MEET DB2: Automated Database Migration Evaluation

Reynold S. Xin~
EECS, UC Berkeley

rxin@berkeley.edu

William McLaren
IBM USA

wmclaren@us.ibm.com

ABSTRACT

Commercial databases compete for market share, which is
composed of not only net-new sales to those purchasing a
database for the first time, but also competitive “win-backs”
and migrations. Database migration, or the act of moving
both application code and its underlying database platform
from one database to another, presents a serious adminis-
trative and application development challenge fraught with
large manual costs. Migration is typically a high cost ef-
fort due to incompatibilities between database platforms.
Incompatibilities are caused most often by product specific
extensions to language support, procedural logic, DDL, and
administrative interfaces. The migration evaluation is the
first step in any competitive database migration process.
Historically this has been a manual process, with the high
costs and subjective results. This has led us to reexamine
traditional practices and explore an automatic, innovative
solution.

We have designed and implemented the Migration Eval-
uation and Enablement Tool for DB2 for Linux Unix and
Windows, or MEET DB2, a tool for automatically evalu-
ating database migration projects. Encapsulated in a sim-
ple one-click interface, MEET DB2 is able to provide de-
tailed evaluation of migration complexity based on its deep
analysis on the source database. In this paper, we present
MEET DB2, and discuss many aspects of our design, and re-
port measurements from real-world use cases. In particular,
we show a novel way to use XML and XQuery in this do-
main for better extensibility and interoperability. We have
evaluated MEET DB2 on 18 source code samples, cover-
ing nearly 1 million lines of code. The utility has provided
benefits in several dimensions including: dramatically re-
duced time for evaluation, consistency, improved accuracy
over human analysis, improved reporting, reduced skill re-
quirements for migration analysis, and clear analytics for
product planning.

*Work done while at IBM Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.

Proceedings of the VLDB Endowment, Vol. 3, No. 2

Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

Patrick Dantressangle
IBM UK

dantress@uk.ibm.com
Steve Schormann
IBM Canada
schorman@ca.ibm.com

Sam Lightstone
IBM Canada

light@ca.ibm.com

Maria Schwenger
IBM USA

schwenge@us.ibm.com

1. INTRODUCTION

The relational database market is a worldwide business
of over 20 billion USD. No single company dominates this
space, providing a fertile competitive arena for several key
companies, including IBM, Oracle, Microsoft, Teradata, and
others. These companies compete for market share by at-
tracting new business, and by encouraging companies to
switch from a competitive platform to one of their own. The
business term used for the conversion from a competitive
platform is often called a “win-back”. The process of mov-
ing an application from one database to another is called
a database migration. This paper describes a prototype
and its automated migration evaluation, called the Migra-
tion Evaluation and Enablement Tool for DB2, or MEET
DB2.

Despite the existence of international standards for database
definitions and language processing, such migrations rarely
occur without development cost due to the large number of
non-standard language and interfaces extensions that many
database vendors provide. Therefore, when an application
coded to operate against a specific databases needs to mi-
grate to a new database platform, there are commonly a
number of these extensions used by the source database that
are unsupported in the target database, requiring some num-
ber of database or application changes to be made before the
migration can be completed.

The costs of migration vary, and can range from 100%
compatibility between disparate platforms to a significant
engineering effort. Consequently, it never begins in prac-
tice without first having an evaluation and review of these
costs. These evaluations have historically been performed in
a manual and laborious fashion by engineers highly skilled
in the database platforms of both the source and the target
databases. Not only have such evaluations been time con-
suming, subjective and prone to variabilities of all manual
processes, but the process is further compromised by the
challenge of finding people deeply skilled in multiple combi-
nations of databases. The introduction of automation into
this process dramatically simplifies the analysis in several
ways, as follows:

1. It significantly shortens the evaluation time.
2. It reduces the skills needed by the evaluator.
3. In many cases it will improve accuracy.

4. Tt adds consistency to the evaluation results.

1426

5. It can provide a level of detail in the assessment that
would be difficult for human evaluators to collect in
most cases.

6. It can provide critical information (i.e. what is not
supported but used extensively by customers) in future
database system development’s requirement planning.

MEET DB2 provides two types of interfaces: GUI and
command line interface. By default, MEET DB2 presents
itself in a simple GUI interface that contains a source file
selection interface and a button to start the evaluation. The
utility takes a file as input that contains source code of the
source database’s DDL and procedural logic, and produces
a report in HTML file as output. For expert users and those
to wish to run MEET DB2 in batch mode, it can be invoked
from a command line interface. Figure 1 shows a screenshot
of the generated report on a test database.

The following list summarizes the output of MEET DB2:

1. A report of the percentage of lines of code (LOC) that
require modification in order to be migrated from the
source system to the target system.

2. A report of the number percentage of database objects
that require modification in order to be migrated from
the source system to the target system.

3. Detailed list of tables, triggers, indexes, views, func-
tions, procedures, packages requiring modification, in-
cluding counts of each item and the line number in the
input source code requiring attention.

4. Estimates of the human effort required to resolve each
identified issue, as well as an aggregate time effort.

The rest of the paper is organized as follows: section 2
gives a background overview of the migration evaluation
process; section 3 describes the approach and algorithms
used to develop the MEET utility; section 4 describes ex-
periments performed using the MEET utility against a set
of customer databases in different market segments of vary-
ing complexity and evaluation of MEET’s extensibility, and
finally section 5 concludes the paper with a brief summary
of results and future work.

2. BACKGROUND

Almost immediately after the concepts of relational database

systems (RDBMS) and query language (SQL) standards
were established in the late 70s (first relational model by
E.F. Codd at IBM [4], first specification of SEQUEL by
Donald D Chamberlin and Raymond F. Boyce [2], and oth-
ers [3]), the early RDBMS vendors started adding language
extensions. Initially, these extensions were related to the
SQL Data Definition language (DDL) and SQL Data Ma-
nipulation Language (DML) [8] statements for leveraging
storage capabilities, new data types and optimized declara-
tions and hints for faster data retrieval. Subsequently, under
the pressure of processing increasing amounts of data, proce-
dural language extensions were added to SQL. These exten-
sions have included control-flow structures and 3G-like lan-
guages statements. In most cases these extensions intended
to encapsulate business logic closer to the data to minimize
context switches between the SQL interpreter/compiler and
the storage runtime, reducing many network round trips to
applications.

) MEET DB2 9.7 FP2 Report 2010/07/07 (Internal Use Only) - Mozilla Firefox cax
Fle Edit Vew Hstory Bookmarks Toos Hep

@ 9.C tar (L fle:///C:/MEET/tempyreport html 7 - [4- 7

) MEET DB2 9.7 FP2 Report 20...| +

MEET DB2 9.7 FP2 Report 2010/07/07 (Internal Use Only)

Migration Enablement Evaluation Tool for DB2
Send comments to meetdb2@torolab ibm com

PL/SQL Coverage

MEET DB2 has estimated that 98.3 % of PLISQL statements and 90.0 % of PLISQL objects are immediately transferable to
IBM DB2. The technical report below identifies possible incompatibilities in the source provided to the PLISQL compatibility features
provided by DB2 9.7

Technical Summary

Report generated on: 2010/07/07 at 2:16 p.m.

Source File: C\dataltest.sql

PL/SQL Summary
Object Type Total Number Number That Require Attention Percent That Require Attention
Anonyrnous blocks o 0 0%
Packages 336 8 2%
Procedures 922 44 5%
Functions 1080 68 6%
Triggers 412 156 38%
Total Objects 2750 276 10%
Staternents 45389 769 17%
DDL Summary
The DDL reports assume that the IBM Data Movement Tool will be used to migrate DDL to DB2
Statement Type Total Number Number That Require Attention Percent That Require Attention
Create type 0 0 0%
Create sequence 162 0 0%
Create table 257 1 0%
Create index 1550 0 0%
Other DDL 1729 0 0% v

Dore

Figure 1: Sample report generated by MEET DB2

Although the SQL standardization went through many
iterations and adoptions (SQL-86, SQL-89, SQL-92/SQL2,
and SQL-99/SQL3 [6]) and standards for stored procedures
were also established (ISO Persistent Stored modules
(SQL/PSM) [10]), most RDBMS vendors continued to en-
hance their own (standard independent) versions of DDL,
DML and procedural languages. Therefore, even with the
final versions of ISO SQL standards, there are many cross-
platform incompatibilities on how different RDBMS han-
dle data, types, procedure logic and transactions, including
items such as procedural and control-of-flow logic, common
data types, recursive queries, triggers, XML and XQuery as
SQL extensions (SQL/XML [9]), and many others exten-
sions.

Migrating applications to a new database platform can
be viewed as a multi-stage effort. Gathering and evaluating
information about the cost estimation and risk assessment
is the key factor in making a migration decision as well as
establishing the roadmap for the future project by flagging
the difficulties in mapping from the source to the target sys-
tem. Almost all key steps in the migration process such as
initial architecture design, development of migration strate-
gies, testing plans, project scheduling are either based or
heavily influenced by the data provided in the estimation
phase.

The professionals involved in the migrations need to un-
derstand and address manually the impedance mismatch be-
tween different SQL flavors, semantics differences and differ-
ent behavior of language constructs. The challenges can be
categorized into one of the following;:

e Data definitions (DDL) include the definition of schema
and database objects (tables, indexes, views), data

1427

types, and constraints.

e Data manipulations in SQL (DMLs) include SELECT,
UPDATE, INSERT, and DELETE statements.

e Business logics that are encapsulated in procedural
language, such as SQL/PL. These objects include stored
procedures, functions, packages or modules, triggers.

e Application layer code written in C, C++, Java, or
other languages.

Evaluating migrations in organized and detailed manner
is a difficult and error prone process. In the past, most eval-
uations were done in manual or semi-manual manner. For
example, interviews of clients’ database administrators and
application programmers, often subjective, are conducted to
gather information about the source database. Another im-
portant step of the traditional migration evaluation process
is to study long questionnaires, completed by the clients,
that contain approximate or incomplete information. The
incomplete and subjective nature of the manual process has
been known to lead to poor evaluation results.

As a simple example, consider a source database that in-
cludes support for a built-in scalar function, such as
is_greater_than, which returns whether the first argument
is greater than the second argument. If the target database
doesn’t support the is_greater_than function, this will pose
a problem in migrating all of the procedural logic that ref-
erences this function. Using a manual evaluation process a
human expert would review the source database where the
application currently runs and identify all occurrences of
the function is_greater_than, and determine an alternate
method of implementing the same capability in the target
database. This requires the human expert to be able to
identify all such functions like is_greater_than that cannot
be supported by the target database as well as to clearly un-
derstand not only their semantics but also functionalities.

From these experiences different vendors began releasing
a variety of migration tools and strategies for automation
of the porting process and the cost based analysis, includ-
ing Migration Toolkit by IBM [7], Monarca Enterprise by
Endian Soft, Oracle Migration Bench [13], and Microsoft
SQL Server Migration Assistant [12]. These tools encompass
research fruits from schema and model management, and
more importantly, program transformation [15, 14]. How-
ever, most of these tools are designed to focus on the mi-
gration of code and only partially to the evaluation of code.
Such tools in general is oriented towards engineers rather
than technical sales. It is difficult using these tools to take
into account compatibility supports provided by a wide va-
riety of database releases and/or third-party tools. In most
cases, the evaluation process is still a manual, time consum-
ing task that allows inaccurate interpretation and subjective
criteria.

The market needs a new generation tool specialized in pro-
viding migration analysis based on evaluations of RDBMS
specifics, precise diagnostic of the syntax structures, com-
prehensive association between syntax structures and the
time needed for their new implementation according to skill
sets, awareness of the supported features per release, un-
derstanding of the API support and the overall interactions
with the application layer. MEET DB2 is a prototype de-
signed to automate much of what until now has been a man-
ual process of database design and procedural code analysis.

That automation includes the parsing and analysis of DDL,
DML and procedural logic to identify the database defini-
tion and logic that require modification in order for them
to run on the target database. Through automation the
process can be made dramatically more accurate, objective,
and faster.

3. DESIGN OVERVIEW

3.1 Assumptions and Requirements

In designing MEET DB2, we have been guided by the
following assumptions and requirements that have offered
both challenges and opportunities.

e MEET DB2 must dramatically reduce the time re-
quired to perform a database migration evaluation anal-
ysis.

e The evaluation report generated by MEET DB2 should
contain both statistics of the input source code and
a detailed list of incompatibilities. The statistics can
provide the reviewer with the overall complexity of the
source code, whereas the list of incompatibilities will
determine the migration cost itself.

e Technical sales staff, with reasonable amount of knowl-
edge in database systems and minimal training, should
be able to use MEET DB2 and interpret the output.
The result should be comparable to, if not better than,
in terms of accuracy, a manual evaluation process con-
ducted by an expert in the domain.

e Database vendors roll out new releases with new fea-
tures every few months and the introduction of new
releases bring new incompatibilities. Third-party com-
patibility layer can also significantly alter the migra-
tion landscape. It must be as easy as possible for
database migration experts to document these incom-
patibilities.

e Many tools already exist in the migration space. In
fact, many migration experts have written their own
utilities and scripts to aid the common migration tasks.
The output produced by MEET DB2 should be highly
interpolatable so it can be fed as input to existing tools
and utilities.

3.2 Components Overview

MEET DB2 consists the following components: prepro-
cessor, parser, analyzer, knowledge base, effort estimator,
and the report generator. Each component is relatively in-
dependent, as they are linked together by intermediate step
outputs in XML format, which vastly increase the interop-
erability and decrease the dependency among components.
They work in the following flow, and when possible, we make
links to how computer compilers work.

1. Similar to C preprocessors that handle directives and
macros (#if, #define, #include), the preprocessor is
a program that handles database commands, e.g. DB2
CLP, that are commonly found in input source code.
These commands specify information such as which
database to connect, but are irrelevant to the migra-
tion evaluation process. The removal of these com-
mands simplifies the implementation of the parser.

1428

2. The parser performs lexical and syntactic analysis on
the source file (that contains both DDL and procedural
logic) and generates an abstract syntax tree, or AST,
of the source file. The abstract syntax tree is repre-
sented as an XML file for the analyzer to use. This
stage is identical to the parsing stage in compilers.

3. The analyzer pulls incompatibility rules from the knowl-
edge base documenting known migration problems and
queries the abstract syntax tree to extract instances of
these problems in the input source. The analyzer also
gathers statistics about the source code. In this step,
the analyzer “compiles” a preliminary report of incom-
patible instances.

4. The effort estimator groups incompatible instances iden-
tified by the analyzer and calculates the human effort
required to migrate these instances based on metrics
specified in the knowledge base. This is similar to the
linking stage in compilers, as the effort estimator links
the identified instances to the knowledge base.

5. The last step, the report generator, collects incompat-
ibility information on an aggregated level and does a
XSL Transformation to transform the output by effort
estimator to a browser renderable report in HTML.
By supplying a different XSLT style sheet, the report
can be rendered in other formats, such as spreadsheets,
PDF documents.

The knowledge base is a catalog of known migration is-
sues. Although it is centrally maintained by a the tool’s de-
velopment team, individual users can also adjust the knowl-
edge base according to their needs. Each entry in the knowl-
edge base is composed of a rule in XQuery, explained in
further details in next subsection, and a cost metric. The
cost metrics are defined as a range in person-hours, and
should cover all aspects of the migration process, includ-
ing planning, design, implementation, and testing. These
metrics were determined based on empirical data provided
by migration experts when MEET DB2 was developed. As
MEET DB2 is being used in client engagements, migration
issues that are identified by migration experts and not yet
exist in the knowledge base will be added accordingly. The
cost metrics can also be updated when the field feedback
differs from the initial estimation.

3.3 Parser and Analyzer

The first step towards any types of static analysis on
source code is to perform syntactic parsing and generate
an abstract syntax tree, which is a tree representation of
the syntactic structure of the source code. It should be
noted that this part of MEET DB2 is indeed similar to static
code analysis or program understanding tool [5]. Traditional
static code analysis tools usually model the source code as a
syntax tree in memory, and provide users with a set of APIs
in some procedural languages, e.g. Java, JavaScript, C, to
query and analyze the tree. One of the most important de-
sign decisions in MEET DB2 is to have the parser output
the syntax tree to an XML file, rather than modeling and
keeping it in memory, and let the migration experts define
incompatibility rules in XQuery [1].

This solution has a variety of merits over traditional pro-
cedural language APIs. First of all, XML documents by
design describes objects in tree structures, and XQuery is

created and designed to query these tree-structured docu-
ments. While traditional procedural language APIs might
be effective in complicated, multi-step analysis cases (e.g.
detecting the possibility of deadlock situations), XQuery is
a much simpler and natural way to query a tree structure
compared with procedural languages, which are designed as
general computing languages. Second, a query can be added
to the knowledge base and dynamically executed, eliminat-
ing the need to re-compile the utility itself. By adopting
an open standard, MEET DB2 can leverage the capacity of
many existing high-performance XQuery engines. In next
subsection we show how XQuery can be used to identify
incompatibilities.

Note that the end user does not need to know XQuery at
all. XQuery is only used when migration experts find out
a new migration problem and need to document it in the
knowledge base.

Program 1 AST XML Schema
<element name="field" type="string">
<attribute name="name" type="string"
use="required"/>
</element>
<element name="node">
<complexType>
<sequence>
<element ref="node" maxOccurs="unbounded"/>
<element ref="field" maxOccurs="unbounded"/>
</sequence>
<attribute name="type" type="string"
use="required"/>
<attribute name="lineno" type="string"
use="required"/>
</complexType>
</element>

The XML schema, defined in Program 1, strictly follows
how the syntax tree would be represented in memory. The
full specification of the schema, however, is long and less
relevant to the topic. There are two types of XML ele-
ments in the syntax tree: node and field. A node can
contain many child nodes and represents a grammar ele-
ment node in the tree, and it is identified by a type at-
tribute. Some possible types are list, if, sqlStatement,
table, function, trigger, etc. The field XML elements
describe properties of the nodes, and the name of the field
varies depending on what type the node is. For example, in
a trigger-typed node, we need a field that specifies the
trigger point (whether the trigger happens before the event
or after the event). To give you a more concrete understand-
ing of the parser output and the XML schema, Program 2
shows a simple is_greater_than function coded in a pseudo
language and Program 3 is the corresponding XML output
produced by the parser.

Once the AST XML is generated, the analyzer pulls rules
from the knowledge base to run against the XML file. The
output of these queries conforms to a predefined XML for-
mat and can be harvested by the report generator later. As
alluded to earlier, the knowledge base consists of a list of
XQuery that defines methods to generate statistics on the
input source and known migration problems between the
source and the target database systems. One property of

1429

Program 2 source code of function is_greater_than

FUNCTION is_greater_than(
left NUMBER (20);
right NUMBER (20);

)

BEGIN
IF left > right THEN

RETURN true;
ELSE
RETURN false;
END IF;
END;

Program 3 The AST XML for function is_greater_than.

Some information is stripped for simplicity.

<node type="function">
<name>is_greater_than</name>

<node type="list" name="arguments">
<node type="argument">

<field name="type">int</field>

<field name="name">left</field>

</node>
<node type="argument">
<type>int</type>
<name>right</name>
</node>
</node>

<node type="list" name="statements">
<node type="if">
<field name="expr">left > right</field>
<node type="list" name="statements">
<node type="return">
<expression>true</expression>
</node>
</node>
<node type="else">
<node type="list" name="statements">
<node type="return">
<field name="expr">false</field>
</node>
</node>
</node>
</node>
</node>
</node>

the abstract syntax tree is that it is constructed accord-
ing to a unified structure defined by us, independent of the
language production rules of different flavors of SQL. As a
result, even though a code snippet can be written in differ-
ent flavors of procedural logic that have the same semantics,
the resulting syntax tree will be the same. This eases the
definition of incompatibility rules as we only need to specify
one rules for different source platforms for the same incom-
patible feature that DB2 does not support. It is impor-
tant to note that although the incompatibility rules can be
language-independent, a syntactic parser for each language
is still required to generate the AST XML.

The very first prototype of MEET DB2 had a different
implementation for the DDL part of the analyzer. Initially,
we attempted to utilize the system catalog of the source
database to identify incompatibilities. Most database sys-
tems provide a centralized repository, usually called the sys-
tem catalog, of meta information about the database. These
catalogs typically include the table definitions, statistics about
objects in the database, relationships to other data, origin,
usage, and format. All information specified in the DDL
are stored as meta data in these catalogs, and it is conve-
nient and natural to perform SQL queries on them. How-
ever, since then we have realized client engagement teams
usually receive customers’ database in the form of a file con-
taining the source code for both DDL and procedural logic.
To accommodate this fact, we have decided to deal with
DDL analysis in the same way we implement procedural
logic analysis.

Also, for a variety of reasons, it is not always possible
to have a complete parser for different flavors of SQL and
procedural logic. As a result, it is key that error recovery
features have been built into the parser itself so that it will
not stop at seeing an unrecognized grammar, but rather skip
and continue to the next understandable code [11]. In ad-
dition, all unrecognized grammar elements are documented
and written to the output.

3.3.1 XQuery Rules

In this subsection, we show how to construct rules in
XQuery to match grammar patterns that can be used to
identify migration problems or gather statistics.

MEET DB2 provides a minimal set of XQuery APIs to fa-
cilitate string matching and the construction of rules. Some
of the most important ones are documented here:

e The variable $ast is the highest level abstract syntax
tree node of the source database code.

e The function first-node returns the first XML node
in a list.

e The function reportNode takes a node as input and
packages it to generate an instance XML element that
describes each instance of the problems.

e The function 1ine0fCode applies a heuristic algorithm
to compute the number of lines of code for a specified
object.

Two types of rules exist in the knowledge base: statistics
and problems. Although they serve different purposes, they
are indeed very similar in the construction. We introduce
three types of grammar patterns that can be used for both:
basic, child, and aggregate pattern.

1430

In a basic pattern, we are looking for an AST node whose
own attributes match specific patterns. For example, some
vendors support procedural logic objects defined in Java.
When migrating such procedural logics over to a database
system that doesn’t support this at all, we need to identify
all function definition node that is defined in Java. Program
4 implements this rule. $ast//node[@type="function"]
represents all function definitions and @language="java"
qualifies that the language attribute of the function defi-
nition node has to be “java”.

Program 6 Aggregate pattern: functions with more than
1024 arguments

<problem name="function_num_args_gt_1024">

{

for $function in $ast//node[@type="function"]

where

count ($function/node [@type="argument"] /node) > 1024
return reportNode($function)

}

</problem>

Program 4 Basic pattern: functions that are defined in
Java
<problem name="function_in_java">
{
reportNode ($ast//node [@type="function"
and @language="java"])

}
</problem>

Child pattern describes an AST node that has one or more
child node(s) that satisfy a condition. Many database sys-
tems disallow the use of data update statements in before-
triggers for better data integrity. Another example is the
pattern of sub programs, or commonly referred to as nested
functions, i.e. a function defined within a function. In these
cases, XQuery’s FLWOR features provide us with power-
ful child-pattern matching. Program 5 shows the use of
FLWOR to construct a rule that can match a child pattern.

Program 5 Child pattern: data update statements used in

before-triggers

<problem name="update_in_before_trigger">

{

for $trigger in $ast//node[@type="trigger"]
for $sql_statement in
$trigger//node[@type="sql"]

where $trigger/point/text()="before" and

$sql_statement/keyword/text ()=

("update", "insert", "delete")

return reportNode($sql_statement)

}

</problem>

The last one, aggregate pattern, is used when we need to
obtain the aggregated attributes, such as frequency or the
number of occurrences, of nodes that match specific pat-
terns. The aggregate pattern can be used to detect incom-
patibilities such as functions that have too many arguments.
It is also most useful in gathering statistical information
(number of functions, average line of code of all functions)
about the source database code, as such information is crit-
ical for human reviewers to gain a better understanding
of the system. The rules for aggregate pattern commonly
use XQuery’s aggregate functions (max, min, avg, sum, and
count). These functions take a sequence of nodes as ar-
gument and return a single computed value. For example,
Program 6 uses count function to determine if a function
has more than 1024 parameters and Program 7 counts the
average number of lines of code for all functions.

Most incompatibilities between different languages can be

Program 7 Aggregate pattern: compute the average lines
of code for all functions
<stat name="avg_loc">
{ return avg(
lineOfCode(
($ast//node[@type="function"])))

}
</stat>

reduced into one of, or a combination of, the above patterns.
Consider a case where the target database does not support
overloading a function with the same number of arguments.
We can concatenate each function’s name by the number
of arguments (aggregate) to generate a function signature,
and compare (basic) if any of the functions share the same
signature.

3.4 Effort Estimator

The effort estimator collects the output from the analyzer
and inserts cost estimation into the XML tags. In MEET
DB2’s cost model, a migration consists of two parts. First is
a direct translation that migrates code from the source fla-
vor SQL or procedural logic to the target. This translation
is a strict syntactic translation of the code. For example,
to rewrite a for loop because the target system uses a dif-
ferent syntax than the source would be called a translation.
The second part is the implementation of workarounds for
incompatible instances that have been identified by the an-
alyzer. A workaround is when the target database does not
support certain features used in the source system, and the
migration team would need to re-implement part of the code
that uses these features and produce new code for the tar-
get system that is of equal semantic behavior. For example,
calls to a proprietary natural language processing function
would require a workaround. The costs of implementing
workarounds are stored in the knowledge base.

Migration costs vary significantly depending on an exten-
sive list of factors, most notably the experience level of the
migration team as well as the tools used in the migration
process. For example, some tools can help with the direct
translation between different flavors of SQL, e.g. IBM’s Mi-
gration Toolkit, and the usage of these tools can significantly
cut down the cost. An extreme case is with the release of
DB2 LUW 9.7, DB2 has built-in native Oracle’s PL/SQL
support and in such case, translation cost is virtually elimi-
nated.

Any model for projecting the human effort required in
a migration project needs to factor the large variability in
productivity and expertise between individuals who maybe

1431

working on the programming modifications. For each in-
compatibility issue, MEET DB2 documents in the knowl-
edge base a range of costs that try to model the difference
between nominally skilled professionals versus experts.

3.5 Report Generator

The output XML generated by the analyzer and effort es-
timator is grouped by the types of problems. In migration
projects, information grouped by objects is usually more
useful as they can be used to determine which part of the
code should be migrated first. The report generator uses
some XQuery to transform the XML into a report grouped
both by types of problems and by objects. It also collects
the stat tags to build a matrix visualizing the total numbers
of each types of objects, the number that requires migration
attention, the percentage of such cases, and the cost range,
as shown in Figure 1. The report generator then uses XSLT
to transform the XML report into a browser renderable re-
port in HTML.

Although the HTML report is more human readable, the
raw XML reports are invaluable as the collection of them can
indicate what are not supported by the target system and
the frequencies of these features used by customers. This
feedback information is critical to the future requirement
planning of the target system’s development.

4. EXPERIMENTS

The goal of this section is twofold. First, we illustrate the
extensibility of MEET DB2. Second, we study 18 database
sources from external companies to evaluate the performance
and effectiveness of MEET DB2.

4.1 Extensibility

Since MEET DB?2 is driven by a knowledge base, adding
a new incompatible feature, disabling a currently reported
feature, or updating a query to run against different versions
of database systems takes just a few minutes. The major
steps to follow are:

e identifying the pattern of the problem: This is the
first and usually the most time consuming step. The
DBA needs to research the syntax construction and its
variations, determining the cases that are supported
(and unsupported) in the target database. The DBA
then needs to study the presentation of such patterns
in the AST XML file.

e implementing the query to match the pattern: The
writing of the query is a streamlined process with a
few options. Depending on the pattern, the DBA may
inherit an existing query in the knowledge base and
only change or expand certain search parameters. In
the most complicated cases, the DBA has to write a
new query from scratch.

e testing the query: Once the DBA finishes implement-
ing the query, he or she can run MEET on a sample
test file to ensure correct reporting. Often the query is
not complete at first try, and will require re-iteration
of the process.

The time it takes to design and implement new queries
varies based on the skill set and experience level of the DBA.
To study this, we asked one senior DBA and one junior DBA

140

@ Senior DBA

120 7 @ Junior DBA

100

80

60

Time (min)

40

20 +

Task

Figure 2: Total amount of time to complete the
tasks. This includes all three stages: identifying pat-
terns, implementing query, and testing.

Junior DBA

Senior DBA

Figure 3: Breakdown of time spent in completing
the tasks by steps.

to complete four tasks: 1) adding a query by inheritance; 2)
adding a query by expanding an existing query; 3) designing
a new query from scratch; and 4) removing a query. The
senior DBA has over 15 years of experience in the source and
the target database systems, while the junior DBA entered
the field one year ago.

We report the measured time in Figure 2. It took the
senior DBA less than 40 minutes to accomplish each task,
and 120 minutes for the junior DBA. We also measured the
time spent in each step. A breakdown of the total time
spent in each step expressed as a percentage is illustrated in
Figure 3. Using these numbers conservatively, we estimate
it would cost less than one person month to implement 100
migration issues.

4.2 Performance and Accuracy

The input used for the experiment was comprised of all
objects which contained procedural code which includes pro-
cedures, functions, packages and triggers. The input in ag-
gregate included 678,269 statements, and 15,119 database
objects, averaging 42,392 lines of code per case study. The
lines of code in each case is illustrated in Figure 4. We com-
pare the migration evaluations performed by human migra-
tion experts with MEET DB2.

The experiments have the following goals to validate:

e Performance - Greatly decreases the time required for
evaluation;

1432

200
180
160
140
120
100

60

S N NN TTT%

5 8 9 10 11 12 13 14 15 16 17 18

Lines of Code (thousand)

Case

Figure 4: Lines of code for each study case.

e Accuracy - Achieve a +/-5% accuracy rate of eval-
uating migration code compared to the accuracy of
manual evaluations.

By achieving the goals above MEET DB2 is making each
evaluator more of an expert. Accuracy of evaluations will
be improved overall. The tool will help the evaluators to
understand the limitations/issues with migrations and make
them experts on evaluations very quickly.

The accuracy of the evaluation in terms of finding in-
stances where workarounds are required as well as the perfor-
mance efficiency of MEET DB2 are validated by comparing
the results of the migration expert versus MEET DB2 and
then having another migration expert thoroughly review all
the results as well as the database source code to identify
instances which may have been overlooked.

4.2.1 Performance Evaluation

All experiments using MEET DB2 were performed on a
Lenovo T61 laptop with Intel(R) Core(TM) 2 Duo CPU at
2.00GHz and 4GB of memory (3GB usable). The operating
system was 32bit Windows XP. We use Saxon-B 9.1.0.8 as
XQuery and XSLT engine and IBM JDK version 6. The
same system was used by the migration experts for manual
and semi-manual evaluation using tools made up of editors,
system utilities like grep and sort as well as purpose-built
scripts accumulated during their various migration evalu-
ation engagements. The report produced by MEET DB2
requires a human review to ensure the accuracy of the re-
port as well as review of unrecognized grammar elements
identified. The elapsed time to perform the evaluation in-
cludes the execution time for MEET DB2 as well as the time
to review the results by a human reviewer.

Since MEET DB2 reduces the evaluation time by a signif-
icant factor, it is less informative to plot the time compari-
son as the MEET DB2 time will be barely visible. Instead,
we plot the time it takes to run MEET DB2 on these test
cases as well as the time it takes for a human evaluator to
go through the report generated by MEET DB2. As can
be seen in in Figure 5, the MEET DB2 runtime is only a
small fraction of the human review time. Using the data in
Figure 5, we plot the number of factors that MEET DB2
outperforms a human expert on migration evaluations, and
the result is documented in Figure 6. The MEET DB2 times
used in this evaluation also included time for human evalu-
ation of the MEET DB2 report.

As expected MEET DB2 significantly outperformed the
migration expert in all evaluations, reducing the average
evaluation time by 97.6%, as shown in Figure 6. In the ex-

60.0

B human review time
500 17| mEET DB2 runtime

Time (min)

Figure 5: MEET DB2 evaluation time on test cases,
including both MEET DB2 runtime and the human
review time.

©
=3

@
3 8
]

=1

=1

Mow &g 9 o
& S
]

=3

=3

How many times MEET DB2 is faster than
human expert evaluation

|

1 2 3 4 5 6 T 8 9 10 1 12 13 14 15 16 17 18
Case Study

=

Figure 6: MEET DB2 vs human evaluation time
comparison. The y-axis indicates the number of fac-
tors MEET DB2 outperforms manual evaluations.

periment the MEET DB2 utility outperformed the migra-
tion expert by a factor of 41.4 times for the overall elapsed
time to evaluate the source and report on the findings.

4.2.2 Accuracy Evaluation

In this evaluation we also study the accuracy of MEET
DB2 by comparing the rate of findings that a human evalua-
tor detected that were missed by the automated utility, and
conversely the rate at which MEET DB2 identified issues
that were missed by the human evaluator.

Figure 7 shows the number of issues that were not found
by the expert and MEET DB2. The accuracy of problem
identification reported by MEET was in every case slightly
higher than the migration expert. This evaluation is a rela-
tive test as it pits the findings of human evaluators against

‘D# issues not found by expert B# issues not found by MEET

#lssues
LS T

e

1 2 3 4 5 6 T 8 9 0 1 12 13 14 15 16 17 18
Case Study

Figure 7: The number of issues not found by MEET
DB2 and migration expert.

1433

the findings of the automated utility, however, the accuracy
of each is not objectively known. We find that MEET DB2
fails to detect migration problems at roughly half the rate of
human evaluators. The exact difference in this study was a
48% reduction in unidentified issues across all 18 databases
in the analysis. It is also natural to deduct that with factors
such as fatigue, human experts’ error rate would increase
as the code size increases, while a computer program would
not suffer from such problems. In addition, issues that are
missed by MEET DB2 can be documented and added to its
knowledge base, improving accuracy for future evaluations.
The 97.6% reduction in analysis time and the 48% im-
provement in problem identification suggest that MEET DB2
is well positioned to deliver on its goals of significant per-
formance improvements for migration evaluation time, and
improvements in the accuracy of the evaluation.

S. CONCLUSIONS AND FUTURE WORK

In this paper we have described a prototype technology
project called Migration Evaluation and Enablement Tool
for DB2. The utility has been shown to be highly extensi-
ble and can significantly reduce the time required to perform
evaluation for database migration from a disparate platform
to DB2 by two orders of magnitude with improved accu-
racy when compared with manual analysis in 18 case stud-
ies. This process, a key task in win-backs and competitive
migrations, was previously a manual process requiring ex-
tensive analysis by professionals with multi-platform skills.
Perhaps even more importantly, through automation, the
analysis can now be performed by almost anyone with ba-
sic database knowledge. In addition to speed and accuracy,
the automation of the migration evaluation process provides
consistency across client engagements and by different staff
that would not be achievable through a manual process.

Certainly, there are rough edges where MEET DB2 can
be improved. Overall, MEET DB2 has produced very good
results compared with a human expert evaluation. The ef-
fectiveness of evaluation, however, is currently limited to
database definitions and database procedural logic. MEET
DB2 evaluations can be extended to evaluate application
layer, such as those written in Java or C++. The parser
component supports very limited number of vendor dialects
and can be extended to support more flavors of SQL and
procedural logic. In addition, we should investigate what is
the best approach in cost modelling and cost estimations.
For example, generating qualitative comments (e.g. easy,
medium, hard) upon the migration complexity of each in-
compatibility might be more beneficial than giving out esti-
mations in the form of cost ranges.

6. ACKNOWLEDGMENTS

The authors would like to acknowledge a number of col-
leagues who helped sponsor and/or develop the first version
of the software described here. Much thanks to Andrew
Lavers, Chrissie Kwan, Jamie Bennett, David Jacob, Jes-
sica Rockwood, Berni Schiefer, and Sal Vella.

7. ADDITIONAL AUTHORS

8. REFERENCES

[1]

1434

S. Boag, D. Chamberlin, M. F. Fernandez,

D. Florescu, J. Robie, and J. Simeon. Xquery 1.0: An
xml query language. W3C' Recommendation, 2007.

R. F. Boyce and D. D. Chamberlin. Using a
structured english query language as a data definition
facility. IBM Research Report, RJ1318, 1973.

D. D. Chamberlin and R. F. Boyce. Sequel: A
structured english query language. In FIDET *74:
Proceedings of the 197{ ACM SIGFIDET (now
SIGMOD) workshop on Data description, access and
control, pages 249-264, New York, NY, USA, 1974.
ACM.

E. F. Codd. A relational model of data for large shared
data banks. Commun. ACM, 13(6):377-387, 1970.

T. A. Corbi. Program understanding: Challenge for
the 1990s. IBM System Journal, 28(2):294-306, 1989.
A. Eisenberg and J. Melton. Sql: 1999, formerly
known as sql3. SIGMOD Rec., 28(1):131-138, 1999.
IBM. Ibm migration toolkit user’s guide and reference,
2008.

ISO/IEC 9075-1:2008. Information technology —
Database languages — SQL — Part 1: Framework
(SQL/Framework). ISO, Geneva, Switzerland.
ISO/TEC 9075-14:2008. Information technology —
Database languages — SQL — Part 14: XML-Related
Specifications (SQL/XML). ISO, Geneva, Switzerland.
ISO/IEC 9075-4:2008. Information technology —
Database languages — SQL — Part 4: Persistent Stored
Modules (SQL/PSM). 1SO, Geneva, Switzerland.

B. J. McKenzie, C. Yeatman, and L. de Vere. Error
repair in shift-reduce parsers. ACM Trans. Program.
Lang. Syst., 17(4):672-689, 1995.

Microsoft. Microsoft sql server migration assistant for
oracle, facilitating database migration, 2005.

Oracle. Oracle migration workbench white paper,
2004.

H. Partsch and R. Steinbriiggen. Program
transformation systems. ACM Comput. Surv.,
15(3):199-236, 1983.

E. Visser. Stratego: A language for program
transformation based on rewriting strategies. System
description of Stratego 0.5. In A. Middeldorp, editor,
Rewriting Techniques and Applications (RTA01),
volume 2051 of Lecture Notes in Computer Science,
pages 357-361. Springer-Verlag, May 2001.

