
Adaptive Logging for Mobile Device
Young-Seok Kim, Heegyu Jin, Kyoung-Gu Woo

Samsung Advanced Institute of Technology (SAIT), Samsung Electronics. Co., Ltd.
San #14-1 Nongseo-dong Giheung-gu Yongin-si Gyeonggi-do 446-712, Korea

{ys24.kim, heegyu.jin, kg.woo}@samsung.com

ABSTRACT

Nowadays, due to the increased user requirements of the fast and

reliable data management operation for mobile applications, major

device vendors use embedded DBMS for their mobile devices

such as MP3 players, mobile phones, digital cameras and PDAs.

However, database logging is the major bottleneck against the fast

response time. There has been a lot of work minimizing logging

overhead but no single recovery method provides the best

performance to a variety of database workloads. In this paper, we

present a novel recovery method called adaptive logging which

can switch the logging method from ARIES to shadow paging

adaptively at a page level according to the update state of each

page on run time. Also, we propose a log compaction method

called deferred logging which removes redundant logs by

deferring to create log records until the updated data page is

flushed or until the transaction commits. Deferred logging is

coupled with adaptive logging seamlessly so that it boosts the

performance of adaptive logging by reducing the typical overhead

of hybrid methods. We have implemented the proposed

approaches to our embedded DBMS which was deployed to more

than 10 million mobile devices and evaluated them through a real

world application on a mobile device. The result shows that our

approaches can reduce logging overhead significantly and

consequently can improve the response time of both small update

transaction and large update transaction effectively.

1. INTRODUCTION
Recently, major device vendors such as Nokia, Samsung, Apple

and LG, use embedded DBMSs for their mobile devices such as

MP3 players, mobile phones, digital cameras, and PDAs [1, 2, 3,

4] since the devices should provide fast and reliable data

management operation to applications such as phone book, music

browser, and photo browser. On music browser, for example, a

user may request to list a bunch of songs sorted by title of which

artists are “Beatles” and album names are “Hey Jude”. Also he(or

she) may insert and delete 1 to 10 song(s) or even all songs at a

time to replace old songs with new songs. These are very typical

use cases which require fast and rich browsing interface and

reliable contents manipulation method.

We developed an embedded DBMS which has been deployed to

more than 10 million mobile devices. Logging, however, was the

main bottleneck against the fast response time of update

transactions, especially for large update transactions since a large

amount of log should be flushed to stable storage during commit.

In server-side database, a separate log-writer daemon may solve

this problem by flushing the large amount of log periodically.

This approach, however, is not appealing in embedded DBMSs

since they are typically simple libraries and tightly bound with

application processes, which make it hard to run independent log-

writer daemons. Although we can make a separate log-writer

daemon in some cases and it can deal with the problem, the large

amount of log writes itself is still a burden to flash memory

storages of mobile devices because of wear-out issue and

expensive block erase operation of the flash memory [5].

Meanwhile, Cabrera et al. [6] showed that no single recovery

method provides the best performance to all transaction types. To

minimize logging overhead, they proposed to choose an

appropriate recovery method according to the property of each

transaction‟s workload. For example, ARIES [8] is applied for

small update transactions and shadow paging [7] is used for large

update transactions, especially for updating large objects.

However, this hybrid approach is static since it can‟t change the

pre-assigned recovery method dynamically on run time even if a

transaction doesn‟t show the expected workload. This static

hybrid approach is applicable only to a situation where all the

properties of a transaction are known before the transaction starts.

In case the properties can‟t be predefined, which is more general

situation, this approach is not effective.

In this paper, we propose a novel recovery method called adaptive

logging which focuses on reducing the update log size in a way

that different logging methods1 are applied dynamically on run

time at a page level switching from ARIES to shadow paging

according to the update state of for each page. To the best of our

knowledge, no work has dealt with switching recovery method

dynamically on run time according to the transaction‟s update

state. Our dynamic hybrid approach overcomes the limitation of

both ARIES and shadow paging and consequently accomplishes

the fast response time for large update transaction as well as small

update transaction. With respect to concurrency control, the

inherent property of shadow paging limits the lock granularity at

most to the page level, but multi-granularity locking of page- and

tuple-level can be used according to the current logging method of

each page in the adaptive scheme. In other words, when the

logging method of the page is switched to shadow paging, the

lock granularity for the page will be escalated from tuple-level to

page-level.

1 Of course, shadow paging is not log-based recovery method, but

we will use the term „logging method‟ which also includes

shadow paging in this paper

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage

and that copies bear this notice and the full citation on the first

page. To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

Articles from this volume were presented at The 36th International

Conference on Very Large Data Bases, September 13-17, 2010,

Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2

© 2010 VLDB Endowment 2150-8097/10/09... $10.00

1481

Along with adaptive logging, we present a log compaction method

called deferred logging which can reduce the log size further. It is

a variant of techniques such as log folding [10] and semantic

compaction [11]. The differences will be explained on Section 6.

Deferred logging postpones creating the ARIES-style log record

[8] (hereafter simply referred to as log record) until the

corresponding data page is flushed or the transaction commits.

Instead, when a data page is updated, it creates and manages log

information called log entry in a memory space separated from the

log buffer. If the data page is flushed or the transaction commits,

all log entries from the page or all log entries caused by the

transaction are converted to log records, respectively. As a result

of the deferring, deferred logging has a chance to compact log

entries which are created from the adjacent or overlapped area

within a same page. Deferred logging can be coupled with

adaptive logging seamlessly and furthermore removes the

overhead of writing useless log records in adaptive logging.

The contributions of this work are summarized as follows.

- A novel recovery method called adaptive logging is proposed

for the first time to overcome the limitations of static logging

method such as ARIES and shadow paging.

- A log compaction method called deferred logging is proposed

not only to reduce log size but also to remove the overhead of

writing useless log records in adaptive logging. We do not claim

that deferred logging is a very new idea but do show that it is

important feature of improving performance of adaptive logging

further.

- We implement our approaches and evaluate them through a

real world application on a mobile device, which demonstrates

that adaptive logging with deferred logging can reduce logging

overhead significantly and consequently can improve the

response time of both small update transaction and large update

transaction effectively.

The rest of this paper is organized as follows. Section 2 clarifies

the problem that we handle. Section 3 explains static approaches

which are the basic building blocks for understanding the adaptive

approach. Section 4 presents the basic concepts and the design of

adaptive logging with a simple example. Section 5 explains the

rationale of deferred logging and Section 6 surveys the related

work. In Section 7, we demonstrate the performance advantage of

adaptive logging and deferred logging through a real world

application on a mobile device comparing against the static

logging approaches. Section 8 summarizes the contributions of

this paper with future work.

2. PROBLEM
User requests to the real world application on a mobile device

cause large updates as well as small updates to the database as

following cases.

- Case 1: If a user copies 1,000 new songs from his (or her)

personal computer to a micro SD card and the card is inserted

into the user‟s mobile phone, then the phone‟s music browser

application will extract metadata such as genre, artist, album,

title, file path, etc from the songs and reflect each metadata into

the corresponding music database, which causes bulk updates

to the database. Also, the opposite case such as removing 1,000

songs or even more songs from the songs stored at the micro

SD card causes bulk updates to the database.

- Case 2: If a user deletes all songs belonging to a specific

album, a specific artist, or a specific folder from the micro SD

card through the music browser application on his(or her)

mobile phone, then small or large updates may happen to the

database depending on how many songs meet the condition.

Case 1 shows the situation that file operation is executed in the

personal computer and metadata update to the database is

conducted in the mobile device after the micro SD card is inserted

into the mobile device. Case 2 shows the situation that both file

operation and metadata update to the database are executed in the

mobile device. The update transaction from the above situations

can modify many pages taking a lot of time or can modify just a

few pages. But the user always wants his(or her) device to

respond as quickly as possible. One interesting thing worth to be

noted is that the response time of the transaction varies a lot

according to its recovery method.

We have implemented two recovery methods, ARIES and shadow

paging, to our embedded DBMS. When ran with many real

queries of MP3 player device, ARIES clearly outperformed

shadow paging in small update transactions while shadow paging

was the winner in large update transactions as in Figure 1.2

To analyze the reasons behind this interesting phenomenon, we

define two update patterns called A-pattern (ARIES-favorable

update pattern) and S-pattern (Shadow-paging-favorable update

pattern). Because page3 is used as the basic unit of recovery, we

examine logging behaviors of recovery method in page level first.

We then clarify the problem that we address.

As shown in Figure 2(a), A-pattern updates a small area of a data

page in a transaction, which generates a small amount of log that

is less than the data page size. If a data page is updated by an A-

pattern update operation, it benefits from no-force policy of

ARIES since ARIES writes only log records without flushing the

data page to disk on commit time. When a transaction is

composed of mostly A-pattern update operations, we call such a

transaction as small update transaction. Small update transaction

is usually found in traditional OLTP applications [14].

2 In Figure 1, „small update transaction‟ consists of 1,000

transactions of inserting single record and „large update

transaction‟ represents single transaction which updates 10% of

records in a database.

3 There is traditional assumption of that the disk page is the basic

unit of recovery although variations such as minipage and

segment exist.

1
1.72

4.78

1

0

1

2

3

4

5

6

small update transaction large update transaction

aries

shadow

Normalized Elapsed Time

Figure 1. ARIES vs. Shadow Paging

1482

As shown in Figure 2(b), S-pattern updates a large area of a data

page or repeatedly updates the same area of a data page in a

transaction, which causes a large amount of log that is larger than

the data page size itself. If the update pattern of the transaction is

S-pattern, it can‟t leverage the no-force policy because the log

size is larger than the data page size. In this situation, shadow

paging is better since it doesn‟t make any log record and its force

policy needs less pages to be written: updated data pages are less

than log pages by ARIES. We call this type of transaction as large

update transaction. Updating large objects is one typical example

of the large update transaction, and shadow paging was shown to

be more appropriate for it [6].

A transaction, however, doesn‟t always fall into one of the two

transaction types. Rather, as a transaction may have data pages

modified as A-pattern and S-pattern together, mixed update

transaction is very common. Prior to presenting examples of a

mixed update transaction, we describe a typical page layout [16]

of the table and the index in order to make it easy to understand

how update operation is executed at the page in the perspective of

logging. Figure 3(a) shows the common page layout of the table

and the index which can handle variable length records and keys,

respectively.

If the page layout is used for a table, the object in the figure

represents a record. When a new record is inserted into a page, 1)

the record image is copied at the offset of the page pointed by the

FreeOffset value, 2) the offset is appended to the leftmost slot of

Object Directory, 3) ObjectCount value is increased by 1, and 4)

FreeOffset value is set to the offset where the record image ends.

If physical logging [15] is used, each step will generate the

corresponding log record since each physical log record should

maintain pre- and post-update image of each update area. On the

contrary, if physiological logging [15] is used, generating only

one compact log record may be enough since it can manage in the

log record all the information necessary for redo/undo operation

within the page. For example, a physiological log record for

inserting a record into a page maintains information such as

transaction id, operation type, page id, record image, image size,

etc (without preserving both the pre- and post-update image).

Then for redo, the above 4 steps are replayed starting with

copying the record image and for undo, a compensation operation

such as a record deletion is executed based on the log record.

Meanwhile, when a record is deleted, 1) the corresponding offset

in Object Directory is removed and the rest of offsets are

compacted to handle the slot fragmentation, 2) ObjectCount value

is decreased by 1. By the way, records themselves may or may not

be compacted depending on the implementation. If they are

compacted and physical logging is used, a large amount of log can

be generated depending on the deleted record location. However,

physiological logging is free from the logging overhead of the

compaction since the compaction can be logically executed

without storing the pre- and post-update image of the compacted

area. Although physiological logging has less log size than

physical logging, in order to apply physiological logging to every

update operation of the database, it is necessary to design all the

corresponding logical redo/undo operation at a page level very

carefully. In this perspective, physiological logging is not as

simple as physical logging.

When the page layout is used for an index, the object in Figure

3(a) represents a key. For the simplicity of explanation, we

omitted information on the page such as sibling node pointer,

child node pointer, node type, etc. Inserting/deleting a key is

executed just as the record operation is done except for following

operations. 1) Offsets in Object Directory are sorted according to

the key order instead of sorting key images. 2) For duplicated

keys, the key image itself is stored only once and the

corresponding record IDs (RID) are managed in an array on the

leaf node. As the number of the duplicated keys is getting

increased and exceeds the capacity of the reserved key space, the

overflowed RIDs are managed separately on a special node called

extent node. The RIDs both on a leaf node and an extent node are

managed in a sorted order for efficient retrieval such as binary

search. As shown in Figure 3(b), key A1 has 11 duplicated keys

so that 4 RIDs of them are managed on a leaf node and the other 7

RIDs are managed on an extent node. When the record is deleted

on the extent node, the rest of RIDs are compacted to avoid

fragmentation. This compaction also causes a large amount of log

in physical logging.

(b) S-pattern

Data Page

Update Requests

(a) A-pattern

Data Page

Update Requests

Figure 2. Two Update Patterns

. . .

Object Object Object

Object ObjectDeleted Object

Object Deleted Object

FreeOffsetObjectCount

Object Directory in a Page

Offset PageLSN

Pointer to start of free space

Pointer to start of object

OffsetOffsetOffset

A3A3 A5A5 A8A8

:22 ext:17:13:3A1 :22 ext:17:13:3A1 :23:21 :41A2 :23:21 :41A2

:87:55:47 :122:45:28:24 :87:55:47 :122:45:28:24

:16 ext:15:11:10A3 :16 ext:15:11:10A3 :41:11:2:1A4 :42:11:2:1A4

:60 :64 :65:59:58:34:32 :70:30:28:24 :60 :64 :65:59:58:34:32 :70:30:28:24

:123:120 :121:76:75:74 :124:73:72:71 :123:120 :121:76:75:74 :124:73:72:71
extent node

leaf node

…

internal node

(a) Common page layout of table and index

(b) Page layout of index for duplicated key

Figure 3. Page Layout

1483

These update aspects in the page level show that even though

physiological logging may generate more compact log record than

physical logging, still S-pattern as well as A-pattern can happen to

both methods depending on the workload of the transaction.

Now, we go back to the mixed update transaction and provide the

example. Let‟s assume that there is a music table composed of ID,

Artist, Album, Preference, ThisMonthPlayCount,

LastMonthPlayCount, etc, where Artist and Preference has index,

respectively. Here are two queries from a music browser which

automatically updates user‟s preference according to the monthly

play count of the songs; “update music set preference = preference

+ 1 where ThisMonthPlayCount >= LastMonthPlayCount + 10”,

and “update music set Preference = Preference - 1 where

ThisMonthPlayCount < LastMonthPlayCount - 10”. If we

consider the page layout of the table and the index as shown in

Figure 3, the above queries have a tendency to generate A-pattern

on the table pages and S-pattern on the index pages of the

preference field as the record size is getting larger than the field

size relatively and the selectivity of the query is getting increased.

Unlike the above example, if the update field is the same field

with the predicate field, for example, “update table set x=x+1

where x>10”, the tendency will be much more apparent since the

qualified keys obviously will exist on the same data page of the

index and therefore the index page will show more S-pattern

updates.

Although an update transaction shows much different response

times as different recovery methods are used (as in Figure 1), it is

very hard to tell the optimal recovery method for each transaction

in advance. A transaction can consist of both A-pattern updates

and S-pattern updates together preventing one single recovery

method from showing the best response time. Furthermore, even

though the update pattern for each page is known to in advance,

different transactions may show different update patterns in the

same page. These aspects mean that neither static single recovery

mechanism nor static hybrid recovery mechanism (in the manner

of Cabrera et al.) is an appropriate solution. This is why we have

devised a novel logging method, adaptive logging.

3. STATIC CHOICE
Prior to presenting the rationale of adaptive logging in Section 4,

we describe the static approach such as ARIES and shadow

paging in this section, which is the basic building block of our

implementation details to make it easy to understand how ARIES

and shadow paging works adaptively even at the same page in a

transaction. Our DBMS is able to guarantee atomic operation of

transactions by providing out-of-place update approach or in-

place update approach, which is represented by shadow paging

and ARIES, respectively and selects the option on library build

time. When shadow paging is used, page-level locking is the

finest granularity (Coarser levels such a table-level locking also

can be used).

To implement out-of-place update approach, just as the original

shadow paging scheme [7] does, we manage a data structure

called page table for valid page mapping. Let‟s call the slot

number of the page table logical page number and the value in the

slot physical page number. We maintain two bitmaps called free

physical page map and free logical page map to manage free

physical pages and free logical pages, respectively. For example,

when a new data page is required for B+-tree, a new physical page

number is assigned from the free physical page map and a new

logical page number is assigned from the free logical page map.

Then we find the page table slot corresponding to the logical page

number and set the new physical page number to the slot. Unlike

shadow paging, atomic updates to the free page maps and the page

table are guaranteed by ARIES approach. It means that pre- and

post-update image of the bitmaps and the page table are preserved

by log records. Then the log records are flushed to disk during

commit. After the new page is allocated, updates to the new page

are reflected in the new page without making another copy of the

page in the transaction since there is no pre-update image in the

new page. On the contrary, the first update to an existing data

page (except for the free page maps and the page table) in a

transaction makes a copy of the page at a different physical page.

Then updates are reflected to the copied page. By the way, it is

necessary to distinguish whether the data page has already been

updated or not in the transaction boundary to decide whether the

current update to the page has to make a new copy of it or not. To

check the occurrence of an update to a specific data page, we

maintain a bitmap called update occurrence map in main memory.

The bitmap has the number of bits which is identical with the

number of slots in the page table. If the system crashes, the update

occurrence map is useless in the perspective of the recovery

process.

With respect to in-place-update approach, we follow WAL (Write

Ahead Log) protocol and steal/no-force policy just as ARIES does.

Different from the original ARIES scheme [8], we use force

policy to newly allocated data pages [13] since updates to the new

page do not create log records in our scheme. (Deallocated pages

are not reused until the transaction commits. This is also valid for

adaptive logging.) Subsequently, the new page doesn‟t have log-

sequence number (LSN) on it, i.e. page LSN, which may cause

problem in recovery process. During the recovery, redo and undo

operation must be idempotent, i.e. executing operation an

arbitrary number of times is equivalent to doing it once [15]. The

property is guaranteed by LSN for redo and compensation log

record (CLR) for undo in ARIES scheme [8]. Page LSN plays a

role of an order indicator such as timestamp at the data page so

that by indicating to which effect of the update is applied to the

page, more than one execution of the redo operation is not

allowed. Therefore the idempotent operation is guaranteed. To

handle the problem, that is, the lack of page LSN on the newly

allocated data page, we have assigned a LSN to the new page

when it is flushed to the stable storage. The LSN is the last LSN

which has been issued for the moment of the data page being

flushed. It is guaranteed that the last LSN is less than LSNs of

upcoming updates to the page. Therefore recovery mechanism can

work correctly since it can decide the order between updates to

the new page and the upcoming updates to the page after the page

is flushed.

4. ADAPTIVE LOGGING
Adaptive logging works based on ARIES as well as shadow

paging adaptively according to the update state of each data page,

which overcomes the limitations of the conventional static logging

approach. To make ARIES and shadow paging works adaptively,

we have harmonized the behavior of ARIES and shadow paging

based on what we have explained in Section 3. Firstly, every data

page is accessed indirectly through the page table even in ARIES

1484

scheme, which means that every access to data pages takes a step

of converting the logical page number to physical page number

through the page table. Every first update to a data page in

shadow paging mode changes the value of the corresponding slot

of the page table since the update creates the copy of the page into

the newly allocated physical page. On the contrary, the update in

ARIES mode doesn‟t change the value of them since it still

follows the in-place-update scheme by creating log records

instead of copying the page. Secondly, a log record created by an

update in ARIES mode contains a physical page number of the

data page instead of a logical page number of it. It means that the

data page contained at log record is accessed directly without

taking the converting step through the page table during recovery

or abort. These two treatments with the description in Section 3

about our variants of ARIES and shadow paging are the core

building block for understanding the adaptive logging. More

detail description with an example will be continued on Section

4.2 through Section 4.6 after presenting the basic concept of

adaptive logging.

4.1 Overview
ARIES is applied as a default recovery mechanism. When a

transaction starts and updates are occurred, the corresponding log

records are generated in ARIES way. Each data page manages the

update state by counting the total size of log records generated

from the page. If the size exceeds a predefined threshold value,

the logging mechanism of the page is switched to shadow paging.

(However, if the page lock of the page can not be acquired due to

the other transaction‟s operations, the logging mechanism will

stay with ARIES.) When the switch occurs, a new copy of the

page is created in the buffer (selectively) as well as in the disk.

Then every following update to the page is reflected into the new

copy of it without generating log records until the transaction

commits. Updates of the same transaction to other data pages of

which the threshold is not exceeded still generate log records.

When the transaction commits, all new copies of the data pages

from the transaction as well as log records are flushed to stable

storage. If the next transaction starts, the logging method for

updates to every data page is ARIES again. Shadow paging is

only applied adaptively to the page of which total size of log

records exceeds the threshold value. Abort and recovery are

processed by following ARIES scheme. As we have explained in

Section 3, the page table and the free page maps are aborted and

recovered in the log-based approach. Subsequently, the effect of

redo and undo to the pages created by shadow paging method will

be reflected through the page table and the free page maps.

4.2 Normal Processing
Consider the simple example illustrated in Figure 4. Initial state is

that logical page 5 (L5) of which physical page number is 2 (P2)

(6th slot of the page table in the figure indicates the mapping) is

loaded on the first buffer page of the buffer pool and physical

pages 0, 1, 2 are already allocated (1st, 2nd and 3rd slots of the free

physical page map in the figure show the allocations). Then

transaction Trans1 changes the value of area A1, A2, and S1~S5

on the page L5 and then commits. Transaction Trans2 then

updates the value of area A3 and A4 on the page L5 too. Let‟s

assume that logging method switches at the moment between

update A2 and update S1 because the total size of the log records

on the page exceeds the threshold value. (Character „A‟ stands for

an update in ARIES mode and character „S‟ stands for an update

in shadow paging mode.) Now, we present the detailed behaviors

for each step of the above example. When Trans1 updates area A1

and A2, the corresponding log records are created just as ARIES

does except for the indirect page accesses through the page table.

At the same time, the total size of log records on the page

increased. By the way, the log size of the page is maintained in a

transaction boundary during the page stays on the buffer pool.

This means two things. First, if the transaction commits, the log

size of the page on the buffer pool is reset to zero. Second, if the

page is evicted by the buffer replacement, the log size is reset to

zero. Therefore, the smaller buffer size, the less chance of

switching logging method. Trans1 then requests to update area S1.

At this moment, the page L5 recognizes that the log size of the

page exceeds the threshold value. This brings up the switch of

logging method from ARIES to shadow paging.

Update Free Physical Page Map

1

Time Line

Update A1, A2 (Trans1, L5, P2)

Create Buffer Copy

Update Page Table

2

3

4

Update S1~S5 (Trans1, L5, P3)5

Commit6

Update A3, A4 (Trans2, L5, P3)7

…

Page Table

26 8 34 19 2 17 4

3

UPDATE

…

Free Physical Page Map

0 0 0 1 1 11 1

0

UPDATE
A2

[L5, P2]

A1

A2

A1

S2

[L5, P3]

S1

S3 S4

S5

COPY

FLUSH

A3A4

Log on Storage

A1 A2 A3 A4… CommitF.P. P.T.

Buffer Pool

Data on Storage

A2

A1

S2

S1

S3 S4

S5

 Figure 4. Adaptive Logging Example

1485

The switch action is accomplished by the following 3 steps. 1)

New physical page is allocated, which generates a log record

(„F.P.‟ stands for the log record from the free physical page map).

2) The page table is updated to reflect the new physical page

number, which generates a log record („P.T.‟ stands for the log

record from the page table). 3) Optionally, new copy of the buffer

page is made at another buffer page with a new physical page

number. If the buffer page was dirty when the current transaction

updates the page for the first time, the new buffer copy should be

made. Otherwise, the copy is avoided. The new buffer copy is

required for the area of the page updated by the previous

committed transaction. Because after switching, updates in

shadow paging don‟t create log record, there is no way to restore

the previous image without new buffer copy during the current

transaction aborts. Even though the original physical page is

reloaded from the disk, the previous image, that is, post-update

image of the previous committed transaction may not exist at the

page due to the no-force policy of ARIES. At the same abort

situation except the buffer page was not dirty so that there is no

new buffer copy, the previous image can be restored by reloading

the original physical page from the disk since no dirty means the

data page which contains the previous image was flushed to the

disk. In summary, as a result of the switching, two physical pages

(old and new one) for the page exist at disk and one or two buffer

instances (old and new one) of the page exist in buffer pool. Also,

the page table indicates the new physical page number for the

page and ARIES log records of the page created by the transaction

contains the old physical page number.

As shown in Figure 4, L5 was loaded on the first page of the

buffer pool at initial state. (Let‟s assume that the page was dirty

when the first update of Trans1 to the page is occurred.) After the

switch is occurred, the copy of the L5 is made at the third page of

the buffer pool. Although page L5 has two instances on the buffer

pool temporarily, it is not a problem to access the valid page since

they have different physical page number. However, it reduces the

available buffer pages. Also, if the buffer pool is not large enough

to prevent the old instance of L5 from being flushed due to the

page eviction, the old instance increases write overhead.

Otherwise, it can be discarded on commit time by managing old

buffer instance list of the transaction without causing the write

overhead. This explains that the larger the buffer pool size, the

more beneficial to adaptive logging. After the switch, the

following updates of S1~S5 are reflected to the new copy of the

page and these updates don‟t make any log record. Then

transaction1 commits.

The commit action consists of the following steps. 1) Newly

allocated data pages and data pages updated in shadow paging

scheme are flushed to disk. 2) The log size of each page in the

buffer updated by the transaction is reset to zero. 3) Log records

including the commit log record are flushed, where the commit

log record should be the last one to be flushed. 4) Discard the old

buffer instances if they exist. As described above, the old buffer

instances which survive from the page eviction until the

transaction commits can be discarded without causing write

overhead. Nonetheless log records from the data page still should

be written to the disk. Actually, these log records are useless as far

as the data page is flushed on commit time. However, because the

log records are interleaved at log page(s) with another log records

which are created from the other data pages updated in ARIES

scheme only, it is not practical to remove the useless log records

from the log page(s). This is because the removal operation causes

the compaction of the remaining log records to reduce the number

of the log pages to be written to disk and subsequently the

compaction causes the modification of the previous LSN in the

log records and the corresponding page LSN on the data pages.

This overhead of writing useless log records can be improved with

deferred logging to be presented in Section 5. Updates of area A3

and A4 from Trans2 are processed in ARIES mode again with

counting the log size of the page. Timeline shown in Figure 4

summarizes the sequence of the events.

There may be a question about how the LSN at a page updated in

shadow paging is managed since it doesn‟t generate any log

record so that there will be no LSN at the page and consequently

can make adaptive logging work incorrectly. However, LSN at the

page does exist and it is handled in the same way that ARIES does.

The fact that the switching occurs from ARIES to shadow paging

indicates that the page was updated in ARIES so that it updated

LSN at the page accordingly until the switching occurs. Although

there is no more LSN update after switching, still the last LSN is

managed in the buffer instance of the new physical page and

applying force policy to the page on commit time can solve the

potential problems resulted from the lack of LSN update. During

recovery, regardless of the commit of the transaction, redo

operation of every ARIES update to the page which is old

physical page will be executed according to the result of the

comparison between LSN at the page and LSN of the log record.

Regardless of the redo operation to the old physical page, if the

transaction completed to commit before the crash, the new

physical page is guaranteed to contain both the effect of the

transaction‟s operations and the LSN from the old physical page

due to the force policy. Otherwise, during the recovery, redo and

undo will be applied to the old physical. This is the comparable

rationale with handling the LSN at the newly allocated page as

described in Section 2.

4.3 Abort
The core of abort operation in adaptive logging is to remove the

effect of updating the page table and is to discard all buffer pages

which are updated in shadow paging by the aborted transaction.

The other miscellaneous treatments are handled naturally by

ARIES scheme.

The abort action is accomplished by the following two steps. 1)

Buffer pages updated in shadow paging are discarded if any,

which can be managed by a certain data structure for each

transaction. 2) Log-based undo is executed just as ARIES does,

which removes the effect of updating the page table and restores

pre-update images of the other data pages at the same time.

Log-based undo is executed as follows. Log records from the

transaction are read to backward direction at the log file and undo

is executed one by one. For ease of explanation, let‟s assume there

is no other concurrent transaction and only one page is updated as

the example in Figure 4. The first undo is applied to the page table

and the next to the free physical page map, then to the old

physical page. Every log record contains the original physical

page number since the log records were created before the

switching occurs. When undo is executed to the original physical

page, if the new buffer copy was not made during the switching,

the old physical page at disk is reloaded to the buffer and then

undo is applied to it. This is because the buffer instance of the

1486

page in the buffer represents the new physical page after switching.

By contrast, if the new buffer copy was made and the old buffer

instance still exists on the buffer, undo is applied to the old buffer

since the old buffer still represents the old physical page. If the

old buffer doesn‟t exist on the buffer, old physical page is

reloaded to the buffer and then undo is applied to it. As described

in Section 4.2, the new buffer copy is required to restore the post-

update image of the previous committed transaction on the page if

any. After completing the abort, every access to the page is

directed to the original physical page since the page table was

restored to the original one. The new physical page can be used

for the next new page request since the free physical page map

was restored too.

4.4 Recovery
Recovery is very simple. There is nothing special treatment in the

recovery operation of the adaptive logging comparing with

ARIES. It just follows the 3 phase recovery steps such as analysis,

redo and undo just as ARIES does. If the log-based recovery

completes, the atomicity of the updates in the shadow paging

mode is guaranteed by the free page maps and the page table

which have been just restored from the log-based recovery.

Log-based recovery is executed as follows. Through the analysis

phase, information of loser transaction is collected at transaction

table and information of dirty page is collected at dirty page table.

Then redo is executed from the earliest recovery LSN at the dirty

page table to forward direction. Finally, undo is executed from the

latest LSN of the loser transaction to backward direction. To

notice at the redo phase is that because a log record contains the

physical page number, redo to the corresponding physical page

can be executed correctly even if the logical page number in the

page table is indicating a different physical page number as the

result of switching logging method or even if the logical page

number is indicating invalid physical page number updated by the

loser transaction. Even though the page has the updates in shadow

paging as well as ARIES so that the lack of page LSN update was

involved during shadow paging scheme, the correct redo/undo

operation is guaranteed by managing the last LSN from the old

physical page at the new physical page and the force policy to the

page as described in Section 4.2.

4.5 Concurrency Control
With respect to the concurrency control, multi-granularity locking

of page- and tuple-level can be supported by following two phase

locking (2PL) protocol according to the current logging method of

each page in adaptive logging. The inherent property of shadow

paging limits the lock granularity at most to the page-level. It

follows that if more than one transaction access a same page, it is

impossible for any transaction to switch from ARIES to shadow

paging due to the failure of page lock acquirement. In this

situation, every transaction for the same page should work in

ARIES scheme until the page lock can be acquired. If the logging

method for the page is switched to shadow paging, no other

transaction can access the page until the transaction commits.

4.6 Correctness
Adaptive logging works based on ARIES and shadow paging. If

there is no large update to a page, adaptive logging works just as

ARIES does except indirect page access through the page table

and force commit for the newly allocated page. The ARIES only

mechanism is clear enough to understand. What we concern is to

examine the correctness of the algorithm when shadow paging is

used together. Even though shadow paging is used with ARIES,

we still follow the golden rule of each recovery algorithm. When

data pages are flushed, WAL protocol and out-of-place update are

guaranteed for the pages updated in ARIES and shadow paging. It

enables to remove the effect of the operation from the non-

committed transaction even if the steal policy is applied to the

buffer. Steal/no-force policy to pages updated in ARIES scheme

(with force policy to log) and force policy to pages update in

shadow paging are followed. It enables to make durable the effect

of the operation from the committed transaction. Also 2PL

protocol is followed for concurrency control. By following these

rules for each operation to the database as described in Section 4

so far, we can guarantee the ACID property of the transaction.

5. DEFERRED LOGGING
In this section, we present a log compaction method called

deferred logging which can also contribute to reduce logging

overhead with adaptive logging scheme. This method defers to

write log information to the log buffer by managing the each log

information called log entry at the separate main memory of for

each data page apart from log buffer. When the data page is

flushed or the transaction is committed, the corresponding log

entries are converted to the log records, written to the log buffer,

and then the log buffer is flushed to the disk just before the data

page is flushed or the transaction completes to commit. As a result

of deferred logging, we have a chance to compact log entries

which are created from the adjacent or overlapped area updated to

the same page. It is impractical operation to compact log records

which have been written to the log page since the compaction

makes the field of the previous LSN in the log records modified

according to the compaction and also the LSN at the

corresponding data page should be modified accordingly.

However, compacting log entries is free from the overhead of

modifying both the previous LSN and the LSN at the page since

log entries do not have the previous LSN.

5.1 Rationale
A log entry consists of 4 fields such as image length, offset of the

update area in the page, pre-update image and pointer to the next

log entry. Log entries are managed at the separate memory for

each data page apart from the log buffer. Figure 5 describes how

log entries are created and managed with a simple example. There

were 3 updates to a data page, 2 updates from a transaction T1

and 1 update from T5 and another update from T1 is now

Data Page

xxxx zzzz

etc..

Page Info
T1

T5
404

204

284

bbbb kkkk

yyyy

aaaa

cccc

dddd

20 24 28 40

Figure 5. Deferred Logging Example

1487

occurring. Log entries of T1 explain the update history such as 4

bytes of image „aaaa‟ is changed into „xxxx‟ at offset 20 and 4

bytes of image „cccc‟ is changed into „zzzz‟ at offset 28. The data

page contains the post-update image and the log entry contains the

pre-update image. After the update of „yyyy‟ is executed, the log

entries of T1 will be compacted into a new log entry representing

that 12 bytes of image „aaaabbbbcccc‟ is changed into

„xxxxyyyyzzzz‟ at offset 20. In the similar manner, if there is a

new update of which area is identical with the existing log entry,

copying the post-update image to the data page is the only

necessary operation without modifying the existing log entry since

the existing log entry already has the pre-update image.

A log entry is converted into a log record when one of two events

happens. First, when a transaction commits, data pages updated

by the transaction are found at the buffer pool (which can be

managed by a certain data structure), log entries for each page are

converted into log records, log records are written to a log page

and then the log page is flushed to disk. As soon as the log record

is written to the log page, the LSN of the data pages is updated

accordingly. Second, when a data page is evicted, log entries of

the page are converted into log records, and the log records are

written to a log page, and then the log page is flushed to disk. The

LSN of the page is also updated. There is a difference between

two events in the perspective of log entries. When a transaction

commits, log entries only from the transaction are converted into

log records, by contrast, when a page is evicted, all log entries

from the page are converted into log records.

When a transaction aborts, the pre-update images in the log

entries of the transaction are restored and then the pre-update

images in the log records from the transaction are reflected if any.

There is no special treatment for deferred logging during recovery

process since the log entry is only managed at the main memory

so that if system crashes, we can restore the consistent state of the

database by following ARIES recovery scheme.

The rationale described so far can be applied to not only physical

logging but also physiological logging as far as 2PL protocol is

followed by both logging methods.

5.2 Coupling with Adaptive Logging
Deferred logging in itself is a complete method which can

improve logging overhead by compacting log entries. Also

deferred logging can be coupled with adaptive logging seamlessly,

which can remove the overhead of writing useless log records in

adaptive logging.

As described in Section 4.2, without deferred logging, if the

switching from ARIES to shadow paging occurs on a data page,

log records created from the page before the switching should be

written at most on commit time even if the page survives from the

eviction. However, with deferred logging, log entries (not log

records) created from the data page before the switching can be

discarded as soon as the switching is completed. This is enabled

by keeping the log entries in the separate memory from the log

page. Consequently, the overhead of writing useless log records is

disappeared in adaptive logging.

6. RELATED WORK
We survey related work to the problems that we address. First we

discuss other approaches with support for hybrid logging and then

we discuss approaches related with deferred logging and log

compaction.

Cabrera et al. [6] showed that no single recovery method provides

the satisfactory performance to all transaction types. They then

proposed to choose an appropriate recovery method according to

the property of the transactions. For example, ARIES is applied to

small update transactions and shadow paging is used for large

update transactions, especially for updating large objects.

However, this static hybrid approach is applicable only to a

situation where all the properties of the transactions are known

before the transactions start. Furthermore, although the properties

are known in advance, two transactions which show different

update patterns to the same page can not be handled effectively.

Page-oriented recovery has constraints in handling a record larger

than a page and reordering updates to the same page due to the

LSNs on pages. Segment-based recovery [17] overcomes these

constraints by introducing a segment, which is a set of bytes

which may span page boundaries, with LSN-free pages [13]. It

also shows how to build a hybrid system allowing ARIES and

segments to coexist but it doesn‟t work adaptively. ARIES [8]

also does not prevent the shadow page technique from being used

for selected potions of the data to avoid logging of only undo

information or both undo and redo and introduces that it may be

useful for dealing with long fields.

Log folding technique [10] was proposed to merge logically

redundant logs when the transferred updated information, i.e. redo

log is reflected to the remote secondary site. Similarly, semantic

compaction technique [11] was proposed in the context of the log-

structured B-Tree indexing [12]. This technique discards log

records having opposite semantics and replaces multiple log

records from the repeated update to the identical object with the

last log record. Both techniques are different from our approach

since we reduce the number of log records before the log records

are created. Whereas the log folding technique omits reflecting

logically redundant logs after the logs are transferred to the

remote site and the semantic compaction occurs during the log

garbage collection, which means the compaction occurs after the

log records written to the storage.

7. PERFORMANCE EVALUATION
In this section, we examine the performance of adaptive logging

and adaptive logging with deferred logging comparing with

ARIES and shadow paging. We ignore the effect of the concurrent

execution among transactions since it is not critical factor in

mobile devices so far. We have implemented to our embedded

DBMS adaptive logging coupled with deferred logging based on

the physical logging method, i.e. all of what we have described in

the paper except for the concurrency level. Although our approach

can support multi-granularity locking of page- and tuple-level, we

have implemented table-level locking currently. In order to

evaluate the performance, we also implemented a benchmark

based on the music browser application which generates most

likely workloads referring to the queries, the indices, the table

schema and the data set of the real world application which has

been deployed to more than 10 million mobile devices. The rest of

this section is organized as follows. Section 7.1 describes the

experimental environment and the benchmark. Section 7.2

through Section 7.4 analyze the performance results.

1488

7.1 Setup for Experiment
We varied the experimental parameters such as update transaction

size, buffer size, and threshold value of adaptive logging to show

the causality between the parameters and the performances for

each approach. Figure 6 shows the table schema, the indices and

the queries of the benchmark used in the experiments. Q2 and Q3

don‟t make sense in the perspective of the semantic. However, in

order to make it easy to vary the update transaction size instead of

modifying the play count values, we have modified the preference

update queries described in Section 2 into Q2 which still follows

the update patterns of them. Also, the query in Section 2 of which

predicate field is same with update field is reflected into Q3. With

respect to the data set, 10,000 records were used and the average

length of the records was around 80 bytes. During the experiments,

the database size reached around 10 mega bytes (MB) at

maximum. The page size was fixed to 4,096 bytes for data page

and log page together and the same size was used as the threshold

value of the adaptive logging. 4MB buffer pool was used. The

performance was measured by I/O count and elapsed time. For

proprietary reason, we provide the normalized value of them.

Depending on the experiment, the real elapsed time took less than

10 seconds through less than 1,000 seconds. The experiments

were run on ARM11 500MHz MX37 Freescale chip with 8GB

MLC NAND flash memory, running Linux 2.6.

7.2 Varying Update Transaction Size
Prior to running the insert/delete/update operation, we made the

initial database which had 5,000 records prior to insert operation

and had 10,000 records prior to update and delete operations.

Insert operation inserted 5,000 records, where the insert operation

was executed by varying the number of transaction such as 5,000,

500, 50, 5, and 1, which means that each transaction inserted 1,

10, 100, 1000 and 5,000 records, respectively. The variation of

the number of records for each transaction to insert is to make

variation of the update pattern of the data pages affected by the

insert operation. Figure 7(a) and 7(e) show the result of the insert

operation. X-axis shows the number of records for each

transaction to insert, which means that the left side stands for the

small update transaction and the right side stands for the large

update transaction. Y-axis shows the I/O count and the elapsed

time of the insert operation, which is normalized by the count and

the elapsed time of ARIES, respectively.

As we have expected, ARIES (denoted as aries) outperforms

shadow paging (denoted as shadow) for small update transaction,

but shadow paging doesn‟t show the impressive performance gap

against ARIES for large update transaction even though it shows a

little better result. The latter case results from the fact as follows.

As the number of records inserted is increased within a

transaction, the more number of new pages are allocated. As

described in Section 2, the updates to the newly allocated pages

do not create log records and the pages are flushed to stable

storage on commit time. The fact is valid for all four approaches,

which results in the small performance gap for large update

transaction. Adaptive logging (denoted as adaptive) follows

gracefully the performance of ARIES approach for small update

transaction and shadow paging approach for large update

transaction. Adaptive logging with deferred logging approach

(denoted as adap_def) shows better performance than adaptive

logging as a rule except for Q4. For adaptive logging and adaptive

logging with deferred logging, the I/O count always shows better

result than the elapsed time throughout all queries. Also, even

though the I/O count of them shows better performance than other

approaches, the elapsed time of them shows worse performance in

some cases. These results from the additional overhead of CPU

and memory operation for both adaptive approaches such as

indirect page access through the page table, making the new

buffer copy if necessary, memory allocation/de-allocation for log

entry, and compacting log entries.

Update operation is executed by a transaction which updates the

specified percent of records on x-axis shown in Figure 7(b), 7(c),

7(f), and 7(g). Q2 is different from Q3 at two perspectives; the

first one is the ratio of the key duplication of the index and the

second one is the identity between the field to be updated and the

predicate field. The „Preference‟ field has only 10 distinct keys

among 10,000 records, which means 1,000 records have the same

key in average. Whereas the „ThisMonthPlayCount‟ field has the

key values from 1 to 1,000 randomly, which means every 10

records have the same key in average. In Q3, the field to be

updated is the same field with the predicate field, which has more

chance to create S-pattern when update occurs since the qualified

key of the predicate will be collocated at the same page. As shown

Column Name Data Type (bytes)

ID Integer (4)

Genre String (256)

Artist String (256)

Album String (256)

Title String (256)

LatestPlayDate Integer (4)

LastMonthPlayCount Integer(4)

ThisMonthPlayCount Integer(4)

Preference Integer(4)

Type Indexed Columns

Single Column Index Every field has single column index.

Multi-Column Index (Genre, Artist), (Genre, Album), (Artist, Album), (Artist, Album, Title)

MusicTable Index

Type SQL (or Description)

Q1 : Insert Insert a specified number of new records.

Q2 : Update
update MusicTable set Preference = Preference + 1 where

ThisMonthPlayCount < ? and LastMonthPlayCount > 0

Q3 : Update
update MusicTable set ThisMonthPlayCount = ThisMonthPlayCount + 1

where ThisMonthPlayCount > ?

Q4 : Delete delete from MusicTable where ThisMonthPlayCount < ?

Q5 : Select select * from MusicTable where ID = ?

Query

 Figure 6. Table Schema, Indices, and Queries of the Benchmark

1489

Q5  Q5  Q5  Q3  Q3  Q2  Q5  Q4  Q5  Q1

in Figure 7(b) and 7(f), the effect of the key duplication at B+-tree

index has significant impact on the performance of the update

operation. The performance results from the sorting effect of the

extent page of B+-tree index as described in Section 2. In terms of

I/O count, both adaptive logging approaches outperform shadow

paging as well as ARIES since they benefit from S-pattern at the

extent page of the index and A-pattern at the page of the table.

However, the elapsed time is worse than shadow paging due to the

CPU and memory operation overhead. The performance analysis

of Q2 can be applied to it of Q3. However, the performance

superiority of adaptive logging approaches are less than the Q2

case, which means that the effect of the key collocation of the

index on the same page is less significant than the effect of sorting

on extent page of the index.

Just like the update operation, delete operation is executed by a

transaction which deletes the percent of records as specified in x-

axis of Figure 7(d) and 7(h). Interestingly, adaptive logging with

deferred logging shows the worst performance. This unusual

result is caused by the frequent page eviction at the buffer pool.

Unlike updating a field of record, delete involves deletion of all

corresponding keys from the related indices. As the percent of

records to be deleted is increased in a transaction, much more

pages should be updated than one field update operation. When a

page is evicted, log entries of the page are converted to log

records at log page(s), then log page(s) is(are) flushed. Adaptive

logging with deferred logging can flush log records only from the

evicted page. Whereas ARIES can flush log records from all other

updated pages together at the eviction moment. It means that

whenever a page is evicted, flushing log records must be involved

in deferred logging approach. Therefore, deferred logging

approach should be used carefully considering the available buffer

space of the system.

Figure 8 shows the peak of the memory usage used by adaptive

logging with deferred logging approach during the each query

execution. For Q1, x-axis values 1% through 30% stands for the 1

through 5,000, respectively. Most cases show the moderate

memory usage except some cases such as 1,000/10,000 records

insertion and 100% deletion. Considering the peak memory usage

with the results in Figure7, we can explain that the memory usage

can be varied according to the several parameters such as the

number of data page updated, the compaction condition for each

page, and also the available buffer space.

7.3 Varying Buffer Size
As we have described the impact of the buffer size on adaptive

logging in Section 4, we present the result of varying buffer size

in this section. We have tried to reflect the real world user‟s

behavior in certain degree at this experiment. The same table

schema, indices, and queries shown in Figure 6 were used but the

number of records affected by the queries was fixed as follows;

Q1 inserts 100 new records. Q2 updates 100 records. Q3 updates

only 1 record. Q4 deletes 100 records. Q5 finds only 1 record.

Each query consisted of single transaction. We made 10

transactions by combining the 5 queries, which have the sequence

as follows;

(a) (b) (c)

Figure 7. I/O Count(a to d) and Elapsed Time(e to h) Normalized by ARIES Varying Update Transaction Size

(d)

(e) (f) (g) (h)

 Figure 8. Peak Memory Usage of Deferred Logging

1490

The sequence represents that write operation is usually preceded

by select operation. As shown in Figure 9, we changed the buffer

size into 2MB, 4MB, and 8MB. X-axis in the figures specifies the

number of transaction executed. For example, the number 100

stands for 100 transactions and this means that the above

sequence of transactions were executed 10 times and the number

200 means the series of transactions were executed 20 times and

so on. Y-axis shows the elapsed time normalized by ARIES. Prior

to running each case, the initial database had 10,000 records and

it took around 8MB size and it spanned to around 10 MB during

the experiments. The result shows that shadow paging and two

adaptive approaches outperforms ARIES in all cases. It explains

that even though 20% of 1 record update operation and 50% of

select operation were included, the elapsed time is dominated by

the 30% of large update transactions. The more buffer size, the

higher performance gap between two adaptive logging approaches

and ARIES. Since two adaptive logging approaches can make a

better decision for switching logging method and log compaction

when the buffer space is sufficient. However, the tendency is

opposite to shadow paging. This shows that shadow paging has

less chance to benefit from the large buffer size than both ARIES

and two adaptive loggings. For shadow paging, the updated pages

should be written to the durable storage on commit time

regardless of the buffer size. Whereas, for ARIES and two

adaptive logging approaches, more buffer size, less chance for the

eviction of updated pages during normal processing. When the

buffer size is not sufficient, all approaches may face to frequent

page eviction, but ARIES and adaptive loggings suffer from

flushing the log page at the same time. These are very typical

situation which shows the pros and cons of both steal/no-force

policy of log-based approach and force policy of shadow paging.

To make matters worse, deferred logging approach suffers the

more frequent log converting and log flushing overhead. This is

the reason of the worse performance than shadow paging and

adaptive logging as described in Figure 9(a). However, the peak

memory usage of it doesn‟t exceed more than 300 KB in all cases.

7.4 Varying Threshold Value
The threshold value of adaptive logging is one of the most critical

parameter which may show different tendency of the performance.

To show the impact of it, we have applied varying the threshold

value of adaptive logging to two experiments run in Section 7.2

and the 4MB buffer case of Section 7.3. The threshold value

begins with 2KB (the half of the page size) and ends to 32KB by

doubling each value. The result of the first and the second

experiment is shown in Figure 10 and in Figure 11, respectively.

Y-axis of both figures presents the elapsed time normalized by the

4KB value. In Figure 10, no specific value shows the superior

performance than others for all cases but still the performance is

sensitive to the threshold value. It means that assigning a

threshold value statically can not be the appropriate solution for

achieving optimal performance since the update state of each page

keeps varying as the percentage of the qualified records is

increased. If we can dynamically assign the threshold value for

each page according to the update state of it, we can achieve

better performance. This will be explored in our future work.

Without this work, the page size (4KB) is the reasonable second

choice since it is a barometer to decide whether the no-force

policy can benefit or not and it generally shows the average

performance in all cases. The delete operation is not sensitive to

the threshold value from 10% interval due to the frequent page

eviction as described in Section 7.2. Unlike the result of the

separate operations in Figure 10, the result of the mixed

operations in Figure 11 shows a tendency. 8KB shows the best

performance in all cases. As the threshold value is increased, the

(a) (b) (c)

Figure 9. Elapsed Time Normalized by ARIES Varying Buffer Size

(a) (b) (c)

Figure 10. Elapsed Time Normalized by 4KB Threshold Varying Threshold Value

(d)

1491

performance is also getting better until reaching to 8KB. After

8KB, however, the result is getting worse. This means that there is

a threshold value which can outperform others. However, the best

threshold value is unknown in advance for the upcoming

workloads, still the page size is the reasonable choice as shown in

the result.

8. CONCLUSIONS
We have proposed adaptive logging as well as deferred logging to

reduce logging overhead and showed the benefit by evaluating

them through a real world application on a mobile device.

Adaptive logging works based on ARIES and shadow paging

adaptively according to the update patterns of each page, which

overcomes the limitation of the conventional static logging

approach. Deferred logging provides a chance to reduce log size

by compacting redundant log entries and also removes the

overhead of writing useless log records in adaptive logging.

Dynamic assignment of the threshold value of adaptive logging

will be explored in our future work.

Even though we verified our approaches based on physical

logging, we believe that the idea also can be applied to

physiological logging. Furthermore, although we found the

problem from applications on the mobile devices, our approach

can be applied to the server-side DBMS as long as the workloads

have the update patterns of both small update transaction and

large update transaction.

9. ACKNOWLEDGEMENTS
We would like to thank S. Sudarshan and Krithi Ramamritham for

their thorough comments. We also thank project members of

AceDB and AceAnalytics for their kind support.

10. REFERENCES
[1] Sybase's Ultralite,

http://m.sybase.com/products/databasemanagement/sqlanywh

ere/blackberry

[2] Sqlite, http://www.sqlite.org/

[3] Gye-Jeong Kim, Seung-Cheon Baek, Hyun-Sook Lee, Han-

Deok Lee, and Moon Jeung Joe. LGeDBMS: A Small

DBMS for Embedded System with Flash Memory. In

Proceedings of the 32nd International Conference on Very

Large Data Bases, Seoul, Korea, September 12-15, 2006

[4] Ki Yong Lee, Hyojun Kim, Kyoung-Gu Woo, Yon Dohn

Chung, and Myoung Ho Kim. Design and implementation of

MLC NAND flash-based DBMS for mobile devices. J. Syst.

Softw. 82, 9 (Sep. 2009)

[5] Intel. Understanding the Flash Translation Layer (FTL)

Specification. Application Note AP-684, Intel Corporation,

December 1998.

[6] Cabrera, L.-F., McPherson, J., Schwarz, P., Wyllie, J.

Implementing Atomicity in Two Systems: Techniques,

Tradeoffs, and Experience, IEEE Transactions on Software

Engineering, Vol. 19, No. 10, October 1993

[7] Raymond A. Lorie. Physical integrity in a large segmented

database, ACM Trans Database Syst 2, 1 (March 1977), 91-

104.

[8] C. Mohan, Donald J. Haderle, Bruce G. Lindsay, Hamid

Pirahesh, and Peter M. Schwarz: ARIES: A Transaction

Recovery Method Supporting Fine-Granularity Locking and

Partial Rollbacks Using Write-Ahead Logging. ACM Trans.

Database Syst. 17(1): 94-162(1992)

[9] Donald D. Chamberlin, Morton M. Astrahan, Michael W.

Blasgen, James N. Gray, W. Frank King, Bruce G. Lindsay,

Raymond Lorie, James W. Mehl, Thomas G. Price, Franco

Putzolu, Patricia Griffiths Selinger, Mario Schkolnick,

Donald R. Slutz, Irving L. Traiger, Bradford W. Wade, and

Robert A. Yost. "A History and Evaluation of System R"

Communications of the ACM, Vol. 24, No. 10, October 1981,

pp. 632-646.

[10] Kazuo Goda and Masaru Kitsuregawa. Power-aware remote

replication for enterprise-level disaster recovery systems. In

USENIX 2008 Annual Technical Conference on Annual

Technical Conference (Boston, Massachusetts, June 22 - 27,

2008). USENIX Association, Berkeley, CA, 255-260.

[11] Suman Nath and Aman Kansal. FlashDB: dynamic self-

tuning database for NAND flash. In Proceedings of the 6th

international Conference on information Processing in

Sensor Networks

[12] Chin-Hsien Wu, Tei-Wei Kuo, and Li Ping Chang. An

efficient b-tree layer for flashmemory storage systems. In

Proc. 9th Intl. Conf. on Real-Time and Embedded

Computing Systems and Applications, 2003.

[13] Russell Sears and Eric Brewer, Stasis: flexible transactional

storage, Proceedings of the 7th symposium on Operating

systems design and implementation, November 06-08, 2006,

Seattle, Washington

[14] Windsor W. Hsu, Alan Jay Smith, and Honesty C. Young.

I/O Reference Behavior of Production Database Workloads

and the TPC Benchmarks - An Analysis at the Logical Level.

ACM Transactions on Database System, 26(1):96–143, 2001.

[15] Jim Gray and Andreas Reuter. Transaction Processing:

Concepts and Techniques. Morgan Kaufmann, 1993.

[16] Raghu Ramakrishnan and Johannes Gehreke. Database

Management Systems. McGraw Hill, 1999

[17] Russell Sears and Eric A. Brewer: Segment-based recovery:

Write ahead logging revisited. PVLDB 2(1): 490-501 (2009)

Figure 11. Elapsed Time Normalized by 4KB

Threshold Varying Threshold Value

1492

http://m.sybase.com/products/databasemanagement/sqlanywhere/blackberry
http://m.sybase.com/products/databasemanagement/sqlanywhere/blackberry
http://www.sqlite.org/

