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ABSTRACT
Mobile commerce and location based services (LBS) are some of
the fastest growing IT industries in the last five years. Location
update of mobile clients is a fundamental capability in mobile com-
merce and all types of LBS. Higher update frequency leads to higher
accuracy, but incurs unacceptably high cost of location manage-
ment at the location servers. We propose ROADTRACK – a road-
network based, query-aware location update framework with two
unique features. First, we introduce the concept of precincts to con-
trol the granularity of location update resolution for mobile clients
that are not of interest to any active location query services. Sec-
ond, we define query encounter points for mobile objects that are
targets of active location query services, and utilize these encounter
points to define the adequate location update schedule for each mo-
bile. The ROADTRACK framework offers three unique advantages.
First, encounter points as a fundamental query awareness mecha-
nism enable us to control and differentiate location update strate-
gies for mobile clients in the vicinity of active location queries,
while meeting the needs of location query evaluation. Second, we
employ system-defined precincts to manage the desired spatial res-
olution of location updates for different mobile clients and to con-
trol the scope of query awareness to be capitalized by a location
update strategy. Third, our road-network based check-free inter-
val optimization further enhances the effectiveness of the ROAD-
TRACK query-aware location update scheduling algorithm. This
optimization provides significant cost reduction for location update
management at both mobile clients and location servers. We eval-
uate the ROADTRACK location update approach using a real world
road-network based mobility simulator. Our experimental results
demonstrate that the ROADTRACK query aware location update ap-
proach outperforms existing representative location update strate-
gies in terms of both client energy efficiency and server processing
load.

1. INTRODUCTION
We are entering a wireless and mobile Internet era where peo-

ple and vehicles are connected at all times. In the past five years
we have witnessed an astonishing growth of mobile commerce and
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location based applications and services, which not only extend
many traditional businesses into new product offerings (e.g., lo-
cation based advertisement, location based entertainment) but also
create many opportunities for new businesses and innovations. Con-
sider a metropolitan area with hundreds of thousands of vehicles.
Drivers and passengers in these vehicles are interested in informa-
tion relevant to their trips. For example, some driver would like her
vehicle to continuously display on a map the list of Starbucks cof-
fee shops within 10 miles of her current location. Another driver
may want to monitor the traffic conditions five miles ahead of its
current location (e.g., traffic flow speed). The challenge is how to
effectively monitor the location updates of mobile users and con-
tinuously serve location queries (traffic conditions, parking spaces,
Starbucks coffee shops) with an acceptable delay, overhead, and
accuracy, as the mobile users move on the road.

There are two key performance challenges that may affect the
system scalability and service quality in future mobile systems sup-
porting location-dependent services and applications: (1) the high
cost of network bandwidth and energy consumed on the mobile
clients for frequent location tracking and updates at the location
servers; and (2) the challenge of scaling large amount of location
updates at the location server as the number of mobile clients de-
manding to be tracked increases in a location determination sys-
tem. Furthermore, handling frequent load peaks at location up-
date synchronization points is also a challenge, since the server has
to simultaneously handle location updates from a large number of
mobile clients, and re-evaluate all registered spatial location query
services.
Location Update Problems and Existing Approaches
Monitoring location updates and evaluation of location queries over
static and moving objects upon location updates have become the
necessity for many mobile systems and location-based applications,
such as fleet management, cargo tracking, child care, and location-
based advertisement and entertainment. Frequent updates cause
high update processing cost at the location server and high power
consumption at the mobile clients [1]. Several European mobile
service providers have started the cost-based location management
for mobile object tracking. For instance, different pricing models
are applied to high frequency location updates at different time in-
tervals, such as every three minutes, every one minute, every 30
seconds, and so forth.

In contrast to location determination systems where localiza-
tion techniques are employed to determine the position of a mo-
bile subscriber within the area serviced by the wireless network,
the location update management addresses the problem of when
and where to update the locations of mobile subscribers currently
hosted in the system. Representative location update strategies to
date include periodic update (time based scheme), point-based up-
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date using dead-reckoning, velocity vector based update, and seg-
mentbased updates [2]. However, existing location update strate-
gies are inefficient because i) they are common to all mobile users,
and ii) they assume that location updates of mobile clients are au-
tonomous and all mobile users should manage their location up-
dates using a uniform strategy. To the best of our knowledge, no
customization or differentiation is incorporated to the design of lo-
cation update management strategies.

We argue that, as mobile and hand-held devices become more
pervasive, more capable, and both GPS and WiFi enabled [3, 4],
as the operation cost of location update management continues to
grow, these assumptions are no longer realistic. For instance, most
of the mobile systems and applications today need to manage a
large and evolving number of mobile objects. Often, only a subset
of mobile objects is of interest to registered location query services.
Thus, tracking location updates of all mobile clients uniformly is
no longer a cost effective solution. It is obvious that the location
update strategy for those clients that are of no interest to any nearby
and active location query services should be different from and less
costly compared to the location update strategy designed for mobile
objects that are the targets of active location query services in the
system.

Motivated by these observations, in this paper we present ROAD-
TRACK − a road-network based, query-aware location update frame-
work by introducing precincts and encounter points as two basic
techniques to confine location updates to the need of existing lo-
cation query services. These two basic building blocks enable us
to effectively differentiate and manage location updates for mobile
objects traveling on road networks. We utilize precincts to manage
the spatial resolution of location updates for mobile clients that are
not immediate targets of any existing location query services. We
introduce encounter points to implement the query-aware location
update strategy for mobile clients nearby active location queries.
By combining precincts and encounter points, we can balance the
benefit and cost of query awareness and speed up the computation
of encounter points. The ROADTRACK location update manage-
ment offers three unique advantages. First, encounter points as
a fundamental query awareness mechanism enable us to control
and differentiate location update strategies for mobile clients in the
vicinity of active location queries from the rest. Second, by em-
ploying system-defined precincts, we can effectively manage the
desired spatial resolution of location updates for mobile clients with
different needs for query awareness. Third but not the least, we im-
prove the efficiency of ROADTRACK location update approach by
employing a suite of road-network based check-free interval opti-
mization techniques. We evaluate the ROADTRACK approach to
location update management based on a real world road-network
mobility simulator [5]. Our experimental results show that by mak-
ing location update managementquery aware, ROADTRACK ap-
proach significantly outperforms existing representative location
update strategies in terms of both client energy efficiency and server
processing load.

The rest of the paper is organized as follows: We outline the
reference system model and discuss the design philosophy through
an analysis of existing representative location update strategies in
Section 2. In Section 3, we introduce the concept, the computation,
and the usage of encounter points and the precinct and encounter
based location update strategy, including the data structure used
at both the server and the client side. We present the encounter
points based check-free interval optimization in Section 4. Sec-
tion 5 reports our experimental evaluation on the effectiveness of
our ROADTRACK query aware location update approach. We con-
clude the paper with related work and a summary of contributions.
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Figure 1: Overview of the system architecture

2. SYSTEM OVERVIEW
A location update and monitoring system typically consists of

a location database server, some base-stations, application servers,
and a large number of mobile objects (mobile clients) and static
objects (such as gas stations, restaurants, and so on). The location
database server (location server for short) manages the locations
of the moving objects. The application servers register location
queries of interest, and synchronize with the location server to con-
tinuously evaluate the queries against location updates.

Figure 1 gives an architectural overview of the reference location
monitoring system used in the context of ROADTRACK develop-
ment. We assume that mobile clients and the location server have
a local copy of the same road network database that constrains the
movement of the clients; clients may store this on an SD card. For
the clients with limited storage, a tile based partitioning of the road
network map can be used [6]. We assume that the mobile clients
are able to communicate with the server through wireless data chan-
nel, and they have computing capabilities to run our light-weighted
road network locator, which uses a static R-tree index on road seg-
ments to find their own road network locations based on their GPS
positions through map matching. Mobile clients may also obtain
their positions from the location determination system they sub-
scribe to, such as Google’s locator service available on iPhone and
other hand-held devices.

2.1 Road network model
The road network is represented by a single undirected graph

G = (V, E), composed of the junction nodesV = {n0, n1, . . . , nN}
and undirected edgesE = {ninj |ni, nj ∈ V}. In this paper we
frequently refer to an edgeninj as a road segment connecting the
two end nodesni andnj . The listing order of the two end nodes of
a segmentninj serves as the basis to determine the direction of the
progress coordinate axis from nodeni to nodenj along the seg-
mentninj . In other words, the segmentninj runs fromp = 0 at
the first listed node (ni) to p = length(ninj) at the second listed
node (nj). Though in this paper we model the road network using
undirected graphs for simplicity, our methods can be extended to
directed graphs. Junction nodes have either two or more connect-
ing road segments, or are dead-end nodes with only one connecting
road segment. Aroad network location, denoted byL = (ninj , p),
is a tuple of two elements: a road network segmentninj and the
progress p along the segment. The road network distance is used
as the distance metric in our system. The distance between two lo-
cationsL1 = (ni0ni1 , p1) andL2 = (ni

k
ni

k+1
, p2) is the length

of the shortest path between the two positionsL1 andL2, formally
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defined as follows:

dist(L1, L2) = length(ni0ni1)− p1 + p2

+ min
{i1,i2,...,ik}

k−1∑

α=1

length(niαni
α+1

).

2.2 Design Guidelines
A number of positioning systems are made publicly available for

tracking the location update of mobile objects moving on the road
network, such as Google’s Latitude and Skyhook wireless WiFi po-
sitioning system [3]. Frequent location updates enable the location
server to keep track of mobile clients’ current locations and ensure
the accuracy of the location query results. The algorithm that mo-
bile clients employ to determine when and where to update their
locations is often referred to as the location update strategy. We
below describe the motivation, the advantages, and the challenges
of our query-aware location update framework by analyzing and
comparing a number of representative location update strategies.
Periodic update strategy. A periodic update strategy is the sim-
plest time-based location update strategy, in which the location
server maintains the location update for each mobile client at a fixed
time interval. This update strategy implies that mobile clients are
treated as stationary between updates.
Point-based update strategy. This approach uses the distance-
based scheme and the server only record an update when the mobile
client travels more than a delta threshold away in distance from the
location of last update. The number of location updates per unit
time will depend upon the speed of the mobile user.
Vector-based update strategy. A vector based update strategy
uses the velocity vector of the mobile client to make a simple pre-
diction about its location. An update is only sent when the current
location of the mobile client deviates from its predicted location by
an amount that is larger than a system-defined delta distance thresh-
old. This strategy treats the velocity vector of the client as constant
between updates.
Segment based update strategy.A segment based update strategy
utilizes the underlying road network to limit the number of updates.
Mobile clients are assumed to move at a constant speed on their cur-
rent road segment. An update is sent when the distance between the
current and the predicted location is larger than a system-defined
delta threshold. We assume that mobile clients change their veloc-
ities at the end of each segment, i.e., the mobile client is assumed
to have stopped at the segment end node and can change its move-
ment speed and direction and move forward accordingly. Thus an
update will be sent when the mobile client departs from a segment
end node by delta distance. We refer the reader to [2] for more on
these strategies.
Motivation of Our Approach.
We have discussed four representative location update strategies
and each of them has some weakness in terms of both client energy-
efficiency and network bandwidth or server load optimization. Fur-
thermore they all suffer from the common inefficiency− the lo-
cation update decision of mobile clients is independent of whether
there are any location query requests nearby. It is obvious that when
mobile clients travel in a region where there are no location queries,
one can benefit by using a location update strategy that enable the
location server to record their location updates at some critical lo-
cation points, leading to significant saving in terms of client energy
and bandwidth consumption as well as server load reduction. In
ROADTRACK two criteria are used to determine what should be
considered as critical location update points. First, we need to in-
crease the location query awareness of mobile clients. By making

mobile users aware of queries in their vicinity, one can avoid mak-
ing those superfluous updates. Second, we need to maintain certain
freshness of location updates for those mobile clients that are not
in the vicinity of any location queries to maintain adequate location
tracking capability of the system. The second criterion ensures that
all mobile clients need to update their current location at the loca-
tion server from time to time in order to keep their location record
update to date at the location server, though different mobile clients
may use different scale of location resolution.

Bearing these two design guidelines in mind, we develop aquery-
aware, precinct based update strategy. Concretely, we introduce
the concept of encounter point and the concept of precinct as two
building blocks. By keeping track of the encounter points for each
mobile client moving on the road network, we are able to use the
query awareness to differentiate the location update strategy used
for mobile clients that are in the vicinity of active queries from the
location update strategy used for the mobile clients that are not tar-
gets of any location queries. The use of precincts constrains the set
of encounter points that a mobile client needs to keep track of to
be small, and sets an upper bound on when the mobile clients have
to update their locations regardless of whether there are location
queries nearby. To further reduce the cost of checking whether a
mobile is close to the border points of its current precinct or one
of its encounter points, we develop a road network distance based
check-free interval optimization, providing significant reduction in
terms of the number of wakeups at the mobile client and the server
update load.

The ROADTRACK query aware location update strategy is appli-
cable to all moving objects in a road network setting, be it vehi-
cles or pedestrians. This research is based on the assumption that
all moving objects are either moving on the public road networks,
or walk paths such as indoor buildings or university campus walk
paths. As long as these walk paths can be modeled as graphs, our
approach can be applied directly.

3. PRECINCT BASED UPDATE STRATEGY
In this section we describe the basic design of our precinct and

encounter point based location update method, and defer the check-
free interval based optimization to the next section.

3.1 Precinct and Encounter Point
Precinct.
Precinct is introduced in ROADTRACK for dual purposes. First,
every mobile object is associated with a precinct in which it cur-
rently resides. We use precinct as the spatial upper bound to en-
force location updates of all mobiles when they cross their current
precinct boundary and enter a new neighbor precinct. Second, we
employ precinct to limit the scope of query awareness and balance
the tradeoff between the level of location accuracy maintained at
the server and the reduction of location update cost at the server.
For example, queries about the restaurants in Miami are far away
from the current location of a mobile client traveling in Atlanta
downtown. Thus, the mobile clients in Atlanta downtown should
not be made aware of queries about restaurants in Miami. By in-
troducing system-definedprecincts, we can conveniently limit the
scope of query awareness for mobile clients residing within their
precincts. This also ensures that the number of encounter points
maintained at a mobile client is small.

A precinctP = {VP , EP } is a subgraph of the road network
G = (V, E) whereVP ⊂ V andEP ⊂ E . Nodes inVP are either
internal or border nodes. Each internal node is reachable from
all other nodes of a precinct on a path composed of only internal
nodes. All edges inE that are connected to an internal node in
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Figure 2: Four major cases for determining encounter points
on the segment with end-nodesni andnj . The shaded coverage
area represents the query region of queryQ(R,F ) computedR
road network distance away from focal locationF .

VP are also inEP . The partitioning of the road network graph is
created during the system initialization, and is stored together with
the road network data maintained at both the server and the mobile
clients. We present the precinct construction algorithms in the next
section.
Encounter Points.
We first informally introduce the concept of encounter point. Let
P = {VP , EP } denote a precinct andQ(R,F ) denote an active
location query, whereR is the query radius in road network dis-
tance andF is the focal location ofQ represented using the road
network location defined in Section 2. The queryQ is said to be
relevant to the precinctP if a segmentninj ∈ EP is entirely in-
cluded in the query regionR as shown in Figure 2(a) or partially
covered by the query regionR. Assume that the shaded area in
Figure 2 represents the query region computed in terms of road net-
work distance from the focal location of the query, e.g., the query
range of 2 miles from the focal locationF . If a segment crosses
the query boundary, i.e., one end-node is inside the query region
and the other end-node is outsideR, then we say that the segment
is partially covered by the query. We call the road network location
where a partially covered segment crosses the query boundary an
encounter point. Figure 2(b) shows an example encounter pointE.
It is important to note that even if both end-nodes are inside the
query region, the segment may only be partially covered, if there
exists a network locationL on the segment whose distance toF is
greater than the query range specified, i.e.,∃L|dist(F,L) > R.
In this case there are two encounter points for the query on a sin-
gle segment (see Figure 2(c)). When the query range is small, it
is possible that the query only covers a portion of the segment on
which the query focal locationF resides, thus there are two en-
counter points on a single segment but with both end-nodes outside
the query region (Figure 2(d)).

Formally, given a set of location queries(Q) over the road net-
work G = (V, E), one can determine the set of encounter points
EF = {E1, . . . , En}, each of which (Ej) is associated with a
range queryQi(Ri, Fi) with focal locationFi and rangeRi, and

is represented as a road network location that is exactlyRi dis-
tance fromFi. In other words, the set of encounter pointsE sat-
isfies that∀Ei ∈ EF , ∃Qi(Ri, Fi) such thatdist(Fi, Ei) = Ri

and@L|dist(Fi, L) = R ∧ L 6∈ EF , i.e., every encounter point
is a road network location that is exactly rangeRi distance from
Fi. The encounter points are defined on the road network. When
a mobile client meets or crosses an encounter point, it indicates
that the client exits or enters the scope in which the query result is
computed. Therefore, we use the encounter points as the critical
location reference points for those mobile clients to update their lo-
cations at the server whenever they encounter these critical points
on the move.
Comparison with existing update strategies.
In Figure 3(a) we show five mobile clients traveling on a portion of
a road network, each following a distinct update strategy. The two
precincts (west and east) have the common border pointsB3, B4,
B9, B10, and connect to the rest of the road network at all the other
border points (all border points shown as black squares).M1 (up-
per left) is doing segment-based updates, triggering updates each
time the client departs a segment end-node bydelta distance. The
grey circles show the delta-radius circles around the mobile’s loca-
tion when the updates occur.M2 (upper right) has a point-based
update strategy, and thus sends an update whenever its current lo-
cation is at leastdelta distance from its last reported location.M3

(lower left) is a periodic update mobile client, updating everyt sec-
onds. The mobile initially travels fast, continuing at a slow pace; as
a result, updates may be spatially too sparse initially, and too dense
when speeds are low. We show the locations at the time of updates
as stars, since – unlike forM1, M2 andM4 – there is no distance
threshold for periodic updates.M4 (lower right) has a vector-based
update strategy, and consequently segment geometry along the tra-
jectory is the primary determinant of update scheduling. However,
all these mobiles’ updates are wasted, as there are no outstanding
queries on this portion of the road network. The fifth mobile client,
M5, following a RoadTrack update strategy, sends no updates, as
there are no queries present, and its trajectory does not cross any
precinct boundary points.

In Figure 3(b) a range query with focal locationF1 (sun sym-
bol) is installed, with the associated encounter pointsE11 . . . E15

(black rhombus symbol). Note that dead-ends are notE points in-
side a query coverage area (and notB points inside a precinct). We
now ask all mobiles to follow a RoadTrack strategy:M1 andM3

cross and update on precinct boundary points only (B1, B2, B3;
andB12, B11). M2 enters, then exits the query region, and thus
also updates on encounter points (B5, E13, E14, B6). M4 crosses
boundary pointB9, but remains in the same precinct, and thus only
updates onB7, B8. Note thatB9 is a real boundary point, as not
all connected segments are in the same precinct, and thus a precinct
crossing is possible; whether this occurs or not is not known in
advance, so it is imperative forM4 to considerB9 as a potential
update trigger. Finally,M5 sends no updates, as it does not cross
any B or E points. Note that being on the inside or outside of
a query region makes little difference to mobile clients: after the
initial query evaluation (during query insertion), neither client ac-
tivity completely outside, nor completely inside the query coverage
area changes the query result. Furthermore, as precincts are used
to scope query awareness, mobiles in the west precinct (e.g.M3)
need not even consider the query’s encounter points (which are all
in the east precinct).

In Figure 3(c) an additional range query is added, in the west
precinct. M1 now also updates on this new query region’s en-
counter points (E21, E22), but after entering the east precinct via
B3 it no longer needs to consider any points inside the east precinct.
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Figure 3: Example scenario with encounter points (E) and precinct border points (B) as update trigger points

3.2 Construction of Precincts
Clearly the entire road network is a legitimate precinct. Simi-

larly, the other extreme is the single-segment precinct, where each
segment of the road network is considered as one precinct. We can
use road network distance or hop count to define the size of the
preferred precincts. Assume that we use a system defined network
distance threshold to partition the road network into precincts. The
algorithm for constructing precincts is similar to a network expan-
sion algorithm. A precinct is constructed by starting at the chosen
segment and expanding along the neighboring segments and com-
puting the network distance. This process repeats until the network
distance threshold is reached. The construction process is repeated
on the remaining segments until all segments in the road network
are grouped into precinct-based partitions. A distance-metric based
partitioning usesdist(nc, nk) = dist(nc, nj) + length(njnk)
for distance expansion. The algorithm for constructing the precinct
partition of a given road network proceeds in three steps. (1) The
partition algorithm starts by marking all segments and all junctions
as ’uncovered’. (2) A precinct center nodenc is selected at from
an ordered queue of uncovered nodes (we elaborate on this order-
ing below). A queue is maintained during the precinct construction
process, which contains a list of candidate nodes in ascending order
of their distance fromnc. A node in the road network is a candidate
node for the precinct centered atnc if its distance tonc is within
the system supplied distance threshold. The queue initially con-
tains onlync. At each expansion step, the entry(nj , dist(nc, nj))
at the head of the queue is removed,nj is marked as ’internal’, and
all uncovered segments connected tonj are added to the list of seg-
ments covered by the precinct. For segmentnjnk, nk is added to
the list of nodes covered by the precinct, and this node’s distance
is calculated bydist(nc, nk) = dist(nc, nj) + length(njnk). If
nk is marked as ’border’ (for some other precinct), then it is added
to the list of nodes covered by the current precinct with a ’border’
flag; otherwise,nk is marked as ’internal’ and(nk, dist(nc, nk))
is added to the queue, unless a(nk, dist(nc, nk)

′) is already in
the queue withdist(nc, nk) ≥ dist(nc, nk)

′. When the distance
of the queue head node is larger than the specified precinct range,
the precinct construction is concluded by marking all remaining
nodes in the queue as ’border’, and adding them to the list of nodes
covered by the current precinct with the ’border’ flag. (3) The al-
gorithm continues with the creation of the next precinct until there
are no uncovered nodes. When no uncovered nodes remain, there
may still be uncovered segments, whose both end-nodes are border-
points for other precincts. Single-segment precincts are constructed
for each of these remaining uncovered segments.

An alternative approach to constructing precincts is to use the
segment count (or hop count) metric, i.e. we usedist(nc, nk) =
dist(nc, nj)+1. Figure 4 shows a partitioning of an example graph
with both methods. The randomly selected precinct center nodes
are marked byn1, n2, n3 in both cases and are selected in the or-
der of node index. Border nodes are shown with a solid square.
Single-segment precincts are highlighted with a grey background.
Both hop-count based partitioning (left in Figure 4) and the dis-
tance based partitioning (right in Figure 4) shows five precincts:
three precincts centered byn1, n2, n3 respectively and two single-
segment precincts.

As we mentioned, nodes are selected to serve as precinct centers
according to a pre-specified ordering. The ordering method has no
bearing on the correctness or utility of the precincts, but may have
implications for both the number of client wakeups and the number
of updates received by the server. As a result, we can use a random
seeding of precincts as our baseline scenario. Instead of such a
näıve approach, a node ordering heuristic may be applied, whereby
the algorithm prioritizes nodes that lie on many fast roads, as such
nodes are likely to be important traffic junctions. This means that
we score nodes by the sum of speed limits of their connecting seg-
ments, and always choose an uncovered node with the highest score
as the next precinct center. In formulating this heuristic, our expec-
tation is that if mobile clients take the shortest path to their desti-
nations, high-speed roads and junctions will see more traffic than
low-speed ones. Then, as we place junctions with high potential
throughput in precinct centers, high-traffic portions of the road net-
work are covered with relatively fewer precincts, and thus have the
prospect of saving some border-point triggered updates and allow-
ing longer check-free intervals between client wakeups.

Let deg denote the average degree of a node. Withh-hop based
partitioning, the average number of nodes in a precinct may be es-
timated as:

|VP |avg ≈ 1 + deg ·

h−1∑

i=0

(deg − 1)i,

and the average total length of the segments in a single precinct is
calculated by

LenP ≈
h∑

i=1

l · degi =
l(deg − degh+1)

1− deg
.

With d-distance based partitioning, we can substituteh = d
l

above,
wherel is the average length of a road network segment.

|VP |avg is independent of the size of the complete road network.
For each precinct, distances between all nodes are pre-computed
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Figure 5: O(1) computation of distances between two arbitrary
road network locationsL1 andL2.

using the Floyd-Warshall algorithm and stored as aD distance ma-
trix for this precinct. The complexity of this step for all precincts is

|V|
|V

P
|avg

·O(|VP |
3
avg) = O(|V|·|VP |

2
avg) = O(|V|). Thus, given a

road networkG = (V, E) and its precinct partitionP = {VP , EP },
the total storage space for theD distance matrices require |V|

|V
P
|avg

·

O(|VP |
2
avg) = O(|V| · |VP |avg) = O(|V|) storage space. The

distance between an arbitrary locationL = (ninj , p) and noden
can be computed using the node-to-node distances fromn to the
two end-nodes (ni andnj) of the segmentninj that L lies on:
dist(L, n) = min(dist(ni, n)+p, dist(nj , n)+(length(ninj)−
p)). The distance between any two locationsL1 = (ninj , p1) and
L2 = (nknl, p2) can be computed as the minimum of the lengths
of four potential routes as follows (see Figure 5):

dist(L1, L2) =

=min(routeik, routeil, routejk, routejl)

=min( dist(ni, nk) + p1 + p2,

dist(ni, nl) + p1 + (length(nknl)− p2),

dist(nj , nk) + (length(ninj)− p1) + p2,

dist(nj , nl) + (length(ninj)− p1)

− (length(nknl)− p2) ).

3.3 Data structures
In this section we give a brief overview of the data structures

used at the server-side and the client-side to facilitate the under-
standing of our precinct based location update framework.
Server side data structures.

Node Table, NT = (nid, {sid}) storesroad network nodes with
the sid segment identifiers for the segments that connect to the
node. A hash table index on thenid node identifiers allows con-
stant speed lookup.

Segment Table, ST = (sid, nid1, nid2, pid, {oid}, {qid}) stores
road network segments with the two end-nodes (nid1 andnid2).
A hash table on thesid segment identifiers allows constant speed
lookup. We store the identifier of the precinct covering the segment
(pid), the client identifiers for clients on the segment ({oid}), and
the list of query identifiers for queries (fully or partially) covering
the segment ({qid}).

Precinct Table, PT = (pid, {sid}, {(nid, isBorder)}, D) stores
information about a precinct with the identifierpid, along with the
list of road network segments covered ({sid}), the list of nodes
covered along with a flag showing whether the node is ’border’
or ’internal’ ({(nid, isBorder)}), and the pre-computed node-to-
node distance table (D).

Query Table, QT = (qid, oid, range, F , {(sid, E, dir)}, {result})
stores queries in the system with theqid query identifier, theoid
identifier of the client the query is attached to, therange specifying
the road network distance based range of the query, andF giving
the focal location of the query. The{(sid, E, dir)} list contains tu-
ples of segment identifiers of segments at least partially covered by
the query, encounter point locations for segments not fully covered
(or null for a completely covered segment), and a flag indicating
which part of the segment is inside the query region (source-side
or target-side). The{result} list stores client identifiers for the
clients that satisfy the query.

Client Table, CT = (oid, L, M) stores information about mobile
clientsin the system. The table is indexed on the client identifier
attributeoid. L is the most recently updated road network loca-
tion of the client, stored as a(sid, p) tuple, comprising of thesid
segment identifier and thep progress. TheM provides the client’s
mobility features required by the system, such as movement speed,
trajectory, and so forth.
Client side data structures

NT , ST , andPT are also present on the client side as part of
their map database.

Current Encounter points Table, CET = (sid, E, dir) contains
the encounter points found for all queries in the client’s current
precinct. Each mobile client only stores the encounter points for
the precinct that includes the segment on which it is located. The
CET is delivered to the client by the server when a client informs
the server that she enters a new precinct. Also the CET at a client
is incrementally updated by the server to reflect query insertions or
deletions.

3.4 Computing with Encounter Points
Encounter points need to be computed whenever a new query

is inserted into the system, or an existing query is terminated and
removed from the system.
Computing encounter points for query insertion
A mobile user can issue a new location queryQ by sending a mes-
sage to the server in the form of(oid, F, range). If the location
of the mobile client with identifieroid in the CT table is older than
F , its location information is updated withF and the new query is
inserted intoQT with a new unique query identifierqid.

The algorithm to calculate the encounter points and the set of
segments covered by the query maintains a queue of
(nid, dist(F, nid)) tuples, storing node distances fromF in as-
cending order; and a hash-table (initially empty) for segments, where
segment identifiers inserted into the hash-table indicate covered
segments. The algorithm starts by investigating the distances of
the two end-nodes of the segmentninj on whichF is located, to
detect any encounter points lying on this segment (Figure 2(d)). If
p > range, thenni is outside the query range, and an encounter
point is atE = (ninj , p − range); otherwiseni is inserted in
the queue. Iflength(ninj) − p > range, thennj is outside the
query range, and an encounter point is atE = (ninj , p+ range);
otherwisenj is inserted in the queue.

Tuples are removed from the queue head, and all uncovered seg-
ments reachable from the current nodeni are investigated: the
segment (of the formninj or njni) is marked as covered by in-
serting itssid in the hash-table, and the distance of the segment’s
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other end-nodenj is computedasdist(F, nj) = dist(F, ni) +
length(ninj). If dist(F, nj) > range, then the segment crosses
the query boundary, and an encounter point is located atE =
(ninj , length(ninj) − (dist(F, nj) − range)) for ninj (Fig-
ure 2(b)), or atE = (njni, dist(F, nj) − range) for njni. Oth-
erwise, the segment is entirely covered by the query region, and
the tuple(nj , dist(F, nj)) is inserted into the queue, unless an-
other(nj , dist(F, nj)

′) is already in the queue withdist(F, nj) ≥
dist(F, nj)

′. The algorithm terminates when the queue is empty,
with the list of encounter points, and the list of (completely or par-
tially) covered segmentsEq stored in the hash-table. Note that the
case of two encounter points on a single segment (Figure 2(d)) is
handled correctly by addingE1 when the current node isni, and
addingE2 when the current node isnj .

The segments inEq are retrieved from the segment tableST , and
the query identifierqid is appended to the list of queries covering
the segment.
Using encounter points to answer a query
The set of completely or partially covered segments (Eq) and en-
counter points of a query are computed using a network expansion
algorithm when the server is notified of the query insertion. The
initial result of the query is calculated by retrieving all segments
of Eq from ST , then retrieving alloid clients that are listed on
these segments. For segments with no encounter points, all mobile
clientsoid on the segment are added to the result set; otherwise
mobile client locations are retrieved fromCT to determine if they
lie inside the query region. For a client that lies on a segment with
a single encounter point,E’s location must enclose the client’s lo-
cation, determined by the condition

enclosing((E, dir), L) :=

(dir = source ∧ Loid ≤ E.p)∨

(dir = target ∧ Loid ≥ E.p),

to be added to the result set. For a client that lies on a segment
with two encounter points, we distinguish two cases: if the query
coverage extends to an area around the end-nodes (Figure 2(c);
E1.p < E2.p ∧ dir1 = target ∧ dir2 = source), then one of
enclosing((E1, dir1), Loid) orenclosing((E2, dir2), Loid)must
be true; if the query coverage area is the middle of the segment,
with the end-nodes uncovered (Figure 2(d);E1.p > E2.p∧dir1 =
source ∧ dir2 = target), then bothenclosing((E1, dir1), Loid)
andenclosing((E2, dir2), Loid) must be true.

Throughout the iteration over the segments ofEq, a list of precincts
that overlaps with the query range is built. The query will be in-
stalled on the clients residing within all these covered precincts.
However, clients in different precincts will be aware of a differ-
ent – precinct-specific – set of encounter points associated with
this query. Also some covered precincts might be exempt from
the need of being query-aware, such as those that do not contain
any encounter points. Each precinct is retrieved fromPT , and its
segments are retrieved fromST . In the first iteration over seg-
ments in the precinct, a list of encounter points found in the current
precinct are built (Epidq ). If Epid

q is not empty, then in the second
iteration clients on each segment in the current precinct are sent
a query-installation message containingEpid

q . Clients residing in
precincts that cover the boundaries of the query will be aware of
the query. Clients in precincts further away will be unaware of the
new query; and if the query range covers a sufficiently large area,
some precincts entirely covered by the query (near the central area
of the query area) will contain no encounter points, so clients in
these precincts will also be unaware.

F2

P1

F1

Figure 6: Two overlapping range queries with focal locations
F1 and F2, and radiusesd1=1.75 km andd2=1 km (left), and
precinct P1 with queries displayed (right).
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Figure 7: Check-free paths for mobilesM1, . . . ,M5, that are
inside precinct P1, when queries present are those shown on
Figure 6.

4. OPTIMIZATION WITH ENCOUNTER DE-
PENDENT CHECK-FREE INTERVAL

When a mobile client first becomes a registered user, it submits
an orientation request to the server, including her current location.
Mobile users registered with the system can be either active or dis-
connected. A mobile client is required to send a location update
message to the server in three cases: (i) When a mobile user is
becoming active from a disconnected state, she sends the location
database server a location update message of typeP . The server
responds to aP message by sending the list of encounter points
(E) in the user’s precinct. (ii) When a mobile user is crossing a
precinct boundary (UB(oid, L)), she sends the server a location
update message of typeB. The server responds to theB-message
by sending the list of all current encounter points (E) found inside
the new precinct. (iii) When a mobile user is crossing an encounter
point (UE(oid, L,E)), the client sends to the server a location up-
date message of typeE. When the server receives an E-message,
it updates the result set of the query attached to theE encounter
point, either inserting (when entering a query region) or removing
(when exiting a query region)oid, and notifying the issuer of the
query corresponding to the encounter point of the change in the
result set of the query.

A näıve approach to implementing the precinct-based location
update scheduling is periodic checking of whether a mobile client
has crossed a boundary point or encounter point and thus needs
to send a location update to the server. Such decision is typically
made based on the motion behavior of the client, the nearby queries
and the corresponding encounter points, and the precinct boundary
points. An obvious drawback of the periodic checking method is
the unnecessary energy and resource consumption at each mobile
client, especially when the mobile client is far away from any of
the boundary points or encounter points for a given time period.
We optimize the periodic checking method by introducing the road
network based check-free interval mechanisms, which allows us to
significantly enhance the performance of our precinct-based update
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scheduling algorithm.
Check-Free Road Network Locations
For each mobile user, we can compute a road network based check-
free zone, based on its road network locationLc, its movement
speed, its trajectory if available, and all the encounter points (E)
and boundary points (B) of its current precinct. By check-free,
we mean that as long as the mobile client travels within this por-
tion of the network, no location update is necessary. One way to
compute the check-free locations of a mobile client is to start from
its current network location and perform the following three tasks.
First, find the dominating encounter points and boundary points.
Second, compute all the paths from the client’s current location to
every dominating encounter point or boundary point. We call these
paths dominating check-free paths. Third, compute the region cov-
ered by the dominating check-free paths obtained in the previous
step. Intuitively the dominating encounter or boundary points are
those that are closer to the current network location of the mobile
client. Given two encounter pointsE1 andE2, if the distance of
E1 toLc is smaller than the distance ofE2 toLc and the path from
Lc to E1 is covered by the path fromLc to E2, then we sayE1 is
dominatingE2 with respect toLc.
Check-Free Interval
In order to detect when a mobile user on the move crosses an en-
counter point or a precinct boundary point, we need to determine
when to perform the crossing check. To address the inefficiency of
periodic checking for the mobile clients that are far away from any
encounter point or boundary point, we introduce the check method
based on acheck-free interval computed for each mobile client. A
check-free interval is the longest time that a client can sleep with-
out comparing its location against any dominating boundary or en-
counter points, while being assured that any such update triggering
points are not missed. The check-free interval can be computed as
the shortest of the maximum-speed weighted distances (i.e., short-
est travel time) to allB andE points within the current precinct.
The maximum speed is a road segment specific constant (vseg

max)
stored with the road network data. The pre-calculated node-to-node
distance tableD is used for the fast calculation of thecheck-free
path lengths (Figure 5). For a given road network locationLc, the
check-free intervaltcf is computed as follows:

tcf = min
L∈B∪E

dist(Lc, L)

vsegmax

.

Consider the case of two overlapping queries on the road net-
work withF1 andF2 as the focal location respectively as shown in
Figure 6. For the purposes of the check-free interval computation,
it is actually irrelevant to consider which parts of the segment are
inside or outside one, two, or more query regions; only the loca-
tions ofE andB points are important. The check-free paths for
five mobiles (M1,M2,M3,M4,M5) in this example are shown as
darker line fragments in Figure 7.
Detection of crossing encounter or boundary points
We compute a check-free interval for every mobile client in the
context of its current precinct using all the encounter points and
boundary points. The mobile client does not need to perform any
crossing check with respect to the encounter points and boundary
points until its check-free interval is over. The mobile client may
enter sleep mode if it does not have other active services. Upon
the expiration of its check-free interval, the mobile client needs to
determine whether it has crossed anyE orB points. If the precinct
(pid) of the segment at the last location is different than the precinct
of the current location, then the client has crossed at least oneB
point, and thus aUB update is issued to the server, which in turn
sends the encounter point setE of the new precinct to this client.

If no precinct change has occurred, then we perform the en-
counter point crossing detection. Given the last and current loca-
tions, there may be multiple paths between the two locations and
each path may have a different set of E points. Given that the result
of a query is independent of which concrete path the mobile has
actually taken to move from the last location to the current loca-
tion, any path between the last and the current location is suitable.
We choose the shortest path to collect the E points located on this
path. For any setEq of encounter points associated with a query,
crossing an even number of E points will leave the query result un-
changed, since the mobile remains inside (or remains outside) the
query range bounded by the two E points both before and after his
movement. However, if there are an odd number of E points on this
shortest path, this means that the overall movement of the mobile
changes the query result. For all queries that have an associated
E point on the shortest path, we determine the number of E points
owned by that query. If any of these numbers is odd, then a query
result has changed, and anUE update is issued.

5. EXPERIMENTAL EVALUATION
In this section we present the experimental evaluation of our

query-aware location update approach through four sets of exper-
iments. We first compare our ROADTRACK location update ap-
proach with the four representative update strategies discussed in
Section 2 in terms of number of updates per unit time at both server
and client under two types of road networks: urban and rural. We
show that the query-aware location update strategy significantly
outperforms existing update strategies in terms of both client com-
putation cost (#wakeups) and server updates for both urban and
rural road networks. The second set of experiments measures the
scalability of ROADTRACK by varying the number of mobile ob-
jects in the system. The third set of experiments examines the effect
of different mobility models of mobile clients, different query char-
acteristics, and the precinct size on the effectiveness of our query
aware location update approach. Our experiments show that the
query-aware update strategy offers consistent performance in terms
of both server update load and client wakeup load under different
road network mobility models, different precinct sizes , different
query loads, different query radius, and different query distribution
models (uniform and hotspot). The last set of experiments exam-
ines the cost of precinct construction in terms of computation time,
average number of nodes, number of precincts, size of precinct.

5.1 Experiment setup
We use real road networks obtained from the US Census Bu-

reau’s TIGER/Line collection [7] in our experiments (Table 1). Max-
imum speeds are specified for each of four road classes at 30 mph
for residential, 55 mph for highway, 70 mph for freeway, and 30 mph
for freeway interchange (i.e. 48, 89, 113 and 48 km/h).

We created an event-based simulator for the evaluation of our
framework. Instead of applying a timestepping approach, a cen-
tral ordered event queue is used to schedule four types of events:
change in the mobility pattern of an object (velocity vector change),
query insertion, query deletion, and client wakeup. The single-
threaded simulation consists of removing the events from the queue
head, taking the assigned event action (eg. run client code on client
wakeup, which might issue an update, which in turn causes the ex-
ecution of server code), and inserting new events into the queue
(such as the next requested wakeup with a future timestamp). The
queue is initiated with the mobility pattern change and query in-
sertion/deletion events, generated by amobility model and query
model, for the entire requested duration of the simulation. We con-
sider two mobility models in this paper: random waypoint move-
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Table 1: Road networks used in experiments
Style County location Total length Segments Junctions Avg. segment length Junction degree

urban Miami-Dade, FL 15 650 km (315 h) 109 416 79 101 143.0 m (10.4 sec) mean: 3.4, max: 8
rural Coconino, AZ 36 212 km (733 h) 81 918 67 911 442.1 m (32.2 sec) mean: 2.4, max: 6
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Figure 8: Scaling of update strategies with number of mobile
clients (rural map, partition r = 4×)

ment on road network (RWR), and random trip model on road net-
work (RTR). In both mobility models, each mobile object moves
independently of others, with a speed that changes only when en-
tering a new segment, and which is chosen according to the speed
limit and speed distribution defined for the segment. In a RWR
model, the client selects and travels a new segment at random at
each junction; then repeats. In a RTR model, the client chooses a
random trip destination on the map, travels the fastest route; then
repeats. Client speeds are chosen from a bell-curve distribution (a
Gaussian with a standard deviation of 0.2 times the mean) that is
cropped above its mean (segment speed limit).

The query model we used maintains a 10% location query load
in the system by default (i.e., the number of queries is one tenth of
the number of mobile clients). Note that this is an aggressive query
load, as it signifies that our system actively engages the attention of
1

10
th of the population at any one time. Query ranges are chosen

from a Gaussian distribution with a mean of 1 km, and standard
deviation of 0.1 km. In order to simulate a more realistic scenario
than that given by a uniform distribution of query centers, we create
a query hotspot scenario, whereby queries are highly concentrated
in some region of the map. The center of a hotspot is a road network
location chosen from a random distribution over all road network
locations in the network. Once the hotspot center is established,
a weight is assigned to each road segment in the network. If the
shortest road network distance between the hotspot center and the
mid-point of a segment isd in kilometers, then we assign the weight
wi = αd, with α = 0.5. Each segment then has awi∑

i
w

i

chance
of being selected as a query center location. Finally, the mobile
object closest to the midpoint of the selected segment is chosen as
the query’s originator.

5.2 Messaging cost of update strategies
We compare the number of client wakeups and server update

loads for various location update approaches by varying the number
of users in the system. This set of experiments uses a client popu-
lation with size ranging from5000 to 20 000 clients. We compare
the following strategies: (1) periodic updates every 15 seconds; (2)
point-based tracking, (3) vector-based tracking, (4) segment-based
tracking, and (5) encounter point-based wakeup and update strat-

egy. For the first four query unaware approaches, the wakeup fre-
quency and the reevaluation frequency at the server is set at 15 sec-
onds, and the deviation threshold is set to 25 m. For the query-
aware RoadTrack approach, we set a maximum wakeup frequency
of once every 15 seconds (4/min), in order to allow performance
of all methods at similar operating points with regards to accuracy.
The comparison on the rural Coconino County map, with parti-
tion radii of 4 times the mean segment length (i.e.,r = 1768 m)
shows that the encounter based method results in a significantly
reduced rate of wakeups (Figure 8(b)). The advantage of Road-
Track is the that wakeups are unnecessary when a client is dis-
tant from encounter points (query boundaries) and precinct bor-
der nodes. Note that periodic, point-, vector-, and segment-based
approaches all produce 4 wakeups per minute due to their 15 sec
reevaluation setting – since a check-free interval type optimization
is not available, they wastefully execute periodic self-checks.

The number of server side updates is shown in Figure 8(a). This
experiment confirms the conceptual insight that the precinct-based
RoadTrack approach outperforms all existing approaches even in
the worst case. Note that since the query load is a constant 10%,
the increase in the number of mobile clients also brings a propor-
tional increase in the number of queries at the same time. As a
result, not only does the number of mobiles per precinct increase,
but the number of encounter points per precinct also increases. As
each encounter point is an update trigger, the number of updates
issued also necessarily increases. The RoadTrack strategy allows
a reduction to 8%, 14%, 22%, and 52% of updates, relative to the
other four comparison methods, respectively, even at the highest
mobile load studied.

We further explore the scalability of our system by using precincts
with radii that are 8 times the mean segment length (i.e.,r =
3536 m), and also running the simulations on the urban Miami-
Dade County map (wherer = 1144 m). The larger precinct size
provides a significant boost for RoadTrack: Wakeups are reduced
on longer check-free intervals, as border points are – on average –
further from mobile clients (Figure 9(c)). At the highest load set-
ting, updates are reduced to 6%, 9%, 14%, and 34% of the query
unaware approaches’ updates (Figure 9(a)). The1

3
meansegment

length of the urban, high density topology means that the distance-
based partitioning creates segments that cover smaller areas, and
thus the average distance from mobile clients to precinct bound-
aries increases. The high density also means that a query with the
same radius (as measured on the roads) produces more encounter
points. These factors bring an increase in the number of both wake-
ups and updates when compared with the low-density rural map,
but the update count is still significantly lower in comparison with
the four reference strategies (11%, 28%, 31%, and 46% of the up-
dates of those methods, Figure 9(b) and 9(d)).

We also plot the effect of precinct seeding and the partitioning
metric, when no queries are present, and thus all updates and wake-
ups are triggered by precinct boundaries only (Figure 10). We point
out that the presence of precinct boundaries causes wakeups and
updates even without the presence of queries. This property, by de-
sign, ensures that the server maintains the location tracking ability
for all mobile clients, regardless of whether there are queries nearby
or not. The benefit of an encounter-based strategy over strategies
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Figure 9: Comparison of rural and urban performance (with
8× distance-metric partitioning for the two maps in Table 1)

that are query-unaware (such as periodic, point-based, etc. meth-
ods) is the reduction of unnecessary wakeups and updates. On the
other hand, if updates were only issued at query boundaries, in the
case of very few queries in a region, a client could go for an ex-
tended period of time without an update, and the server would be
unable to contact the client for a location update in order to an-
swer a new query. The requirement to issue updates at precinct
boundaries not only allows a client to be aware of query border
points in its vicinity (after the server sends this information about
the new precinct), but also allows the server to maintain an approx-
imate location (bounded by the current precinct’s boundary) of the
client’s whereabouts. These figures consistently show that larger
partitions help reduce both updates and wakeups. We compare our
precinct-based strategy with segment-based updates – at a radius
of 1 hop, precinct-based updating is very similar to segment-based
updates. As a result, the number of wakeups are only slightly im-
proved from segment-based periodic wakeups when the precinct
radius is small, but the improvement gap increases linearly with
precinct size (Figure 10(b)). The number of updates is higher for
low precinct sizes, as thedelta threshold used for segment-based
updates (and the resulting inaccuracy) is not present in RoadTrack,
but the update count drops to half of the segment-based updates at
a radius of 8 times mean segment length (Figure 10(a)).

In the following we concentrate on the urban map, which is a
more challenging terrain for RoadTrack due to the higher density
network topology.

5.3 Effect of client behavior profile
We investigate our method with respect to its sensitivity to dif-

ferent characteristics of client behavior in two dimensions: mobil-
ity model and query radius distribution (Figure 11(c) and 12(c)).
For mobility models, we consider the RWR and RTR type behav-
iors; for query size distributions, we vary the mean of the Gaussian
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Figure 10: Comparison of precinct-triggered and segment-
based strategies (urban map, precinctr = 8×)

distribution defining query radii chosen by clients, while keeping
the standard deviation of the Gaussian at 10% of the mean. Our
qualitative conclusion is that the RWR movement model is slightly
more advantageous for our approach, but this advantage decreases
as query radii increase at client side. In all other experiments re-
ported in this paper, we employ the RTR movement model, to avoid
any unfair comparisons.

5.4 Effect of precinct size and query load
We investigate the effect of precinct size on our metrics with

10 000 clients, uniform and hotspot query distribution (Figure 11(b)
and 12(b)). The simulations show that a hotspot distribution of
query centers takes advantage of the features of our approach, pro-
ducing fewer updates and wakeups.

We inject a query load varying from 0% to 40% (i.e., 0 to 4000
queries), and run measurements using distance metric partitioning
with the radius set to 4 and 8 times the mean segment length (i.e.,
r = 572 m for 4×, andr = 1144 m for 8×), with the results
shown in Figure 11(a) and 12(a). The number of wakeups decreases
with growing precinct size, as the influence of precinct boundaries
on the check-free interval decreases. As many wakeups are false
alarms (an update is not actually required), the number of wakeups
is less impacted by an increase in query load, than the number of
updates (Figure 11(a)).

5.5 Precinct construction
The number of partitions created as a function of the requested

precinct radius is shown in Figure 13(a). Distance-based partition-
ing is shown as a function of distance values that are multiples of
the average segment length of 143 m, offering convenient compar-
ison with hop-based partitioning, shown as a function of the hop
count (e.g., partitioning with ”3 [hops]”, and ”3 [times mean seg-
ment length] (= 3· 143 m)” settings are shown at the same X
axis value). The average number of graph nodes per precinct grows
only linearly with the precinct radius, largely due to the skew effect
of more ”leftover” smaller precincts when the requested precinct
size is large (Figure 13(c)). The storage space required for the pre-
computed node-to-node distance matrices is defined by the number
of node pairs per precinct. This storage requirement (Figure 13(d)),
and the wall clock time required to compute it (Figure 13(b)) grow
approximately as the square of precinct size. We remark that when
precinct center nodes are selected using our heuristic-based seed-
ing method, the number of precincts is reduced. In our experiments
– unless noted otherwise – we thus used heuristic-based precinct
seeding, and distance-metric partitioning with 8 times the mean
segment length (i.e.,r = 1144 m).

We also provide a comparison with partitioning the large rural
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Figure 11: Server update load [fastest wakeup setting:(a), (b): 15 sec,(c), (d): 5 sec]
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(d) Precinct-triggered wakeups

Figure 12: Client wakeup load (urban map) [fastest wakeup setting:(a), (b): 15 sec,(c), (d): 5 sec]

map (Figure 13(e)–13(h)), and note that while the average num-
ber of nodes per precinct is almost independent of the partition-
ing method, the number of node pairs (and the resulting increased
pre-computation time) increases markedly with distance-based par-
titioning for our rural map, due to the different topology.

6. RELATED WORK
We review three threads of related work, which are most relevant

to the location update efficiency.
The first group of work explores the idea of reducing the num-

ber of location updates in presence of a road network, but without
making mobile clients query aware. [2] gives a good summary of
the techniques. As we show in this paper, the number of location
updates can be significantly reduced when clients are query-aware,
as there is no need for clients to issue updates in locales where out-
standing queries are scarce. Even in the worst case, the precinct
based approach outperforms the existing solutions.

The second group of work explores the idea of reducing query
processing load at the server by making clients query-aware but
in a world where constraints on client mobility do not exist (i.e.,
without a road network). For example, MobiEyes [8] uses the grid
structure to define a monitoring region for each query, and only
clients within the monitoring region need to be aware of the query.
[9, 10, 11] give a solution for static continuous queries over moving
objects, by monitoring violations of safe region areas. As we show
in this paper, when road constraints on queries exist (such as a dis-
tance or travel time range measured in the network), the solution
must address the jump in complexity: we use encounter points to
implement the query awareness and identify the critical points on
road network segments where location update should be performed.
In addition, we use precincts to impose locality on query-awareness

and to set the upper bound for mobile clients to update their loca-
tions.

The third group of work explores the idea of reducing server
load for query processing in the presence of a road network. The
incorporation of road networks in server optimization of mobile
queries started to gain attraction only in recent years [12, 13]. A
most influential line of work in this group is the idea of speeding
query answering by pre-computing distances after partitioning the
road network graph [13]. However, no consideration is given to
improve the server load for query processing by utilizing a road
network based, query-aware location update scheme. We believe
that the ROADTRACK development can be beneficial for further
reduction of server load for processing location queries on road
networks.

7. CONCLUSION
In recent years, some LBS providers in European countries have

initiated a pay-as-you-go model for location tracking and location
update services, with the primary objective of avoiding unexpected
sudden load surges at location servers. For example, mobile users
can pay a fixed price for being tracked or for keeping their loca-
tion updated every five or 10 minutes. With the rapid escalation
of location based applications and services and the growing de-
mand of being informed at all times, the problem of scaling loca-
tion updates and location tracking systems and services, if not ad-
dressed, will become a performance bottleneck for the success of
the mobile commerce and mobile service industry. In this paper we
have presented ROADTRACK − a query-aware, precinct based lo-
cation update framework for scaling location updates and location
tracking services. ROADTRACK development makes three origi-
nal contributions. First, we introduce encounter points as a funda-
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Figure 13: Effects of precinct radius on partitioning with hop and distance metrics ((a)− (d) : urban, (e)− (h) : rural)

mental query awareness mechanism enable us to control and dif-
ferentiate location update strategies for mobile clients in the vicin-
ity of active location queries. Second, we employ system-defined
precincts to manage the desired spatial resolution of location up-
dates for all mobile clients and to control the scope of query aware-
ness capitalized by a location update strategy. Third but not the
least, we develop a road network distance based check-free interval
optimization, which further enhances the effectiveness of ROAD-
TRACK and enables us to effectively manage location updates of
mobile clients traveling on road networks by minimizing the un-
necessary checks of whether they have crossed an encounter point
or precinct boundary point. We evaluate the ROADTRACK location
update approach using a real world road-network based mobility
simulator. Our experimental results show that the ROADTRACK

query aware, precinct-based location update strategy outperforms
existing representative location update strategies in terms of both
client computation efficiency and server update load.
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