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ABSTRACT
Several database areas such as data exchange and integra-
tion share the problem of fixing database instance viola-
tions with respect to a set of constraints. The chase al-
gorithm solves such violations by inserting tuples and set-
ting the value of nulls. Unfortunately, the chase algorithm
may not terminate and the problem of deciding whether the
chase process terminates is undecidable. Recently there has
been an increasing interest in the identification of sufficient
structural properties of constraints which guarantee that the
chase algorithm terminates [8, 10, 14, 15].

In this paper we propose an original technique which al-
lows to improve current conditions detecting chase termi-
nation. Our proposal consists in rewriting the original set
of constraints Σ into an ‘equivalent’ set Σα and verifying
the structural properties for chase termination on Σα. The
rewriting of constraints allows to recognize larger classes of
constraints for which chase termination is guaranteed. In
particular, we show that if Σ satisfies chase termination con-
ditions T , then the rewritten set Σα satisfies T as well, but
the vice versa is not true, that is there are significant classes
of constraints for which Σα satisfies T and Σ does not.

1. INTRODUCTION
Several database areas such as data integration, data ware-

house, data exchange, consistent query answering, query op-
timization, etc., share the problem of fixing database in-
stance violations with respect to a set of constraints [4, 6,
7, 11, 12, 13]. The chase algorithm solves such violations
by inserting tuples and setting the value of nulls [1, 3]. Un-
fortunately, the chase algorithm may not terminate and the
problem of deciding whether the chase process terminates
is undecidable. Recently there has been an increasing inte-
rest in the identification of sufficient structural properties of
constraints which guarantee that the chase algorithm termi-
nates [8, 10, 14, 15]. The following example shows a set of
constraints for which the chase could be non-terminating.
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Example 1. We are given a digraph stored into the unary
relation N , denoting nodes, and the binary relation E, de-
noting oriented edges; we also have a unary relation S, de-
noting special nodes. Consider the set of constraints Σ1:

∀x [ N(x)→ ∃y E(x, y) ]
∀(x, y) [ E(x, y)→ N(y) ]

stating that i) every node must have an outgoing edge and
ii) every edge must end into a node. Assume to have the da-
tabase instance consisting of the tuple N(a). Since the da-
tabase does not satisfy the first constraint, a tuple E(a, n1)
should be inserted, where n1 is a new labeled null value.
At this point the second constraint is not satisfied and the
tuple N(n1) should be added to the database. Continuing
with the chase process of adding tuples to make the da-
tabase consistent, an infinite number of tuples E(n1, n2),
N(n2), E(n2, n3), N(n3), . . . should be inserted. 2

Fagin et al. [10] introduced the class of weakly acyclic
sets of constraints. Informally, weak acyclicity checks that
the set of constraints does not present cyclic conditions for
which a new null value forces (directly or indirectly) the in-
troduction of another null in the same position. In the above
example we have that the presence of a value in N1, i.e. in
the first position of the predicate N , forces the introduction
of a new null value in position E2, i.e. in the second position
of the predicate E, and it is denoted as N1 →∗ E2; this value
is then introduced in position N1 (denoted as E2 → N1) and
next a new null value is introduced in E2. The cycle going
through the special edge N1 →∗ E2 means that an infinite
number of nulls could be introduced.

The class of weakly acyclic sets of constraints has been
generalized in several works [8, 14, 15]. Deutsch et al. pro-
posed an extension of weak acyclicity called stratification
[8]. The idea behind stratification is to decompose the set
of constraints into independent subsets, where each subset
consists of constraints that may fire each other, and to check
each component separately for weak acyclicity. However, in
[16] it has been shown that stratification is not able to check
termination of all chase sequences (as weak acyclicity does),
but it is sufficient to state that if a set of constraints is stra-
tified, then there is at least one terminating chase sequence
which can be determined from the chase graph.

Meier et al. proposed a different extension of weak acy-
clicity called safety [15]. The improvement is based on the
fact that only the effective propagation of null values should
be considered in the graph. Thus, a variable can propagate
nulls only if all its occurrences appear in ‘affected’ positions,
i.e. positions which may actually contain null values [5]. The
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following example presents a set of constraints which is both
safe and stratified, but not weakly acyclic.

Example 2. Consider the below set of constraints Σ2

∀x [ N(x)→ ∃y E(x, y) ]
∀(x, y) [ S(y) ∧ E(x, y)→ N(y) ]

where the second constraint states that if an edge ends into
a special node y, then y must be a (normal) node as well.
This set is not weakly acyclic since N1→∗ E2 and E2 → N1.
However, E2 does not propagate null values to N1 as the
variable y also appears in the relation S which does not
contain null values. So, position N1 cannot contain nulls,
i.e. it is not affected. 2

Stratification and safety are not comparable (i.e. there are
sets of constraints which only satisfy one of the two criteria).
A different extension of weak acyclicity has been introduced
in [14] under the name of Super-weak Acyclicity (SwA). Ba-
sically, SwA takes into account the fact that variables may
appear more than once in body atoms of constraints and,
therefore, when different nulls are inserted in positions as-
sociated with the same variable, constraints are not fired.

Example 3. Let Σ3 be the below set of constraints:

r1 : ∀(x, y) [ E(x, x) ∧N(y)→ ∃z E(x, z) ∧ S(z) ]
r2 : ∀x [ S(x)→ N(x) ]

The chase process over the above set of constraints always
terminates since the first constraint will never fire itself even
transitively. Indeed, the firing of constraint r1 introduces a
null value in position E2 (different from the value in position
E1) and the body of the constraint requires that the two
values in E must coincide. 2

It is worth noting that Σ3 is super-weakly acyclic, but nei-
ther safe nor stratified (since there are database instances
for which the activation of the first constraint fires the se-
cond one and the activation of the second constraint fires the
first one). However, super-weak acyclicity, as well as other
sufficient conditions such as stratification, is not able to de-
tect other cases where chase terminates. The below example
shows a set of constraints which is neither safe nor stratified
nor super-weakly acyclic, where the chase terminates for all
database instances.

Example 4. Consider the set of constraints Σ4:

∀x [ N(x)→ ∃y E(x, y) ]
∀(x, y) [ S(x) ∧ E(x, y)→ N(y) ]

where the second constraint states that if there exists an
edge from a (special) node x to a node y, then y must be a
(normal) node as well. Assume that the database contains
the tuples S(a), N(a). Since the first constraint is not sati-
sfied, the tuple E(a, n1) is inserted. This update operation
fires the second constraint to insert the tuple N(n1) which
in turn fires the first constraint so that the tuple E(n1, n2)
is added to the database. At this point the chase terminates
since the database is consistent, i.e. the second constraint
cannot be fired because n1 is not in the relation S. 2

Thus, in this paper we propose an original technique which
allows to improve current conditions detecting chase termi-
nation. Our proposal consists in rewriting the original set

of constraints Σ into an ‘equivalent’ set Σα and verifying
the structural properties for chase termination on Σα. The
rewriting of constraints allows to recognize larger classes of
constraints for which chase termination is guaranteed. In
particular, we show that if Σ satisfies the chase termination
conditions T , defined on the base of structural properties,
then the rewritten set Σα satisfies T as well, but the vice
versa is not true, that is there are significant classes of con-
straints for which Σα satisfies T and Σ does not.

The safeness criterion improves over weak acyclicity as
it only considers affected positions, that is positions where
labeled nulls can be copied. To further improve our rewrit-
ing technique, we distinguish these positions into weakly
and strongly affected. In particular, positions where a finite
number of labeled nulls may be copied are called weakly af-
fected, whereas the remaining positions are called strongly
affected.

Contributions. In this paper a more in depth analysis to
detect sufficient conditions for chase termination is perfor-
med:

• We first analyze the relationship among current crite-
ria and show that super-weak acyclicity is not compa-
rable with (c-)stratification, but it extends safety;

• We present a technique for rewriting a set of con-
straints into an ‘equivalent’ set by adorning predicate
symbols and show that the target set allows to detect
larger classes of source constraints for which all chase
sequences terminate;

• We extend the rewriting technique to capture even
larger classes of constraints for which the chase termi-
nates by analyzing affected positions (positions which
may hold nulls);

• We introduce the classes of weakly and strongly af-
fected positions (a partition of affected positions) and
show that the rewriting algorithm can be enhanced by
taking into account the type of affected positions;

It is important to observe that for the sake of presenta-
tion we first introduce the basic technique (Section 3) and
next two improvements (Sections 4 and 5) which analyze in
depth the flow of nulls. For space limitation formal defini-
tions on previous criteria and some proofs are reported in
Appendix B and C. Complete proofs of the results reported
here will appear in the full version of the paper.

2. PRELIMINARIES
We introduce the following disjunct sets of symbols: (i)

an infinite set Consts of constants, (ii) an infinite set Nulls
of labeled nulls and (iii) an infinite set V ars of variables. A
relational schema R is a set of relational predicates R, each
with its associated arity ar(R). An instance of a relational
predicate R of arity n is a set of ground atoms in the form
R(c1, . . . , cn), where ci ∈ Consts ∪ Nulls. Such (ground)
atoms are also called tuples or facts. We denote by D a
database instance constructed on Consts and by J,K the
database instances constructed on Consts ∪ Nulls. Let K
be a database over a relational schema R and S ⊆ R, then
K[S] denotes the subset of K consisting of instances whose
predicates are in S (clearly K = K[R]). Analogously, if we
have a collection of databases KC = {K1, . . . ,Kn} where
each Ki is defined over a schema Ri and let S ⊆ ∩i∈[1...n]Ri,
then KC [S] = {K1[S], . . . ,Kn[S]}.
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A position Ri is a pair (R, i), where R is a relation pre-
dicate belonging to the schema R and i denotes the i-wise
attribute of R. Given an instance K, Nulls(K) denotes
the set of labeled nulls occurring in K. An atomic for-
mula (or atom) is of the form R(t1, ...tn) where R is a rela-
tional predicate, t1, ..., tn are terms belonging to the domain
Consts ∪ V ars and n = ar(R). Given a relational schema
R, a tuple generating dependency (TGD) over R is a for-
mula of the form r : ∀x[φR(x)→ ∃yψR(x,y)], where φR(x)
and ψR(x,y) are conjunctions of atomic formulas over R;
φR(x) is called the body of r, denoted as Body(r), while
ψR(x,y) is called the head of r, denoted as Head(r). An
equality generating dependency (EGD) over R is a formula
of the form ∀x[φR(x) → (x1 = x2)], where x1 and x2 are
among the variables in x. In the following we will omit the
subscript R from formulas, whenever the database schema
is understood and the universal quantification, since we as-
sume that variables appearing in the body are universally
quantified and variables appearing only in the head are exi-
stentially quantified. In some cases we also assume that the
head and body conjunctions are sets of atoms.

Homomorphism and Universal Solutions. Let K1

and K2 be two instances over R with values in Consts ∪
Nulls. A homomorphism h : K1 → K2 is a mapping from
Consts ∪Nulls(K1) to Consts ∪Nulls(K2) such that: (1)
h(c) = c, for every c ∈ Consts, and (2) for every fact Ri(t)
of K1, we have that Ri(h(t)) is a fact of K2 (where, if
t = (a1, ..., as), then h(t) = (h(a1), ..., h(as)) ). K1 is said
to be homomorphically equivalent to K2 if there is a homo-
morphism h:K1→K2 and a homomorphism h′: K2 → K1.

We say that D |= Σ if an instance D satisfies all the con-
straints in Σ. For any database instance D and set of con-
straints Σ over a database schema R, a solution for (D,Σ)
is an instance J such that D ⊆ J and J |= Σ. A universal
solution J is a solution such that for every solution J ′ there
exists a homomorphism h : J → J ′. The set of universal
solutions for (D,Σ) will be denoted by USol(D,Σ).

Similar to homomorphisms between instances, a homo-
morphism h from a conjunctive formula φ(x) to an instance
J is a mapping from the variables x to Consts ∪ Nulls(J)
such that for every atom R(x1, ..., xn) of φ the fact
R(h(x1), ..., h(xn)) is in J .

Chase Step. Let K be a database instance.
1. Let r be a TGD φ(x)→ ∃yψ(x,y). Let h be a homo-

morphism from φ(x) to K such that there is no exten-
sion of h to a homomorphism h′ from φ(x) ∧ ψ(x,y)
to K1. We say that r can be applied to K with homo-
morphism h. Let K′ be the union of K with the set of
facts obtained by: (a) extending h to h′ such that each
variable in y is assigned a fresh labeled null, followed
by (b) taking the image of the atoms of ψ under h′.
We say that the result of applying r to K with h is

K′, and write K →
r,h

K′.

2. Let r be an EGD φ(x)→ (x1 = x2). Let h be a homo-
morphism from φ(x) to K such that h(x1) 6= h(x2).
We say that r can be applied to K with homomor-
phism h. More specifically, we distinguish two cases.
(a) If both h(x1) and h(x2) are in Consts the result of

applying r to K with h is “failure”, and K →
r,h

⊥.
1A variant of this step is the oblivious one that applies to an
instance K if there is a homomorphism h from φ(x) to K (see
Appendix B for details).

(b) Otherwise, let K′ be K where we identify h(x1)
and h(x2) as follows: if one is a constant, then the
labeled null is replaced everywhere by the constant; if
both are labeled nulls, then one is replaced everywhere
by the other. We say that the result of applying r to

K with h is K′, and write K →
r,h

K′.

Definition 1 (Chase [10]). Let Σ be a set of TGDs
and EGDs, and let K be an instance.

• A chase sequence of K with Σ is a sequence (finite or

infinite) of chase steps Ki →
r,hi

Ki+1, with i = 0, 1, ...,
K0 = K and r a dependency in Σ.

• A finite chase of K with Σ is a finite chase sequence

Ki →
r,hi

Ki+1, 0 ≤ i < m, with the requirement that
either (a) Km =⊥ or (b) there is no dependency r of
Σ and there is no homomorphism hm such that r can
be applied to Km with hm. We say that Km is the
result of the finite chase. We refer to case (a) as the
case of a failing finite chase and we refer to case (b)
as the case of a successful finite chase. 2

Observe that whenever several chase steps apply, the chase
picks one nondeterministically. Therefore, there are instances
and sets of constraints for which certain choices lead to ter-
minating chase sequences, while others to non-termination.

In [10] it has been shown that, for any instance D and set
of constraint Σ: (i) if J is the result of some successful finite
chase of 〈D,Σ〉, then J is a universal solution; (ii) if some
failing finite chase of 〈D,Σ〉 exists, then there is no solution.

Data Exchange. A data exchange setting (S,T,Σst,Σt)
consists of a source schema S, a target schema T, a set
Σst of source-to-target dependencies, and a set Σt of tar-
get dependencies. Each source-to-target dependency in Σst

is a TGD φS(x) → ∃yψT(x,y), whereas each target de-
pendency in Σt is either a TGD φT(x) → ∃yψT(x,y) or
an EGD φT(x) → (x1 = x2). The data exchange problem
associated with this setting is the following: given a finite
source instance D over S, find a finite target instance J
over T such that 〈D, J〉 satisfies Σst and J satisfies Σt. J is
called a solution for D or, simply a solution if D is under-
stood. The set of all universal solutions for D is denoted by
USol(D,Σst ∪ Σt). Note that the input to a data exchange
problem is a source instance only; the data exchange setting
itself (i.e. source and target schemas and dependencies) is
considered fixed.

2.1 Chase termination conditions
As said in the introduction, several criteria identifying suf-

ficient conditions for chase termination have been defined
in the recent literature: Weak Acyclicity (WA) [10], Safe
Conditions (SC) [15], Stratification (Str) [8], C-Stratification
(CStr) [16], Inductive Restriction (IR) [15, 16] and Super-
Weak Acyclicity (SwA) [14]. For space limitations the for-
mal definitions of these criteria are reported in Appendix B.

Let Σ be a set of constraints over a database schema R,
then pos(Σ) denotes the set of positions Ri such that R de-
notes a relational predicate of R and there is an R-atom
appearing in Σ. Weak acyclicity is based on the constru-
ction of a directed graph dep(Σ) = (pos(Σ), E), called the
dependency graph, where E is defined as follows. For every
TGD φ(x)→ ∃yψ(x,y) in Σ, then: i) for every x in x occur-
ring in position Ri in φ and in position Sj in ψ, add an edge
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Ri → Sj (if it does not already exist); ii) for every x in x, ap-
pearing both φ (in position Ri) and in ψ, and for every y in
y appearing in position Tk in ψ, add a special edge Ri →∗ Tk
(if it does not already exist). Σ is weakly acyclic if dep(Σ)
has no cycle going through a special edge. Weak acyclicity
condition guarantees that all chase sequences terminate.

An affected position denotes a position in which null values
may appear, that is it can also take values from Nulls. A
position Ri is said to be affected in there is a constraint
r : φ(x)→ ∃yψ(x,y) in Σ and either i) there is a variable y
in y appearing in position Ri in ψ, or ii) there is a variable x
in x appearing both in position Ri in ψ and only in affected
positions in the body of r. The set of affected positions of
Σ is denoted by aff(Σ).

Given a set of TGDs Σ, the propagation graph of Σ, de-
noted as prop(Σ) = (aff(Σ), E′), is a subset of dep(Σ) =
(pos(Σ), E) such that E′ contains the edges in E whose po-
sitions are affected2. Moreover, Σ is said to be safe if prop(Σ)
does not contain cycles with special edges. Safety condition
guarantee that all chase sequences terminate as well.

The stratification builds the chase graph G(Σ) = (Σ, E)
where nodes are the constraints in Σ and an edge from ri to
rj (denoted as ri ≺ rj) means that fire of ri can cause rj to
fire. Σ is stratified iff the constraints in every cycle of G(Σ)
are weakly acyclic. Stratification guarantees, as shown in
[16], that, for every database D, there is a chase sequence
(but not all) which terminates in polynomial time in the size
of D. The following example shows such a case.

Example 5. Consider the following set of constraints Σ5:

r1 : R(x)→ S(x, x)
r2 : S(x1, x2)→ ∃z T (x2, z)
r3 : S(x1, x2)→ T (x1, x2) ∧ T (x2, x1)
r4 : T (x1, x2) ∧ T (x1, x3) ∧ T (x3, x1)→ R(x2)

taken from [16]. Σ5 is stratified since r1 ≺ r2, r1 ≺ r3 ≺ r4 ≺
r1, and the set of constraints {r1, r3, r4} is weakly acyclic.
Moreover, assuming that the database only contains the tu-
ple R(a), the chase firing repeatedly r1, r2, r3 and r4 never
terminates, while the chase which never fires r2 terminates
successfully. 2

In order to cope with this problem, the c-stratification cri-
terion has been proposed in [16]. As well as weak acyclicity
and safety, c-stratification guarantees that for every data-
base D all chase sequences terminate in polynomial time in
the size of D. A more refined extension of c-stratification
and safety has been proposed in [15, 16] under the name of
inductive restriction.

The super-weak acyclicity (SwA) builds a trigger graph
G′(Σ) = (Σ, E) where edges define relations among con-
straints. An edge ri  rj means that a null value introduced
by a constraint ri is propagated (directly or indirectly) into
the body of rj . A set of constraints Σ is super-weakly acyclic
iff the trigger graph is acyclic. With respect to other crite-
ria, SwA also takes into account the fact that a variable
may occur more than once in the same atom. SwA extends
WA and guarantees the termination of all chase sequences
in polynomial time in the size of the input database.

2.2 SwA versus SC and (C–)Str
We now analyze more deeply the relationship among the

criteria proposed in the literature. The relationship among

2Since aff(Σ) ⊆ pos(Σ)

WA, Str, CStr, SC and IR have already been investigated
in [8] and [16]. In particular, let WA, Str, CStr, IR, SC
and SwA3 denote the classes of constraints which are weakly
acyclic, stratified, c-stratified, inductively restricted, safe
and super-weakly acyclic, respectively, it has been shown
that [8, 16]:

• WA  SC, WA  CStr and CStr ∦ SC4, i.e. the
classes of constraints which are, respectively, c-stratified
and safe both generalize the class of constraints which
are weakly acyclic, but they are not comparable,

• CStr  IR and SC  IR, i.e. the c-stratified and safe
classes are generalized by the class of constraints which
are inductively restricted. Obviously CStr  Str.

We now analyze the relationship between the above di-
scussed classes and SwA. Since SwA is defined only for
oblivious chase we have to slightly reformulate, as done in
[14], the definitions of WA and SC. In particular, the weak
acyclicity and safety criteria for oblivious chase are the same
as in standard chase except that we have to add edges to
the dependency and propagation graphs “for every TGD
φ(x) → ∃yψ(x,y) and for every x in x” (see Definition 4),
relaxing the constraint that x has to occur in ψ. The com-
parisons done in this paper make the above assumption.

Concerning super-weak acyclicity and c-stratification we
have that, as stated by the following proposition, they are
not comparable.

Proposition 1. SwA ∦ CStr. 2

Corollary 1. SwA ∦ IR. 2

Since the set of constraints of Example 3 is not safe,
SwA 6⊆ SC, that is SC is not more general that SwA. There-
fore, the question is: “does SC ⊆ SwA”?

Theorem 1. SC  SwA. 2

The previous results state that Super-weak Acyclicity is
not comparable with C-Stratification and generalizes Safety.

3. CONSTRAINTS REWRITING
In this section we present a technique for checking chase

termination based on rewriting the original set of TGDs Σ
into an ‘equivalent’ set Σα and verifying the structural pro-
perties for chase termination on Σα. The technique performs
a deep analysis of constraints by considering pattern analy-
sis through the introduction of adornments associated with
predicates. The adornments here considered are similar to
those used in binding propagation in deductive databases
(e.g. magic-set) for the optimization of bound queries [2].
Before presenting our rewriting technique we introduce some
definitions concerning constraints equivalence. In particular,
the equivalence between two sets of constraints Σ1 and Σ2

defined, respectively, over two schemas R1 and R2, is given
with respect to two sets of relations R,S ⊆ R1 ∩R2 called,
respectively, input and output relations.

3We are using the calligraphic style to distinguish the class of
constraints recognized by the criterion.
4The notation A ∦ B is a shorthand for A * B and A + B.
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Definition 2 (Sets of constraints equivalence).
Given two sets of constraints Σ1 and Σ2 over the two data-
base schemas R1 and R2, respectively and two sets of rela-
tions R,S ⊆ R1∩R2, we say that 〈R1,Σ1〉 vR/S 〈R2,Σ2〉 if
for all database D over R, USol(D,Σ1)[S] ⊆ USol(D,Σ2)[S].
Moreover, we say that 〈R1,Σ1〉 and 〈R2,Σ2〉 are equivalent
with respect to R/S and write 〈R1,Σ1〉 ≡R/S 〈R2,Σ2〉 if
both 〈R1,Σ1〉 vR/S 〈R2,Σ2〉 and 〈R2,Σ2〉 vR/S 〈R1,Σ1〉. 2

When R = S = R1 ∩ R2 we simply write 〈R1,Σ1〉 v
〈R2,Σ2〉 and 〈R1,Σ1〉 ≡ 〈R2,Σ2〉.

Example 6. Consider the database schema R1 = {E(A,
B)} consisting of the binary relation E and the database
schema R2 = {E(A,B), Q(C)} consisting of the binary re-
lation E and the unary relation Q. Assume to have the
following sets of TGDs

Σ1 = {E(x, y)→ E(y, x)} and

Σ2 = {E(x, y)→ Q(x), Q(x) ∧ E(x, y)→ E(y, x)}
defined over R1 and R2, respectively.

Clearly, USol(D,Σ1)[E]=USol(D,Σ2)[E] for all databases
D over R1∩R2 = {E} and, therefore, 〈R1,Σ1〉 ≡ 〈R2,Σ2〉. 2

Adornments
An adornment α of a predicate p with arity m is a string of
length m over the alphabet {b, f}. A predicate symbol pα is
said to be adorned, whereas an adorned atom is of the form
pα1...αm(x1, ..., xm); if αi = b we say that the variable xi is
bounded, otherwise (αi = f) we say that xi is free. Intui-
tively, bounded terms can take values from finite domains;
consequently, constant terms are always adorned with the
symbol b. If each body variable of a TGD is associated with
a unique adornment we say that the adornment of the body
is coherent. Before introducing how constraints are adorned,
let us introduce some further definitions and notations.

We assume that TGDs are in standard form, that is exi-
stentially quantified variables appear within the scope of
universally quantified ones; variables appearing in constraints
with empty body are replaced by Skolem constants.

Given a TGD r : φ(x) → ∃yψ(z,y) with z ⊆ x and
let α be a coherent adornment for the body atoms, then
HeadAdn(r, φα(x)) denotes the adornment of the head of r
(with respect to the adorned body φα(x)) obtained by ador-
ning head atoms as follows: i) every universally quantified
variable has the same adornment of the body occurrences,
ii) constants are adorned as b; iii) existentially quantified
variables are adorned as f .

Rewriting algorithm
Given a set of TGDs Σ over a schema R the corresponding
rewriting set Adn(Σ) consists of the union of four sets of
TGDs: the base set Base(Σ), the derived set Derived(Σ),
the input set In(Σ) and the output set Out(Σ).

The rewriting is performed by means of the function Adn
reported in Figure 1. It starts by adorning, for each TGD,
body predicates with strings of b symbols and adorning
heads according to the body adornments by using the func-
tion HeadAdn (base set); then, each new adorned predicate
symbol is used to generate new adorned constraints until
all adorned predicate symbols are used (derived set); at the
end, TGDs mapping source relations into relations adorned
with strings of b symbols (input set) and TGDs mapping re-
lations having the same predicate and different adornments
into a unique relation (output set) are added.

Function Adn(Σ);
Input: Set of TGDs Σ over a schema R;
Output: The set of (adorned) TGDs Base∪Derived∪ In∪Out;
begin

Base = Derived = In = Out = New Pred = ∅;
// Let Bodyb(r) be the conjunction obtained by adorning
// atoms in Body(r) with strings of b symbols
Used Pred =

⋃
r∈ΣBody

b(r);

for each r ∈ Σ do begin
Base=Base ∪ {Bodyb(r)→HeadAdn(r,Bodyb(r))};
New Pred=New Pred ∪{pα|pα(t)∈HeadAdn(r,Bodyb(r))};

end for;
while (New Pred 6= ∅) do begin

Select nondeterministically pα1..αn ∈ New Pred;
New Pred = New Pred− {pα1..αn};
Used Pred = Used Pred ∪ {pα1..αn};
for each r ∈ (Base ∪Derived) do

for each pβ(x1, ..., xn) ∈ Body(r) do begin
B′ = Body(r)−{pβ(x1, ..., xn)} ∪ {pγ1..γn(x1, ..., xn)};
γi=b if xi∈Consts; γi=αi if xi∈V ars; (i ∈ [..n]);
if B′ is coherent then
Derived=Derived∪{B′→HeadAdn(Adn-1(r), B′)};
New Pred = New Pred ∪ {pω |pω appears in

HeadAdn(Adn-1(r), B′) ∧ pω 6∈ Used Pred};
else
Derived=Derived ∪ {B′→Adn-1(r)};

end if ;
end for;

end while;
Delete from Derived constraints with unadorned heads;
for each p(A1, ..., An) ∈ R do
In = In ∪ {p(x1, ..., xn)→ pb...b(x1, ..., xn)};

for each p(A1, ..., An) ∈ R do
for each pα(z1, ..., zn) appearing in (Base ∪Derived) do
Out = Out ∪ {pα(x1, ..., xn)→ p̂(x1, ..., xn)};

return Base ∪Derived ∪ In ∪Out;
end.

Figure 1: Constraint Rewriting Function

In the definition of the function Adn we have also used the
function Adn-1(·) which takes in input an adorned first order
formula consisting of a conjunction of atoms or a constraint
or a set of constraints and gives in output the same formula
without adornments. Clearly, for any set of constraints Σ,
Adn-1(Adn(Σ)) = Σ.

For any input database schema R and set of constraints
Σ over R, we shall denote with (i) R̂ = {p̂(A1, ..., An) |
p(A1, ..., An) ∈ R} the output schema derived from R, (ii)

Map(R) = R∪R̂ the union of the input and output schemas,
and (iii) Adn(R,Σ) = R ∪ {pα(A1, ..., An) | p(A1, ..., An) ∈
R ∧ pα appears in Adn(Σ)} ∪ R̂ the schema obtained by
adding to R the schemas of the relations introduced in the
rewriting of constraints. Moreover, we shall also denote with
Map(Σ) = Σ ∪ {p(x1, ..., xn)→ p̂(x1, ..., xn)|p(A1, ..., An) ∈
R} the set of constraints containing, in addition to Σ, a set
of TGDs mapping tuples over the input schema to tuples
over the output schema.

Example 7. Consider the constraints Σ4 of Example 4.
Initially, Adn(Σ4) contains two constraints derived by ador-
ning the body variables as bound (Base(Σ4))

r1 : Nb(x)→ ∃y Ebf (x, y)
r2 : Sb(x) ∧ Ebb(x, y)→ Nb(y)

In the second step two new constraints are generated
(Derived(Σ4)). Due to the new predicate Ebf , the following
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constraint, derived from constraint r2, has been introduced:

r3 : Sb(x) ∧ Ebf (x, y)→ Nf (y)

At this point the new predicate symbol Nf has been gene-
rated and, thus, a new constraint derived from r1 is added:

r4 : Nf (x)→ ∃y Eff (x, y)

From the new predicate Eff no new constraint is generated
since the variable x in the body of the second constraint is
bounded as it also appears in the predicate Sb.

Moreover, Adn(Σ) also contains TGDs mapping input tu-
ples into “bounded predicates” (In(Σ4)):

r5 : N(x)→ Nb(x)
r6 : S(x)→ Sb(x)
r7 : E(x, y)→ Ebb(x, y)

and TGDs mapping tuples of adorned relations into “out-
put” relations (Out(Σ4)):

r8 : Nb(x)→ N̂(x)

r9 : Nf (x)→ N̂(x)

r10 : Sb(x)→ Ŝ(x)

r11 : Ebb(x, y)→ Ê(x, y)

r12 : Ebf (x, y)→ Ê(x, y)

r13 : Eff (x, y)→ Ê(x, y) 2
It is important to observe that the set of constraints Σ4 is

neither stratified nor super-weak acyclic, while Adn(Σ4) is
weakly acyclic. In fact, dep(Adn(Σ4)), without considering
edges in In(Σ4) and Out(Σ4), which do not affect chase

termination, contains only the following edges: Nb
1→Ebf1 ,

Nb
1→∗ Ebf2 , Ebb2→Nb

1 , Ebf2 →N
f
1 , N1f→Eff1 , Nf

1→∗ E
ff
2 .

Fact 1. Let Σ be a set of standard TGDs. A position
Ri belongs to aff(Σ) iff there is some predicate Rα1...αm

i in
Adn(Σ) such that αi = f . 2

Theorem 2. For every set of TGDs Σ over a database
schema R, 〈Map(R),Map(Σ)〉 ≡R/R̂ 〈Adn(R,Σ), Adn(Σ)〉. 2

The previous theorem states that for every database D
over a schema R and for each universal solution J derived
by applying the source TGDs Σ to D there is a universal
solution K derived by applying the rewritten constraints
Adn(Σ) to D such that J [R̂] = K[R̂] and vice versa. In
particular, since pα(t) ∈ K − D implies that there is a
p(t) ∈ J and p(t) ∈ J implies that there is a pα(t) ∈ K,
we have that each relation in J is partitioned into relations
of K − D. The tuples in D appear twice in K since they
are also copied into ‘bounded’ relations. Note that if the set
of constraints Adn(Σ) satisfies some chase termination cri-
terion, the chase terminates considering both the source set
Σ and the rewritten set Adn(Σ). Clearly, the set Adn(Σ) is
only used to check chase termination conditions (at compile-
time), whereas we use the source set Σ to compute (at run-
time) universal solutions.

Example 7. (cont.) Consider again the constraints Σ4

of Example 4 and the source database D = {S(a), N(a)}.
The set of constraints Map(Σ4) is equal to Σ4 ∪ {S(x) →
Ŝ(x), N(x) → N̂(x), E(x, y)→Ê(x, y)}. The application
of the chase to 〈D, Map(Σ4)〉 produces the data-

base J = {S(a), N(a), E(a, n1), N(n1), E(n1, n2), Ŝ(a),

N̂(a), Ê(a, n1), N̂(n1), Ê(n1, n2)}. The application of the
chase to 〈D,Adn(Σ)〉 produces the database K = {S(a),

N(a), Sb(a), Nb(a), Nf (n1), Ebf (a, n1), Eff (n1, n2), Ŝ(a),

N̂(a), Ê(a, n1), N̂(n1), Ê(n1, n2). Clearly, the two solutions

are equivalent (with respect to {S,N,E}/{Ŝ, N̂ , Ê}). 2

In the following we shall denote with Adn-WA (resp.
Adn-SC, Adn-Str, Adn-CStr, Adn-SwA) the class of TGDs
Σ such that Adn(Σ) is weakly acyclic (resp., safe, stratified,
c-stratified, super-weakly acyclic).

Theorem 3. T  Adn-T for T ∈{WA,SC,Str, CStr,SwA}.

The above theorem states that the rewriting technique al-
lows to recognize (by using classical criteria) larger classes of
constraints for which chase termination is guaranteed. From
Theorem 2 we have that if a set of constraints Σ ∈ Adn-WA
(resp. Adn-SC, Adn-CStr, Adn-SwA) all chase sequences
terminate, whereas if Σ ∈ Adn-Str there is at least one
terminating chase sequence. Notice that we are considering
sets of TGDs, while (c-)stratification also considers EGDs.

It is worth noting that the size of the adorned program
increases and in the worst case it is exponential in the size
of the source set. Moreover, in practical cases the number
of adorned predicates is not much larger than the number of
source predicates and the check is a compile time operation.

4. CONSTRAINTS REDUCTION
We now present an extension of our rewriting technique

which takes into account the relationship among database
values and null values. Consider, for instance, the set of
constraints Σ′5 consisting of the constraints r1, r2 and r4 in
Example 5. Both Σ′5 and Adn(Σ′5) are neither c-stratified
nor super-weakly acyclic, however it easy to check that the
chase process terminates for all database instances.

In order to improve our rewriting technique, we will use
different types of adornments for free variables. Thus, in-
stead of simply using f to denote that a position may contain
null values, we will use adornments of the form fi. Any time
a new adorned constraint is added to the set of constraints
for each existentially quantified variable a new symbol fi is
introduced, where i is a fresh subscript5.

Head adornment. Given a (possibly adorned) TGD r :
φ(x) → ∃yψ(z,y) with z ⊆ x and let φα(x) be a coherent
adornment for the body atoms, then FHeadAdn(r, φα(x))
denotes the adornment of the head of r obtained as follows:
i) every universally quantified variable has the same adorn-
ment of the body occurrences, ii) every constant is adorned
as b; iii) every existentially quantified variable y is adorned
with a new symbol fi. In the following we shall also use
substitutions over free symbols. In particular, a substitu-
tion θ is a set of pairs fi/fj such that i 6= j; obviously, the
same symbol cannot be used in both left and right sides of
substitutions, i.e. a symbol fj used to replace a symbol fi
cannot be substituted in θ by a symbol fk.

We shall denote with Adn-s(·) the function which receives
in input an adorned first order formula F , where free sym-
bols are subscripted, and gives in output the first order
formula derived from F by deleting subscripts, i.e. every
symbol fi is replaced by f . The function can be trivially
extended to sets of first order formulae.

The rewriting of constraints is performed by the function
Adn+ reported in Appendix A which differs from the pre-
vious version in two main points: (i) the adornment of the
head is done by applying the function FHeadAdn and (ii)

5Basically, every free variable is adorned with the skolemized
function used to replace the existentially quantified variable where
each variable of the function is replaced by the corresponding
adornment.
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a new adorned constraint rα is added only if there is no
adorned constraint rβ having a ‘similar’ structure, i.e. no
substitution θ, defined over the free symbols, exists such
that Body(rα)θ = Body(rβ).

Observe that the function Adn+ gives as output a set of
constraints where subscripts are deleted from adornments.
Analogously to the previous rewriting, given a set of TGDs
Σ, the rewritten set is denoted by Adn+(Σ) and we have
Adn+(Σ) = Adn-s(Base+(Σ) ∪ Derived+(Σ) ∪ In+(Σ) ∪
Out+(Σ)), where, Base+(Σ) (resp. Derived+(Σ), In+(Σ),
Out+(Σ)) is the set of base (resp. derived, input, output)
constraints derived by the algorithm before deleting sub-
scripts.

Example 8. Consider the set of constraints Σ′5 contai-
ning the constraints r1, r2, r4 of Example 5. Σ′5 is neither
super-weakly acyclic nor c-stratified. Base+(Σ′5) consists of
the three constraints:

r′1 : Rb(x)→ Sbb(x, x)

r′2 : S
bb

(x1, x2)→ ∃z T bf1 (x2, z)
r′3 : T bb(x1, x2) ∧ T bb(x1, x3) ∧ T bb(x3, x1)→ Rb(x2)

whereas Derived+(Σ′5) consists of the three constraints:

r′4 : T bf1 (x1, x2) ∧ T bb(x1, x3) ∧ T bb(x3, x1)→ Rf1 (x2)

r′5 : R
f1 (x)→ S

f1f1 (x, x)

r′6 : S
f1f1 (x1, x2)→ ∃z T f1f2 (x2, z)

The constraint

r′′ : T f1f2 (x1, x2) ∧ T f1f2 (x1, x3) ∧ T f1f2 (x3, x1)→ Rf2 (x2)

is not added since the body adornment is not coherent, while
Adn(Σ′5) also contains the adorned constraint Adn−s(r′′).
Thus, the set of adorned constraints Adn+(Σ′5) = Adn-s({r′1,
..., r′6} ∪ In+(Σ′5) ∪ Out+(Σ′5)) is weakly acyclic, whereas
Adn(Σ′5) = Adn-s({r′1, .., r′6, r′′} ∪ In(Σ′5) ∪ Out(Σ′5)) is nei-
ther stratified nor super-weakly acyclic. Moreover, if we
consider the set Σ5 of Example 5, also containing constraint
r3, the function Adn+ generates (before deleting subscripts),
in addition to r′1, ..., r

′
6, the constraints:

r′7 : S
bb

(x1, x2)→ T bb(x1, x2), T bb(x2, x1)

r′8 : S
f1f1 (x1, x2)→ T f1f1 (x1, x2), T f1f1 (x2, x1)

r′9 : T f1f1 (x1, x2) ∧ T f1f1 (x1, x3) ∧ T f1f1 (x3, x1)→ Rf1 (x2)

The resulting setAdn+(Σ5) (obtained by deleting subscripts)
is neither c-stratified nor super-weakly acyclic. 2

Lemma 1. For every set of TGDs Σ the function Adn+

always terminates. 2

Therefore, the set of adorned predicates in Adn+(Σ) is
finite. The following proposition and theorem state that
Adn+ gives in output a subset of constraints generated by
the function Adn and that those constraints are ‘equivalent’
to the original set of constraints.

Proposition 2. For any set of TGDs Σ over a database
schema R, Adn+(Σ) ⊆ Adn(Σ). 2

Theorem 4. For every set of TGDs Σ over a database
schema R, 〈Map(R),Map(Σ)〉 ≡R/R̂ 〈Adn

+(R,Σ), Adn+(Σ)〉.

Analogously to the previous rewriting, Adn+-WA (resp.
Adn+-SC, Adn+-Str, Adn+-CStr, Adn+-SwA) denotes the
class of TGDs Σ such that Adn+(Σ) is weakly acyclic (resp.,
safe, stratified, c-stratified, super-weakly acyclic).

Corollary 2. Adn-T  Adn+-T , for T ∈{WA,SC,Str,
CStr,SwA}. 2

5. REFINING AFFECTED POSITIONS
We present now a further improvement to our technique.

In particular, we present a new definition of affected posi-
tions which restricts the set of positions which should be con-
sidered for checking termination conditions and show that
it can be used to enhance the rewriting of constraints.

5.1 Weakly and strongly affected positions
The safe condition improves over weak acyclicity as it only

considers positions where labeled nulls can be copied and
analyzes the data flow among these positions by construc-
ting the propagation graph. Our idea is to statically deter-
mine the set of positions where an infinite number of labeled
nulls may be copied and distinguish these positions from the
remaining ones in the adornment of constraints.

Example 9. Consider the following set of TGDs Σ9:

r1 : N(z)→ F (z, x) ∧ S(x) ∧ E(x, y)
r2 : S(x) ∧ E(x, y)→ ∃z E(y, z)

As aff(Σ9)={F2, S1, E1, E2} and prop(Σ9) contains the ed-
ges E2→E1, E2→∗ E2 and presents a cycle with special edges.
However, although Σ9 is not safe (nor super-weakly acyclic),
all chase sequences are terminating since the number of nulls
which may be assigned to affected positions is limited. 2

Thus, we now analyze in depth the role of affected po-
sitions and introduce the concepts of weak and strong af-
fection. In particular, positions which can take values from
Consts and a finite subset of Nulls are called weakly af-
fected, whereas the remaining positions are called strongly
affected. Formally, let Σ be a set of TGDs and EGDs, we
denote with AFF−(Σ) the set of weakly affected positions in
Σ, that is the set of positions which can take value (through
the execution of the chase algorithm) from Consts and a
finite subset of Nulls. The positions in the complementary
set AFF+(Σ) = aff(Σ) − AFF−(Σ), taking values from
Consts∪Nulls, will be called strongly affected. Computing
the set of position in AFF−(Σ) and AFF+(Σ) is undecid-
able, but it is possible to statically determine a subset of
the position in AFF−(Σ) which are not associated with an
infinite number of labeled nulls.

Definition 3. For any set of TGDs Σ, let aff(Σ) be the
set of affected positions in Σ and prop(Σ) = (aff(Σ), E)
the propagation graph, then the set aff+(Σ) is defined as
follows. A position Rj in prop(Σ) is in aff+(Σ) if:

• it appears in a cycle with special edges, or

• there is a path in prop(Σ) from some Si∈aff+(Σ) toRj .

The set aff−(Σ) = aff(Σ)− aff+(Σ). 2

Clearly, aff−(Σ)  AFF−(Σ) and aff+(Σ) ! AFF+(Σ).
Considering, for instance, the affected positions from Exam-
ple 9, we have F2, S1 ∈ aff−(Σ9) (i.e. they are weakly
affected), while E1, E2 ∈ aff+(Σ9) (i.e. they could be
strongly affected). We now present an extension of the
rewriting technique presented in the previous section tak-
ing into account the type of affected positions.

FHeadAdn∗(r, φα(x)) denotes the adornment of Head(r)
derived from FHeadAdn(r, φα(x)) by replacing, for any sym-
bol fi, associated with some position Rj ∈ aff−(Σ), all its
occurrences with with bi. The symbol bi means that the cor-
responding position takes values from a finite number of null
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symbols. Since we are now considering two different types of
adornments with subscripts, the function Adn-s eliminates
subscripts from adornments and, therefore, replaces every
adornment fi (resp. bi) with f (resp. b). Analogously to
the notation previously used, we shall denote with Adn∗

the function derived from Adn+ by replacing the function
FHeadAdn with FHeadAdn∗ and using substitutions which
could also contain pairs bh/bk other than pairs fi/fj . We
shall also denote with Base∗(Σ), Derived∗(Σ), In∗(Σ) and
Out∗(Σ) the sets of base, derived, input and output con-
straints computed by Adn∗ before deleting subscripts and
we have that Adn∗(Σ) = Adn-s(Base∗(Σ) ∪Derived∗(Σ) ∪
In∗(Σ) ∪Out∗(Σ)).

As shown in the following example, the rewriting tech-
nique benefits from the knowledge that some positions are
weakly affected.

Example 10. The application of the function Adn∗ to
the set of TGDs Σ9 of Example 9 generates, before deleting
subscripts, since attributes S1 and F2 are weakly affected,
the constraints:

r1 : Nb(z)→ ∃x, y F bb1 (z, x) ∧ Sb1 (x) ∧ Eb1f2 (x, y)
r2 : Sb(x) ∧ Ebb(x, y)→ ∃z Ebf3 (y, z)
r3 : Sb1 (x) ∧ Eb1f2 (x, y)→ ∃z Ef2f4 (y, z)
r4 : Sb(x), Ebf3 (x, y)→ Ef3f5 (y, z)

The application of the function Adn-s collapses r3 and r4

into a unique constraint. As a result we have that Adn∗(Σ9)
is weakly acyclic. 2

Theorem 5. Let Σ be a set of TGDs over a database sche-
ma R. Then 〈Map(R),Map(Σ)〉 ≡R/R̂ 〈Adn

∗(R,Σ), Adn∗(Σ)〉.

As for the previous rewriting techniques, Adn∗-WA (resp.
Adn∗-SC, Adn∗-Str, Adn∗-CStr, Adn∗-SwA) denotes the
class of TGDs Σ such that Adn∗(Σ) is weakly acyclic (resp.,
safe, stratified, c-stratified, super-weakly acyclic).

Theorem 6. Adn+-T  Adn∗-T , for T ∈ {WA,SC,Str,
CStr,SwA}. 2

5.2 Adding EGDs
In some cases it is interesting to check if there is a ter-

minating chase sequence and understand how constraints
should be fired to compute finite sequences. We propose a
new criterion which in the presence of equality conditions
allows to identify classes of chase-terminating constraints
not captured by previous conditions (even if constraints are
adorned).

Proposition 3. Given a set of constraints Σ, a rela-
tion schema r(A1, . . . , An) and a functional dependency f :
Ai1 ...Aik → Aj with k ≥ 0, if Ai1 ...Aik are in AFF−(Σ),
then Aj is in AFF−(Σ) as well. 2

Thus, in the following, we introduce a new class of po-
sitions Aff−(Σ) which could be statically determined to
be weakly affected. More specifically, Aff−(Σ) may be
obtained by initially setting Aff−(Σ) = aff−(Σ) and it-
eratively adding to Aff−(Σ) nodes Aj such that there is
a functional dependency Ai, ..., Ak → Aj with Ai, ...Ak ∈
Aff−(Σ), while Aff+(Σ) = aff(Σ) − Aff−(Σ). Clearly,
aff−(Σ)  Aff−(Σ)  AFF−(Σ). As a result, the class of
safe constraints can be extended by considering, in the con-
struction of the propagation graph, positions in Aff+(Σ)
instead of general affected ones. For these classes of con-
straints there is at least a terminating chase sequence, that
is the sequence giving preference to the application of EGDs.

6. CONCLUSIONS
This paper has presented a technique for checking chase

termination based on constraints rewriting. We have shown
that significant classes of constraints for which the chase
execution terminates can be captured by classical criteria
after that constraints have been adorned. The rewriting
technique is orthogonal to termination conditions and im-
proves current chase termination criteria. Further investiga-
tion should be devoted to improve the rewriting technique
by also considering EGDs and identify larger sets of weakly
affected positions by analyzing other special classes of con-
straints, e.g. embedded multi-valued dependencies [9].
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APPENDIX
A. FUNCTION ADN+

Function Adn+(Σ);
Input Set of TGDs Σ over a schema R;
Output Set of (adorned) TGDs Base+∪Derived+∪In+∪Out+;

begin
Base+ = Derived+ = In+ = Out+ = New Pred = ∅;
// Let Bodyb(r) be the conjunction obtained by adorning
// atoms in Body(r) with strings of b symbols
Used Pred =

⋃
r∈ΣBody

b(r)
for each r ∈ Σ do begin
Base=Base ∪ {Bodyb(r)→FHeadAdn(r,Bodyα(r))};
New Pred=New Pred ∪{pα|pα(t)∈FHeadAdn(r,Body(r))};

end for;
while (New Pred 6= ∅) do begin

Select nondeterministically pα1..αn ∈ New Pred
New Pred = New Pred− {pα1..αn};
Used Pred = Used Pred ∪ {pα1..αn};
for each r ∈ (Base ∪Derived+) do
for each pβ(x1, ..., xn) ∈ Body(r) do begin
B′ = Body(r)−{pβ(x1, ..., xn)} ∪ {pγ1..γn(x1, ..., xn)};
// γi=b if xi∈Consts; γi=αi if xi∈V ars; (i ∈ [1..n])
if B′ is coherent and 6 ∃ (subst. θ and rβ ∈ Derived+)

s.t. B′θ = Body(rβ) then
Let H′ = FHeadAdn(Adn-1(r), B′);
Derived+ = Derived+ ∪ {B′ → H′};
New Pred = New Pred ∪ {pω |pω(t) ∈ H′

∧ pω 6∈Used Pred);
else

Derived=Derived ∪ {B′→Adn-1(r)};
end if ;

end for;
end while;
Delete from Derived constraints with unadorned heads;
for each p(A1, ..., An) ∈ R do
In+ = In+ ∪ {p(x1, ..., xn)→ pb...b(x1, ..., xn)};

for each p(A1, ..., An) ∈ R do
for each pα(z1, .., zn) appearing inBase+ ∪Derived+ do
Out+ = Out+ ∪ {pα(x1, ..., xn)→ p̂(x1, ..., xn)};

return Adn-s(Base+ ∪Derived+ ∪ In+ ∪Out+);
end.

Figure 2: Constraint Rewriting Function (version 2)

B. CHASE TERMINATION CONDITIONS
Oblivious Chase. Intuitively, an oblivious chase step

always applies when the body of a constraint can be mapped
to an instance, even if the constraint is satisfied.

More formally, an oblivious chase step for a TGD r :
φ(x) → ∃yψ(x,y) applies to an instance K if there is a
homomorphism h from φ(x) to K. In such a case the obliv-

ious chase step K →
∗,r,h

K′ is defined as follows. Let h′ be a
homomorphism s.t. (a) h′ agrees with h on x, (b) for every
existentially quantified variable yj ∈ y we choose a fresh
labeled null ni and define h′(yj) = ni. We set K′ to be
K ∪ {h′(ψ(x,y))}. An oblivious chase step for an EGD is a
chase step for an EGD except that we also add an ∗ on the
arrow (like in the case of TGDs) that indicates the step.

B.1 Weak Acyclicity
The first and basic criterion concerning the identifica-

tion of sufficient conditions, determined by the structure of
TGDs, guaranteeing chase termination, is known as weak

acyclicity and was given in [10]. The criterion is based on
the structural properties of a graph G(Σ), called dependency
graph, derived from the input set of TGDs Σ.

Definition 4 (Weakly acyclic set of TGDs [10]).
Let Σ be a set of TGDs over a fixed schema. Construct a
directed graph dep(Σ) = (pos(Σ), E), called the dependency
graph, as follows: (1) there is a node Ri for every pair (R,A)
with R a relation symbol of the schema and A an attribute
of R in position i; (2) add edges as follows: for every TGD
φ(x) → ∃yψ(x,y) in Σ and for every x in x that occurs
both in φ (in position Ri) and in ψ:

1. for every occurrence of x in ψ in position Sj , add an
edge Ri → Sj (if it does not already exist).

2. for every existentially quantified variable y and for ev-
ery occurrence of y in ψ in position Tk, add a special
edge Ri →∗ Tk (if it does not already exist).

Then, Σ is weakly acyclic if dep(Σ) has no cycle going through
a special edge. 2

Example 11. Consider the sets of constraints of Exam-
ples 1 and 2. The dependency graphs contain in both cases
a cycle with special edges and, therefore, both Σ1 and Σ2

are not weakly acyclic. 2

Clearly, the problem of checking whether a set of TGDs
is weakly acyclic is polynomial in the size of |Σ|. In [10] it
has been shown that if Σ is the union of a weakly acyclic set
of TGDs with a set of EGDs, and D is a database instance,
then there exists a polynomial in the size of D that bounds
the length of every chase sequence of D with Σ.

B.2 Stratification
The idea behind stratification is to decompose the set of

constraints into independent subsets, where each subset con-
sists of constraints that may fire each other, and to check
each component separately for weak acyclicity.

Definition 5 (Precedence relation [8, 16]). Given
a set of constraints Σ and two constraints r1, r2 ∈ Σ, we say
that r1 ≺ r2 iff there exists a relational database instance D
and two tuples of values δ1 and δ2 such that (i) D 6|= r1(δ1),

(ii) D |= r2(δ2), (iii) D →
r1,δ1

J and (iv) J 6|= r2(δ2). 2

r1 ≺ r2 means that firing r1 can cause the firing of r2.

Definition 6 (Stratified constraints [8, 16]).
The chase graph G(Σ) = (Σ, E) of a set of constraints Σ
contains a directed edge (r1, r2) between two constraints iff
r1 ≺ r2. We say that Σ is stratified iff the constraints in
every cycle of G(Σ) are weakly acyclic. 2

Example 12. [8] Consider the constraint

r : E(x, y) ∧ E(y, x)→ ∃z, w E(x, z) ∧ E(z, w) ∧ E(w, x)

stating that each node having a cycle of length 2 also has
a cycle of length 3. Since r 6≺ r (i.e. r does not fire itself)
G({r}) is acyclic and, therefore, {r} is stratified. 2

In [8] it has been shown that the problem of deciding
whether a set of constraints is stratified is in coNP and
that stratification strictly generalizes weak acyclicity.
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C-Stratification. Stratification guarantees, as shown in [16],
that, for every database D, there is a chase sequence (but
not all) which terminates in polynomial time in the size of
D (see Example 5).

In order to cope with this problem, a variation of stratifi-
cation, called c-stratification, has been proposed in [16].

Given two constraints r1, r2 ∈ Σ, we say that r1 ≺c r2 iff
there exists a relational database instance D and two tuples
of values δ1 and δ2 such that (i) D 6|= r1(δ1), (ii) D |= r2(δ2),

(iii) D →
∗,r1,δ1

J , and (iv) J 6|= r2(δ2).
The c-chase graph Gc(Σ) = (V,E) of a set of constraints

Σ contains a directed edge (r1, r2) between two constraints
iff r1 ≺c r2. We say that Σ is c-stratified iff the constraints
in every cycle of Gc(Σ) are weakly acyclic.

The problem of checking whether a set of constraints is c-
stratified is in coNP(as well as stratification). For every set
of c-stratified constraints Σ and for every database instance
D, there exists a polynomial in the size of D that bounds
the length of every chase sequence of D with Σ [16].

B.3 Safety
A different extension of weak acyclicity which takes into

account only affected positions has been proposed in [15].
An affected position denotes an position which could be as-
sociated with null values, that is it can also take values from
Nulls.

Definition 7 (Affected positions). [5]. Let Σ be
a set TGDs. The set of affected positions aff(Σ) of Σ is
defined as follows. Let π be a position occurring in the head
of some TGD r ∈ Σ, then

• if an existentially quantified variable appears in π, then
π ∈ aff(Σ);

• if the same universally quantified variable x appears
both in position π and only in affected positions in the
body of r, then π ∈ aff(Σ). 2

Definition 8 (Safe set of TGDs [15]). Let Σ be a
set of TGDs, then prop(Σ) = (aff(Σ), E) denotes the prop-
agation graph of Σ defined as follows. For every TDG
φ(x) → ∃yψ(x,y) and for every x in x that occurs in ψ
and every occurrence of x in φ in position π1 then

• if x occurs only in affected positions in φ then for every
occurrence of x in ψ in position π2 there is an edge
π1 → π2 in E;

• if x occurs only in affected positions in φ then, for every
y in y and for every occurrence of y in ψ in position π2

there is a special edge π1 →∗ π2 in E.

A set of constraints Σ is said to be safe if prop(Σ) has no
cycles going through a special edge. 2

Clearly, safety strictly generalizes weak acyclicity and the
problem of checking whether a set of TGDs is safe is poly-
nomial in the size of |Σ|. Moreover, for every Σ being the
union of a safe set of TGDs with a set of EGDs, and for ev-
ery database instance D, then there exists a polynomial in
the size of D that bounds the length of every chase sequence
of D with Σ.

A generalization of safety and c-stratification, called In-
ductive Restriction, has been proposed in [15]. The problem
of checking whether a set of constraints is inductively re-
stricted is in coNP.

B.4 Super–weak Acyclicity
We now recall some basic definitions about super-weak

acyclicity [14], a condition that guarantees the termination
of oblivious chase. Let Σ be a set of TGDs and P (Σ) the
logic program obtained by skolemizing Σ. A place is a pair
(a, i) where a is an atom occurring in a rule of P (Σ) and
0 ≤ i ≤ arity(a). Given a TGD r and an existential variable
y in the head of r, we define Out(r, y) as the set of places
(called output places) in the head of P (r) where a term of
the form fry (. . .) occurs. Given a TGD r′ and a universal
variable x′ of r′, In(r′, x′) denotes the set of places (called
input places) in the body of r′ where x′ occurs.

Example 13. Consider the below set of TGDs Σ13:

r1 : ∀x [ N(x)→ ∃y, z E(x, y, z) ]
r2 : ∀(x, y) [ E(x, y, y)→ N(y) ]

The logic program obtained by skolemizing Σ13 is:

P (Σ13) =

 r′1 : S(x)→ E(x, f
r1
y (x), f

r1
z (x))

p1 p2 p3 p4

r′2 : E(x, y, y)→ S(y)
p5 p6 p7 p8

and Out(r1, y)={p3}, Out(r1, z)={p4}, In(r2 , y)={p6, p7}. 2

Given a set of variables V , a substitution θ of V is a
function mapping each v ∈ V to a finite term θ(v) built
upon constants and function symbols. Two places (a, i) and
(a′, i) are unifiable and we write (a, i) ∼ (a′, i) iff there exist
two substitutions θ and θ′ of (respectively) the variables a
and a′ such that a[θ] = a′[θ′]. Given two sets of places Q
and Q′ we write Q v Q′ iff for all q ∈ Q there exists some
q′ ∈ Q′ such that q ∼ q′. Given a set Q of places, we
define Move(Σ, Q) as the smallest set of places Q′ such that
Q ⊆ Q′, and for every rule r = Br → Hr in P (Σ) and every
variable x, if Γx(Br) v Q′ then Γx(Hr) ⊆ Q′, where Γx(Br)
and Γx(Hr) denote the sets of places in Br and Hr where x
occurs.

Definition 9. (Trigger relation and Super-weak
Acyclicity [14]). Given a set Σ of TGDs and two TGDs
r, r′ ∈ Σ, we say that r triggers r′ in Σ and we write r  Σ r′

iff there exists an existential variable y in the head of r, and
a universal variable x′ occurring both in the body and head
of r′ such that In(r′x′) vMove(Σ, Out(r, y)). A set of con-
straints Σ is super-weakly acyclic iff the trigger Σ relation
is acyclic. 2

Example 13 (cont.) Since Move(Σ13, Out(r1, y)) =
{p3}, Move(Σ13, Out(r1, z)) = {p4} and In(r2, y)) = {p6, p7},
we have that In(r2, y) 6vMove(Σ13, Out(r1, y)) and In(r2, y)
6v Move(Σ13, Out(r1, z)). Consequently, r2 is not triggered
by r1 (as well as r1 6 Σ13 r1) and, therefore, Σ13 is super-
weakly acyclic. 2

Moreover, it has been proved in [14] that the problem of
deciding whether a set of constraints is super-weakly acyclic
is in PTIME.
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C. PROOFS

This appendix presents some of the proofs of the results
introduced in the paper. For space limitation proofs (re-
quiring large space) are omitted or just sketched. Complete
proofs of the results reported here will appear in the full
version of the paper.

Proposition 1 SwA ∦ CStr.
Proof. The set of constraints of Example 12 is (c-)strati-

fied, but not super-weakly acyclic, whereas the set of con-
straints of Example 3 is super-weakly acyclic, but not stra-
tified, therefore, the two criteria are not comparable. 2

Corollary 1 SwA ∦ IR.

Proof. Since the set of constraints of Example 3 is not
inductively restricted we also have that SwA ∦ IR. 2

For any place pi = (A(x1, ...xn), i) where 1 ≤ i ≤ n, Π(pi)
denotes the corresponding position Ai. Analogously, for a
given set of places Q, Π(Q) = {Π(j)|j ∈ Q} denotes the set
of positions associated with the places in Q.

Lemma 2. Let Σ be a set of TGDs and y an existentially
quantified variable appearing in a constraint r ∈ Σ. Then,
Π(Move(Σ, Out(r, y))) ⊆ aff(Σ).

Proof. (Base case): Π(Out(r, y)) ⊆ aff(Σ) since the
variable y is existentially quantified.
(Inductive case): Move(Σ, Out(r, y)) contains, other than
places in Out(r, y), places associated with some head, uni-
versally quantified variable x whose body instance place uni-
fies with some with some place in Move(Σ, Out(r, y)). By
definition of affected position, the position of x in the head
of the constraint is affected as well. 2

Theorem 1 SC  SwA.

Proof. If r  Σ r′ then there exist an existentially quan-
tified variable y in the head of r and a universally quanti-
fied variable x appearing in both the body and head of r′

s.t. In(r′x) v Move(Σ, Out(r, y)). Observe that in this
case we have that Π(In(r′, x)) ⊆ Π(Move(Σ, Out(r, y))).
The corresponding subgraph in prop(Σ) contains as nodes
Π(Move(Σ, Out(r, y))) and positions where existentially
quantified variables appear in the head of r′. Among posi-
tions in Π(Move(Σ, Out(r, y))) there are only normal edges
according to how a null value is copied from Π(Out(r, y))
to other positions in Π(Move(Σ, Out(r, y))). Special ed-
ges appear only from positions in Π(In(r′, x)) to positions
where existentially quantified variables appear in the head
of r′. Thus we have that if r  Σ r′ then the corresponding
subgraph in prop(Σ) is acyclic w.r.t. special edges. From
this fact it follows that whenever the trigger graph is cyclic,
the graph prop(Σ) has a cycle going through special edges,
too. 2

Theorem 3 T  Adn-T for T ∈{WA,SC,Str, CStr,SwA}.
Proof. Assume that Σ is in T and is not in Adn-T , for
T ∈{WA,SC, Str, CStr,SwA}. This means that Base(Σ) ∪
Derived(Σ) is not in T , since In(Σ) and Out(Σ) are acyclic
and do no affect termination conditions. However, as
Adn−1(Base(Σ) ∪Derived(Σ)) = Σ, we have that Σ is not
in T as well (which contradicts the hypothesis). In addition,

T ( Adn-T since there are sets of TGDs Σ such that Σ is
in Adn-T , but not in T (see, for instance, Example 7). 2

Lemma 1 For every set of TGDs Σ the function Adn+

always terminates.

Proof. (Sketch) In the function Adn+(Σ) a new con-
straint B′ → H ′ is added to the set Derived+ only if for
all rβ ∈ Derived+, B′ and Body(rβ) are renaming inde-
pendent, that is there not exist a substitution θ such that
B′θ = Body(rβ). This means that the set Derived+ can-
not contain two constraints whose bodies coincide if we re-
name subscripts. Consequently, since the number of possible
renaming independent body adornments for a constraint r
is finite, the set of constraints in Derived+(Σ) is finite as
well. 2

Proposition 2 For any set of TGDs Σ over a database
schema R, Adn+(Σ) ⊆ Adn(Σ).

Proof. (Sketch) Clearly In+(Σ) = In(Σ) and
Adn-s(Base+(Σ)) = Base(Σ) because in the rewriting con-
straints we adorn existentially quantified variables with sym-
bols of the form fi instead of f and subscripts are next
deleted.
Adn-s(Derived+(Σ)) ⊆ Derived(Σ) because after deleting
subscripts we obtain constraints which are also generated by
the function Adn(Σ). Moreover, since Adn-s(Derived+(Σ))
⊆ Derived(Σ) and Adn-s(Base+(Σ)) = Base(Σ), we have
that Adn-s(Out+(Σ)) ⊆ Out(Σ). 2

Corollary 2 T  Adn-T  Adn+-T , for T ∈{WA,SC,
Str, CStr,SwA}.

Proof. Adn-T ⊆ Adn+-T derives from Proposition 2.
Moreover, Adn-T ( Adn+-T since there are sets of TGDs
Σ s.t. Σ in Adn+-T , but not in Adn-T (see for instance
Example 8). 2

Theorem 6 Adn+-T  Adn∗-T , for T ∈ {WA,SC,Str,
CStr,SwA}.

Proof. (Sketch) Let Σ be a set of TGDs. It is pos-
sible to define a mapping M from Adn+(Σ) to Adn∗(Σ)
which is non-injective and surjective. M maps constraints
in Adn+(Σ) to constraints in Adn∗(Σ) by simply rewriting
adornments of predicate symbols (e.g. a predicate symbol
pα occurring in a constraint r ∈ Adn+(Σ) is replaced by
a predicate symbol pβ by substituting some αi = f with b.
Clearly, if Adn∗(Σ) does not satisfy the structural properties
provided by T , Adn+(Σ) does not satisfy these properties
as well (recall that M is surjective and just replaces adorn-
ments of predicates). Consequently, Adn∗-T is more general
than Adn+-T . 2

Proposition 3 Given a set of constraints Σ, a re-
lation schema r(A1, . . . , An) and a functional dependency
f : Ai1 ...Aik → Aj with k ≥ 0, if Ai1 ...Aik are in AFF−(Σ),
then Aj is in AFF−(Σ) as well.

Proof. By contradiction. If there is an infinite instance
with an infinite number of labeled nulls in position Aj , then
there must be some position in Ai1 ...Aik with an infinite
number of distinct values (i.e. distinct labeled nulls), other-
wise the functional dependency is not satisfied. 2
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D. NOTATION
Symbols Description Used in

Σ Set of source constraints
R Database schema (input schema)
Σα Set of adorned constraints

R̂ Output schema derived from the
input schema R

dep(Σ) Dependency graph of Σ WA
aff(Σ) Set of affected positions in Σ SC
prop(Σ) Propagation graph of Σ SC
AFF−(Σ) Weakly affected positions
AFF+(Σ) Strongly affected positions
aff+(Σ) Affected positions belonging to Adn∗

or depending on cycles with
special arcs

aff−(Σ) aff(Σ)− aff+(Σ) Adn∗

Aff−(Σ) Weakly affected positions
in Σ statically determined
by also considering FDs

Aff+(Σ) aff(Σ)−Aff−(Σ)

Classes of
constraints

WA Class of weakly acyclic sets of constraints
SC Class of safe sets of constraints
Str Class of stratified sets of constraints
CStr Class of c-stratified sets of constraints
SwA Class of super-weakly acyclic sets

of constraints
Adn-WA Class of sets of constraints Σ such that

Adn(Σ) is weakly acyclic
Adn-SC Class of sets of constraints Σ such that

Adn(Σ) is safe
Adn-Str Class of sets of constraints Σ such that

Adn(Σ) is stratified
Adn-CStr Class of sets of constraints Σ such that

Adn(Σ) is c-stratified
Adn-SwA Class of sets of constraints Σ such that

Adn(Σ) is super-weakly acyclic
Adn+-WA Class of sets of constraints Σ such that

Adn+(Σ) is weakly acyclic
Adn+-SC Class of sets of constraints Σ such that

Adn+(Σ) is safe
Adn+-Str Class of sets of constraints Σ such that

Adn+(Σ) is stratified
Adn+-CStr Class of sets of constraints Σ such that

Adn+(Σ) is c-stratified
Adn+-SwA Class of sets of constraints Σ such that

Adn+(Σ) is super-weakly acyclic
Adn∗-WA Class of sets of constraints Σ such that

Adn∗(Σ) is weakly acyclic
Adn∗-SC Class of sets of constraints Σ such that

Adn∗(Σ) is safe
Adn∗-Str Class of sets of constraints Σ such that

Adn∗(Σ) is stratified
Adn∗-CStr Class of sets of constraints Σ such that

Adn∗(Σ) is c-stratified
Adn∗-SwA Class of sets of constraints Σ such that

Adn∗(Σ) is super-weakly acyclic

Functions & Symbols

HeadAdn(B → H,Bα) Adornment of the head H of
the TGD B → H w.r.t. the
body adornment α

Adn(Σ) Set of adorned constraints
derived from Σ by applying
the function Adn of Figure 1

Base(Σ) Set of constraints derived by
adorning the body variable as
bound

Derived(Σ) Set of adorned constraints
derived by using the new
predicate in the heads of
Base(Σ) constraints

In(Σ) TGDs mapping input predi-
cates into bounded predicates

Out(Σ) TGDs mapping adorned predi-
cates into output predicates

Adn-1(Σα) Set of unadorned constraints
derived from Σα by deleting
adornments

Adn(R,Σ) Set of input, output and
adorned predicates

Map(Σ) Σ plus set of TGDs mapping
tuples over the input schema to
tuples over the output schema

Map(R) Union of the input (R) and

output (R̂) schema
FHeadAdn(B → H,Bα) As HeadAdn, but with the

use of subscripts (fi) for free
adornments

Adn-s(·) Function that remove sub-
scripts from f (possibly b)
adornments

Adn+(Σ) Set of adorned constraints
derived from Σ by applying the
function Adn+ of Figure 2

FHeadAdn∗(B → H,Bα) As FHeadAdn, but with
the use of adornment bi
instead of fi for weakly
affected positions aff−

Adn∗(Σ) Set of adorned constraints
derived from Σ by applying
the function Adn∗
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