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ABSTRACT 

Nowadays, due to the increased user requirements of the fast and 

reliable data management operation for mobile applications, major 

device vendors use embedded DBMS for their mobile devices 

such as MP3 players, mobile phones, digital cameras and PDAs. 

However, database logging is the major bottleneck against the fast 

response time. There has been a lot of work minimizing logging 

overhead but no single recovery method provides the best 

performance to a variety of database workloads. In this paper, we 

present a novel recovery method called adaptive logging which 

can switch the logging method from ARIES to shadow paging 

adaptively at a page level according to the update state of each 

page on run time. Also, we propose a log compaction method 

called deferred logging which removes redundant logs by 

deferring to create log records until the updated data page is 

flushed or until the transaction commits. Deferred logging is 

coupled with adaptive logging seamlessly so that it boosts the 

performance of adaptive logging by reducing the typical overhead 

of hybrid methods. We have implemented the proposed 

approaches to our embedded DBMS which was deployed to more 

than 10 million mobile devices and evaluated them through a real 

world application on a mobile device. The result shows that our 

approaches can reduce logging overhead significantly and 

consequently can improve the response time of both small update 

transaction and large update transaction effectively. 

1. INTRODUCTION 
Recently, major device vendors such as Nokia, Samsung, Apple 

and LG, use embedded DBMSs for their mobile devices such as 

MP3 players, mobile phones, digital cameras, and PDAs [1, 2, 3, 

4] since the devices should provide fast and reliable data 

management operation to applications such as phone book, music 

browser, and photo browser. On music browser, for example, a 

user may request to list a bunch of songs sorted by title of which 

artists are “Beatles” and album names are “Hey Jude”. Also he(or 

she) may insert and delete 1 to 10 song(s) or even all songs at a 

time to replace old songs with new songs. These are very typical 

use cases which require fast and rich browsing interface and 

reliable contents manipulation method. 

We developed an embedded DBMS which has been deployed to 

more than 10 million mobile devices. Logging, however, was the 

main bottleneck against the fast response time of update 

transactions, especially for large update transactions since a large 

amount of log should be flushed to stable storage during commit. 

In server-side database, a separate log-writer daemon may solve 

this problem by flushing the large amount of log periodically. 

This approach, however, is not appealing in embedded DBMSs 

since they are typically simple libraries and tightly bound with 

application processes, which make it hard to run independent log-

writer daemons. Although we can make a separate log-writer 

daemon in some cases and it can deal with the problem, the large 

amount of log writes itself is still a burden to flash memory 

storages of mobile devices because of wear-out issue and 

expensive block erase operation of the flash memory [5]. 

Meanwhile, Cabrera et al. [6] showed that no single recovery 

method provides the best performance to all transaction types. To 

minimize logging overhead, they proposed to choose an 

appropriate recovery method according to the property of each 

transaction‟s workload. For example, ARIES [8] is applied for 

small update transactions and shadow paging [7] is used for large 

update transactions, especially for updating large objects. 

However, this hybrid approach is static since it can‟t change the 

pre-assigned recovery method dynamically on run time even if a 

transaction doesn‟t show the expected workload. This static 

hybrid approach is applicable only to a situation where all the 

properties of a transaction are known before the transaction starts. 

In case the properties can‟t be predefined, which is more general 

situation, this approach is not effective.  

In this paper, we propose a novel recovery method called adaptive 

logging which focuses on reducing the update log size in a way 

that different logging methods1 are applied dynamically on run 

time at a page level switching from ARIES to shadow paging 

according to the update state of for each page. To the best of our 

knowledge, no work has dealt with switching recovery method 

dynamically on run time according to the transaction‟s update 

state. Our dynamic hybrid approach overcomes the limitation of 

both ARIES and shadow paging and consequently accomplishes 

the fast response time for large update transaction as well as small 

update transaction. With respect to concurrency control, the 

inherent property of shadow paging limits the lock granularity at 

most to the page level, but multi-granularity locking of page- and 

tuple-level can be used according to the current logging method of 

each page in the adaptive scheme. In other words, when the 

logging method of the page is switched to shadow paging, the 

lock granularity for the page will be escalated from tuple-level to 

page-level. 

                                                                 
1 Of course, shadow paging is not log-based recovery method, but 

we will use the term „logging method‟ which also includes 

shadow paging in this paper 
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Along with adaptive logging, we present a log compaction method 

called deferred logging which can reduce the log size further. It is 

a variant of techniques such as log folding [10] and semantic 

compaction [11]. The differences will be explained on Section 6. 

Deferred logging postpones creating the ARIES-style log record 

[8] (hereafter simply referred to as log record) until the 

corresponding data page is flushed or the transaction commits. 

Instead, when a data page is updated, it creates and manages log 

information called log entry in a memory space separated from the 

log buffer. If the data page is flushed or the transaction commits, 

all log entries from the page or all log entries caused by the 

transaction are converted to log records, respectively. As a result 

of the deferring, deferred logging has a chance to compact log 

entries which are created from the adjacent or overlapped area 

within a same page. Deferred logging can be coupled with 

adaptive logging seamlessly and furthermore removes the 

overhead of writing useless log records in adaptive logging. 

The contributions of this work are summarized as follows.  

-  A novel recovery method called adaptive logging is proposed 

for the first time to overcome the limitations of static logging 

method such as ARIES and shadow paging.  

- A log compaction method called deferred logging is proposed 

not only to reduce log size but also to remove the overhead of 

writing useless log records in adaptive logging. We do not claim 

that deferred logging is a very new idea but do show that it is 

important feature of improving performance of adaptive logging 

further. 

- We implement our approaches and evaluate them through a 

real world application on a mobile device, which demonstrates 

that adaptive logging with deferred logging can reduce logging 

overhead significantly and consequently can improve the 

response time of both small update transaction and large update 

transaction effectively. 

The rest of this paper is organized as follows. Section 2 clarifies 

the problem that we handle. Section 3 explains static approaches 

which are the basic building blocks for understanding the adaptive 

approach. Section 4 presents the basic concepts and the design of 

adaptive logging with a simple example. Section 5 explains the 

rationale of deferred logging and Section 6 surveys the related 

work. In Section 7, we demonstrate the performance advantage of 

adaptive logging and deferred logging through a real world 

application on a mobile device comparing against the static 

logging approaches. Section 8 summarizes the contributions of 

this paper with future work. 

2. PROBLEM 
User requests to the real world application on a mobile device 

cause large updates as well as small updates to the database as 

following cases. 

- Case 1: If a user copies 1,000 new songs from his (or her) 

personal computer to a micro SD card and the card is inserted 

into the user‟s mobile phone, then the phone‟s music browser 

application will extract metadata such as genre, artist, album, 

title, file path, etc from the songs and reflect each metadata into 

the corresponding music database, which causes bulk updates 

to the database. Also, the opposite case such as removing 1,000 

songs or even more songs from the songs stored at the micro 

SD card causes bulk updates to the database. 

- Case 2: If a user deletes all songs belonging to a specific 

album, a specific artist, or a specific folder from the micro SD 

card through the music browser application on his(or her) 

mobile phone, then small or large updates may happen to the 

database depending on how many songs meet the condition. 

Case 1 shows the situation that file operation is executed in the 

personal computer and metadata update to the database is 

conducted in the mobile device after the micro SD card is inserted 

into the mobile device. Case 2 shows the situation that both file 

operation and metadata update to the database are executed in the 

mobile device. The update transaction from the above situations 

can modify many pages taking a lot of time or can modify just a 

few pages. But the user always wants his(or her) device to 

respond as quickly as possible. One interesting thing worth to be 

noted is that the response time of the transaction varies a lot 

according to its recovery method. 

We have implemented two recovery methods, ARIES and shadow 

paging, to our embedded DBMS. When ran with many real 

queries of MP3 player device, ARIES clearly outperformed 

shadow paging in small update transactions while shadow paging 

was the winner in large update transactions as in Figure 1.2  

To analyze the reasons behind this interesting phenomenon, we 

define two update patterns called A-pattern (ARIES-favorable 

update pattern) and S-pattern (Shadow-paging-favorable update 

pattern).  Because page3 is used as the basic unit of recovery, we 

examine logging behaviors of recovery method in page level first. 

We then clarify the problem that we address. 

As shown in Figure 2(a), A-pattern updates a small area of a data 

page in a transaction, which generates a small amount of log that 

is less than the data page size. If a data page is updated by an A-

pattern update operation, it benefits from no-force policy of 

ARIES since ARIES writes only log records without flushing the 

data page to disk on commit time. When a transaction is 

composed of mostly A-pattern update operations, we call such a 

transaction as small update transaction. Small update transaction 

is usually found in traditional OLTP applications [14]. 

                                                                 
2  In Figure 1, „small update transaction‟ consists of 1,000 

transactions of inserting single record and „large update 

transaction‟ represents single transaction which updates 10% of 

records in a database. 

3 There is traditional assumption of that the disk page is the basic 

unit of recovery although variations such as minipage and 

segment exist. 
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Figure 1. ARIES vs. Shadow Paging 
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As shown in Figure 2(b), S-pattern updates a large area of a data 

page or repeatedly updates the same area of a data page in a 

transaction, which causes a large amount of log that is larger than 

the data page size itself. If the update pattern of the transaction is 

S-pattern, it can‟t leverage the no-force policy because the log 

size is larger than the data page size. In this situation, shadow 

paging is better since it doesn‟t make any log record and its force 

policy needs less pages to be written: updated data pages are less 

than log pages by ARIES. We call this type of transaction as large 

update transaction. Updating large objects is one typical example 

of the large update transaction, and shadow paging was shown to 

be more appropriate for it [6]. 

A transaction, however, doesn‟t always fall into one of the two 

transaction types. Rather, as a transaction may have data pages 

modified as A-pattern and S-pattern together, mixed update 

transaction is very common. Prior to presenting examples of a 

mixed update transaction, we describe a typical page layout [16] 

of the table and the index in order to make it easy to understand 

how update operation is executed at the page in the perspective of 

logging. Figure 3(a) shows the common page layout of the table 

and the index which can handle variable length records and keys, 

respectively.  

If the page layout is used for a table, the object in the figure 

represents a record. When a new record is inserted into a page, 1) 

the record image is copied at the offset of the page pointed by the 

FreeOffset value, 2) the offset is appended to the leftmost slot of 

Object Directory, 3) ObjectCount value is increased by 1, and 4) 

FreeOffset value is set to the offset where the record image ends. 

If physical logging [15] is used, each step will generate the 

corresponding log record since each physical log record should 

maintain pre- and post-update image of each update area. On the 

contrary, if physiological logging [15] is used, generating only 

one compact log record may be enough since it can manage in the 

log record all the information necessary for redo/undo operation 

within the page. For example, a physiological log record for 

inserting a record into a page maintains information such as 

transaction id, operation type, page id, record image, image size, 

etc (without preserving both the pre- and post-update image). 

Then for redo, the above 4 steps are replayed starting with 

copying the record image and for undo, a compensation operation 

such as a record deletion is executed based on the log record. 

Meanwhile, when a record is deleted, 1) the corresponding offset 

in Object Directory is removed and the rest of offsets are 

compacted to handle the slot fragmentation, 2) ObjectCount value 

is decreased by 1. By the way, records themselves may or may not 

be compacted depending on the implementation. If they are 

compacted and physical logging is used, a large amount of log can 

be generated depending on the deleted record location. However, 

physiological logging is free from the logging overhead of the 

compaction since the compaction can be logically executed 

without storing the pre- and post-update image of the compacted 

area. Although physiological logging has less log size than 

physical logging, in order to apply physiological logging to every 

update operation of the database, it is necessary to design all the 

corresponding logical redo/undo operation at a page level very 

carefully. In this perspective, physiological logging is not as 

simple as physical logging. 

When the page layout is used for an index, the object in Figure 

3(a) represents a key. For the simplicity of explanation, we 

omitted information on the page such as sibling node pointer, 

child node pointer, node type, etc. Inserting/deleting a key is 

executed just as the record operation is done except for following 

operations. 1) Offsets in Object Directory are sorted according to 

the key order instead of sorting key images. 2) For duplicated 

keys, the key image itself is stored only once and the 

corresponding record IDs (RID) are managed in an array on the 

leaf node. As the number of the duplicated keys is getting 

increased and exceeds the capacity of the reserved key space, the 

overflowed RIDs are managed separately on a special node called 

extent node. The RIDs both on a leaf node and an extent node are 

managed in a sorted order for efficient retrieval such as binary 

search. As shown in Figure 3(b), key A1 has 11 duplicated keys 

so that 4 RIDs of them are managed on a leaf node and the other 7 

RIDs are managed on an extent node. When the record is deleted 

on the extent node, the rest of RIDs are compacted to avoid 

fragmentation. This compaction also causes a large amount of log 

in physical logging.  
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Update  Requests

 

(a) A-pattern 

Data Page

Update  Requests

 

Figure 2. Two Update Patterns 
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These update aspects in the page level show that even though 

physiological logging may generate more compact log record than 

physical logging, still S-pattern as well as A-pattern can happen to 

both methods depending on the workload of the transaction. 

Now, we go back to the mixed update transaction and provide the 

example. Let‟s assume that there is a music table composed of ID, 

Artist, Album, Preference, ThisMonthPlayCount, 

LastMonthPlayCount, etc, where Artist and Preference has index, 

respectively. Here are two queries from a music browser which 

automatically updates user‟s preference according to the monthly 

play count of the songs; “update music set preference = preference 

+ 1 where ThisMonthPlayCount >= LastMonthPlayCount + 10”, 

and “update music set Preference = Preference - 1 where 

ThisMonthPlayCount < LastMonthPlayCount - 10”. If we 

consider the page layout of the table and the index as shown in 

Figure 3, the above queries have a tendency to generate A-pattern 

on the table pages and S-pattern on the index pages of the 

preference field as the record size is getting larger than the field 

size relatively and the selectivity of the query is getting increased. 

Unlike the above example, if the update field is the same field 

with the predicate field, for example, “update table set x=x+1 

where x>10”, the tendency will be much more apparent since the 

qualified keys obviously will exist on the same data page of the 

index and therefore the index page will show more S-pattern 

updates.  

Although an update transaction shows much different response 

times as different recovery methods are used (as in Figure 1), it is 

very hard to tell the optimal recovery method for each transaction 

in advance. A transaction can consist of both A-pattern updates 

and S-pattern updates together preventing one single recovery 

method from showing the best response time.  Furthermore, even 

though the update pattern for each page is known to in advance, 

different transactions may show different update patterns in the 

same page. These aspects mean that neither static single recovery 

mechanism nor static hybrid recovery mechanism (in the manner 

of Cabrera et al.) is an appropriate solution. This is why we have 

devised a novel logging method, adaptive logging. 

3. STATIC CHOICE 
Prior to presenting the rationale of adaptive logging in Section 4, 

we describe the static approach such as ARIES and shadow 

paging in this section, which is the basic building block of our 

implementation details to make it easy to understand how ARIES 

and shadow paging works adaptively even at the same page in a 

transaction. Our DBMS is able to guarantee atomic operation of 

transactions by providing out-of-place update approach or in-

place update approach, which is represented by shadow paging 

and ARIES, respectively and selects the option on library build 

time. When shadow paging is used, page-level locking is the 

finest granularity (Coarser levels such a table-level locking also 

can be used). 

To implement out-of-place update approach, just as the original 

shadow paging scheme [7] does, we manage a data structure 

called page table for valid page mapping. Let‟s call the slot 

number of the page table logical page number and the value in the 

slot physical page number. We maintain two bitmaps called free 

physical page map and free logical page map to manage free 

physical pages and free logical pages, respectively. For example, 

when a new data page is required for B+-tree, a new physical page 

number is assigned from the free physical page map and a new 

logical page number is assigned from the free logical page map. 

Then we find the page table slot corresponding to the logical page 

number and set the new physical page number to the slot. Unlike 

shadow paging, atomic updates to the free page maps and the page 

table are guaranteed by ARIES approach. It means that pre- and 

post-update image of the bitmaps and the page table are preserved 

by log records. Then the log records are flushed to disk during 

commit. After the new page is allocated, updates to the new page 

are reflected in the new page without making another copy of the 

page in the transaction since there is no pre-update image in the 

new page. On the contrary, the first update to an existing data 

page (except for the free page maps and the page table) in a 

transaction makes a copy of the page at a different physical page. 

Then updates are reflected to the copied page. By the way, it is 

necessary to distinguish whether the data page has already been 

updated or not in the transaction boundary to decide whether the 

current update to the page has to make a new copy of it or not. To 

check the occurrence of an update to a specific data page, we 

maintain a bitmap called update occurrence map in main memory. 

The bitmap has the number of bits which is identical with the 

number of slots in the page table. If the system crashes, the update 

occurrence map is useless in the perspective of the recovery 

process.  

With respect to in-place-update approach, we follow WAL (Write 

Ahead Log) protocol and steal/no-force policy just as ARIES does. 

Different from the original ARIES scheme [8], we use force 

policy to newly allocated data pages [13] since updates to the new 

page do not create log records in our scheme. (Deallocated pages 

are not reused until the transaction commits. This is also valid for 

adaptive logging.) Subsequently, the new page doesn‟t have log-

sequence number (LSN) on it, i.e. page LSN, which may cause 

problem in recovery process. During the recovery, redo and undo 

operation must be idempotent, i.e. executing operation an 

arbitrary number of times is equivalent to doing it once [15]. The 

property is guaranteed by LSN for redo and compensation log 

record (CLR) for undo in ARIES scheme [8]. Page LSN plays a 

role of an order indicator such as timestamp at the data page so 

that by indicating to which effect of the update is applied to the 

page, more than one execution of the redo operation is not 

allowed. Therefore the idempotent operation is guaranteed. To 

handle the problem, that is, the lack of page LSN on the newly 

allocated data page, we have assigned a LSN to the new page 

when it is flushed to the stable storage. The LSN is the last LSN 

which has been issued for the moment of the data page being 

flushed. It is guaranteed that the last LSN is less than LSNs of 

upcoming updates to the page. Therefore recovery mechanism can 

work correctly since it can decide the order between updates to 

the new page and the upcoming updates to the page after the page 

is flushed. 

4. ADAPTIVE LOGGING 
Adaptive logging works based on ARIES as well as shadow 

paging adaptively according to the update state of each data page, 

which overcomes the limitations of the conventional static logging 

approach. To make ARIES and shadow paging works adaptively, 

we have harmonized the behavior of ARIES and shadow paging 

based on what we have explained in Section 3. Firstly, every data 

page is accessed indirectly through the page table even in ARIES 
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scheme, which means that every access to data pages takes a step 

of converting the logical page number to physical page number 

through the page table. Every first update to a data page in 

shadow paging mode changes the value of the corresponding slot 

of the page table since the update creates the copy of the page into 

the newly allocated physical page. On the contrary, the update in 

ARIES mode doesn‟t change the value of them since it still 

follows the in-place-update scheme by creating log records 

instead of copying the page. Secondly, a log record created by an 

update in ARIES mode contains a physical page number of the 

data page instead of a logical page number of it. It means that the 

data page contained at log record is accessed directly without 

taking the converting step through the page table during recovery 

or abort. These two treatments with the description in Section 3 

about our variants of ARIES and shadow paging are the core 

building block for understanding the adaptive logging. More 

detail description with an example will be continued on Section 

4.2 through Section 4.6 after presenting the basic concept of 

adaptive logging. 

4.1 Overview 
ARIES is applied as a default recovery mechanism. When a 

transaction starts and updates are occurred, the corresponding log 

records are generated in ARIES way. Each data page manages the 

update state by counting the total size of log records generated 

from the page. If the size exceeds a predefined threshold value, 

the logging mechanism of the page is switched to shadow paging. 

(However, if the page lock of the page can not be acquired due to 

the other transaction‟s operations, the logging mechanism will 

stay with ARIES.) When the switch occurs, a new copy of the 

page is created in the buffer (selectively) as well as in the disk. 

Then every following update to the page is reflected into the new 

copy of it without generating log records until the transaction 

commits. Updates of the same transaction to other data pages of 

which the threshold is not exceeded still generate log records. 

When the transaction commits, all new copies of the data pages 

from the transaction as well as log records are flushed to stable 

storage. If the next transaction starts, the logging method for 

updates to every data page is ARIES again. Shadow paging is 

only applied adaptively to the page of which total size of log 

records exceeds the threshold value. Abort and recovery are 

processed by following ARIES scheme. As we have explained in 

Section 3, the page table and the free page maps are aborted and 

recovered in the log-based approach. Subsequently, the effect of 

redo and undo to the pages created by shadow paging method will 

be reflected through the page table and the free page maps. 

4.2 Normal Processing 
Consider the simple example illustrated in Figure 4. Initial state is 

that logical page 5 (L5) of which physical page number is 2 (P2) 

(6th slot of the page table in the figure indicates the mapping) is 

loaded on the first buffer page of the buffer pool and physical 

pages 0, 1, 2 are already allocated (1st, 2nd and 3rd slots of the free 

physical page map in the figure show the allocations). Then 

transaction Trans1 changes the value of area A1, A2, and S1~S5 

on the page L5 and then commits. Transaction Trans2 then 

updates the value of area A3 and A4 on the page L5 too. Let‟s 

assume that logging method switches at the moment between 

update A2 and update S1 because the total size of the log records 

on the page exceeds the threshold value. (Character „A‟ stands for 

an update in ARIES mode and character „S‟ stands for an update 

in shadow paging mode.) Now, we present the detailed behaviors 

for each step of the above example. When Trans1 updates area A1 

and A2, the corresponding log records are created just as ARIES 

does except for the indirect page accesses through the page table. 

At the same time, the total size of log records on the page 

increased. By the way, the log size of the page is maintained in a 

transaction boundary during the page stays on the buffer pool. 

This means two things. First, if the transaction commits, the log 

size of the page on the buffer pool is reset to zero. Second, if the 

page is evicted by the buffer replacement, the log size is reset to 

zero. Therefore, the smaller buffer size, the less chance of 

switching logging method. Trans1 then requests to update area S1. 

At this moment, the page L5 recognizes that the log size of the 

page exceeds the threshold value. This brings up the switch of 

logging method from ARIES to shadow paging.  
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 Figure 4. Adaptive Logging Example 
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The switch action is accomplished by the following 3 steps. 1) 

New physical page is allocated, which generates a log record 

(„F.P.‟ stands for the log record from the free physical page map). 

2) The page table is updated to reflect the new physical page 

number, which generates a log record („P.T.‟ stands for the log 

record from the page table). 3) Optionally, new copy of the buffer 

page is made at another buffer page with a new physical page 

number. If the buffer page was dirty when the current transaction 

updates the page for the first time, the new buffer copy should be 

made. Otherwise, the copy is avoided. The new buffer copy is 

required for the area of the page updated by the previous 

committed transaction. Because after switching, updates in 

shadow paging don‟t create log record, there is no way to restore 

the previous image without new buffer copy during the current 

transaction aborts. Even though the original physical page is 

reloaded from the disk, the previous image, that is, post-update 

image of the previous committed transaction may not exist at the 

page due to the no-force policy of ARIES. At the same abort 

situation except the buffer page was not dirty so that there is no 

new buffer copy, the previous image can be restored by reloading 

the original physical page from the disk since no dirty means the 

data page which contains the previous image was flushed to the 

disk. In summary, as a result of the switching, two physical pages 

(old and new one) for the page exist at disk and one or two buffer 

instances (old and new one) of the page exist in buffer pool. Also, 

the page table indicates the new physical page number for the 

page and ARIES log records of the page created by the transaction 

contains the old physical page number. 

As shown in Figure 4, L5 was loaded on the first page of the 

buffer pool at initial state. (Let‟s assume that the page was dirty 

when the first update of Trans1 to the page is occurred.) After the 

switch is occurred, the copy of the L5 is made at the third page of 

the buffer pool. Although page L5 has two instances on the buffer 

pool temporarily, it is not a problem to access the valid page since 

they have different physical page number. However, it reduces the 

available buffer pages. Also, if the buffer pool is not large enough 

to prevent the old instance of L5 from being flushed due to the 

page eviction, the old instance increases write overhead. 

Otherwise, it can be discarded on commit time by managing old 

buffer instance list of the transaction without causing the write 

overhead. This explains that the larger the buffer pool size, the 

more beneficial to adaptive logging. After the switch, the 

following updates of S1~S5 are reflected to the new copy of the 

page and these updates don‟t make any log record. Then 

transaction1 commits. 

The commit action consists of the following steps. 1) Newly 

allocated data pages and data pages updated in shadow paging 

scheme are flushed to disk. 2) The log size of each page in the 

buffer updated by the transaction is reset to zero. 3) Log records 

including the commit log record are flushed, where the commit 

log record should be the last one to be flushed. 4) Discard the old 

buffer instances if they exist. As described above, the old buffer 

instances which survive from the page eviction until the 

transaction commits can be discarded without causing write 

overhead. Nonetheless log records from the data page still should 

be written to the disk. Actually, these log records are useless as far 

as the data page is flushed on commit time. However, because the 

log records are interleaved at log page(s) with another log records 

which are created from the other data pages updated in ARIES 

scheme only, it is not practical to remove the useless log records 

from the log page(s). This is because the removal operation causes 

the compaction of the remaining log records to reduce the number 

of the log pages to be written to disk and subsequently the 

compaction causes the modification of the previous LSN in the 

log records and the corresponding page LSN on the data pages. 

This overhead of writing useless log records can be improved with 

deferred logging to be presented in Section 5. Updates of area A3 

and A4 from Trans2 are processed in ARIES mode again with 

counting the log size of the page. Timeline shown in Figure 4 

summarizes the sequence of the events. 

There may be a question about how the LSN at a page updated in 

shadow paging is managed since it doesn‟t generate any log 

record so that there will be no LSN at the page and consequently 

can make adaptive logging work incorrectly. However, LSN at the 

page does exist and it is handled in the same way that ARIES does. 

The fact that the switching occurs from ARIES to shadow paging 

indicates that the page was updated in ARIES so that it updated 

LSN at the page accordingly until the switching occurs. Although 

there is no more LSN update after switching, still the last LSN is 

managed in the buffer instance of the new physical page and 

applying force policy to the page on commit time can solve the 

potential problems resulted from the lack of LSN update. During 

recovery, regardless of the commit of the transaction, redo 

operation of every ARIES update to the page which is old 

physical page will be executed according to the result of the 

comparison between LSN at the page and LSN of the log record. 

Regardless of the redo operation to the old physical page, if the 

transaction completed to commit before the crash, the new 

physical page is guaranteed to contain both the effect of the 

transaction‟s operations and the LSN from the old physical page 

due to the force policy. Otherwise, during the recovery, redo and 

undo will be applied to the old physical. This is the comparable 

rationale with handling the LSN at the newly allocated page as 

described in Section 2. 

4.3 Abort 
The core of abort operation in adaptive logging is to remove the 

effect of updating the page table and is to discard all buffer pages 

which are updated in shadow paging by the aborted transaction. 

The other miscellaneous treatments are handled naturally by 

ARIES scheme.  

The abort action is accomplished by the following two steps. 1) 

Buffer pages updated in shadow paging are discarded if any, 

which can be managed by a certain data structure for each 

transaction. 2) Log-based undo is executed just as ARIES does, 

which removes the effect of updating the page table and restores 

pre-update images of the other data pages at the same time.  

Log-based undo is executed as follows. Log records from the 

transaction are read to backward direction at the log file and undo 

is executed one by one. For ease of explanation, let‟s assume there 

is no other concurrent transaction and only one page is updated as 

the example in Figure 4. The first undo is applied to the page table 

and the next to the free physical page map, then to the old 

physical page. Every log record contains the original physical 

page number since the log records were created before the 

switching occurs. When undo is executed to the original physical 

page, if the new buffer copy was not made during the switching, 

the old physical page at disk is reloaded to the buffer and then 

undo is applied to it. This is because the buffer instance of the 

1486



page in the buffer represents the new physical page after switching. 

By contrast, if the new buffer copy was made and the old buffer 

instance still exists on the buffer, undo is applied to the old buffer 

since the old buffer still represents the old physical page. If the 

old buffer doesn‟t exist on the buffer, old physical page is 

reloaded to the buffer and then undo is applied to it. As described 

in Section 4.2, the new buffer copy is required to restore the post-

update image of the previous committed transaction on the page if 

any. After completing the abort, every access to the page is 

directed to the original physical page since the page table was 

restored to the original one. The new physical page can be used 

for the next new page request since the free physical page map 

was restored too. 

4.4 Recovery 
Recovery is very simple. There is nothing special treatment in the 

recovery operation of the adaptive logging comparing with 

ARIES. It just follows the 3 phase recovery steps such as analysis, 

redo and undo just as ARIES does. If the log-based recovery 

completes, the atomicity of the updates in the shadow paging 

mode is guaranteed by the free page maps and the page table 

which have been just restored from the log-based recovery. 

Log-based recovery is executed as follows. Through the analysis 

phase, information of loser transaction is collected at transaction 

table and information of dirty page is collected at dirty page table. 

Then redo is executed from the earliest recovery LSN at the dirty 

page table to forward direction. Finally, undo is executed from the 

latest LSN of the loser transaction to backward direction. To 

notice at the redo phase is that because a log record contains the 

physical page number, redo to the corresponding physical page 

can be executed correctly even if the logical page number in the 

page table is indicating a different physical page number as the 

result of switching logging method or even if the logical page 

number is indicating invalid physical page number updated by the 

loser transaction. Even though the page has the updates in shadow 

paging as well as ARIES so that the lack of page LSN update was 

involved during shadow paging scheme, the correct redo/undo 

operation is guaranteed by managing the last LSN from the old 

physical page at the new physical page and the force policy to the 

page as described in Section 4.2. 

4.5 Concurrency Control 
With respect to the concurrency control, multi-granularity locking 

of page- and tuple-level can be supported by following two phase 

locking (2PL) protocol according to the current logging method of 

each page in adaptive logging. The inherent property of shadow 

paging limits the lock granularity at most to the page-level. It 

follows that if more than one transaction access a same page, it is 

impossible for any transaction to switch from ARIES to shadow 

paging due to the failure of page lock acquirement. In this 

situation, every transaction for the same page should work in 

ARIES scheme until the page lock can be acquired. If the logging 

method for the page is switched to shadow paging, no other 

transaction can access the page until the transaction commits. 

4.6 Correctness 
Adaptive logging works based on ARIES and shadow paging. If 

there is no large update to a page, adaptive logging works just as 

ARIES does except indirect page access through the page table 

and force commit for the newly allocated page. The ARIES only 

mechanism is clear enough to understand. What we concern is to 

examine the correctness of the algorithm when shadow paging is 

used together. Even though shadow paging is used with ARIES, 

we still follow the golden rule of each recovery algorithm. When 

data pages are flushed, WAL protocol and out-of-place update are 

guaranteed for the pages updated in ARIES and shadow paging. It 

enables to remove the effect of the operation from the non-

committed transaction even if the steal policy is applied to the 

buffer. Steal/no-force policy to pages updated in ARIES scheme 

(with force policy to log) and force policy to pages update in 

shadow paging are followed. It enables to make durable the effect 

of the operation from the committed transaction. Also 2PL 

protocol is followed for concurrency control. By following these 

rules for each operation to the database as described in Section 4 

so far, we can guarantee the ACID property of the transaction. 

5. DEFERRED LOGGING 
In this section, we present a log compaction method called 

deferred logging which can also contribute to reduce logging 

overhead with adaptive logging scheme. This method defers to 

write log information to the log buffer by managing the each log 

information called log entry at the separate main memory of for 

each data page apart from log buffer. When the data page is 

flushed or the transaction is committed, the corresponding log 

entries are converted to the log records, written to the log buffer, 

and then the log buffer is flushed to the disk just before the data 

page is flushed or the transaction completes to commit. As a result 

of deferred logging, we have a chance to compact log entries 

which are created from the adjacent or overlapped area updated to 

the same page. It is impractical operation to compact log records 

which have been written to the log page since the compaction 

makes the field of the previous LSN in the log records modified 

according to the compaction and also the LSN at the 

corresponding data page should be modified accordingly. 

However, compacting log entries is free from the overhead of 

modifying both the previous LSN and the LSN at the page since 

log entries do not have the previous LSN. 

5.1 Rationale 
A log entry consists of 4 fields such as image length, offset of the 

update area in the page, pre-update image and pointer to the next 

log entry. Log entries are managed at the separate memory for 

each data page apart from the log buffer. Figure 5 describes how 

log entries are created and managed with a simple example. There 

were 3 updates to a data page, 2 updates from a transaction T1 

and 1 update from T5 and another update from T1 is now 

Data Page

xxxx zzzz

etc..

Page Info
T1

T5
404

204

284

bbbb kkkk

yyyy

aaaa

cccc

dddd

20 24 28 40

 
Figure 5. Deferred Logging Example 
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occurring. Log entries of T1 explain the update history such as 4 

bytes of image „aaaa‟ is changed into „xxxx‟ at offset 20 and 4 

bytes of image „cccc‟ is changed into „zzzz‟ at offset 28. The data 

page contains the post-update image and the log entry contains the 

pre-update image. After the update of „yyyy‟ is executed, the log 

entries of T1 will be compacted into a new log entry representing 

that 12 bytes of image „aaaabbbbcccc‟ is changed into 

„xxxxyyyyzzzz‟ at offset 20. In the similar manner, if there is a 

new update of which area is identical with the existing log entry, 

copying the post-update image to the data page is the only 

necessary operation without modifying the existing log entry since 

the existing log entry already has the pre-update image. 

A log entry is converted into a log record when one of two events 

happens. First, when a transaction commits, data pages updated 

by the transaction are found at the buffer pool (which can be 

managed by a certain data structure), log entries for each page are 

converted into log records, log records are written to a log page 

and then the log page is flushed to disk. As soon as the log record 

is written to the log page, the LSN of the data pages is updated 

accordingly. Second, when a data page is evicted, log entries of 

the page are converted into log records, and the log records are 

written to a log page, and then the log page is flushed to disk. The 

LSN of the page is also updated. There is a difference between 

two events in the perspective of log entries. When a transaction 

commits, log entries only from the transaction are converted into 

log records, by contrast, when a page is evicted, all log entries 

from the page are converted into log records. 

When a transaction aborts, the pre-update images in the log 

entries of the transaction are restored and then the pre-update 

images in the log records from the transaction are reflected if any. 

There is no special treatment for deferred logging during recovery 

process since the log entry is only managed at the main memory 

so that if system crashes, we can restore the consistent state of the 

database by following ARIES recovery scheme. 

The rationale described so far can be applied to not only physical 

logging but also physiological logging as far as 2PL protocol is 

followed by both logging methods. 

5.2 Coupling with Adaptive Logging 
Deferred logging in itself is a complete method which can 

improve logging overhead by compacting log entries. Also 

deferred logging can be coupled with adaptive logging seamlessly, 

which can remove the overhead of writing useless log records in 

adaptive logging. 

As described in Section 4.2, without deferred logging, if the 

switching from ARIES to shadow paging occurs on a data page, 

log records created from the page before the switching should be 

written at most on commit time even if the page survives from the 

eviction. However, with deferred logging, log entries (not log 

records) created from the data page before the switching can be 

discarded as soon as the switching is completed. This is enabled 

by keeping the log entries in the separate memory from the log 

page. Consequently, the overhead of writing useless log records is 

disappeared in adaptive logging. 

6. RELATED WORK 
We survey related work to the problems that we address. First we 

discuss other approaches with support for hybrid logging and then 

we discuss approaches related with deferred logging and log 

compaction.  

Cabrera et al. [6] showed that no single recovery method provides 

the satisfactory performance to all transaction types. They then 

proposed to choose an appropriate recovery method according to 

the property of the transactions. For example, ARIES is applied to 

small update transactions and shadow paging is used for large 

update transactions, especially for updating large objects. 

However, this static hybrid approach is applicable only to a 

situation where all the properties of the transactions are known 

before the transactions start. Furthermore, although the properties 

are known in advance, two transactions which show different 

update patterns to the same page can not be handled effectively. 

Page-oriented recovery has constraints in handling a record larger 

than a page and reordering updates to the same page due to the 

LSNs on pages. Segment-based recovery [17] overcomes these 

constraints by introducing a segment, which is a set of bytes 

which may span page boundaries, with LSN-free pages [13]. It 

also shows how to build a hybrid system allowing ARIES and 

segments to coexist but it doesn‟t work adaptively. ARIES [8] 

also does not prevent the shadow page technique from being used 

for selected potions of the data to avoid logging of only undo 

information or both undo and redo and introduces that it may be 

useful for dealing with long fields. 

Log folding technique [10] was proposed to merge logically 

redundant logs when the transferred updated information, i.e. redo 

log is reflected to the remote secondary site. Similarly, semantic 

compaction technique [11] was proposed in the context of the log-

structured B-Tree indexing [12]. This technique discards log 

records having opposite semantics and replaces multiple log 

records from the repeated update to the identical object with the 

last log record. Both techniques are different from our approach 

since we reduce the number of log records before the log records 

are created. Whereas the log folding technique omits reflecting 

logically redundant logs after the logs are transferred to the 

remote site and the semantic compaction occurs during the log 

garbage collection, which means the compaction occurs after the 

log records written to the storage. 

7. PERFORMANCE EVALUATION 
In this section, we examine the performance of adaptive logging 

and adaptive logging with deferred logging comparing with 

ARIES and shadow paging. We ignore the effect of the concurrent 

execution among transactions since it is not critical factor in 

mobile devices so far. We have implemented to our embedded 

DBMS adaptive logging coupled with deferred logging based on 

the physical logging method, i.e. all of what we have described in 

the paper except for the concurrency level. Although our approach 

can support multi-granularity locking of page- and tuple-level, we 

have implemented table-level locking currently. In order to 

evaluate the performance, we also implemented a benchmark 

based on the music browser application which generates most 

likely workloads referring to the queries, the indices, the table 

schema and the data set of the real world application which has 

been deployed to more than 10 million mobile devices. The rest of 

this section is organized as follows. Section 7.1 describes the 

experimental environment and the benchmark. Section 7.2 

through Section 7.4 analyze the performance results. 
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7.1 Setup for Experiment 
We varied the experimental parameters such as update transaction 

size, buffer size, and threshold value of adaptive logging to show 

the causality between the parameters and the performances for 

each approach. Figure 6 shows the table schema, the indices and 

the queries of the benchmark used in the experiments. Q2 and Q3 

don‟t make sense in the perspective of the semantic. However, in 

order to make it easy to vary the update transaction size instead of 

modifying the play count values, we have modified the preference 

update queries described in Section 2 into Q2 which still follows 

the update patterns of them. Also, the query in Section 2 of which 

predicate field is same with update field is reflected into Q3. With 

respect to the data set, 10,000 records were used and the average 

length of the records was around 80 bytes. During the experiments, 

the database size reached around 10 mega bytes (MB) at 

maximum. The page size was fixed to 4,096 bytes for data page 

and log page together and the same size was used as the threshold 

value of the adaptive logging. 4MB buffer pool was used. The 

performance was measured by I/O count and elapsed time. For 

proprietary reason, we provide the normalized value of them. 

Depending on the experiment, the real elapsed time took less than 

10 seconds through less than 1,000 seconds. The experiments 

were run on ARM11 500MHz MX37 Freescale chip with 8GB 

MLC NAND flash memory, running Linux 2.6. 

7.2 Varying Update Transaction Size 
Prior to running the insert/delete/update operation, we made the 

initial database which had 5,000 records prior to insert operation 

and had 10,000 records prior to update and delete operations. 

Insert operation inserted 5,000 records, where the insert operation 

was executed by varying the number of transaction such as 5,000, 

500, 50, 5, and 1, which means that each transaction inserted 1, 

10, 100, 1000 and 5,000 records, respectively. The variation of 

the number of records for each transaction to insert is to make 

variation of the update pattern of the data pages affected by the 

insert operation. Figure 7(a) and 7(e) show the result of the insert 

operation. X-axis shows the number of records for each 

transaction to insert, which means that the left side stands for the 

small update transaction and the right side stands for the large 

update transaction. Y-axis shows the I/O count and the elapsed 

time of the insert operation, which is normalized by the count and 

the elapsed time of ARIES, respectively.  

As we have expected, ARIES (denoted as aries) outperforms 

shadow paging (denoted as shadow) for small update transaction, 

but shadow paging doesn‟t show the impressive performance gap 

against ARIES for large update transaction even though it shows a 

little better result. The latter case results from the fact as follows. 

As the number of records inserted is increased within a 

transaction, the more number of new pages are allocated. As 

described in Section 2, the updates to the newly allocated pages 

do not create log records and the pages are flushed to stable 

storage on commit time. The fact is valid for all four approaches, 

which results in the small performance gap for large update 

transaction. Adaptive logging (denoted as adaptive) follows 

gracefully the performance of ARIES approach for small update 

transaction and shadow paging approach for large update 

transaction. Adaptive logging with deferred logging approach 

(denoted as adap_def) shows better performance than adaptive 

logging as a rule except for Q4. For adaptive logging and adaptive 

logging with deferred logging, the I/O count always shows better 

result than the elapsed time throughout all queries. Also, even 

though the I/O count of them shows better performance than other 

approaches, the elapsed time of them shows worse performance in 

some cases. These results from the additional overhead of CPU 

and memory operation for both adaptive approaches such as 

indirect page access through the page table, making the new 

buffer copy if necessary, memory allocation/de-allocation for log 

entry, and compacting log entries. 

Update operation is executed by a transaction which updates the 

specified percent of records on x-axis shown in Figure 7(b), 7(c), 

7(f), and 7(g). Q2 is different from Q3 at two perspectives; the 

first one is the ratio of the key duplication of the index and the 

second one is the identity between the field to be updated and the 

predicate field. The „Preference‟ field has only 10 distinct keys 

among 10,000 records, which means 1,000 records have the same 

key in average. Whereas the „ThisMonthPlayCount‟ field has the 

key values from 1 to 1,000 randomly, which means every 10 

records have the same key in average. In Q3, the field to be 

updated is the same field with the predicate field, which has more 

chance to create S-pattern when update occurs since the qualified 

key of the predicate will be collocated at the same page. As shown 

Column Name Data Type (bytes)

ID Integer (4)

Genre String (256) 

Artist String (256)

Album String (256)

Title String (256)

LatestPlayDate Integer (4)

LastMonthPlayCount Integer(4)

ThisMonthPlayCount Integer(4)

Preference Integer(4)

Type Indexed Columns

Single Column Index Every field has single column index.

Multi-Column Index (Genre, Artist), (Genre, Album), (Artist, Album), (Artist, Album, Title)

MusicTable Index

Type SQL (or Description)

Q1 : Insert Insert a specified number of new records.

Q2 : Update
update MusicTable set Preference = Preference + 1 where 

ThisMonthPlayCount < ? and LastMonthPlayCount > 0

Q3 : Update
update MusicTable set ThisMonthPlayCount = ThisMonthPlayCount + 1 

where ThisMonthPlayCount > ?

Q4 : Delete delete from MusicTable where ThisMonthPlayCount < ?

Q5 : Select select * from MusicTable where ID = ?

Query

 

  Figure 6. Table Schema, Indices, and Queries of the Benchmark 
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Q5  Q5  Q5  Q3  Q3  Q2  Q5  Q4  Q5  Q1 

in Figure 7(b) and 7(f), the effect of the key duplication at B+-tree 

index has significant impact on the performance of the update 

operation. The performance results from the sorting effect of the 

extent page of B+-tree index as described in Section 2. In terms of 

I/O count, both adaptive logging approaches outperform shadow 

paging as well as ARIES since they benefit from S-pattern at the 

extent page of the index and A-pattern at the page of the table. 

However, the elapsed time is worse than shadow paging due to the 

CPU and memory operation overhead. The performance analysis 

of Q2 can be applied to it of Q3. However, the performance 

superiority of adaptive logging approaches are less than the Q2 

case, which means that the effect of the key collocation of the 

index on the same page is less significant than the effect of sorting 

on extent page of the index.  

Just like the update operation, delete operation is executed by a 

transaction which deletes the percent of records as specified in x-

axis of Figure 7(d) and 7(h). Interestingly, adaptive logging with 

deferred logging shows the worst performance. This unusual 

result is caused by the frequent page eviction at the buffer pool. 

Unlike updating a field of record, delete involves deletion of all 

corresponding keys from the related indices. As the percent of 

records to be deleted is increased in a transaction, much more 

pages should be updated than one field update operation. When a 

page is evicted, log entries of the page are converted to log 

records at log page(s), then log page(s) is(are) flushed. Adaptive 

logging with deferred logging can flush log records only from the 

evicted page. Whereas ARIES can flush log records from all other 

updated pages together at the eviction moment. It means that 

whenever a page is evicted, flushing log records must be involved 

in deferred logging approach. Therefore, deferred logging 

approach should be used carefully considering the available buffer 

space of the system.  

Figure 8 shows the peak of the memory usage used by adaptive 

logging with deferred logging approach during the each query 

execution. For Q1, x-axis values 1% through 30% stands for the 1 

through 5,000, respectively. Most cases show the moderate 

memory usage except some cases such as 1,000/10,000 records 

insertion and 100% deletion. Considering the peak memory usage 

with the results in Figure7, we can explain that the memory usage 

can be varied according to the several parameters such as the 

number of data page updated, the compaction condition for each 

page, and also the available buffer space. 

7.3 Varying Buffer Size 
As we have described the impact of the buffer size on adaptive 

logging in Section 4, we present the result of varying buffer size 

in this section. We have tried to reflect the real world user‟s 

behavior in certain degree at this experiment. The same table 

schema, indices, and queries shown in Figure 6 were used but the 

number of records affected by the queries was fixed as follows; 

Q1 inserts 100 new records. Q2 updates 100 records. Q3 updates 

only 1 record. Q4 deletes 100 records. Q5 finds only 1 record. 

Each query consisted of single transaction. We made 10 

transactions by combining the 5 queries, which have the sequence 

as follows;  

 

 

 

(a) (b) (c) 

Figure 7. I/O Count(a to d) and Elapsed Time(e to h) Normalized by ARIES Varying Update Transaction Size 

(d) 

(e) (f) (g) (h) 

 

 Figure 8. Peak Memory Usage of Deferred Logging 
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The sequence represents that write operation is usually preceded 

by select operation. As shown in Figure 9, we changed the buffer 

size into 2MB, 4MB, and 8MB. X-axis in the figures specifies the 

number of transaction executed. For example, the number 100 

stands for 100 transactions and this means that the above 

sequence of transactions were executed 10 times and the number 

200 means the series of transactions were executed 20 times and 

so on. Y-axis shows the elapsed time normalized by ARIES. Prior 

to running each case, the initial database had 10,000 records and 

it took around 8MB size and it spanned to around 10 MB during 

the experiments. The result shows that shadow paging and two 

adaptive approaches outperforms ARIES in all cases. It explains 

that even though 20% of 1 record update operation and 50% of 

select operation were included, the elapsed time is dominated by 

the 30% of large update transactions. The more buffer size, the 

higher performance gap between two adaptive logging approaches 

and ARIES. Since two adaptive logging approaches can make a 

better decision for switching logging method and log compaction 

when the buffer space is sufficient. However, the tendency is 

opposite to shadow paging. This shows that shadow paging has 

less chance to benefit from the large buffer size than both ARIES 

and two adaptive loggings. For shadow paging, the updated pages 

should be written to the durable storage on commit time 

regardless of the buffer size. Whereas, for ARIES and two 

adaptive logging approaches, more buffer size, less chance for the 

eviction of updated pages during normal processing. When the 

buffer size is not sufficient, all approaches may face to frequent 

page eviction, but ARIES and adaptive loggings suffer from 

flushing the log page at the same time. These are very typical 

situation which shows the pros and cons of both steal/no-force 

policy of log-based approach and force policy of shadow paging. 

To make matters worse, deferred logging approach suffers the 

more frequent log converting and log flushing overhead. This is 

the reason of the worse performance than shadow paging and 

adaptive logging as described in Figure 9(a). However, the peak 

memory usage of it doesn‟t exceed more than 300 KB in all cases. 

7.4 Varying Threshold Value 
The threshold value of adaptive logging is one of the most critical 

parameter which may show different tendency of the performance. 

To show the impact of it, we have applied varying the threshold 

value of adaptive logging to two experiments run in Section 7.2 

and the 4MB buffer case of Section 7.3. The threshold value 

begins with 2KB (the half of the page size) and ends to 32KB by 

doubling each value. The result of the first and the second 

experiment is shown in Figure 10 and in Figure 11, respectively. 

Y-axis of both figures presents the elapsed time normalized by the 

4KB value. In Figure 10, no specific value shows the superior 

performance than others for all cases but still the performance is 

sensitive to the threshold value. It means that assigning a 

threshold value statically can not be the appropriate solution for 

achieving optimal performance since the update state of each page 

keeps varying as the percentage of the qualified records is 

increased. If we can dynamically assign the threshold value for 

each page according to the update state of it, we can achieve 

better performance. This will be explored in our future work. 

Without this work, the page size (4KB) is the reasonable second 

choice since it is a barometer to decide whether the no-force 

policy can benefit or not and it generally shows the average 

performance in all cases. The delete operation is not sensitive to 

the threshold value from 10% interval due to the frequent page 

eviction as described in Section 7.2. Unlike the result of the 

separate operations in Figure 10, the result of the mixed 

operations in Figure 11 shows a tendency. 8KB shows the best 

performance in all cases. As the threshold value is increased, the 

   

 

 

 

(a) (b) (c) 

Figure 9. Elapsed Time Normalized by ARIES Varying Buffer Size 

 

 

 

 

(a) (b) (c) 

Figure 10. Elapsed Time Normalized by 4KB Threshold Varying Threshold Value 

(d) 
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performance is also getting better until reaching to 8KB. After 

8KB, however, the result is getting worse. This means that there is 

a threshold value which can outperform others. However, the best 

threshold value is unknown in advance for the upcoming 

workloads, still the page size is the reasonable choice as shown in 

the result. 

8. CONCLUSIONS 
We have proposed adaptive logging as well as deferred logging to 

reduce logging overhead and showed the benefit by evaluating 

them through a real world application on a mobile device. 

Adaptive logging works based on ARIES and shadow paging 

adaptively according to the update patterns of each page, which 

overcomes the limitation of the conventional static logging 

approach. Deferred logging provides a chance to reduce log size 

by compacting redundant log entries and also removes the 

overhead of writing useless log records in adaptive logging. 

Dynamic assignment of the threshold value of adaptive logging 

will be explored in our future work. 

Even though we verified our approaches based on physical 

logging, we believe that the idea also can be applied to 

physiological logging. Furthermore, although we found the 

problem from applications on the mobile devices, our approach 

can be applied to the server-side DBMS as long as the workloads 

have the update patterns of both small update transaction and 

large update transaction. 
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