2300 ~500-700

Due to different query lengths, the time could slightly fluctuate. There are 72241 reads
after pre-processing.

BWT-SW hangs somehow when performing batch processing.
Even if we split the query file to 50 reads each, it is stuck so fre-
quently that we are forced to abandon. In contrast, Bowtie runs
amazingly fast, with around 2000 reads per second. Considering
that it spends around 30 seconds to load the indexes into memory,
we believe Bowtie will meet our requirement if the indexes have
been pre-loaded beforehand. BWA ranks second, mainly because
that its implementation of gapped alignment (we allow one-base
difference here) slows down the speed. There seems no apparent
index loading process for BWA. In addition, once the read length
reaches 200bp, BWA’s performance is degraded [13]. However,
BWA is still a competitive candidate considering its speed (~500-
700 reads/sec). MAQ and SOAP2 are equally slow, but SOAP2
consumes around 6GB, which is much larger than memory size of
mainstream desktops 4G, due to its large-size indexes. MAQ
achieves best memory usage, requiring only 330MB. This is main-
ly because MAQ compresses the indexes and handles the queries
well.

We observe that Bowtie and SOAP2 spend much time in loading
the indexes into memory, which could be saved if there is a server
process running. MAQ’s optimal memory usage is an advantage. It
starts alignment immediately, making it a competitive candidate.

3.6 Recall and Precision
To achieve optimal performance in alignment, accuracy and re-

liability are always important. As we have mentioned in Section
3.2, even BLAST achieved 91% recall at most due to existence of
outdated data. Figure 2, 3 and 4 are the experimental results of
MAQ, Bowtie, SOAP2 and BWA. We ignore MAQ and BLAST
here, because MAQ failed to deal with reads with lengths greater
than 128bp, and the performance of BLAST drops dramatically (78%
for 256bp) as the length of reads becomes large.

Generally, the recall of BLAST increases as the read length be-
comes larger while the precision decreases. But when it reaches
length 256, both recall and precision drop dramatically. This trend
shows that BLAST is not suited for long reads.

From Figure 2, we find that in general, at the beginning the re-
call increases as the length becomes longer, but when it reaches
length 256, the value drops sharply. One possible explanation is
that longer lengths provide higher confidence, but it can introduce
difficulties in alignment. It seems that the lengths 76 and 128 indi-

cate best tradeoff. All three of them are reliable since they can
align majority of counted SNP sequences. The figures are close to
or even better than BLAST. MAQ gets the worst results, with the
value around 1~2 percent less. SOAP2 and Bowtie are winners,
achieving slightly better results than BWA at every length except
for 36bp.

0
10
20
30
40
50
60
70
80
90

100

36bp 50bp 63bp 76bp 128bp 256bp 512bp 1024bp

BLAST

MAQ

Bowtie

SOAP2

BWA

Figure 2. Recall of Alignment on Chromosome Y5.

90
90.5

91
91.5

92
92.5

93
93.5

94
94.5

95

36b

Bowtie

SOAP2

BWA

p 50bp 63bp 76bp 128bp 256bp 512bp 1024bp

Figure 3. Precision of Exact Alignment on Chromosome Y.

94

95

96

97

98

99

100

36bp 50bp 63bp 76bp 128bp 256bp 512bp 1024bp

Bowtie

SOAP2

BWA

Figure 4. Precision of Loose Alignments on Chromosome Y6.

The three candidates show consistent trends regarding precision:
it rises steadily as the read length increases. This observation is
consistent to the claim that longer lengths actually give more con-
fidence to report an alignment. Of course, longer lengths mean the
need for more time to process. MAQ outperforms the other two,

5 MAQ was not able to deal with lengths longer than 128, mean-
while somehow it reported error for length 76. BWT-SW had no
results to show.
6 Loose alignment includes those alignments returning a position
within 9 bps apart from the desired position.

1411

although not much better. Bowtie and SOAP2 achieved competi-
tive precision, which is around 1 percent better than BWA for all
lengths.

In order to verify that there are no biases towards SNPs on
chromosome Y, we conducted similar experiments based on chro-
mosome 1 using Bowtie and BWA. The results are shown in Fig-
ure 5 and 6. They show that recall and precision are consistent to
the results obtained from chromosome Y.

Figure 5. Recall of Bowtie and BWA on Chromosome 17.

Figure 6. Precision of Bowtie and BWA Based on Chromo-
some 1.

 Consistent to the previous results, for a larger dataset (SNPs on
chromosome 1) of around 2.5 million SNPs, BWA achieves higher
recall, especially for long lengths above 128bp. However, Bowtie
again gets better precision. Recall Figure 3 and 4, we infer that
Bowtie performs much better for exact matching. We think the
reason for this outcome is that BWA implements gapped alignment,
which will increase recall and lower precision.

4. DISCUSSION
Using UASMAs proves to be fast and optimal in mapping new
variants onto the genome in view of depositing these entries accu-
rately into a central database. Because it is done in real-time and
with increased accuracy, recall and precision, the database created
will be complete, up-to-date and devoid of ambiguities and redun-
dancies. In addition, by knowing the exact location in the genome
of newly discovered SNPs in real-time computed instantaneously,
their proximities to important disease genes and important coding
or non-coding regions can be deduced and their respective functio-
nality inferred. High precision and recall makes algorithms used in
UASMAs adept for large scale in-silico sequencing experiments to
screen for functional SNPs in the genome, which are cheaper and

7 There are 2457326 reads after pre-processing.

faster than conventional high throughput sequencing technologies
employing Illumina/Affimetrix chips.
 Algorithms employed in UASMAs require local alignments to
be done with high accuracy, speed and flexibility. We conducted
experiments to compare the five components of UASMAs in terms
of indexing, parameter flexibility, time complexity, space com-
plexity, precision and recall. All have their shortfalls such as MAQ
is less competent in dealing with long queries, BWT-SW seems to
implement batch processing less well, Bowtie does not support
deletion/insertion detection, SOAP2 is slow and occupies too much
memory, and BWA may not be flexible enough. Using BLAST
employed by NCBI as benchmark where recall was at most 91%,
recall performance of components Bowtie and BWA were much
better at up to 99% for longer reads. Similarly, Bowtie and BWA
performed better in terms of precision at greater than 91 % whereas
BLAST was only 78 – 88%. BLAST performed poorly in terms of
recall and precision for longer reads. Bowtie and BWA algorithms
in our tool were superior in terms of performances in alignment of
longer sequences and locating the precise chromosome position of
any SNP with respect to the NCBI reference assembly. Results
obtained were fast, instantaneous and accurate. Although none of
them gave perfect results, but considering that indel (inser-
tion/deletion) of SNPs counts for as low as 1 per-cent, we think
Bowtie and BWA gave excellent results. The most impressive
advantage of Bowtie was that it was fast and accurate, which is
critical for the efficient computational mapping of SNPs.

86
88
90
92
94
96
98

100

36bp 50bp 63bp 76bp 128bp 256bp 512bp 1024bp

Bowtie

BWA

86

88

90

92

94

96

98

36bp 50bp 63bp 76bp 128bp 256bp 512bp 1024bp

100

Bowtie
(Exact)

BWA
(Exact)

Bowtie
(Loose)

BWA
(Loose)

There are several functionalities that can be added to Bowtie to
enhance its performance. Firstly, a back-end process can be kept
running all the time, maintaining the indexes in main memory and
interacting with client processes to avoid loading the indexes re-
peatedly. Secondly, gapped alignment could be implemented based
on the solution of substitution. To allow mismatches, we substitute
some bases during backtracking. Similarly, once we encounter a
mismatch, we ignore the query base and move forward to consider
next base, introducing an insertion. To bring in deletion, we could
insert an extra query base into the current position, making SA
range not empty in the next iteration. Another option is to integrate
SW algorithm into Bowtie, which finds all local alignments satis-
fying the alignment rules.

5. CONCLUSION
We have proposed an effective and instantaneous method named
UASMAs for accurately and efficiently mapping SNPs in real time
in view of depositing the entries into a central database. UASMAs
employed in the development of a tool in the form of a user-
friendly graphical interface is in the pipeline. This tool can aid
large scale in-silico screening for functional SNPs in genome wide
experiments. The proposed tool can also eliminate all redundancies
and inaccuracies whilst ensuring completeness of the included SNP
entries. Our method serves to value-add to the existing systems of
mapping and if proved robust, may be used as a standardized portal
for mapping newly discovered SNPs in the near future.

Our work has compared the power of using the five alignment
algorithms to simultaneously map and locate newly discovered
SNPs onto the chromosome according to various criteria. A real-
time web interface and server for public query submission are in
the pipeline. Future work will also include dealing with other com-
plex genomic variants such as tandem repeats, copy number varia-
tions, which are presently beyond the scope of this project.

1412

6. ACKNOWLEDGEMENT
This work is supported by the Singapore Ministry of Education
Academic Research Fund (AcRF) Tier 1 Grant T1
251RES0911. We would also like to acknowledge the contribution
of Mr. Situ Yi in reviewing SNP nomenclatures and related algo-
rithms.

7. REFERENCES
[1] Abouelhoda, M. I., Kurtz, S., and Ohlebusch, E. (2004). Re-

placing suffix trees with enhanced suffix arrays. J. of Discrete
Algorithms, 2(1):53-86.

[2] Altschul,S.F. et al. (1990) Basic local alignment search tool. J.
Mol. Biol., 215,403–410.

[3] Barsky, M., Stege, U., Thomo, A., and Upton, C. (2008). A
new method for indexing genomes using on-disk suffix trees.
In CIKM '08: Proceeding of the 17th ACM conference on In-
formation and knowledge management, pages 649-658, New
York, NY, USA. ACM.

[4] Burrows, M, Wheeler., D. J. (1994). A block-sorting lossless
data compression algorithm. Technical Report 124, Digital
Equipment Corporation, California.

[5] Ferragina, P. and G. Manzini. (2000). Opportunistic data struc-
tures with applications. Proceedings of the 41st Annual Sympo-
sium on Foundations of Computer Science, IEEE Computer
Society.

[6] Ferragina, P. and G. Manzini. (2001). An experimental study of
an opportunistic index. Proceedings of the twelfth annual
ACM-SIAM symposium on Discrete algorithms. Washington,
D.C., United States, Society for Industrial and Applied Mathe-
matics.

[7] Grossi, R. and J. S. Vitter. (2005). Compressed Suffix Arrays
and Suffix Trees with Applications to Text Indexing and String
Matching. SIAM J. Comput. 35(2): 378-407.

[8] Guttmacher, A. E. and F. S. Collins. (2002). Genomic medi-
cine--a primer. N Engl J Med 347(19): 1512-20.

[9] John Healy, Elizabeth E. Thomas, Jacob T. Schwartz, and Mi-
chael Wigler. (2003). Annotating large genomes with exact
word matches. Genome Res, 13: 2306-2315.

[10] Lam, T. W., W. K. Sung, et al. (2008). Compressed indexing
and local alignment of DNA. Bioinformatics 24(6): 791-797.

[11] Langmead, B., C. Trapnell, et al. (2009). Ultrafast and memo-
ry-efficient alignment of short DNA sequences to the human
genome. Genome Biol 10(3): R25.

[12] Li, H, Ruan J, et al. (2008) Mapping short DNA sequencing
reads and calling variants using mapping quality scores. Ge-
nome Res., 18, 1851–1858.

[13] Li,H. and Durbin, R. (2009a). Fast and accurate short read
alignment with burrows-wheeler transform. Bioinformatics
(Oxford, England), 25(14):1754-1760.

[14] Li et al. (2009b) SOAP2: an improved ultrafast tool for short
read alignment. Bioinformatics,
doi:10.1093/bioinformatics/btp336.

[15] Kurtz, S. and Schleiermacher, C. (1999). Reputer: fast compu-
tation of maximal repeats in complete genomes. Bioinformatics,
15(5):426-427.

[16] Manber, U. and Myers, G. (1990). Suffix arrays: A new me-
thod for on-line string searches. In SODA '90: Proceedings of
the first annual ACM-SIAM symposium on Discrete algo-
rithms, pages 319-327, Philadelphia, PA, USA. Society for In-
dustrial and Applied Mathematics.

[17] McCreight, E. M. (1976). A Space-Economical Suffix Tree
Construction Algorithm. J. ACM 23(2): 262-272.

[18] National Center for Biotechnology Information. (2009).
dbSNP Home Page. [Online] Available
at: http://www.ncbi.nlm.nih.gov/projects/SNP/ [Accessed 10
February 2010].

[19] Sadakane, K. (2003). New text indexing functionalities of the
compressed suffix arrays. J. Algorithms 48(2): 294-313.

[20] Sherry, S. T., M. H. Ward, et al. (2001). dbSNP: the NCBI
database of genetic variation. Nucleic Acids Res 29(1): 308-11.

[21] Smith, T. F. and M. S. Waterman. (1981). Identification of
common molecular subsequences. J Mol Biol 147(1): 195-7.

1413

http://www.ncbi.nlm.nih.gov/projects/SNP/

