On the Stability of Plan Costs and
the Costs of Plan Stability

M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal, Jayant R. Haritsa*
Database Systems Lab, SERC/CSA
Indian Institute of Science, Bangalore 560012, INDIA

ABSTRACT Robust Plans. A variety of compile-time (i.e. optimization-time)
Predicate selectivity estimates are subject to considerable run-timeStrategies _a_nd runr-]tlme t_echnlques Iglave b_?ﬁn proposle din the l'tir'
variation relative to their compile-time estimates, often leading to ature t? m|t|r?ate .t e ejt'mfit'on pro ?Im.' € part||cu ar ﬁpproac
poor plan choices that cause inflated response times. We presen\Ne éxplore nere IS to identify, "?‘t. compt e-tlm_et_:)ust plansvhose
costs are relatively less sensitive to selectivity errors. In a nut-

here a parametrized family of plan generation and selection algo- hell waim f . her th > Specificall
rithms that replace, whenever feasible, the optimizer’s solely cost- S el , We .gum for r|e5|sta;]nce, rather than cur%. bpem ica y’l our
conscious choice with an alternative plan that is (a) guaranteed t090al IS to identify plans that are (a) guaranteed tmbar-optimal

be near-optimal in the absence of selectivity estimation errors, and'" the absencg of errors, and (b) likely o be compargtlsmple

(b) likely to deliver comparatively stable performance in the pres- when faqed_ W'fh errors Iocateahyvx{heran the se_lect_lwty space.
ence of arbitrary errors. These algorithms have been implemented.If f[he op'.[|m|zer.s standard (.:os.t-optlmal plgn choice itself IS robus.t,
within the PostgreSQL optimizer, and their performance evaluated it |s_ret§uned W'thOUt_ substitution. _Othenmse, _/vhere fea5|ble_, this
on a rich spectrum of TPC-H and TPC-DS-based query templatesCho'C_e is replaced with an alt_ernatlve plan that is locally marginally
in a variety of database environments. Our experimental results costlier b”.t expected t.q prgwde better global performancg.
indicate that it is indeed possible to identify robust plan choices O“F nqtlon of St_ab'"ty IS the _foIIowmg: Given an es“mawd
that substantially curtail the adverse effects of erroneous selectiv- complle-tlme Ioca.tlorqe \.N'th optimal plan]?ole, gnd a run-time

ity estimates. In fact, the plan selection quality provided by our error locationga \.N'th optimal planPo, Stab'"t.y is measured by
algorithms is often competitive with those obtained through apriori the extent to which the replacement pl&r. br|dge_s_ th? gap be-
knowledge of the plan search and optimality spaces. The additional We€N the costs af,c and P, atgs. Note that stability is defined

computational overheads incurred by the replacement approach ar elatlv_e tOP’?e’ and not in ab_solute comparison iy, — while the
miniscule in comparison to the expected savings in query execu- atter is obviously more desirable, achieving it appears to be only

tion times. We also demonstrate that with appropriate parameter [€2Sible by resorting to query re-optimizations and plan switching

choices, it is feasible to directly produce anorexic plan diagrams, a &t 'un-time. Further, the compile-time techniques presented in this
potent objective in query optimizer design paper can be used in isolation, or in synergistic conjunction with

run-time approaches [6].

1. INTRODUCTION The EX_PAND Family_ of Algorithms. We propose here a family
.) __of algorithms, collectively called EXPAND, that cover a spectrum

Most modern database query optimizers choose their execution ¢ yradeoffs between the goalslotal near-optimality global sta-
plans on a cost-minimization basis. In this process, estimates of ;i andcomputational efficiencyExpand is based on judiciously
predicate selectivities are critical inputs to modeling the costs of expanding the candidate set of plan choices that are retained dur-
query execgtiqq plans.. Unfortungtely, in practice, these estimatesing the core dynamic-programming (DP) exercise, employing both
are often significantly in error with respect to the actual values gt ang robustness criteria. That is, instead of merely forwarding
engountered during query execution. Such errors arise due to ay o cheapest sub-plan from each node in the DP lattitjra of
yarlety of reasons, |nclud|ng. outdated statistics, attrlbute-value- sub-plans is sent, with the cheapest being the “engine”, and stabler
independence (AVI) assumptions, and coarse summaries [14]. Angjernative choices being the “wagons”. The final plan selection is

adverse fallout of the estimation errors is that they often lead to made at the root of the DP lattice from amongst the set of complete
poor choices of execution plans, resulting in grossly inflated query hang available at this terminal node, subject to user-specified cost
response times. and stability criteria.

From the spectrum of algorithmic possibilities in the EXPAND
family, we examine a few choices that cover a range of tradeoffs
between the number and diversity of the expanded set of plans, and
Permission to make digital or hard copies of all or part of this work for the computational overheads incurred in generating and processing
personal or classroom use is granted without fee provided that copies arethese additional plans. Specifically, we consideR@otExpand,

not made or distributed for profit or commercial advantage and that Copies o ein stanility criteria are invoked only at the terminal root node
bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific Of the DP lattice, representing the minimal change to the existing
permission and/or a fee. Articles from this volume were presented at The Optimizer structure; and (iilNodeExpand wherein a limited ex-

36th International Conference on Very Large Data Bases, September 13-17,pansion is carried out at select internal nodes in the DP lattice. In
2010, Singapore. particular, we consider an expansion subject to the same cost and

Proceedings of the VLDB Endowmevit]. 3, No. 1 stability constraints as those applied at the root node of the lattice.
Copyright 2010 VLDB Endowment 2150-8097/10/095.10.00.

*Contact Author: haritsa@dsl.serc.iisc.ernet.in

1137

To place the performance of these algorithms in perspectige, w 2. PROBLEM FORMULATION
also evaluate: (iBkylineUniversal, an extreme version of Node- Consider the situation where the user has submitted a query and
Expand whereirunlimited expansion is undertaken at the internal desires stability with regard to selectivity errors on one or more of
nodes, and the resultant wagons are filtered through a multidimen-the pase relations that feature in the query. The choice of the re-
sional cost-and-stability-baseskyline[4]. The end result is that |ations could be based on user preferences and/or the optimizer's

the root node of the DP lattice essentially receivesethiére plan expectation of relations on which selectivity errors could have a
search spacemodulo our wagon propagation heuristics; and (ii) sybstantial adverse impact due to incorrect plan choices. Let there
SEER [8], our recently-proposedffline algorithm for determin- pe 4 such “error-sensitive relations” — treating each of these rela-

ing robust plans, wherein apriori knowledge of the parametric op- tjons as a dimension, we obtairalimensional selectivity spag

timal set of plans (POSP) covering the selectivity space is utilized For example, consider the sample quéryo shown in Figure 1(a),

to make the replacements. This scheme operates from outside theyn spJ version of Query 10 from the TPC-H benchmark. This
optimizer, treating it as a black box that supplies plan-related infor- query has four base relationsATION (N), CUSTOMER(C), OR-
mation through its API. DERS(0), LINEITEM (L)), two of which —o andL — are deemed to
Experimental Results. Our new techniques have been imple- be error-sensitive relations. For this query, the associated 2D error

mentedinside the PostgreSQL optimizer kernel, and their per- Selectivity spacs is shown in Figure 1(b). .
formance evaluated on a rich set of TPC-H and TPC-DS-based The d-dimensional selectivity space is represented by a finite
parametrized query templates in a variety of database environments1€nse grid of points wherein each poiitr1, z2, . .., z4) corre-
with diverse logical and physical designs. The experimental re- SPONdS to a query instance with fractional selectivifyin the j-th
sults indicate that it is often possible to make plan choices that sub- dimension. We use(P;, ¢) to represent the optimizer's estimated
stantially curtail the adverse effects of selectivity estimation errors. COSt Of executing a query instangavith plan P;. The corners of
Specifically, while incurring additional time overheads withi®0 the selectivity space are referred tolgs with k being the binary
milliseconds and memory overheads withf0OMB, RootExpand representation of the location coordinates — e.g. the bottom-right
and NodeExpand often deliver plan choices that eliminate more ¢orner(1,0), in Figure 1(b) isv.
thantwo-thirds of the performance gap (betweenP,. and Po.) le_en a planP,L-,_ the region ofSin whlch itis _optl_m_al is refer_red
for a non-trivial number of error instances. Equally importantly, the 0 s itsendo-optimaregion; the region in which it is not optimal

replacement is almost never materially worse than the optimizer's PUt its cost is within a facto(1 +) of the optimal plan as its
original choice. In a nutshell, our replacement pl4ofen help A-optimalregion (where\ is a positive constant); and the remain-

substantially, but never seriously hurthe query performance. ing space as itexo-optimaregion. These disjoint regions together

The robustness of our intra-optimizer online algorithms turns out COVerS and are pictorially shown in Figure 1(b). We will hereafter
to be competitive with regard to the “exo-optimizer/offline” SEER. US€ the notatioando;, A-opt; andexo; to refer to these various re-
Further, their performance is often close to that of SkylineUniver- 9i0ns associated with;. The endo-optimal and-optimal regions
sal itself. In short, RootExpand and NodeExpand are capable of &€ coIIe(_:tlver referred to, for reasons explained later, as the plan’s
achieving comparable performance to those obtained with in-depth S@feRegiondenoted bya fe;.
knowledge of the plan search and optimality spaces.

Finally, while NodeExpand incurs more overheads than RootEx- | select C.custkey, C.name, C.acctbal, N.name, C.address, C.phone
pand, it deliversanorexic plan diagram§7] in return. A plan dia- from Customer C, Orders O, Lineitem L, Nation N
gram is a color-coded pictorial enumeration of the optimizer’s plan | Where C-CU?‘tkeky ZP-CUStKeyka”d L'grderkey = O.orderkey and
choicgs over the selectivity space, and anorexic diagrams are gross 8:?;2\?;“3 ; glsnséggj:df.);;r;ndedprice< 28520
simplifications that feature only a small number of plans without =
materially degrading the processing quality of any individual query. (a) Query Instance)10
The anorexic feature, while not mandatory for stability purposes,
has several database-related benefits, enumerated in detail in [7] —
for example, it enhances the feasibility of parametric query opti-
mization (PQO) techniques [9].

Another novel feature of NodeExpand is that, due to applying se-
lection criteria at the internal levels of the plan generation process,
it ensures that all theub-plansof a chosen replacement are near-
optimal and stable with regard to the corresponding cost-optimal
sub-plan. This is in marked contrast to SEER, where only the com-
plete plan offers such performance guarantees but the quality of the
sub-plans is not assured upfront.

A valid question at this point would be whether in practice the
optimizer’s cost-optimal plan is usually the preferred robust choice o
as well — that is, are current industrial-strength optimizatser- (b) Selectivity Space
ently robus? Our experiments with PostgreSQL clearly demon- Figure 1: Example Query and Selectivity Space
strate that this may not be the case. Concretely, improving stability
typically required replacing the plans f80-50% of the queries in .
the selectivity space, while additionally obtaining anorexic plan di- 2-1 ~COst Constraints on Plan Replacement
agrams with NodeExpand required in exces8@o replacements. Consider a specific query instance whose optimizer-estimated lo-

To our knowledge, this is the first work to investigate the efficient cation inS is g. and run-time location ig,, with P,. andP,, the
identification of stable query execution plans with guaranteed local optimal plans at these locations, respectively. Now?,if were to
near-optimality and enhanced global stability. be replaced by a more expensive plan, clearly there is a price

to be paid when there are no errors (ig. = ¢.). Further, even

<
"
o<

°< L.extendedprice =

\'}

O.totalprice ——w 2

1138

with errors, if it so happens thatPr., ¢.) > ¢(Poc,qq). Weas- 2.3 Error Resistance Metrics

sume that the user is willing to accept these cost increases if they — our quantification of the stability delivered through plan replace-
are boundedwithin a pre-specified local cost threshold and & ments is based on tHBERF error resistance metric introduced in
global stability threshold\, (A;, A, > 0). Specifically, the useris [g]. Specifically, for an error instanceg.), the Selectivity Error
willing to permit replacement aPoe with P, iff: Resistance Factor(SERF) of a replacemen®,. wrt P,. is com-

Local Constraint: At the estimated query locatiap, puted as
C(Pr-e,qe) SERF —1— C(Pr'e7qa)_c(Poa7qa)
< Ge,qa) = (3)
¢(Pocy qe) ~ (1+2) @ () c(Poe; ga) — ¢(Poa, qa)

For example, setting; = 20% stipulates that the local cost ~ Intuitively, SERF captures thieaction of the performance galpe-
of a query instance subject to plan replacement is guaranteed™Ween£oc and Po, atga, that is closed by?... In principle, SERF
to be within1.2 times its original value. We will hereafter values can range ovéroco, 1], with the following interpretations:

refer to this constraint decal-optimality. SERF in the rangg0, 1], indicates that the replacement is bene-
ficial, with values close to 1 implying immunity to the selectivity
Global Constraint: In the presence of selectivity errors, error. For SERF in the rande-)y, 0], the replacement is indiffer-
(Pre, 4a) ent in that it neither helps nor hurts, while SERF values noticeably
Vq. € S such thay, # g, C(P77) <(1+2X) (@ below —\, highlight a harmful replacement that materially wors-
oe; Ga ens the performance.
For example, setting, = 100% stipulates that the cost of To capture theaggregateimpact of plan replacements on im-

a query instance subject to plan replacement is guaranteed toProving the resistanc? to selectivity errors in the entire sgaeee
be within twice its original value at all error locations in the ~COMPUtEAGgSERFas:
selectivity space. We will hereafter refer to this constraint as

y °P quev'ep(s) ZQQ €ex0oe(S) SERF(qe, Qa)

global-safety AggSERF = (4)
. . . ques aneewooe(s) 1
Essentially, the above requirements guarantee that no material harm
(as perceived by the user) can arise out of the replaceimespec- whererep(S) is the set of query instances $whose plans were
tive of the selectivity error replaced, and the normalization is with respect to the number of

. . . error instances that could benefit from improved robustness.
2.2 Motivational Scenario Apart from AggSERF, we also computMinSERF and

We now present a sample scenario to motivate how plan replace-MaxSERF, metrics representing the minimum and maximum val-
ment could help to improve robustness to selectivity errors. Here, ues of SERF over all replacement instances. MaxSERF values
the example querg)10 is input to the PostgreSQL optimizer; its close to the upper bound of 1 indicate that some replacements pro-
cost-optimal choice at the estimated locatidi¥, 40%) is plan vided immunity to specific instances of selectivity errors. On the
Py, and the suggested replacement (by our NodeExpand algorithmother hand, large negative values for MinSERF indicate that some
with Az, Ay = 20%) is planP.. When the costs of these plans are replacements were harmful.
evaluated at a set of error locatiogs — for instance, along the
principal diagonal o5, we obtain the graph shown in Figure 2(a). 2.4 Problem Definition
The results indicate thdt, provides very substantial performance ith the above background, our stable plan selection problem
|mprovem_e_nts, bordering on error “|_mmun|ty_”, with respecfo _ can now be more precisely stated as:

To explicitly assess the compile-time predicted performance im-
provements, wexecutetthe P;, P, and P,, plans at these var- Stable Plan Selection Problem.Given a query locatiom. in a
ious locations — the corresponding response-time graph is shownselectivity spaces and a (user-defined) local-optimality threshold
in Figure 2(b). As can be seen, the broad qualitative behavior is in Az and global-safety thresholdl,, implement a plan replacement
keeping with the optimizer’s predictions, with substantial response- strategy such that:
time improvements across the board. The somewhat decreased im-
munity in a few locations is attributable to weaknesses in the op- ¢(Pre, ge)
timizer's cost model rather than our selection policies — this is an 1 m < (1+N)
orthogonal research issue that has to be tackled separately.

P,
160 =0 2. Vqs € SS.t.qq # e, APre, o) < (14 Ay
’; 1905 | _ g FoelP,) o C(Poe’ q“)
S| B 5 w0 or equivalently, MinSERE> —),.
6 1o a b _E 200
qw E 50 3. The contribution to the AggSERF metric is maximized.
7 &0 A k=
*é © g 100 . . : P
: = In the above formulation, Condition 1 guarantees local-optimality;
H 4 Condition 2 assures global-safety; and Condition 3 captures the
b0 2w 4040 s0s0 sos w100 b0 mm a0a0 60 sE Loow stability-improvement objective.
Actual Selectivity Location q (xa’y,,) Actal Selectivity Location q, (xa,ya)
1 : .
HaLT B In [8], the aggregate impact was evaluated based on the locations
(@) Compile-Time (b)A Run-Time where replacements were made, whereas our current formulation is
Figure 2: Benefits of Plan Replacement®10, \;, A, = 20%) based on the locations where robustness is desired.

1139

3. STABLE OPTIMIZATION (CC-SEER) [13] algorithm to address this problem. CC-SEER
In this section, we present the generic process followed in our guarantees global safety by merely evaluating the safety function at
EXPAND family of algorithms to address the Stable Plan Selection theunit hyper-cubesocated at theornersof the selectivity space.
problem. There are two aspects to the algorithms: First, a proce- Thatis, given al-dimensional space, FPC costing is carried out at
dure for expanding the set of plans retained in the optimization ex- Only 4 points. The intuition here is that, given the nature of plan
ercise, and second, a selection strategy to pick a stable replacemerf0St behavior in modern optimizers, if a replacement is known to be
from among the retained plans. safe at the corner regions of the selectivity space, then itis also safe
For ease of presentation, we will assume that there are no “in- throughout the interior regioitsee [13, 8] for the formal details).
teresting order” plans [12] present in the search space, and that the We have also found that an extremely simple heuristic, called
plan operator-trees do not have any “stems” — that is, the root join LiIteSEER [8], which simply evaluates whether all therner
node, which represents the combination of all the base relations inPointsare safe, that is,
the query, terminates the DP lattice. The algorithmic extensions for
handling these scenarios are described in Appendix B. V4o € Corners(S), f(qa) <0 ™
. works almost as well as CC-SEER in practice, although not pro-
3.1 Plan EXpanS|0n viding formal safety guarantees. In Figure 1(b), this corresponds to
We now explain how the classical DP procedure, wherein only requiring that the replacement be saféd/gtVi, V> and Vs, and in
the cheapest plan identified at each lattice node is forwarded to thegeneral, requires FPC evaluation onl\24tpoints.

upper levels, is modified in our EXPAND family of algorithms —) . .
the detailed pseudocode listing is given in Appendix A. For ease 3. Glpbal Be“ef't. Check: Wh'le the safety check ensures that
there is no material harm, it does not really address the issue of

of understanding, we will use the term “train” to refer to the ex- whether there is anenefitto be expected if. were to be (even
panded array of sub-plans that are propagated from one node to b P ¢ (-

e, Wi e ‘e being e cosoptmal sl (e e) S0SCE0 bys e weon To ssess i sepect e
one that DP would normally have chosen), and the “wagons” being P 9 9

the additional sub-plans. The engine is denotegphywhile p,, is ¢(pes qa)

generically used to denote the wagons (the lower-gaiselicates £(pw, pe) = og) € Corners(S))

a sub-plan as opposed to complete plans which are identified with) o]))
P). Finally, z is used to indicate a generic node in the DP lattice. That is, we use €ornerAvgheuristic wherein the arithmetic mean
of the costs at theornersof S is used as an indicator of the as-

3.1.1 Leaves and Internal Nodes sistance that will be provided throughdsit Benefit indices greater
Given a query instance., at each error-sensitive leaf (i.e. base than 1 are taken to indicate beneficial replacements whereas lower
relation) or internal node in the DP lattice, the following four- ~ values imply superfluous replacements. Accordingly, only wagons

stage retention procedure is used on the set of candidate wagondvith & > 1 are retained and the remainder are eliminated.

generated by the standard exhaustive plan enumeration process. Our choice of the CornerAvg heuristic is motivated by the fol-
lowing observation: The arithmetic mean favors sub-plans that per-

1. Local Cost Check: In this first step, we remove all wagons form well in thetop-right regionof the selectivity space since the
whose local cost significantly exceeds that of the engine. Thatis, |argest cost magnitudes are usually seen there. We already know
(Pu; ge) > (14 AF) (e, ge) (5) that POSP plans in this region tend to have. large endq-optimal
space coverage [7]. Therefore, they are more likely to provide good
where \} is an algorithmic cost-bounding parameter that can, in stability since,by definition any P,.. provides stability in its own
principle, be set independently of, the user’s local-optimality endo-optimal region, as its cost has to be less than thatofn
constraint (which is always applied at the final root node). this subspace (a more detailed analysis is given in Appendix C).
The CornerAvg heuristic projects that this observation holds true

2. Global Safety Check: In the next step, we evaluate the be- :
for the sub-plansof near-optimal plans as well.

haviour of the “safety function”, defined as
_ © 4. Cost-Safety-Benefit Skyline Check:After the above three
F(ga) = e(pw; ga) = (1 + Xg)e(pe, ga) ®) checks, it is possible that some wagons are “dominated” — that is,
This function captures the difference between the cosjs,cdnd their local cost is higher, their corner costs are individually higher,
ag-inflated version op. at locationg,. If f(q.) < 0 throughout and their expected global benefit is lower, as compared to some
the selectivity spac8, we are guaranteed that, if the cheapest sub- other wagon in the candidate set. Specifically, consider a pair of
plan were to be (eventually) replaced by the candidate sub-plan,wagons,p.,,1 and p.,2, with p,,; dominatingp.,» at the current
the adverse impact (if any) of this replacement is boundedy node. As these wagons move up the DP lattice, their costs and
—that is, in this sense, it safe Here,)\j is again an algorithmic benefit indices comelosertogether, since onlgdditive constants
parameter that can be set independently\pf(which is always are incorporated at each level — that is, the “cost-coupling” and
applied at the final root node). As a practical matter, we would the “benefit-coupling” between a pair of wagons becostesnger
expect the choice to be such thigt > A7 with increasing levels. However, and this is the key point, the dom-
Evaluating the safety function requires the ability to cost query ination propertycontinues to holdright until the lattice root, since
plans atarbitrary locations in the selectivity space. This feature, the same constants are added to both wagons.
called “Foreign Plan Costing” (FPC) in [8], is available in com- Given the above, it is sufficient to simply useskylineset [4]
mercial optimizers such as DB2 (Optimization Profile), SQL Server of the wagons based on local cost, global safety and global bene-
(XML Plan) and Sybase (Abstract Plan). For PostgreSQL, we had fit considerations. Specifically, for 2D error spaces, the skyline is
to implement it ourselves (details in Appendix G). comprised of five dimensions — the local cost and the four remote
The safety check can be verified by exhaustively invoking the corner costs (the benefit dimension, when defined with the Cor-
FPC function agll locations inS, but the overheads become un- nerAvg heuristic, becomes redundant since it is implied from the
viably large. We have recently developed ernerCube-SEER corner dimensions). A formal proof that the skyline-based wagon

1140

NCOL(1): 322890 [1.00]

NCOL(2): 329089 [1.23

NCOL

NCOL(1): 322890

NCOL(2): 328820 [1.38

NCOL(9) : 334801[1.26]

11.001 NCOL(1): 322890 [1.00]

NCOL(2): 329089 [1.23]

NCOL(3): 334801 [1.26

NCO(1): 25428 [1.00] COL(1): 322729 [1.00]

NCO(1): 25428 COL(1): 322729

%%\\

NCO(2): 31347 [2.67] COL(2): 328648 [1.4]
NCO(5): 65877 [2.66] COL(10): 365012 [1 .29]

CO(1): 25323 [1.00] OL(1): 313924 [1.00]
CO(2): 31243 [3.24] OL(2): 321245 [1.08]

COL(1): 322729 [1.00]
NCO(1): 25428 [1.00] COL(2): 328929 [1.24]

e

ICOL'

NC“) e CO(1) Vil OL(1) 313924 NC“) 7199 50(3) 60005 [3.07] OL(3); 350007 [1.06] NC(1) 7199 CO(1): 25323 [1.00] OL(1): 313924[1.00]
C) <] CN g /e
/\ \0<1) 168107 NL(1): 212
O(2): 45572 L(2): 193584
N(1): 1 c<1) 5135 0(1 16810 L(1): 212 N(1):1 c(1{V5135 o(); 60537 L(5): 9700974 N(1): 1 C(1): 5135 0Q1): 16810 L(1):212
O 1 [1 [[Cg 1 [C<] y&ﬂm ;

(a) RootExpand

(b) SkylineUniversal

(c) NodeExpand

Figure 3: Plan Expansion Algorithms (Q10: A;, Ag = 20%, 04 = 1)

selection technique is equivalent to having retained the entire setof4. REPLACEMENT ALGORITHMS

wagons is given in Appendix D.

After the above multi-stage pruning procedure completes, the
surviving wagons are bundled together with theengine, and this
train is then propagated to the higher levels of the DP lattice.

3.1.2 Root Node

When the final root node of the DP lattice is reached, all the
above-mentioned pruning checkadst, Safety, Benefit, Skyl)rere
again made, with the only difference being that bathand A7
are nowmandatorilyset equal to the user’'s requiremenis, and
Ag, respectively. Further, we also incorporate a benefit threshold,
04(64 > 1), which determines the minimum benefit for which re-
placement is considered a worthwhile option. Ideal}yshould be
set so as to ensure maximum stability without falling prey to super-

Given the generic process described above, we can obtain a host
of replacement algorithms by making different choices for Xfie
and)\j settings in the lattice interior. For example, we could choose
to keep them constant throughout. Alternatively, high values could
be used at the leaves, progressively becoming smaller as we move
up the lattice. Or, we could try exactly the opposite, with the leaves
having low values and more relaxed thresholds going up the lattice.
In essence, a rich design space opens up when stability considera-
tions are incorporated into classical cost-based optimizers.

We consider here a few representative instances that cover a
range of tradeoffs between the number and diversity of the candi-
date replacement plans, and the computational overheads incurred
in generating and processing these candidates. The functioning of
the algorithms is pictorially shown in Figure 3 for the example

fluous replacements. However, there is a secondary consideratiorfluéry @10 with A, A, = 20% (andd, = 1). In these figures,
— using a lower value and thereby going ahead with some of the nodes that contain one or more error-sensitive relatiorDERS

stability-superfluous replacements may help to achaverexic
plan diagrams, a potent objective in query optimizer construction.
The appropriate setting 6f, is discussed in our experimental study
(Section 5).

3.2 Plan Selection

LINEITEM) in their sub-trees, are represented with double boxes.

RootExpand. The RootExpand algorithm is obtained by setting
both A7 and A7 to 0 at all leaves and internal nodes, while at the
root node, these parameters are set to the user’s constkgints
respectively. This is a simple variant of the classical DP procedure,
wherein DP is used as-is starting from the leaves until the final root

At the end of the expansion process, a set of complete plans arenode is reached. At this point, the competing (complete) plans that

available at the root node. There are two possible scenarios:
1) The only plan remaining is the standard cost-optimal gtan
in which case this plan is output as the final selection; or

2) In addition to the cost-optimal plan, there are a set of candidate

are evaluated at the root node are filtered based on the four-check
sequence, and a final plan selection is made from the survivors as
per the procedure described in Section 3.2.

The functioning of RootExpand is pictorially shown in Fig-

replacement plans available that are all expected to be more robusjre 3(a), wherein the value above each node signifies the cost of the

than P, (i.e. theiré > §,). To make the final plan choice from
among this set, our current strategy is to simply udéaxBenefit
heuristic — that is, select the plan with the highgst

Constant Ranking Property. An important property of the above
selection procedure, borne out by the definitiort pfs that it al-
ways gives thesame rankingetween a given pair of potential re-
placement plangrespective of the specific query in S that is
currently being optimizedThis is exactly how it should be since
the stability of a plan vis-a-vis another plan should be determined
by its global behavior over the entire space.

A full-blown example of the plan replacement procedure is pre-
sented in Appendix E.

114

optimal sub-plan to compute the relational expression represented
by the node — for example, the cheapest method of joiDIRGERS

(O) andLINEITEM (L) has an estimated cost of 313924. At the
root node, the second-cheapest pldG,0OL(2), with cost 329089,

is chosen in preference to the standard DP chbi€©L(1), due

to locally being well within 20% of the lowest cost (322890), and
having the maximum Benefitindex ¢f= 1.23.

SkylineUniversal. The SkylineUniversal algorithm is obtained by
setting bothA7 and A\j to oo at the error-sensitive nodes in the
lattice interior, while the standard DP procedure is used at the re-
maining nodes. It represents the other end of the spectrum to Root-
Expand in that it propagates, beginning with the leag#syagons

1

evaluated at an error-sensitive node to the levels above. iThat which plan diagrams have been previously computed.

modulo the Skyline Check, which only eliminates redundant wag- (ii) Unlike SEER, our choice of replacement plans is not restricted

ons, there is absolutely no other pruning anywhere in the lattice to be only from the parametric optimal set of plans (POSP). In prin-

interior. This implies that the root node effectively processes the ciple, it could beany other plarfrom the optimizer's search space

entire set of complete plapgesent in the optimizer's search space that satisfies the user’s cost constraints. For example, a very good

for the query. plan that is always second-best by a small margin over the entire
The pictorial representation of SkylineUniversal is shown in Fig- selectivity space. In this case, SEER would, by definition, not be

ure 3(b). The labels above the error-sensitive nodes indicate theable to utilize this plan, whereas it would certainly fall within our

surviving wagons, along with their local costs and benefit indices. ambit.

For exampleCO(2) has a cost of 31243 argd= 3.24. The number (i) Finally, as previously mentioned, an attractive feature of Node-

of plans enumerated at the root ndd€OL is 1099, and 9 of them Expand is that it ensures performance fidelity of the replacement

successfully pass the four-stage check. The plan finally chosen isthroughout its operator tree.

NCOL(2) which has a cost of 328820 (about 2% more expensive

than the cost-optimallCOL(1)) and provides the maximum Ben- 5. EXPERIMENTAL RESULTS

efitindex of¢ = 1.38. . . .
We implemented the above plan replacement algorithms in Post-

NodeExpand. The NodeExpand algorithm strikes the middle greSQL 8.3.6 [15], operating on a Sun Ultra 24 workstation running
ground between the replacement richness of Universal and the com-Ubuntu Linux 9.10. The user-specified cost-increase thresholds in
putational simplicity of RootExpand, by “opening the sub-plan all our experiments was;, A, = 20%, a practical value as per our
pipe” to a limited extent. Specifically, the version of NodeExpand discussions with industrial development teams.

that we evaluate here seX§ = \;, \; = A, at all error-sensitive .
nodes — that is, the root node’s cost constraintdrareritedat the Query Templates and Plan Diagrams. To assess performance

lower levels as well. These settings are chosen to ensure that the?Ver the entire selectivity space, we took recourse to parametrized
sub-plansalso provide the same local-optimality and global-safety GUery templates- for example, by treating the constants associ-
guarantees as the complete plan, a feature we expect would provét€d WithO.totalprice andL.extendedprice in Q10 as parame-
useful in real-world environments with aspects such as run-time re- (€S- These templates, enumerated in [1], are all based on queries
source consumption. Further, as a useful byproduct, the settings@PPearing in th&PC-H andTPC-DSbenchmarks, and cover both
also help to keep the expansion overheads under control. 2D and 3D selectivity spaces. For each of the query templates,

An example of NodeExpand is shown in Figure 3(c), where 3 W€ pro_duced_plan qllagrams_, (ata umform gr_ld resolution of 100 on
plans survive the four-stage check at the root, B@DL(3) whose each dimension) with the Picasso visualization tool [16].

Benefitindex of 1.26 is the highest, is chosen as the final selection. A variety of performance metrics are used to characterize the
behavior of the various replacement algorithms:

The constraints imposed by the three expansion algorithms pre- .

sented above are summarized in Table 1 — standard DP is also in-L: Plan Stability and Safety. The effect of plan replacements on

cluded for comparative purposes stability is measured with the AggSERF and MaxSERF statistics.
' Further, we traclREP%, the percentage of query locations where

the optimizer’s original choice is replaced; ahelp%, the per-

Optimization Leaf Node | Internal Node Root Node

Algorithm AP XE AP NE AN | g centage of error instances wherein replacement plans reduced the
Standard DP 0 0 0 — performance gap substantially — specifically, by atleastthirds.
RootExpand 0 0 AAg | 21 Replacement safety is evaluated through the MinSERF statistic
NodeExpand AlAg AlAg AAg | 21 and the percentage of error instances with MinSERF belowy is
SkylineUniversal oo oo AAg | 21 tabulated aglarm%% .
Table 1: Constraints of Plan Replacement Algorithms 2. Plan Diagram Cardinality. This metric tallies the number of

unique plans present in the plan diagram, with cardinalities less
Inheriting Engine Costs for Wagons. A crucial optimization than or arounden indicatinganorexic diagramg7, 8]. We also
incorporated in the above algorithms for reducing overheads is the tabulate the number @forrPOSP plans selected by our techniques.
following: When two plan-trains arrive and are combined at a
node, the cost of combining the engines of the two trains with
particular method is exactly the same cost as that of combaniyg
other pair from the two trains. This is because the engines and
wagons in any train all represent the same input data. Therefore,Query Template Descriptors. We useQTx andDSQTx to label
we need to only combine the two engines in all possible ways, just query templates based on Queryf the TPC-H benchmark and the
like in standard DP, and then simply reuse these associated costs td PC-DS benchmark, respectively. By default, the query template
evaluate the total costs for all other pairings between the two trains. is 2D, while a label prefix 08D indicates a 3D template. The de-
Further, this cost reuse strategy can be used not just for the localfault physical design is a clustered index on each relation’s primary

3. Computational Overheads. This metric computes the over-
& heads incurred, with regard to both time and space, relative to those
experienced with the standard DP-based query optimization.

costs, but for the remote FPC-based corner costs as well. key. Additional results obtained on an “index-rich” situation, de-
i i noted with label prefiAl, where indices exist on all query-related
4.1 Comparison with SEER schema attributes, are given in Appendix F.1.

Our earlier SEER approach [8] identified robust plans through -
the anorexic reduction of plan diagramsThere are fundamen- ~ 9-1 Plan Stability Performance
tal differences between that “offline/exo-optimizer/reduction” ap- The stability performance results of the RootExpand, NodeEx-
proach and our current “online/intra-optimizer/production” work: pand, SkylineUniversal and SEER algorithms are enumerated in
(i) Our techniques are applicable #w-hoc individual queries, Table 2 for a representative set of query templates from our study,
whereas SEER is useable only on form-based query templates forwhich covered a spectrum of error dimensionalities, benchmark

1142

Query RootExpand NodeExpand SkylineUniversal SEER DP
Temp- REP Agg Help| #of Non- | REP Agg Help| #of Non- | REP Agg Help| #of Non- | REP Agg Help| #of # of
late % SERF % | PlansPOSP| % SERF % | PlansPOSP| % SERF % | PlansPOSP| % SERF % | Plans | Plans
QT5 84 054 55 3 0 85 0.54 55 3 0 85 0.54 55 3 0 47 0.61 64 2 11
QT10 32 0.20 19 7 1 98 0.21 20 3 0 98 0.21 20 3 0 37 0.21 20 2 15
3DQT8 47 0.17 8 22 17 69 0.18 10 3 0 - - - - - 59 0.17 9 2 43
3DQT10 15 0.37 41 12 2 99 0.39 44 5 1 99 0.39 44 5 1 24 0.38 41 3 30
DSQT7 93 0.28 28 3 1 93 0.28 28 2 1 93 0.28 28 2 1 46 0.28 28 2 12
DSQT26 | 30 0.48 50 9 7 30 0.49 50 2 1 30 049 50 2 1 29 049 49 2 13

Table 2: Plan Stability and Plan Diagram Performance

daabases, physical designs and query complexities (the completethe original choices. Our observations, detailed in [1], indicate that
set of results is available in [1]). (a) index-intersection joins are often replaced by scan-based joins;

Our initial objective was to evaluate whether there is really tan- (b) nested-loop-based plans are frequently replaced with hash-join-
gible scope for plan replacement, or whether the optimizer's plan based plans, while merge joins are almost never retained; and (c)
itself is usually the robust choice. We see in Table 2 that REP% left-deep plans are typically replaced by bushy plans.

for both RootExpand and NodeExpand is quite substantial, even Plan Replacement SafetyThe MinSERF results with a LiteSEER

reaching inexcess of 90%or some templates (e.g. DSQT7)! On . . . ;) L . -
average across all the templates, the replacement percentage Walgnplementatlon (given in Appendix F.5) indicate that this heuristic

around 40% for RootExpand and 80% for NodeExpand. works very effectively in providing replacement safety since (a)

We hasten to add that not all of these replacements are required toonly a few templates have negative MinSERF values, with small

achieve stability, and the stability-superfluous replacements could magmtudes_, :_;md (b) the harmful replacemeqts in these cases occur
be eliminated by setting higher values &f. For example, with for only a miniscule percentage of error locations. The correspond-

QT5, settingd, = 1.03 achieves the same stability as the default ing CC-SEER results are given in Appendix F.6.
dg = 1.0 and brings REP% of NodeExpand down from 85% to : P
392%. Our analysis has shown that in general, about 30%-50% re-5'2 Plan Dlagram Characteristics
placements are sufficient to maximize the stability. However, the =~ We now turn our attention to the characteristics of pien di-
additional replacements contribute to producing anorexic plan dia- agramsobtained with the replacement algorithms. The associated
grams, as seen later in this section. results are also shown in Table 2, and to place them in context, the
Moving on to the stability performance itself, we observe that the Statistics for the standard DP-based optimizer are included.
AggSERF values of both RootExpand and NodeExpand are usu-pian piagram Cardinality. We see in Table 2 that for templates
ally in the range of.1 to 0.6, with the average being abo0t3, such as 3DQT8, where DP generates “dense” diagrams with high
which means that on average abouae-third of the performance 4, cardinalities, RootExpand diagrams may also feature a large
handicap due to selectivity errors is removed. A deeper analysis n,mper of plans. This behavior is more prevalent in index-rich
leads to an even more positive view: First, the Help% statistics in- ovironments (see Appendix F.1), with the diagram cardinalities
dicate that, for several templates, a significant fraction of the error oan exceedinghat of DP for some templates — e.g. DP has 28
instanceglo receive substantial assistandeéor example, QT5 has plans for AIDSQT18, whereas RootExpand features 31 plans!
the performance gap reduced by more than 2/3 in about 55 percent NdeExpand, on the other hand, consistently delivers strongly
cases, and, in fact, most of these receive SERF in excess of 0.9 5pqrexicplan diagrams for almost all the templates. In fact, its

i.e., effectively achievémmunityfrom the errors. A visualization 3 cardinality is often comparable to that of SEER — this is quite
of the distribution of SERF values for this template is shown in encouraging since it is obtained in spite of having to contend with

Appendix F.3.) _ . (a)amuch richer search space from which to choose replacements,
Second, the AggSERF performance of (offline) SEER is quite 44 (b) no prior knowledge of the choices made in the remaining

similar to that of RootExpand and NodeExpand. In our prior study selectivity space. A sample set of plan diagrams produced by DP,
[8], SEER had produced better results for these same templates “RootExpand and NodeExpand are shown in [1].

the difference is that those experiments were carried out on a so-

phisticated commercial optimizer supporting a richer space of qual- Non-POSP plans. We also see in Table 2 that non-POSP plans

ity replacements than PostgreSQL. Implementing our algorithms do feature in the replacement plan diagrams, occasionally in sig-

in such high-end optimizers is likely to also significantly increase nificant proportions, as in 3DQT8 with RootExpand. Again, this

their AggSERF and Help% contributions. phenomena is more prevalent in index-rich environments (see Ap-
Third, the performance of RootExpand and NodeExpand, in pendix F.1) —as a case in point, with AI3DQT8, there are 41 non-

spite of considering a much smaller set of replacement candidates,POSP plans out of 51 for RootExpand, occupying 78% of the space,

is virtually identical to that of SkylineUniversal in the templates While NodeExpand has 12 on 14, covering more than 90% area.

where it was able to successfully complete (the templates for which .

SkylineUniversal ran out of memory are shown with). In fact, as 9.3 ~Computational Overheads

shown in Appendix F.2, their performance is fairly close to evenan We now turn our attention to the computational price to be paid

optimal (wrt AggSERF) version of SkylineUniversal! for providing robust plans and anorexic plan diagrams. The time
Finally, MaxSERF was 1 for all the templates, testifying to the aspect is captured in Table 3 where the average per-query opti-

inherent power of the replacement approach. mization times (in milliseconds) are shown for DP, RootExpand
Taken in toto, these results suggest that the controlled expan-and NodeExpand — the increase relative to DP is also shown in

sion technique is capable of extracting most of the benefits obtain- parentheses. These results indicate that the performance of both re-

able through plan replacement. Further, we have also conductedplacement algorithms is well withih0O millisecondsf DP for all

an analysis of the characteristics of the replacement plans vis-a-visthe templates.

1143

Query Optimization Time (ms)
Template | DP | RootExpand | NodeExpand
QT5 32114 (+8.2)| 222 (+19.0)
QT10 09| 23 (+14)| 3.2 (+2.3)
3DQT8 | 35| 12.9 (+9.4)| 30.6 (+27.1)
3DQT10 | 0.9 | 3.4 (+25)| 43 (+3.4)
DSQT7 | 1.3 | 42 (+2.9)| 7.7 (+6.4)
DSQT26 | 1.4 | 41 (+2.7)| 7.0 (+5.6)

Table 3: Time Overheads (in milliseconds)

Query Memory Overhead (MB)
Template | DP | RootExpand | NodeExpand
QT5 2840 (+1.2) | 7.0 (+4.2)
QT10 | 22|26 (+0.4)| 34 (+1.2)
3DQT8 | 40|54 (+1.4) | 106 (+6.6)
3DQT10 | 2.2 | 3.0 (+0.8) | 51 (+2.9)
DSQT7 | 24|29 (+05) | 35 (+1.1)
DSQT26 | 24 | 3.0 (+0.6) | 3.8 (+1.4)

Table 4: Memory Consumption (in MB)

With regard to memory overheads, shown in Table 4, the peak
additional consumption of RootExpand and NodeExpand is com-
fortably less tharlOOMBover all the query templates. These over-

heads appear quite acceptable given the richly-provisioned comput-

ing environments in vogue today. Further, they are incurred only
for a brief time period (<0.1s), as per Table 3.
The low overheads are primarily due to the four-stage pruning

mechanism that controls the number of wagons forwarded from a

the candidate space for replacement plans, and the associated com-
putational overheads. Our approach expands the set of plans sent
from each node in the DP lattice to the higher levels, subject to

a four-stage checking process that ensures only plausible replace-
ments are forwarded, and overheads are minimized.

We implemented, in the PostgreSQL kernel, a variety of replace-
ment algorithms that covered the spectrum of design tradeoffs, and
evaluated them on benchmark environments. Our results showed
that a significant degree of robustness can be obtained with rela-
tively minor conceptual changes to current optimizers, especially
those supporting a foreign-plan-costing feature. Among the re-
placement algorithmd\lodeExpand which propagates the user’s
cost and stability constraints to the internal nodes of the DP lattice,
proved to be an excellent all-round choice. It simultaneously de-
livered good stability, replacement safety, anorexic plan diagrams,
acceptable computational overheads, and near-optimal sub-plans.
The typical situation was that its plan replacements were often able
to reduce, by more than two-thirds, the adverse impact of selectiv-
ity errors for a significant number of error situations, in return for
investing relatively minor time and memory resources.

In our future work, we plan to investigate automated techniques
for identifying customized assignments to the node-specific cost,
safety and benefit thresholds in the Expand approach. Further, it
would be interesting to extend our study to skewed distributions of
error locations in the selectivity space.

Acknowledgements. This work was partially supported by grants from
Microsoft Research. We thank A. Dutt for implementation contributions.

node — an example scenario is shown in Appendix F.4, where the 8. REFERENCES

initial 446 candidate plans are pruned to just 6 survivors.

6. RELATED WORK

Over the last decade, a variety of compile-time strategies have 2]

been proposed for identifying robust plans, including the Least Ex-
pected Cost [5], Robust Cardinality Estimation [2] and Rio [3] ap-

proaches. These techniques provide novel and elegant formula-

tions, but, as described in detail in [8], are limited on some im-
portant counts: First, they do not all retain a guaranteed level of
local optimality in the absence of errors. That is, at the estimated
query location, the substitute plan chosen matigtrarily poor

compared to the optimizer’s original cost-optimal choice. Second,

these techniques have not been shown to provide sustained accept-

able performancehroughoutthe selectivity space, i.e., in the pres-
ence of arbitrary errors. Third, they requspecializednforma-

tion about the workload and/or the system which may not always
be easy to obtain or model. Finally, their query capabilities may be
limited compared to the original optimizer — e.g., only SPJ queries
with key-based joins were considered in [2, 3].

Both our previous offline exo-optimizer SEER technique, and
the online intra-optimizer algorithms proposed in this paper, ad-
dress the above limitations through a confluence of (i) mathemat-
ical models sourced from industrial-strength optimizers, (i) com-
bined local and global constraints, and (iii) generic but effective
heuristics. (The salient differences between SEER and EXPAND
were discussed in Section 4.1).

7. CONCLUSIONS AND FUTURE WORK

We investigated the systematic introduction of global stability
criteria in the cost-based DP optimization process, with a view
to reducing the impact of selectivity errors. Specifically, we pro-
posed the Expand parametrized family of algorithms for striking

[1] M. Abhirama et al, “Stability-conscious Query Optimization”, Tech.

Rep. TR-2009-01, DSL/SERC, Indian Inst. of Science, July 2009.

dsl.serc.iisc.ernet.in/publications/report/ TR/TR-2009-01.pdf

B. Babcock and S. Chaudhuri, “Towards a Robust Query Optimizer:

A Principled and Practical Approach”, Proc. of SIGMOD 2005.

[3] S.Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optimization”,
Proc. of SIGMOD 2005.

[4] S. Borzsonyi, D. Kossmann and K. Stocker, “The Skyline Operator”,
Proc. of ICDE 2001.

] F. Chu, J. Halpern and P. Seshadri, “Least Expected Cost Query

Optimization: An Exercise in Utility”, Proc. of PODS 1999.

[6] A.Deshpande, Z. Ives and V. Raman, “Adaptive Query Processing”,
Foundations and Trends in Databasé&&w Publishers, 2007.

1 Harish D., P. Darera and J. Haritsa, “On the Production of Anorexic

Plan Diagrams”, Proc. of VLDB 2007.

Harish D., P. Darera and J. Haritsa, “Robust Plans through Plan

Diagram Reduction”, Proc. of VLDB 2008.

[9] A.Hulgeri and S. Sudarshan, “AniPQO: Almost Non-intrusive

Parametric Query Optimization for Nonlinear Cost Functions”,

Proc. of VLDB 2003.

N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optimization of

Sub-Optimal Query Execution Plans”, Proc. of SIGMOD 1998.

V. Markl et al, “Robust Query Processing through Progressive

Optimization”, Proc. of SIGMOD 2004.

[12] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, T. Price

P. Selinger et al, “Access Path Selection in a Relational Database

System”, Proc. of SIGMOD 1979.

H. Shrimal, “Characterizing Plan Diagram Reduction Quality and

Efficiency”, ME Thesis, Indian Inst. of Science, June 2009.

dsl.serc.iisc.ernet.in/publications/thesis/harsh.pdf

M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO, DB2’s

LEarning Optimizer”, Proc. of VLDB 2001.

[15] www.postgresql.org/docs/8.3/static/release-8-3-6.html

8

—_

[10]

(11]

[13]

[14]

the desired balance between the competing demands of enriching[16] dsl.serc.iisc.ernet.in/projects/PICASSO/picasso.html

1144

APPENDIX

A. THE EXPAND ALGORITHM

The complete pseudo-code for the EXPAND family of algo-
rithms, including the extensions described in Appendix B, is pre-
sented in Figure 4.

Expand (Node z, A\{, Ay, d4)

Node z : Anode in the DP-lattice

A7 : Local-optimality threshold for node (set as per Table 1)
Ay : Global-safety threshold for node(set as per Table 1)

44 : Global-benefit threshold (set as per Table 1)

B. QUERY COMPLEXITIES

For ease of presentation, we had assumed in the main paper (Sec-
tion 3) that optimizing the user query did not involve either (a) “in-
teresting orders” (where a sub-plan produces results in a particu-
lar order that could prove useful later in the optimization); or (b)
“stems” (where a linear chain of nodes appears above the join root
node of the DP lattice). We now discuss the algorithmic extensions
necessary to handle these features.

@

1: z.PlanTrain «— ¢
2. x.ErrorSensitive — FALSE
3: if SubTree(x) contains at least one error-sensitive reldkien
4. x.ErrorSensitive +— TRUFE
5. if z. ErrorSensitive = FALSE then
6: /« Standard DP x/
7 z.PlanTrain «— {Cheapest plan to compute+ cheapest plan to
. computer for each interesting ordéo
B.1 Interesting Orders & Retuma PlanTrain g ordén)

Plans corresponding to interesting orders can be handled by hav- 9 €lse _
ing each train to be composed of not just a single generic sequencel® /* Expansion Process:/

. . . 11: if z.level = LEAF then

of wagons, but instead aarray of sub-trains, one for each inter- ;. z.PlanTrain — All possible access paths for base relation
esting order. For the sake of uniformity, we treat the set of wagons 13: else

corresponding to unordered plans to also be part of a generic result14: for all pairwise node combinations that generate Nodi®

order calledNO_ORDER 15:
As discussed earlier, there are two steps to the expansion procesg®:

— an exhaustive plan enumeration step followed by the four-stage

. . . . 7:
plan retention process. We discuss the changes required in each oﬁ&
19

the two steps to be able to handle interesting orders.

Plan Enumeration. Let A andB be a pair of lower level nodes

determined. Combinations with interesting orders are assigned to

the associated sub-trains, while the unordered combinations are all,,,.
placed in theno_ORDERSuUb-train. 28:
29:

Plan Retention. The plan retention process is handiadepen-

dently for each of the sub-trains and exactly follows the 4-stage 3.

pruning procedure described for single trains in Section 3. 32:
33:
B.2 Stems 34:

A stem in a DP-lattice is the linear chain of nodes that may ap- ggf
pear above the “join root” node (the node corresponding to the join 5.
of all the relations present in the query). The stem usually features 3s:
aggregation and grouping operators. A sample, based on the exam39:
ple query of Figure 1(a), is shown in Figure 5, where the join rootis 40:
NCOL, and the stem is displayed in the shaded box. The handling 3;1

of stems is algorithm-specific, as described below.

Expand takes place only at the terminal node of the DP-lattice. This

is appropriate when the terminal node is the join root and there are 4.
a set of alternative plans, corresponding to different join orders, 47:
to choose from. However, it becomes meaningless if the termi- 48:
nal node is at the end of a stem since onlsiragle plan will have 49:
survived at this stage in the normal DP process, and therefore theg‘;f

replacement space is virtually non-existent.

way until the terminal node of the stem. Thatg,and\y are set

to oo at the join root and all internal stem nodes that lie between
the join root and the terminal node. This procedure is implemented
in Lines 26 and 27 of Figure 4.

1145

20:
in the lattice that combine together to produce NadeThen, the 21

plan expansion procedure at Nad@volves exhaustively combin- 22:
ing all sub-trains ofA with all sub-trains ofB. Subsequently, the 23:
result order (if any) of each of the newly produced combinations is 241_

43:
RootExpand. As explained in Section 4, plan expansion in Root- 44

52:
We therefore modify the RootExpand algorithm to peratit 53:

plans that reach the join root to continue to be considered all the s4:

Let A andB be the lower level nodes combining to produce
Let A.PlanTrain and B.PlanTrain be the plan-trains of
A and B, respectively.
for eachp 4 in A.PlanTrain do
for eachpg in B.PlanTrain do
z.PlanTrain «— x.PlanTrain U {Plans formed by
joining p 4 andp in all possible ways

for each plarp with interesting ordeio in x. PlanTrain do

Move p to sub-trainz. PlanTrain;,.

Move all remaining plans to sub-train PlanTrainNo_ O RDER-

/+ Stem handling for RootExpand s/
if (RootExpandpnd (isJoinRootg) or isinternalStem¢)) then

)\f<—oo;)\gg”<—oo

for eachz. PlanTrain, of nodex do

/* 4-stage Pruning Process/
Let p. be the engine aof. PlanTrain,
/* 1. Local Cost Checks/
for each wagon plap., € z.PlanTrain, do
if cost(pw,gqe) > (1 + AT)cost(pe, ge) then
z.PlanTrain, «— z.PlanTrain, — {pw}
/* 2. Global Safety Checks/
for each wagon plap,, € z.PlanTrain, do
for each poinig, € Corners(S) do
if cost(pw,qa) > (1 + A§)cost(pe, qa) then
x.PlanTrain, «— x.PlanTrain, — {pw}
break
/* 3. Global Benefit Checksx/
for each wagon plap,, € z.PlanTrain, do
£ L gq €Corners(s)c05t(Pe;qa)
Puw- EqQECoTneTs(S)COSt(pwvQG)
if x.level = ROOT and p,.§ < 04 then
z.PlanTrain, «— z.PlanTrain, — {pw}
else ifz.level # ROOT and p,,.£ < 1then
z.PlanTrain, «— z.PlanTrain, — {pw}
/* 4. Skyline Checksx/
z.PlanTrain, «— C-S-B Skyline ¢.PlanTrain,)

if x.level = ROOT then

z.PlanTrain <+ Plan with Maximun¢ in z. PlanTrain

Returnz.PlanTrain

Figure 4: Node Expansion Procedure

ORDERBY(1): 324018 [1.00]
ORDERBY(2): 330217 [1.21]

ORDERBY

GROUPBY(1): 323164 [1.00]
GROUPBY(2): 329363 [1.21]

NCOL(1): 322890 [1.00]
NCOL(2): 329089 [1.23]

!
NcoL

AN

NCO(1): 25428 COL(1): 322729

NC(1): 7199 CO(1): 25323

/
N(1): 1 C(1): 5135 O(1): 16810 L(1): 212
W N

Figure 5: Plan Stem

=er

D. PROOF OF SKYLINE SUFFICIENCY

In Section 3, we described a four-stage wagon pruning procedure
that is invoked at each node. The last check in this procedure selec-
tively retains only theskylineset of wagons based on cost-safety-
benefit considerations. We prove here that the final plan choices
made by the optimizer using this restricted set of wagons is exactly
equivalent to that obtained by retaining the entire set of wagons —
that is, there is no “information loss” due to the pruning.

Theorem 1 A sub-planp,, eliminated by the Skyline check cannot
feature in the final replacement plap.. selected by the optimizer
in the absence of this check.

PROOF We demonstrate this proof by negation. That is, as-
sume in the absence of the Skyline check, the final plandoes
contain a wagorp,,1 eliminated by this check. Let the elimina-
tion have occurred due to domination py. on the dimensionality
space comprised dfocalCost, Cost(V1), Cost(Vz), Cost(V3),
...Cost(Van — 1), BenefitIndex.

We now assess the relationship that develops betweerand
pw2 in the event that both had been retained through the higher
levels of the DP lattice. For example, at the next higher nadbe
costs and benefits of the wagons will be

NodeExpand and SkylineUniversal. For these algorithms, we

do not need to make any special changes for handling stems since
they, unlike RootExpand, carry out plan expansion at all levels of
the DP-lattice, and therefore the stem nodes can be treated in the
same way as the canonical lattice nodes.

where the deltas are the incremental costs, at the local anércor
locations, of computing node. Note that these incremental costs
will be the same for the two wagons since they both represent the
same input data and can therefore use the same strategy for com-
putingz.
From the above, it is clear that the relative values along all sky-
line dimensions have indeed come closer together due to the pres-
ence of the additive constants — that is, there is a tighter “coupling”.
However, there is no “inversion” on any dimension due to which the
domination property could be violated. This is because, as is triv-
¢(Poc, qa) (by definition of a cost-based optimizer). There- ially obvious, given two arbitrary numbets andv; with v; > v;,
and a constant, it is always true that; + a > v; + a.
By induction, the above relationship would continue to be true

C. IMPACT OF PLAN REPLACEMENT

Consider the situation where we are contemplating the decision
to replace theP,. choice atg. with the P,.. plan. The actual query
point g, can be located in any one of the following disjoint regions
of P.. that together cove® (with reference to Figure 1(b)):

Endo-optimal region of P..: Here, ¢, is located in endoy.,
which also implies thatP,e = P,.. Sincec(Pre,qa) =
¢(Poa, qa), it follows that the cost o, atqa, ¢(Pre, ¢a) <

fore, improved resistance to selectivity errors is alwgyar-
anteedin this region. (If the replacement plan happens to

Wagon | Local Corner Benefit
Cost Costs Index
wl C(p’W17q€) + c(pwh‘/’i) + C(p’wh‘/’i) +
Ac Av; > Av,
w2 c(p’lU17 Qe) + C(pw27 ‘/L) + C(pw27 ‘/L) +
. Ay, > Av

not be from the POSP set, as is possible with our algorithms, all the way up the lattice to the root node. Now, in the final se-

endor. Will be empty.)

lection, the MaxBenefit selection heuristic chooses the wagon with

A;-optimal region of P,.: Here, ¢, is located in the region that the maximum benefit. Therefore, it would still be the case that the

could be “swallowed” byP,., replacing the optimizer's cost- plan withp.,2 would be preferred over the identical plan wijth:
instead since the benefit of the former is greater than that of the

optimal choices without violating;, the local cost-bounding

constraint. By virtue of this constraint, we are assured that latter. Hence our original assumption was wrongl

c(Pre,qa) < (1 + N)e(Poa,qa), and by implication that
¢(Presqa) < (1 4+ A)c(Poe,qa). Now, there are two pos-
sibilities: If ¢(Pre,qa) < c(Poe, qa), then the replacement

E. PLAN REPLACEMENT EXAMPLE

To make the plan replacement procedure concrete, consider the

plan is guaranteed to improve the resistance to selectivity example situation shown in Table 5, obtained at the root of the

errors. On the other hand, {Poc,ga) < ¢(Pre,qa) <
(1 + A)e(Poe, ga), the replacement is certain to not cause
any real harm, given the small valuesafthat we consider

in this study.

Exo-optimal region of P,.: Here, g, is located outsidea fey.,
and at such locations, we cannot apriori predict’s behav-
ior relative to P,.— it could range from being much better,
substantially reducing the adverse impact of the selectivity
error, to the other extreme of beimguch worsemaking the

replacement a counter-productive decision.

DP lattice for queryQ10 using the NodeExpand algorithm with
A, Ag = 20%, 6, = 1. We present in this table the enging; §
andseventy threadditional wagons®, through P-4), ordered on
their local costs. The corner costs and benefit indices of these plans
are also provided, and in the last column, the check (if any) that
resulted in their pruning. As can be seen, each of the checks elimi-
nates some wagons, and finally, only two wagaRs Pi9) survive

all the checks. From among them, the final plan choseR\is
which has the maximurg = 1.26, and whose local cost (334801)

is within 4% of P, (322890).

1146

Plan
No
P1
P2
P3
P4

Pruned
by

Local
Cost
322890
322901
323026
324203

Vo
Cost
202089
202101
202091
202089

Vi
Cost
224599
224610
224593
224604

Va
Cost
846630
846642
905309
846636

V3
Cost
1271678
1271689
1247883
1952627

3

1.00
0.99
0.98
0.78

Benefit
Benefit
Safety
1.23
1.23
0.43

1280663
1280674
4563459

356555
356567
846959

230766
230777
224928

208207
208219
202090

329089
329100
329229

P9
P10
P11

Skyline
Safety
126 |
0.47
0.25

1204051
4572444
9354574

362417
356884
356886

236628
231095
231097

214078
208208
208218

334801
335428
337838

P19
P20
P21

Safety
Safety
Cost
Cost

0.17
0.06

12495404
38862955

1866554
850384

500856
228361

202208|
202096

390748
395288

P32
P33
Cost
Cost

> 102
> 102

P73
P74

<0.1
< 0.1

> 10'3
> 10'3

> 10°
> 10°

> 10'2
> 10'2

> 108
> 108

Table 5: Example Replacement at Root Node(?10)

F. ADDITIONAL RESULTS

Our experimental study covered a spectrum of error dimension-

Query DP RootExpand | NodeExpand | SEER
Template Plans | Plans Non- | Plans Non- Plans
POSP POSP
AIQT5 29 13 3 7 4 4
AI3DQT8 70 51 41 14 12 7
AIDSQT18 28 31 7 3 1 3

Table 7: Plan Diagram Performance (All Index)

F.2 Efficacy of CornerAvg heuristic

In order to quantify the efficacy of the CornerAvg heuristic
used by the Expand algorithms, we also evaluated the AQgSERF
obtained through a “brute-force” algorithm@ptimalAggSERF-
SkylineUniversal (OAS-SU). OAS-SU explicitly and exhaustively
checks for each query location, the best replacement with regard
to the AQgSERF metric, from the SkylineUniversal set of plans at
that location. The performance of OAS-SU is showcased in Table 8
against that of NodeExpand and SkylineUniversal for all the query
templates of the main paper where SkylineUniversal was feasible.

The results of Table 8 are very encouraging since they indicate
that the AQgSERF achieved through Cornerfamgproaches that
obtained with OAS-SUestifying to the potency of the CornerAvg
heuristic. For example, on template 3DQT10, CornerAvg achieves

alities, benchmark databases, physical designs and query complexan AggSERF of 0.39 as compared to the 0.44 of OAS-SU.

ities. We present here additional experimental results relevant to
the discussion in the main paper. The complete set of results is
available in [1].

F.1 AllIndex Physical Configuration

In addition to the default physical design configuration, we
consideredAllindex (Al) , an “index-rich” situation with (single-
column) indices available on all query-related schema attributes.
Representative results for the Al configuration are presented in Ta-
ble 6 for replacement plan stability, and in Table 7 for plan diagram
characteristics.

Query RootExpand NodeExpand SEER
Template REP Agg Help | REP Agg Help | REP Agg Help
% SERF % % SERF % % SERF %
AIQT5 87 0.37 36 99 0.37 38 87 0.38 39
AI3DQT8 30 018 21 98 019 21 55 0.12 15
AIDSQT18 11 003 1 75 0.07 3 68 0.04 3

Table 6: Plan Stability Performance (All Index)

We see in Table 6 that the stability results are, for the most
part, qualititatively similar to those seen in the default primary-key-
index scenario (Section 5). A point to observe here is that there are

templates such as AIDSQT18, where the AQgSERF values are ex-

tremely low. However, this appears to be an artifact of the database
environment in which the evaluation was done rather than a basic
flaw in our approach since even the yardstick algorithms, SEER and
SkylineUniversal, are unable to achieve useful improvements on
these templates. Moreover, as previously mentioned in Section 5,

the SERF values obtained by SEER for the same templates were

significantly higher on a commercial optimizer that offered a richer

replacement space. Therefore, our expectation is that implement-

ing the online algorithms in such high-end optimizers would result
in a larger body of templates receiving significant AQgSERF and
Help% benefits.

Turning our attention to the plan diagram statistics in Table 7, we

see that the observations made in Section 5 are more prominently

portrayed here. Specifically, RootExpand features large plan cardi-
nalities, whereas NodeExpand is comparatively anorexic. Further,

non-POSP plans comprise a significant fraction of the plans appear-

ing in the diagrams of RootExpand and NodeExpand.

Query NodeExpand | SkyLineUniv OAS-SU
Temp- Rep Agg | Rep Agg | Rep Agg
late % SERF | % SERF | % SERF
QT5 85 0.54 85 0.54 85 0.64
QT10 98 0.21 98 0.21 99 0.26
3DQT10 | 99 0.39 99 0.39 94 0.44
DSQT7 | 93 0.28 93 0.28 99 0.28
DSQT26 | 30 0.49 30 0.49 99 0.49

Table 8: AQgSERF efficacy of CornerAvg

F.3 Distribution of SERF values

A sample frequency distribution of the positive SERF values ob-
tained with NodeExpand on QT5, which has a substantial Help%
of over 50%, is shown in Figure 6. What is particularly notetworthy
is that, by virtue of the plan replacements, a significant number of
error instances essentially receive “immunity” (SERF.9) from
the ill-effects of their estimation errors.

08

0.5 -

0.2 4

<oz eoca®e=m

04 0.5 0.6 07
SERF Values

03 0.8 0.9 10

Figure 6: Frequency Distribution of SERF values (QT5)

1147

F.4 Pruning Analysis in Table 12 for a representative set of templates. We see here that
As presented in Section 4, our expansion algorithms involve a the time overheads of CC-SEER are substantially more than those
four-stage pruning mechanism, comprising of Cost, Safety, Benefit Of LittSEER, the gap increasing with template dimensionality. The
and Skyline checks. We show in Table 9, a sample instance of the SPace overheads are also higher for CC-SEER since each sub-plan
collective ability of these checks to reduce the number of wagons has to now carry a larger number of corner costs to the higher lev-
forwarded from a node to a limited viable number. In this table, ob- €IS, and this factor increases exponentially with dimensionality.
tained from the root node of a QT8 instance located at (30%,30%)

in S, we show the initial number of candidate wagons, and the num- Query Nf_ctiegége;{nd Ng‘éegé%ﬂ‘d
ber that remain after.ea(.:h check. As can be seen, there are almost Template Tmﬁe' i Memz)ry Tm(ne . Mem())ry
450 plans at the beginning, but this number is pruned to less than (ms) (MB) (ms) (MB)
10 by the completion of the last check. QT5 220 70 815 159
QT10 3.2 3.4 20.4 5.4
Initial After 3DQT8 | 30.6 10.6 215.3| 118.1
of Local | Global | Global C-S-B
Wagons | Cost | Safety | Benefit | Skyline Table 12: Computational Overheads of CC-SEER
446 214 194 139 6

Table 9: Impact of 4-stage Wagon Pruning (QT8)

G. IMPLEMENTATION IN POSTGRESQL

F.5 Plan Replacement Safety We have implemented the various algorithms described in the
We now shift our attention to the MinSERF metric to evaluate the Prévious section inside the PostgreSQL kernel, specifically version

safetyaspect of plan replacement. To make sure that the replace-8-3-6 [15]. We briefly discuss here the issues related to our imple-

ments do not end up causing any material harm, MinSERF is calcu- Mentation experience.

lated over theentire selectivity spaceThe results are presented in Foreign Plan Costing. In order to implement the LiteSEER and

Table 10 and we see that for both RootExpand and NodeExpand:¢ heuristics described in Section 3.2, we need to be able to cost a

(a) only a few templates have negative values belaly, (-0.2), sub-plan (or plan) at all corners 8f While this feature is present in

(b) even in these cases, the harmful replacements (shown throughseveral commercial optimizers, as mentioned before, it is currently

Harm%) occur for only a miniscule percentage of error locations not available in PostgreSQL.

(less than 1% for 2D templates and less than 5% for 3D templates), Therefore, we have ourselves implemented remote costing in the

and (c) most importantly, their magnitudes are small — the lowest postgreSQL optimizer kernel. Our initial idea was to merely carry

MInSERF value is within5. out a bottom-up traversal of the operator tree at the foreign location
oy RootExpand | NodeExpand | SkylneUnversal and at ea(?h nqde approprlately invoke the qptlmlzers costlng.and
Tem- Min Harm | Min Harm | Min— Harm output estimation routines. This approach is reasonably straight-
plate SERF % | SERF % SERF % forward to implement, and more importantly, very efficient.

QTT150 0024 0025 0024 0001 0024 0051 However, this approach failed to work because PostgreSQL
S%QTS 105 ool | 230 ooL | - - cac_:hes certain_temporary res_ults during the optimization process
3DQT10 | -1.08 1.93 | -0.78 215 | -0.78 215 which have an impact on the final plan costs — these cached values
DSQT7 o 0 0 0 0 0 are not available to a purely offline costing approach. Therefore,
DAslgl-gG 8 8 8 8 8 9 we had to monitor and retain sufficient additional information dur-
AI3DQT8 | -4.88 0.43 | -2.80 4.30 - - ing the current plan generation process such that the cached values

AIDSQT18 o o 0 0 - - for remote locations could be explicitly calculated.
Table 10: Plan Safety Performance Optimization Process. The PostgreSQL optimizer usually opti-

mizes for a combination of latency and response-time, especially if

the access to the output data is through a cursor or a limit on the
F.6 Performance with CC-SEER number of output tuples is specified. In order to simplify our study,
As mentioned in Section 3, the CC-SEER algorithm guarantees we modified the optimization objective to be solely response-time.

global safety, unlike LiteSEER, which is a heuristic. A sample Intrusiveness on Code-baseFrom an industrial perspective, an

result where the safety aspect of CC-SEER s clearly evident is obvious question is the extent to which the underlying code-base
shown in Table 11, obtained by executing NodeExpand on query has to be modified to support the proposed approach. In our Post-
template 3DQT8. We see here that LiteSEER replacements result-greSQL implementation, where we have added around 10K lines of
ing in negative MinSERF values, which go upf3, are prevented code, the vast majority of the additions have gone towards includ-

by CC-SEER. ing the FPC feature, which as mentioned before, is already avail-
_ able in most commercial optimizers. Therefore, while we are aware
Query | NodeExpand (LiteSEER) | NodeExpand (CC-SEER) that these systems are considerably more sophisticated than Post-
Tem- | Min Harm Min Harm greSQL, our expectation is that incorporating our techniques would
plate SERF % SERF % o . . - - .
3D be minimally intrusive on their code-base. This is especially true
QT8 | -2.30 0.01 0.0 0 . . .
for the RootExpand algorithm, where the behavior of only the final
Table 11: Guaranteed Safety with CC-SEER node in the DP lattice is modified.

The safety guarantee of CC-SEER is achieved at a price of in-
creased computational overheads, and these overheads are shown

1148

