
Distance-Based Outlier Detection:
Consolidation and Renewed Bearing

Gustavo H. Orair Carlos H. C. Teixeira
Wagner Meira Jr.

Department of Computer Science
Universidade Federal de Minas Gerais

Belo Horizonte, Brazil

Ye Wang Srinivasan Parthasarathy
Department of Computer Science and

Engineering
The Ohio State University

Columbus, USA

Contact Author
Email:srini@cse.ohio-state.edu

ABSTRACT
Detecting outliers in data is an important problem with in-
teresting applications in a myriad of domains ranging from
data cleaning to financial fraud detection and from network
intrusion detection to clinical diagnosis of diseases. Over the
last decade of research, distance-based outlier detection al-
gorithms have emerged as a viable, scalable, parameter-free
alternative to the more traditional statistical approaches.

In this paper we assess several distance-based outlier de-
tection approaches and evaluate them. We begin by sur-
veying and examining the design landscape of extant ap-
proaches, while identifying key design decisions of such ap-
proaches. We then implement an outlier detection frame-
work and conduct a factorial design experiment to under-
stand the pros and cons of various optimizations proposed
by us as well as those proposed in the literature, both inde-
pendently and in conjunction with one another, on a diverse
set of real-life datasets. To the best of our knowledge this is
the first such study in the literature. The outcome of this
study is a family of state of the art distance-based outlier
detection algorithms.

Our detailed empirical study supports the following ob-
servations. The combination of optimization strategies en-
ables significant efficiency gains. Our factorial design study
highlights the important fact that no single optimization or
combination of optimizations (factors) always dominates on
all types of data. Our study also allows us to character-
ize when a certain combination of optimizations is likely to
prevail and helps provide interesting and useful insights for
moving forward in this domain.

1. INTRODUCTION
Outlier detection is a fundamental step in a large num-

ber of data quality, data management, and data analysis
tasks. Examples abound ranging from its use as a first class
operation for tasks such as medical diagnostics [15], image

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 2150-8097/10/09...$ 10.00.

analysis [24], and network intrusion detection [16, 17] to its
use as a preprocessing step for assessing the quality of data
and as a precursor to various data mining algorithms that
are heavily influenced by the presence of outliers.

In layman’s terms, the noted physicist Stephen Hawkins
defines an outlier as “an observation which deviates so much
from the other observations as to arouse suspicions that it
was generated by a different mechanism”. The problem of
outlier detection has been around for over a century and
and has been the focus of much research in the statistics
literature. Here, data is assumed to follow a parametric dis-
tribution and the objects that do not fit properly the model
are considered outliers. However, such approaches are lim-
ited in the sense that the data distribution and underlying
parametric formulation may be unknown or hard to deter-
mine [19]. Another limitation with these approaches is that
they typically do not scale well to large or even moderately
large datasets.

Several non-parametric approaches that do not rely on
data distributions have been proposed. The first class of
methods proposed were typically an artifact of clustering
algorithms [18, 7, 28, 11]. Here the idea is to label as out-
liers those points that were not a core part of any clusters.
A limitation of such approaches is the lack of a strong defini-
tion as to what constitutes an outlier since the definition is
somewhat implicit from algorithm implementation and sig-
nificantly depends on the algorithm’s parameters. It is also
the case that even the outlier definition is often domain-
dependent.

Computational geometry inspired approaches for outlier
detection, based on depth and convex hull computations,
have been around for the last four decades [25]. These ap-
proaches rely on the principle that outliers lie at the border
of the data space. The main idea here is, given a cloud of
points, to identify convex hulls at multiple depths (layers).
At the end of this process points in the few outermost con-
vex hull layers are reported as outliers. The dependency on
convex hull calculations significantly hampers the scalability
of such methods on high dimensional data and even in low
dimensions these methods can be quite expensive with large
datasets [14].

To address this limitation, several authors defined the no-
tion of an outlier based on density (of neighborhood) or dis-
tance (of neighbors). Density-based approaches determine
outliers by analyzing the object’s neighborhood density [6,
20] and thus have the opportunity to identify interesting out-

1469

liers missed by other methods. Note that in such methods
distance plays an implicit role in determining the neighbor-
hood and local density. However, while these methods offer
improved performance when compared to methods inspired
on statistical or computational geometry principles, they are
not scalable [14].

Explicit distance-based approaches, based on the well-
known nearest-neighbor principle, were first proposed by
Ng and Knorr [13] and employ a well-defined distance met-
ric to detect outliers, that is, the greater is the distance of
the object to its neighbors, the more likely it is an outlier.
Distance-based approaches have been the subject of much
research withiin the database and data analytics communi-
ties [3, 5, 10, 2]. It is a relatively non-parametric approach
that has been shown to scale quite nicely to large datasets of
moderate to high dimensionality and is the focus of this pa-
per. The basic algorithm for such distance-based algorithms,
the nested loop (NL) algorithm, calculates the distance be-
tween each pair of objects and then set as outliers those that
are far from most objects. The NL algorithm has quadratic
complexity, with respect to the number of objects, making
it unsuitable for mining very large databases such as those
found in government audit data, clinical trials data, and net-
work data. As a result, a good portion of the research in
the literature to date on this problem has focused on iden-
tifying practical sub-quadratic algorithms [22]. In the quest
for designing of such algorithms, researchers have identified
several important optimizations and algorithms such as the
use of compact data structures [22, 10], the benefits of prun-
ing and randomization [5], among others. In fact, each new
proposal, including some by ourselves is inevitably backed
by a strong set of empirical results showcasing the benefits
of the new method over competitive strawman or the pre-
vious state of the art algorithms. However, as we demon-
strate in this study, research in this important domain has
lost sight of some important optimizations along the way.
Our hypothesis when we started this study is that several
important optimizations that are tied down to specific im-
plementations are often ignored by more recent advances in
this field. It is thus, in our opinion, extremely important to
consolidate the efforts of many and understand these inter-
actions carefully before proposing new ideas.

In this paper we take a consolidated view of this problem
and include the important optimizations suggested in this
domain in the past and also include some new ones within
the context of this tudy. A fundamental optimization un-
derpinning almost all approaches proposed to date is the
ability to perform an approximate nearest neighbor search
as this information is critical to estimate how likely a point
is an outlier, given the data seen thus far. Beyond this opti-
mization (which is an essential component of all competitive
strategies in the field), we believe that optimizations pro-
posed by various researchers may be categorized as a form
of pruning of the search space or a ranking based optimiza-
tion. Each of these may be further categorized further into
two sub categories. In each category and sub-category we
will briefly discuss how extant research proposals fit, and, as
noted above, we discuss a new proposal in one sub category.
We then describe a framework wherein each of these opti-
mization strategies can be independently applied in isolation
or collectively, allowing us to better understand the inter-
actions among them. This framework facilitates a factorial
design study on several real and synthetic datasets enabling

us to understand the utility of different optimization strate-
gies and to help understand the interactions among them.

This paper, in our opinion, makes three significant and
non-trivial contributions. First, we present a full fledged
factorial design study to understand the impact of the main
optimization strategies presented in the literature, including
one that is novel to this paper. To the best of our knowl-
edge we are not aware of another such study that attempts
to consolidate these efforts and is attempting to understand
the contributions of different optimizations and the interac-
tions among them. Second, the results of our factorial de-
sign study enables us to identify interesting and important
insights. For example, it is worth noting here that an opti-
mization strategy proposed as part of a carefully constructed
strawman implementation from Ramaswamy et al [22], and
not part of their main proposal, is by far one of the more
important factors for this problem. Additionally, we find
that while certain combinations of optimizations work very
well in general on both real and synthetic datasets, there
is no single combination of optimizations that is always the
best. Third, an artifact of our effort is a general purpose
framework that is available to the broader research commu-
nity, enabling researchers to replicate our results and to also
build upon them. Another artifact of our study is that it
helps us get a renewed bearing on interesting directions for
future work on this problem which is discussed at the very
end of this paper.

2. BACKGROUND
In this section we begin by defining the problem and then

review some of the previous efforts for detecting outliers.
Along the way we identify a taxonomy of optimizations and
ideas proposed for this problem. We classify several state
of the art algorithms based on their fundamental optimiza-
tion strategy. For expository simplicity we have summarized
the common notations used in the rest of this paper within
Table 1.

2.1 Problem Definition
As noted earlier, distance-based techniques for outlier de-

tection have become quite popular, due to their relatively
non-parametric nature and due to their simplicity and abil-
ity to scale to large datasets. However, it is important to
formally define the notion of an outlier in order to proceed.
To date there are three main definitions of outliers:

1. Outliers are objects with fewer than k neighbors in the
database, where a neighbor is an object that is within
a distance R [13].

2. Outliers are the n objects presenting the highest dis-
tance values to their respective kth nearest neighbor
(the kNN definition) [22].

3. Outliers are the n objects presenting the highest aver-
age distance to their respective k nearest neighbors [3].

All three definitions exemplify Hawking’s definition, that
is, the greater is the distance of the object to its neighbors,
the more likely it is an outlier. The first definition originally
proposed by Knorr and Ng [13] relies on both the definition
of a neighborhood (R) as well as the number of neighbors k
in order to determine whether a point is an outlier or not.
The choice of R is an additional parameter that the user

1470

Table 1: Notations

Symbol Description
n Number of outliers in result set to be identified in the database
k Number of nearest neighbours to be considered

Dk(p) Distance between point p and its kth closest neighbour
Dk

min Smallest distance between a point and its kth nearest neighbour from result set
|P | Number of objects (size) of a partition P
R(P) The MBR diagonal value of a partition P
MINDIST Minimum distance between an object and MBR structure
MAXDIST Maximum distance between an object and MBR structure

will need to set which may sometimes be hard to determine
apriori. The definition also does not lend itself to certain
optimization approaches. In fact, for a suitable choice of
R, it can be shown that Knorr and Ng’s definition leads to
a quadratic algorithm where all distances between pairs of
objects must be calculated in the worst case.

Another measure that quantifies such information for each
object p is Dk(p), which is the distance between the object p
and its kth-nearest neighbor. This measure was proposed by
Ramaswamy et al [22], and is the basis of the second defini-
tion of an outlier. An added benefit of this definition is that
it allows the outliers to be transparently ranked and places
less of a demand user’s apriori knowledge about the objects
in the database in that it relies on one fewer parameter to
set. A variant of this definition is considered by Angiulli et
al [3].

Note that several contemporary algorithms, for example
ORCA [5] and RBRP [9, 10] do admit all three definitions
within their respective frameworks and thus some optimiza-
tions will apply to all definitions, whereas others are a bit
more restrictive. Among the three, however, the kNN defi-
nition by Ramaswamy et al [22] is certainly more frequently
used and is the focus of this work. We should note that
many of our results also have been evaluated on the third
definition (which is closely related to the second) and the
results we find for them are along similar lines to what is
reported in this paper.

2.2 Canonical Algorithm
According to the kNN definition, the simplest algorithm

for distance-based outlier detection is the Simple Nested
Loop (SNL). The SNL (not shown) just computes all Dk(p)
values, which are the distances from each point p to the kth

nearest neighbor. Then, the top-n outliers are selected as
the n points associated with the largest Dk(p) values. This
algorithm’s complexity is quadratic – O(N2). The canonical
form of an optimized variant of the nested loop algorithm is
shown in Algorithm 1. This algorithm is also quite straight-
forward and while it still retains a quadratic worst case com-
plexity it does offer significant potential for optimization as
we shall discuss shortly.

3. OPTIMIZATIONS
Given the canonical algorithm presented in the previous

section, we are now in a position to discuss some of the
key optimizations proposed in the literature. These are de-
scribed next.

3.1 Approximate Nearest Neighbor Search

Algorithm 1 Algorithm 1: Canonical Distance-Based Out-
lier Detection Algorithm

Procedure: Search for Outliers
Inputs: k, number of neighbours considered; n, number of out-
liers to be identified; D, the set of points
Outputs: O, the outlier result set
Let: Nearest(o, S, k) returns k elements from S that are the
nearest to o
Let: Maxdist(o, S) returns the maximum distance between o
and an element in set S
Let: TopOutlier(S, n) returns the top n outliers in S based on
the distance to their kth nearest neighbor.
Begin

1: O ← ∅ {Make the outlier result set empty}
2: Dk

min ← 0 {Reset the pruning threshold}
3: for each object o in D do

4: Neighbours(o) ← ∅ {Make the neighbors’s set from o
empty}

5: Dk(o)← 0 {Reset the k nearest neighbor distance}
6: {Searching for neighbours of object o}
7: for each object v in D, where v 6= o do
8: Neighbours(o) = Nearest(o, Neighbours(o)∪ v, k)
9: Dk(o) = Maxdist(o, Neighbours(o))
10: if |Neighbours(o)| = k and Dk

min > Dk(o) then

11: break {Discard this object as outlier, ANNS rule}
12: end if

13: end for

14: O = TopOutliers(O ∪ o, n)
15: if | O | = n then

16: Dk
min = min(Dk(o) for all o in O)

17: end if

18: end for

End

One of the most important pruning rules in the context of
outlier mining was defined by Ramaswamy et al [22] and is
often refereed to as Approximate Nearest Neighbour Search
– ANNS(Def. 1). ANNS focuses on just the top-n out-
liers, maintaining such a set during the execution of the
algorithm. Let Dk

min be the the shortest distance between
any object in the result set and its kth nearest neighbor (see
Algorithm 1). Assume that for a given point p we are pro-
cessing its distance to its nearest neighbors (Dk(p)). Since
Dk(p) monotonically decreases as we process other neigh-
bors at any point in the calculation, the current value is an
upper-bound on its eventual value. If the current value (up-
per bound) becomes smaller than Dk

min, the point p cannot
be an outlier and can thus be pruned. Approaches that can
quickly identify a set of approximate neighbors for a data
point can thus be used to obtain an upper bound on (Dk(p)).

Formally we may define this as:

Definition 1. We may disregard an object p as a candi-

1471

date outlier if, while computing its Dk(p), Dk(p) < Dk
min.

This optimization is fundamental to almost all recent al-
gorithms proposed in the literature as we note later when
discussing the taxonomy of existing work.

3.2 Pruning
A fundamental strategy used in a myriad of data pro-

cessing and data analytic workloads is to prune the search
space by leveraging appropriate domain insights. In fact, the
ANNS optimization discussed above is indeed also a form
of pruning – the reason we separated it out is because of
its universal appeal in the current domain of interest. We
have observed that several algorithms proposed in the liter-
ature rely on a preprocessing step to cluster or partition the
data space to facilitate such pruning. In these proposals,
the goal is organize the objects into clusters or partitions so
that it is not necessary to perform all distance calculations.
Some approaches applied this strategy based on the inher-
ent indexing data-structures that is omnipresent in modern
database systems, achieving good scalability in the presence
of a large number of objects, but not in terms of the number
of dimensions, being affected by the curse of dimensionality
known to afflict such structures [13, 6, 22]. An alternative is
to simply pre-cluster the data (as noted above) and work in
a similar manner with the resulting clustering arrangement.
In this context we distinguish two clustering-based prune
strategies:

Pruning Partitions during Search for Neighbors:

The PPSN strategy prunes partitions that are far from
an object while searching for neighbors. In [23], the
authors introduce some fundamental pruning metrics
for an R*-Tree while searching for the nearest neigh-
bors. They leverage the concept of MBR (“Minimum
Bounding Rectangle”), which is a spatial structure that
represents the smallest hyper-rectangle that embed all
objects that belong to a given node. They also pro-
pose two pruning thresholds inherent to each node
and based on the MBR. These thresholds are bounds
on the distance between an object and any other ob-
ject that belongs to the cluster. More specifically, let
MINDIST be the shortest distance from all objects
in a partition to an object p, if MINDIST becomes
greater than the current Dk(p), none of the objects in
that partition can be among the k-nearest neighbors
of p. The early identification of partitions that cannot
contain neighbors reduce significantly the number of
neighbors to be evaluated.

This strategy was applied to solve the outlier detection
problem by Ramaswamy et al [22]. In this work they
proposed an algorithm (Index-Based Join) based on
indexes. The idea is to traverse the R*-Tree in a top-
down fashion while searching for neighbors, exploiting
the tree structure for improving the search. The index-
based algorithm they propose explicitly performs the
aforementioned ANNS pruning rule. Also, an addi-
tional pruning rule for entire partitions while search-
ing for neighbors is applied. It allows pruning entire
subtrees that contain irrelevant objects to the kth-NN
search for an object p. It should be noted that as
the algorithm traverses the R*-tree looking for nearest

neighbors, it is affected by the curse of dimensionality,
not being a good choice for datasets containing more
than 10 dimensions.

For datasets with larger dimensionality, a pre-clus-
tering step that clusters the data and then pre-compu-
tes a similar set of minimum bounding rectangles can
be suitably leveraged. The advantage of this approach
is that it avoids the limitations of the index-structure
based approaches while still retaining the advantages
for distance-based outlier detection.

Pruning Partitions during Search for Outliers:

PPSO prunes outlier candidates based on summary
statistics from the underlying clustering or partition-
ing arrangement, while PPSN prunes objects candi-
dates during the search for nearest neighbors. This
strategy prunes all objects from a partition, based on
the knowledge that it cannot contain outliers. Ra-
maswamy et al [22], in his third algorithm, propose a
two-phase partition-based algorithm, which eliminates
whole partitions that do not contain outliers. This
elimination is based on summary statistics generated
in the clustering phase. They argue that, since this
preprocessing step is performed at the granularity of
partitions rather than objects, this strategy eliminates
a significant number of objects as outlier candidates.
The rationale they adopt is to use bounds associated
with the partitions to first estimate Dk

min, which is a
lower bound of the Dk(p)) value for an outlier. The
Dk

min values are then used to prune partitions that
could not contain outliers. Later, another partition
bound is used to prune partitions that may not con-
tain kth-NN for points from a partition P . The re-
sulting partitions are computed using the index-based
algorithms.

It should be noted that the effectiveness of this strat-
egy has an inherent dependency on the quality of the
partitioning or clustering algorithm. Additionally, this
is a strategy that is likely to be more effective when
the number of partitions is quite high (requiring a sig-
nificant penalty in terms of preprocessing costs), since
for large partitions it is unlikely to be terribly effec-
tive. Moreover, as in the previous approach, one can
either apply this strategy based on an index-structure
based decomposition of the data space – limiting its
applicability to high dimensional data or a clustering
based approach which may be more broadly applicable
to higher dimensional problems.

3.3 Ranking
The next set of strategies evaluated in the scope of this

work are ranking strategies, which aim to improve the effi-
ciency of the ANNS pruning rule (Dk

min > Dk(o)). Given
both sides of the inequality of the pruning rule, it is intu-
itive that the performance of ANNS depends on the order
of evaluation of both objects and their neighbors. Based
on this observation, we may distinguish two sub-category of
optimization strategies, which implicitly define when they
are applicable:

Ranking Objects Candidates for Neigbours:

The ROCN strategy ranks the order in which neigh-
bors of a point are processed, and aims to reduce the

1472

current value of Dk(p) faster, enabling one to get a
better upper bound on the true value and thus ensur-
ing that the ANNS pruning rule is triggered earlier
in the computation. Bay and Schwabacher proposed
ORCA [5], an algorithm based on nested loops, ran-
domized ranking and ANNS, defined in their work as
Simple Pruning Rule. That work shows that ORCA
has near linear time performance on many large real
data set. Notice that, in this case, randomization is
just a non-deterministic ranking strategy applied by
the authors. They show that when the objects are
in random order, the algorithm gives near linear time
performance, even though it is quadratic in the worst
case. Moreover, notice that the authors randomized
the neighbor ranking but indirectly also randomized
the outlier candidates (which we shall discuss next).
From their work it is hard to understand the implica-
tions of which of these is more effective. RBRP [10]
also leverages the idea of ranking neighbors based on
a simple projection based approach within partitions.
RBRP also exploits this idea across partitions as we
shall discuss shortly.

Ranking Objects Candidates for Outlier:

Ranking outlier candidates (ROCO) tries to determine
which objects are more likely to be outliers. The ob-
jective here is to focus on the value of Dk

min (increasing
it) so as to trigger the ANNS pruning rule earlier on in
the process. Recently, Wu and Jermaine [27] proposed
a Bayesian method for guessing extreme object values
from a database, and demonstrated its applicability to
distance-based outlier detection by adopting the above
principle. They estimate the kth-NN distance for each
object p. These estimates are then used as a ranking
wherein objects with greater kth-NN distances will be
considered first as candidate outliers. Clearly, when
processed in this ranked order, one would expect to
see a fast increase in the value of Dk

min thereby en-
abling the efficacy of the ANNS pruning rule. The
Bayesian approach is also used together with proba-
bilistic pruning that is performed periodically. It con-
sists of a trained model that is used to estimate the
kth-NN distance while computing additional neighbor
points, whenever this estimate holds with high proba-
bility, it is used to prune the object. The probabilistic
pruning rule they apply is simply an extension of the
ANNS pruning rule to their model. It should be noted
here that this approach does not produce an exactly
identical list of outliers as the other methods given
that it is a probabilistic approach but it is a good ex-
ample of the use of this ranking strategy. A problem
with this approach is that the estimation procedure it-
self may be quite expensive (for the purposes of outlier
detection) – although to be fair we should note that
application context in this paper was not limited to
distance-based outlier detection.

We next discuss how the pre-processing clustering or par-
titioning step may be used for improving the search for
neighbors, supporting a ranking of the objects according to
the distances between partitions. The rationale here is to
exploit the ranking idea in conjunction with partitioning as
follows:

ROCN with Partitions:

RBRP [10] explores how the pruning rule from ANNS
may be enhanced in terms of efficiency as a conse-
quence of faster determination of nearest neighbors at
multiple levels. RBRP is a two-phase algorithm where
the first phase is a partitioning phase that bins the
data space into grid-like partitions. RBRP exploits
ranking of neighbors within a partition by employing a
fastmap [8] style projection of points within a partition
and employs a ranking across partition via the natural
binning process employed in the first phase. This two
level partitioning is used for sorting the search space
for nearest neighbors as follows. The objects are first
compared to other objects in the same partition (using
the projection), and, if it is necessary to evaluate ob-
jects from other partitions, it also ranks the partitions
so that nearer partitions are evaluated first, resulting
in a pruning strategy that is shown to have log-linear
performance on average. We should note that Index
and Partition-based algorithms from Ramaswamy et
al [22] also exploit a simpler strategy (limited to the
partition level – not within a partition).

ROCO with Partitions:

Novel to this paper we present an approach to rank
partitions based on their likelihood of containing out-
liers in the context of distance-based outlier detection.
The synopsis of this approach is as follows. During
the clustering or partitioning step we compute useful
statistical synopses of each cluster and use them to
rank clusters according to their likelihood to contain
outliers. Our strategy exploits the ROCO strategy to
increase Dk

min values faster, and it is expected to im-
prove the overall efficacy of the ANNS pruning rule. To
perform the ranking, we applied a first clustering phase
that generates partitions that is similar to the recur-
sive partitioning phase proposed by RBRP [10]. While
doing so we maintain relevant statistical summaries for
each bin (cluster) such as the number of objects within
a bin, the partition volume and the density of the par-
tition. For example, the second heuristic ranks the
partitions by their spatial size, so that larger parti-
tions are considered first, because they tend to have
low-density regions that may contain outliers. We an-
ticipate that ranking partitions by density will increase
Dk

min values faster and is likely to achieve better per-
formance overall.

4. TAXONOMY OF EXISTING WORK
We are now in a position to present a taxonomy of the key

approaches presented thus far in the literature as they relate
to the kNN definition of outliers. An overview is presented
in Table 2.

As noted already, there are several enhancement tech-
niques that aim to reduce the number of distance calcula-
tions. Many of them have the same fundamental optimiza-
tion idea, but explore different ways to achieve it. Thus,
we divide the algorithms and their strategies into groups, as
shown in Table 2. This division was performed according to
the following criteria:

• Does the algorithm have a clustering preprocessing
phase?

1473

• What is the pruning strategy used?

• Does it rank objects candidates for neighbors?

• Does it rank objects candidates for outliers?

The taxonomy is fairly self explanatory but it is inter-
esting to note that almost all recent algorithms rely on the
ANNS pruning rule. We next discuss the key elements of
our framework.

5. THE DIODE FRAMEWORK
Before we discuss the experimental results, we describe the

framework for DIstance-based Outlier DEtection (DIODE) 1

used to perform the experiments, and the strategies em-
ployed to improve the effectiveness of the pruning process.
The techniques implemented in DIODE focus on partitions
for sake of pruning and ranking objects, and also apply-
ing the ANNS rule. DIODE covers all dimensions from our
taxonomy and supports the evaluation of each dimension in
isolation and also in combination.

The baseline method in DIODE employs a clustering pre-
processing step. Currently, two kinds of clustering algo-
rithms are supported. The first is an RBRP-style recursive
partitioning algorithm and the second is a divisive bisection
k-means algorithm that relies on a fast-map style projection
to identify the initial centroids at each step. Both algorithms
can be thresholded to return partitions of a user-defined size.
For our experiments we ensured that the size of any parti-
tion cannot be more than 16000 points (that is, at any point
in the algorithm, if a partition is larger than this thresh-
old, we sub-partition it further). Both clustering algorithms
scale quite well to large datasets (linear performance) and
produce a reasonable set of partitions. Our framework also
supports the ability to compute important summary statis-
tics about the clusters or partitions (e.g., radius, diameter,
density etc.) similarly to BIRCH [28].

Once the preprocessing has taken place, the meta-level
clusters can be used to effectively support the basic ANNS
pruning rule by first examining nearest neighbors within a
cluster partition and then subsequently looking at neigh-
bors from other partitions. This step is part of our baseline
method. In order to facilitate the factorial design study and
also to enable researchers to leverage this platform, the cur-
rent implementation of the framework also includes various
pruning and ranking strategies that are key for the scala-
bility of the distance-based algorithms, as discussed earlier.
We briefly discuss specifics of how they are implemented
within the DIODE framework.

PPSO : DIODE implementation prunes outlier candidate
partitions in a manner similar to the approach pre-
sented by Ramaswamy et al [22]. We employ the cur-
rent Dkmin, and, whenever we look for an outlier,
we check whether Dkmin is large enough so that it
is not necessary to look for additional outliers in the
partition. Note this is a best effort adaptation of Ra-
maswamy’s original proposal targeted at high dimen-
sional data, since estimators based on distances among
partitions often lose significance here. We note that
this pruning rule is applied on demand only when we

1
http://www.cse.ohio-state.edu/~ srini/SOFTWARE/
http://www.speed.dcc.ufmg.br/Speed/DIODE/

need to analyze the partition objects P . Since Dk
min

is monotonically increasing with the execution of the
algorithm, we may expect that once it is large enough,
a significant number of partitions will be pruned.

PPSN : DIODE also prunes partitions while searching for
neighbors. This pruning aims to identify objects that
do not need to be taken into account as nearest neigh-
bors from an object p. Roussopoulos et al [23] pro-
posed such pruning using MINDIST, an estimation of
the smallest distance between an object p and a par-
tition P . DIODE extends this definition to support
categorical data by adapting the k-prototypes defini-
tion of distances in mixed attribute datasets [12]. It
also uses the Dk(p) to improve the efficiency of the
pruning rule, as follows. Assume that Dk(p) has been
determined for object p by analyzing a subset of the
objects, and, as discussed, its current value is an upper
bound of the actual Dk(p). Hence a partition P may
be discarded while searching for p’s neighbors if the
shortest distance estimated between the object p and
P is greater than the current Dk(p). Note that Dk(p)
decreases monotonically as we apply PPSN.

There are two different ranking approaches for improving
the outlier detection algorithms as we have discussed. Both
ranking strategies may be both employed within a partition
and across partitions. We adapt this strategy for our analy-
sis. Note that both strategies may be combined for a better
performance since they target different aspects of the ANNS
pruning rule. It is important to realize that the ranking
strategies are performed in the beginning of the processing,
i.e., before the pruning rules are applied.

ROCN : We employed the same approach of the RBRP
algorithm, i.e., ranking the search for neighbors in a
partition level using estimated distances among them.
These estimates could be determined by calculating
the distances between the centers (centroids) of the
partitions or even between MBR structures (in the case
of categorical data).

ROCO : For ranking objects that are candidates for out-
liers we adopted a density-based heuristic, which is
based on the intuition that low-density regions (parti-
tions) tend to contain higher-score objects. We define

density as |P |

R(P)
, where |P | is the number of objects in

partition P , and R(P) is the MBR diagonal length of
P .

There are other aspects of our framework that also may
be of interest to the general user such as an effort related
to parallelizing the framework on a cloud system but these
are not germane to the context of this work. The strategies
described in this section form the basis of our full fledged
factorial design study presented next.

6. EXPERIMENTAL RESULTS
In this section, we present a summary of our factorial

design study evaluating the different pruning and ranking
strategies discussed earlier. We begin by briefly describing
the datasets used in our evaluation and the experimental
setup.

1474

Table 2: Summary of distance-based outlier detection strategies

Method Clustering ANNS PPSN PPSO ROCN ROCO Algorithms
1 No No No No No No Nested Loop [22]
2 No Yes No No No No Enhanced Nested Loop with ANNS
3 No Yes No No Yes Noa ORCA [5]
4 No Yes No No No Yes Wu and Jermaine [27]
5 Yes Yes No No Yes No RBRP [10]
6 Yes Yes Yes No Yes No Index-based join algorithm [22]
7 Yes Yes Yes Yes Yes No Partition-based algorithm [22]
8 Yes Yes Yes Yes No No MIRO [26]

9 Yes Yes No No Nob Yes Our new approach presented in this paper
10 Yes Yes No No Yes Yes Our new approach + ROCN partition-based

aThe ORCA algorithm performs ranking outlier candidates collaterally
bOur new algorithm starts the search for neighbors of p in p’s partition

Table 3: Database descriptions

Database # Objects # Attributes
Cont # Cat

Government Auctions 268,170 6 7
KddCup1999 4,898,430 34 8
Forest Covertype 581,012 10 45
Uniform30D 1,000,000 30 0
ClusteredData 500,000 30 0
ClusteredData with noise 500,500 30 0

6.1 Experimental Setup
Datasets: We used various real and synthetic databases.
These databases were chosen for being representative and
diverse in terms of their characteristics or the associated
problems, which arise from different areas. A standard t-test
was used to assess the statistical significance of results across
multiple optimizations unless otherwise noted. A brief sum-
mary of the databases we used is presented in Table 3 and
described below.

• Government Auctions : The database contains records
associated with purchases made by various government
institutions from Brazil. Details on this dataset can be
found elsewhere [21].

• KddCup1999 : This data set contains a set of records
that represent connections to a military computer net-
work where there have been multiple intrusions and
attacks by unauthorized users. The raw binary TCP
data from the network has been processed into features
such as connection duration, protocol type, number of
failed logins, and so forth. This data set was obtained
from the UCI KDD archive [4].

• Forest CoverType : Database with the forest cover type
for 30 x 30 meter cells obtained from US Forest Service
(USFS) on Rocky Mountain Region [4].

• Uniform30D : This is a synthetic database with 30
dimensions where the attribute values were generated
randomly between (0.5, -0.5), resulting in a uniform
distribution.

• ClusteredData : This synthetic database was generated
based on various well-defined uniform and Gaussian

distributions in a multi-dimensional space where all
attributes are in the range (2, -2).

• ClusteredData with noise : It consists of the Clustered-
Data database augmented with a few noisy objects (al-
most 0.1% of objects) that follow a uniform distribu-
tion between (2, -2). The ClusteredData and Clus-
teredData with noise databases contain well-defined
clusters and will be used to evaluate the impact of
noise on the algorithms’ performance.

It is important to note that on all real datasets the nu-
meric attributes were normalized according to a normal dis-
tribution and categorical values were converted to an integer
representation.
Experimental Environment: The experiments were per-
formed on an AMD Athlon 64 3200+ with 2 GB RAM. In
all experiments we looked for the top 30 outliers (n = 30),
using k = 5 as the number of nearest neighbors unless oth-
erwise noted2. We would like to reiterate that in all results
reported here the outliers found by all approaches are iden-
tical. All algorithms were implemented in C.
Factorial Design: As noted earlier, the majority of the ex-
isting approaches rely on the ANNS pruning rule. As a result
this is a part of our baseline approach and also a part of all
factor combinations we evaluate. Additionally, an increas-
ing number of algorithms proposed recently in the literature
rely on a fast clustering (pre-processing) step. This is also a
part of our baseline and all factor combinations we evaluate.
We evaluated the factors present in Table 4 in our experi-
ments. We performed experiments that either enable “+1”
or disable “-1” each of the four factors (strategies) resulting
in a full 24 factorial design experiment. All experimental
configurations for all datasets were averaged over 10 runs
unless otherwise noted.

The factorial design model tries to explain the data as-
sessing the impact for each factor and possible interactions
of factors as defined by Equation 1.

y = Q0 +
X

i∈F

Qi × xi (1)

where F =

{A, B, C, D, AB, AC, AD, BC, BD,

CD, ABC, ABD, ACD, BCD, ABCD}

2The largest partition size was 16000 objects [10].

1475

Table 4: Factors employed on Experimental Design

Factor Description
A ROCO
B ROCN
C PPSO
D PPSN

Table 5: Algorithms evaluated

A B C D Comment
-1 -1 -1 -1 Baseline
-1 -1 -1 +1 PPSN
-1 -1 +1 -1 PPSO
-1 -1 +1 +1 PPSN+PPSO
-1 +1 -1 -1 ROCN
-1 +1 -1 +1 ROCN+PPSN
-1 +1 +1 -1 ROCN+PPSO
-1 +1 +1 +1 ROCN+PPSO+PPSN
+1 -1 -1 -1 ROCO
+1 -1 -1 +1 ROCO+PPSN
+1 -1 +1 -1 ROCO+PPSO
+1 -1 +1 +1 ROCO+PPSN+PPSO
+1 +1 -1 -1 ROCO+ROCN
+1 +1 -1 +1 ROCO+ROCN+PPSN
+1 +1 +1 -1 ROCO+ROCN+PPSO
+1 +1 +1 +1 All Enabled

and xi =

(

−1 if i is disabled;

+1 if i is enabled.

Q0 is the average value from all executions regardless of
the configuration adopted. The column Qi shows the value
of the factors and interactions on execution time. For exam-
ple, if we have the values for Q0, QA, QB and QAB equal to
60, -10, -8 and 3 seconds, respectively, we can see that em-
ploying ROCO (factor A) may reduce the execution time by
20 seconds (10s added to the average when disabled and 10s
reduced when enabled) while employing ROCN may reduce
by 16 seconds. Further, if employing both strategies com-
bined we may reduce execution time by 30 seconds (20+16-6
from example).

Another comparison metric is the Sum of Squares Total
(SST), which shows the total variation of y across all runs.
The column SSi presents the sum of squares due to the fac-
tor i, and it represents the portion of Total Sum of Squares
(SST) that is explained by the factor i. Then, in column
SSi(%), we show the percentage of variation explained by
the factor.

For each experiment, we report the raw execution times
of the outlier detection process for all factor combinations
in Table 6. Statistically significant factors and factor com-
binations are also reported for each dataset we consider in
Table 7.

The results presented next are generated following a 90%
confidence t-test. All results that are not significant in a
90% confidence t-test interval are discarded.

6.2 Results
ClusteredData: In Tables 6 and 7(a) we can see the config-

urations that present significant variation while mining the
clustered dataset. A reasonable null hypothesis here could
be that due to the well-defined clusters that are inherent to
this dataset we expect all optimizations to be very effective
here. Clearly, when viewed from the running time, this is
true (the lowest running time is reported when all factors
are enabled). However it is interesting to observe that, in
particular, PPSO did not provide significant improvements
on this dataset. We can explain this result as follows. First,
there are few opportunities to apply PPSO to this dataset
because it is well clustered and it is difficult to prune entire
partitions. Second, when drilling down into the details of
the experiment, we found that the baseline ANNS pruning
rule is already fairly effective downplaying the effects of this
optimization. On the other hand, the other strategy that
prunes partitions during neighborhood search, PPSN, has
shown to be the most effective strategy. First, PPSN has
ample opportunity to be employed since it is a critical step
during the evaluation of every point in the data. Second,
the fact that this dataset is well behaved (clustered) actu-
ally significantly aids the performance of this pruning strat-
egy as one would expect. One can also observe this from
the fact that this pruning strategy is able to explain more
than 60% of the data variation. Notice that there is a signi-
ficative interaction between factors A and D, which reduces
the effectiveness of ROCO to less than 50% (QA is equal
to -20.95 and QAD is equal to 11.75), meaning that, since
PPSN is being employed, the effectiveness of ROCO reduces
significantly, but it is still relevant for the algorithm. Such
behavior is explained by the fact that ROCO increases Dk

min

fast so that a smaller number of objects search for neighbors
out of the outlier candidate partition. When PPSN is ap-
plied, the high cost associated with searching for neighbors
in other partitions is minimized and reduces the effective-
ness of ROCO. As we observe for ROCO, ROCN also is a
somewhat useful optimization in isolation but since it also
interacts significantly with PPSN the overall benefits when
compared to PPSN is low. The best performing strategy
when viewed from raw execution time is to turn on all the
optimizations, resulting in a speedup of about seven fold
over the baseline.
ClusteredData with Noise: The database ClusteredData
with noise synthesizes the ideal scenario where there are sev-
eral well-defined clusters and few outliers. The results in
this database (Tables 6 and 7(b)) were the only ones where
PPSO provided significant execution time reductions. None
of the strategy interactions are able to eliminate the need
for any of the characteristics and, thus, the best configura-
tion applies all strategies. However once again due to the
repeated applicability of the optimization when searching
for neighbors the PPSN strategy was found to be the most
effective strategy (explaining 35% of the data variance in
isolation) here followed by the ROCO, ROCN and PPSO
strategies. Notice that the average execution time applying
all strategies reduced the execution time from 141 s to 8 s.
CoverType: The evaluations using the database Forest
Covertype (Tables 6 and 7(c)) again show that the most
effective strategy for reducing the execution time was PPSN
(in isolation, the execution time is 232.7s). This dataset also
illustrates an interesting effect of the interactions among var-
ious optimization strategies that is unique to this kind of a
study. For example, ROCN applied in isolation results in an
execution time of 262.31s. ROCO in isolation results in an

1476

Table 6: Running time

Factors Average Time in Datasets (s)

A B C D CDa CD w/noiseb Covertypec KDDCup1999 Auctionsd Uniform30D
-1 -1 -1 -1 182.05 141.65 327.03 1317.15 57.88 2967.11
-1 -1 -1 +1 44.85 33.68 232.7 242.42 51.23 2944.05
-1 -1 +1 -1 171.76 100.41 329.47 1249.95 55.91 2900.83
-1 -1 +1 +1 49.66 26.79 214.71 207.79 51.31 2994.69
-1 +1 -1 -1 132.82 77.71 262.31 1249.49 44.01 1439.62
-1 +1 -1 +1 43.4 21.53 212.33 228.11 38.08 1394.74
-1 +1 +1 -1 134.12 70.71 263.04 1160.42 43.98 1421.29
-1 +1 +1 +1 42.84 14.66 206.13 203.07 42.31 1416.17
+1 -1 -1 -1 91.89 40.6 280.83 748.24 11.89 2933.52
+1 -1 -1 +1 26.15 17.15 183.5 215.32 11.1 2919.02
+1 -1 +1 -1 102.31 37.38 289.01 727.44 10.88 3010.55
+1 -1 +1 +1 29.49 13.11 196.38 179.5 10.4 2947.04
+1 +1 -1 -1 90.21 31.43 233.87 713.77 12.23 1356.74
+1 +1 -1 +1 26.85 11.58 169.76 223.59 9.6 1350.59
+1 +1 +1 -1 74.7 26.3 230.33 676.32 11.37 1395.32
+1 +1 +1 +1 24.65 8.17 183.94 178.4 10.27 1395.79

aClustering Database
bClustering Database with noise
cForest Covertype
dAuctions Government dataset

execution time of 280.83s. However, given that both PPSN
and ROCN target neighborhood search, it is expected that
the two have a higher degree of interaction. This is also what
we observe from the experimental results, and it is confirmed
by the fact that QB is equal to -18.24 and QD is equal to
-38.3, but QBD is equal to 11.35, highlighting the interac-
tion among these two optimization strategies. On the other
hand, while ROCO offers less benefits in isolation, it does
not have a significant interaction with PPSN, thus suggest-
ing that coupling those two optimizations yields a greater
benefit than coupling PPSN and ROCN. It should be noted
that, despite the interactions between ROCN, ROCO, and
PPSN, their use is still relevant for reducing the execution
time of the algorithms. Thus, the best configuration was the
combination of ROCN, ROCO and PPSN, which achieved a
speedup of about 2 over the baseline configuration. PPSO
was found to be ineffective in the context of this dataset.
KddCUP: The KddCup database is quite large, but it con-
tains large clusters of identical objects. As shown in Tables 6
and 7(d) we definitely see that PPSO does not provide sig-
nificant gains. Again the rationale is the same as for the
clustered datasets – there are few opportunities for applying
it and, moreover, the interactions with the ANNS pruning
rule make this strategy relatively ineffective. Surprisingly,
in this dataset we also find that ROCN is not very useful
either (the reduction in running time is about 60s). How-
ever, PPSN provides significant gains in isolation and also
when it is combined with ROCO, although there is a some-
what significant interaction among them when combined. In
order to further analyze these results in more detail, we veri-
fied the number of comparisons performed by the algorithm,
where we observe that PPSN alone is very efficient, since it
reduces the number of comparisons by a factor of 20 (from
2 billion to 100 million), explaining more than 70% of the
data variation. An interesting observation here is that even
though ROCN and PPSO do not help much in isolation,

when combined on top of the benefits realized from ROCO
and PPSN they still yield significant benefits when viewed
from the perspective of overall speedup (going from a 5 fold
speedup to well over 6 fold speedup when all optimizations
are enabled).
Government Auctions: When analyzing the results from
the Auctions Government Database in Tables 6 and 7(e),
we can see that PPSN was not effective. We believe that
it happens because this database has several categorical at-
tributes and our MINDIST definition is not able to estimate
well the minimum distance between a point p and any ob-
ject from a partition. In this database, the ROCO is very
effective and, combined to ANNS, it achieves significative
gains, decreasing running time from 57 to 12 seconds. The
application of the other strategies is not able to improve the
execution time significantly. Notice that, although ROCN
provides gains for this database when applied in isolation,
the interactions between ROCN and ROCO are quite signifi-
cant and affect the algorithm’s efficiency, since QA is -18.56,
QB is -3.05, and QAB is 2.95, that is, even in the cases
where ROCN is significant and are able to improve the exe-
cution time, when applied together with ROCO, it is not as
effective and the execution time gains are very small. The
best average time (9.6 seconds) is associated with the ABD
configuration resulting in a 6 fold speedup over the baseline.
Uniform 30D: For the Uniform30D database (Tables 6
and 7(f)), we found ROCN to be the most effective, pro-
viding a speedup larger than 2, and the average execution
time reduces from 2900 to 1400 seconds. All other strate-
gies did not work very well on this dataset. Note that this is
a worst-case situation for the pruning methods – since the
opportunity to apply pruning will be quite limited in such
datasets. The two ranking methods in conjunction provide
the best overall benefits, realizing a speedup of 2.2 over the
baseline.

1477

Table 7: Factor Values on several Datasets

(a) Clustering Database

Factor SSi SSi (%) Qi

0 1004512.17 79.24
A 70244.51 14.43% -20.95
B 10330.25 2.12% -8.04
D 299262.32 61.48% -43.25
AB 2381.00 0.49% 3.86
AD 22103.82 4.54% 11.75
BD 6727.95 1.38% 6.48
ABD 1785.43 0.37% -3.34

(b) Clustering Database with noise

Factor SSi SSi (%) Qi

0 282955.88 42.05
A 56786.96 21.88% -18.84
B 13818.15 5.32% -9.29
C 3781.77 1.46% -4.86
D 90027.69 34.69% -23.72
AB 4749.95 1.83% 5.45
AC 1334.71 0.51% 2.89
AD 27070.40 10.43% 13.01
BD 3910.69 1.51% 4.94
ABD 2220.27 0.86% -3.73

(c) Forest Covertype

Factor SSi SSi (%) Qi

0 9098036.87 238.46
A 49027.79 10.75% -17.50
B 53256.79 11.68% -18.24
D 237497.69 52.07% -38.53
BD 20621.63 4.52% 11.35

(d) KDDCup1999

Factor SSi SSi (%) Qi

0 56655569.77 595.06
A 3013547.76 9.31% -137.24
D 23751322.26 73.36% -385.29
AD 2567085.61 7.93% 126.67

(e) Auctions Government

Factor SSi SSi (%) Qi

0 139497.65 29.53
A 55123.98 68.40% -18.56
B 1484.46 1.84% -3.05
AB 1389.72 1.72% 2.95

(f) Uniform30D

Factor SSi SSi (%) Qi

0 756337514.69 2174.19
B 96822880.87 98.56% -777.91
AC 25349.34 0.03% 12.59

1478

7. CONSOLIDATION AND RENEWED
BEARING

We were able to show which strategies are more effective
for each type of database and measure their impact in terms
of execution time. It is fairly clear from our factorial design
study results that PPSN is a very important optimization
strategy among the ones we evaluated (note that ANNS was
applied in the baseline). Such result is not that surprising
as it has the most opportunity to be applied (during ev-
ery neighborhood search process for every point evaluated).
From Amdahl’s principle and basic intuition it is what one
would expect. It is worth emphasizing that PPSN originally
proposed by Ramaswamy et al [22] was a part of their com-
petitive strawman and not a part of the best performing
algorithm on the datasets they evaluated on. Perhaps, as a
result of such design decision, it is not always exploited by
contemporary algorithms targeting this problem.

As our experimental results show, in most of the databa-
ses, PPSO has not been effective w.r.t. reducing the exe-
cution time. This result disagrees with Ramaswamy et al’s
findings [22], where the partition-based algorithm, whose
main strategy is PPSO, outperformed both the Nested Loop
and the index-based algorithms. However, we need to re-
call that, while Ramaswamy employed just ANNS to the
Nested-Loop, we employed ANNS in all experimental con-
figurations. In general, we were also able to apply ANNS
reducing the effectiveness of the former whenever PPSO is
employed. We believe that this may help partially explain
the differences between our and Ramaswamy’s results. We
should also note that most of our results are on datasets
with much larger dimensionality than those considered by
Ramaswamy et al.

Another conclusion we reached is that the strategies em-
ployed in isolation are often not a good predictor of how
they will behave in conjunction due to interaction effects.
In most of the datasets, for example, we observed that the
interaction between the strategies ROCN and PPSN was
often positive thus limiting the overall effectiveness of com-
bining them.

Finally, it is remarkable the fact that no strategy has
shown to be effective for all databases. In the Auctions Gov-
ernment database we showed that the combination of ROCO
and ANNS is able to achieve one of the best execution times.
Another interesting case is that almost no strategy is able to
reduce the execution time for Uniform30D database, what
was expected since most of the strategies assume that there
are well defined outliers. In this database, just ROCN +
ANNS was able to be effective, being able to reduce the exe-
cution time by more than 50% (from 2900 to 1400 seconds).
For the other datasets PPSN was the dominant optimiza-
tion often in conjunction with one of the others. That said,
we did observe significant improvements when we employed
ROCN, PPSN and ROCO in conjunction with one another
as can be seen from the summary table reporting all exe-
cution times. Factors ABD or ABCD are always the top
performing approach in terms of overall speedup.

Moving forward, we do believe that there is scope for fur-
ther analysis and further optimizations. In this work we did
not consider the preprocessing time or the interactions be-
tween the partitioning and clustering algorithm and the op-
timizations and factors we considered. We believe that this
is an important limitation of the current study but found

that it is hard to handle all the parameters involved (which
clustering algorithm, how many partitions etc.) as each of
them can play a role in understanding the pros and cons of
various factors.

In terms of optimizations, we believe that many steps
discussed in this process can be further enhanced to yield
greater performance benefits. One promising direction, in
our opinion, is the use of Locality Sensitive Hashing [1] as a
unified method to aid in both pruning and ranking strategies
we discussed. It has also been shown to be useful for approx-
imate nearest neighbor search algorithms which is a funda-
mental part of the canonical distance-based algorithms. We
believe that this is a promising direction of further study
and well worth pursuing. More generally faster methods to
preprocess the data, faster methods to approximate the ap-
propriate bounds of the two sides of the ANNS pruning rule
are also worth pursuing.

8. CONCLUSIONS
In this work, we considered the domain of distance-based

outlier detection, have exploited the design space of such
algorithms, and identified a region in the design space that
has been relatively unexplored.

We presented new strategies for ranking outliers and pro-
cessing them in order of their approximate ranks and per-
formed experimental results supporting that these ranking
strategies could improve existing algorithms. Furthermore,
as part of our quest to understand how various optimiza-
tions interact with one another, we conducted a full factorial
design experiment implemented on the DIODE framework.
From this experimental study we were able to draw several
interesting conclusions. First, our proposed optimization is
extremely useful for a range of datasets. Second, no sin-
gle combination of various proposals (including our own)
is always optimal. The specific combination that is opti-
mal varies greatly by dataset characteristics but we did find
that three of the optimization strategies proposed in the lit-
erature, when used in conjunction, typically provides good
speedup.

We consolidate our results and provided some general di-
rections for future study. We are currently performing a
case study and identifying outliers in an Government Auc-
tion database, where these outliers may be associated with
illegal transactions, fraud or even an incorrect information.
We planned to investigate and propose much better ROC
strategies since there is still room for enhancements and they
may be achieved with simple strategies. Also, we are in the
process of developing an adaptive parallel algorithm that ex-
ecutes local search for neighbors for a selected pool by rank-
ing strategies before examining the data for outliers. We
believe that this strategy may not need a specified thresh-
old by the user and may prune out current overhead, thereby
achieving linear speedup.

9. ACKNOWLEDGEMENTS
Meira, Teixeira and Orair would like to ackhnowledge

grants from CNPq, CAPES, FINEP, FAPEMIG, and IN-
Web. Orair is partially supported by Econoinfo. Aspects
of this work were completed while Teixeira was a visiting
scholar at the Ohio State University. Parthasarathy and
Wang would like to acknowledge the following grants for
partially supporting this work: NSF-CNS-0403342, NSF-

1479

CCF-0702587, NSF-IIS-0917070 and DOD-GRT00017398 (a
subcontract from RNET Technologies).

10. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing

algorithms for approximate nearest neighbor in high
dimensions. Communications of the ACM,
51(1):117–122, 2008.

[2] F. Angiulli and F. Fassetti. Very efficient mining of
distance-based outliers. In M. J. Silva, A. H. F.
Laender, R. A. Baeza-Yates, D. L. McGuinness,
B. Olstad, Ø. H. Olsen, and A. O. Falcão, editors,
CIKM, pages 791–800. ACM, 2007.

[3] F. Angiulli and C. Pizzuti. Fast outlier detection in
high dimensional spaces. In PKDD ’02: Proc. of the
6th European Conf. on Principles of Data Mining and
Knowledge Discovery, pages 15–26, London, UK, 2002.
Springer-Verlag.

[4] S. D. Bay, D. Kibler, M. J. Pazzani, and P. Smyth.
The uci kdd archive of large data sets for data mining
research and experimentation. SIGKDD Explor.
Newsl., 2(2):81–85, 2000.

[5] S. D. Bay and M. Schwabacher. Mining distance-based
outliers in near linear time with randomization and a
simple pruning rule. In 9th ACM SIGKDD Int. Conf.
on Knowledge Discovery on Data Mining, 2003.

[6] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and
J. Sander. Lof: Identifying density-based local
outliers. In W. Chen, J. F. Naughton, and P. A.
Bernstein, editors, Proc. of the 2000 ACM SIGMOD
Int. Conf. on Management of Data, May 16-18, 2000,
Dallas, Texas, USA, pages 93–104. ACM, 2000.

[7] M. Ester, J. Kriegel, H. P.and Sander, and X. Xu. A
density-based algorithm for discovering clusters in
large spatial fatabases with noise. In In Proc. 2nd Int.
Conf. on Knowledge Discovery and Data Mining.
AAAI Press, 1996.

[8] C. Faloutsos and K. Lin. FastMap: A fast algorithm
for indexing, data-mining and visualization of
traditional and multimedia datasets. In Proceedings of
the 1995 ACM SIGMOD international conference on
Management of data, pages 163–174. ACM New York,
NY, USA, 1995.

[9] A. Ghoting, S. Parthasarathy, and M. E. Otey. Fast
mining of distance-based outliers in high-dimensional
datasets. 6th SIAM Int. Conf. on Data Mining, April
2005.

[10] A. Ghoting, S. Parthasarathy, and M. E. Otey. Fast
mining of distance-based outliers in high-dimensional
datasets. Data Min. Knowl. Discov., 16(3):349–364,
2008.

[11] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient
clustering algorithm for large databases. In SIGMOD
’98: ACM SIGMOD Int. Conf. on Management of
data, pages 73–84, New York, NY, USA, 1998. ACM.

[12] Z. Huang. Extensions to the k-means algorithm for
clustering large data sets with categorical values. Data
Min. Knowl. Discov., 2(3):283–304, 1998.

[13] E. M. Knorr and R. T. Ng. Finding intensional
knowledge of distance-based outliers. In VLDB ’99:
25th Int. Conf. on Very Large Data Bases, pages
211–222, San Francisco, CA, USA, 1999. Morgan

Kaufmann Publishers Inc.

[14] H. Kriegel, P. Kroger, and A. Zimek. Outlier
Detection Techniques. In Tutorial at the 13th
Pacific-Asia Conference on Knowledge Discovery and
Data Mining, 2009.

[15] J. Laurikkala, M. Juhola, and E. Kentala. Informal
identification of outliers in medical data. In The Fifth
International Workshop on Intelligent Data Analysis
in Medicine and Pharmacology. Citeseer, 2000.

[16] M. Mahoney and P. Chan. Learning nonstationary
models of normal network traffic for detecting novel
attacks. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 376–385. ACM New York, NY,
USA, 2002.

[17] M. Mahoney and P. Chan. Learning rules for anomaly
detection of hostile network traffic. In Proceedings of
the Third IEEE International Conference on Data
Mining, page 601. Citeseer, 2003.

[18] R. T. Ng and J. Han. Efficient and effective clustering
methods for spatial data mining. In 20th Int. Conf. on
Very Large Data Bases, 1994, Santiago, Chile, pages
144–155. Morgan Kaufmann Publishers, 1994.

[19] K. Ord. Outliers in statistical data : V. barnett and t.
lewis, 1994, 3rd edition, (john wiley & sons,
chichester), isbn 0-471-93094. Int. Journal of
Forecasting, 12(1):175–176, March 1996.

[20] S. Papadimitriou, H. Kitagawa, P. Gibbons, and
C. Faloutsos. LOCI: Fast outlier detection using the
local correlation integral. In 19th International
Conference on Data Engineering, 2003. Proceedings,
pages 315–326, 2003.

[21] Projeto Tamandua, 2006.
http://tamandua.speed.dcc.ufmg.br/.

[22] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient
algorithms for mining outliers from large data sets. In
SIGMOD ’00: Proc. ACM SIGMOD Int. Conf. on
Management of data, pages 427–438, New York, NY,
USA, 2000. ACM Press.

[23] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In SIGMOD ’95: ACM SIGMOD
Int. Conf. on Management of data, pages 71–79, New
York, NY, USA, 1995. ACM.

[24] P. Torr and D. Murray. Outlier detection and motion
segmentation. Sensor Fusion VI, 2059:432–443, 1993.

[25] J. Tukey. Exploratory data analysis. Addison-Wesley,
1977.

[26] N. Vu and V. Gopalkrishnan. Efficient Pruning
Schemes for Distance-Based Outlier Detection. In
Proceedings of the European Conference on Machine
Learning and Knowledge Discovery in Databases: Part
II, page 175. Springer, 2009.

[27] M. Wu and C. Jermaine. A bayesian method for
guessing the extreme values in a data set? In VLDB
’07: Proceedings of the 33rd international conference
on Very large data bases, pages 471–482. VLDB
Endowment, 2007.

[28] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an
efficient data clustering method for very large
databases. SIGMOD Rec., 25(2):103–114, 1996.

1480

