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ABSTRACT
Multi-pattern matching involves matching a data item against a
large database of “signature” patterns. Existing algorithms for multi-
pattern matching do not scale well as the size of the signature database
increases. In this paper, we present sigMatch – a fast, versatile,
and scalable technique for multi-pattern signature matching. At
its heart, sigMatch organizes the signature database into a (pro-
cessor) cache-efficient q-gram index structure, called the sigTree.
The sigTree groups patterns based on common sub-patterns, such
that signatures that don’t match can be quickly eliminated from
the matching process. The sigTree also uses parallel Bloom filters
and a technique to reduce imbalances across groups, for improved
performance. Using extensive empirical evaluation across three di-
verse domains, we show that sigMatch often outperforms existing
methods by an order of magnitude or more.

1. INTRODUCTION
The problem of multi-pattern matching is defined as follows:

Given a set of patterns,P = {p1, p2, ..., pn}, where eachpi is a
regular expression pattern over an alphabet

P

, find all occurrences
of these patterns in a data item,D, over the same alphabet.

The term “pattern” in the definition above, is often also called
“signature” in the literature, and in this paper we use these two
terms interchangeably to refer to a regular expression. This prob-
lem of multi-pattern matching has a number of practical applica-
tions, including Information Extraction (IE), anti-virus scanners
(AVSs) and Intrusion Detection Systems (IDSs).

First consider the use of multi-pattern matching in an IE system.
An IE system often needs to match crawled web pages against a
set of patterns. For example, in DBLife [13], mentions for the
entity “University of Wisconsin” is coded as the following regu-
lar expression:((University|Univ.|Univ)\s + of |U |U.)\s +
Wisconsin(\s + (at|in|, | − | − −))?\s + Madison. This reg-
ular expression allows matching this entity with different ways of
referring to this university, including “Univ Of Wisconsin at Madi-
son” and “U. Wisconsin, Madison”.

We note that the problem considered in this paper is different
from approximate multi-string matching[10,17,18], which is also
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used in IE systems. In approximate multi-string matching, each
entity is matched to a string (e.g. “University of Wisconsin” in
the example above), and some string similarity measure is used to
capture the different ways in which this string could be referred to
in the text documents. A detailed study of whether multi-pattern
matching or approximate string matching (or some combination) is
more effective for entity resolution in IE applications, is an interest-
ing research topic and beyond the scope of this paper. Nevertheless,
there are examples of IE systems, such as DBLife, that rely heav-
ily on regular expression matching – i.e., they require multi-pattern
matching techniques that we consider in this paper.

Other applications of multi-pattern matching include anti-virus
scanners (AVSs) and Intrusion Detection Systems (IDSs), which re-
quire matching a set of signatures of known viruses/threats against
some streaming data to check for presence of malware.

We note that in multi-pattern matching, the signatures are usu-
ally available beforehand while the data/text is streamed. This is
in contrast to the problem of searching text [11] where the doc-
uments/text are available beforehand for indexing and the regular
expression signatures are streamed. Prior techniques suggested in
literature [15,20,28] build an index structure on the signatures and
use it to scan through a data item in linear time (in terms of the
length of the data item). However, these techniques do not scale
as the size of the signature database increases. To make matters
worse, in many applications, the signature databases are growing
rapidly. For example, the number of signatures in AVSs and IDSs
have nearly doubled over the last few years [2, 4]; IE systems are
becoming more complex with larger signature databases [10]; the
signature databases for applications like spam detection and con-
tent filtering are also growing rapidly [5]. This problem has been
amplified by the rapid increase in disk space usage in the case of
AVSs, network bandwidth in the case of IDSs, and web content
in the case of IE systems, which increases the size of the underly-
ing data leading to more frequent invocations of these multi-pattern
matching systems.

Consequently, there is a compelling need for a multi-pattern match-
ing method that is a)fast, b) scalablewith increasing signature
database sizes, and c)genericso that it can work in any domain
that requires multi-pattern matching. In this paper we present a
technique, called sigMatch, that addresses this need.

The sigMatch method is a generic filtering technique that can be
plugged in as a pre-processing step for any existing multi-pattern
matching system. Figure 1 provides a high-level overview of the
sigMatch system. On the left of this figure is the data that needs to
be matched, which is split into a number ofdata items. The descrip-
tion of the data item depends on the application. For example, in
the case of an IE system a data item can be a web page, whereas for
an IDS a data item can be a network packet, and for an AVS each
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Figure 1: High-level overview of the system

data item can be a memory buffer or a file. Data items accepted by
sigMatch, referred to ascandidates, are then sent to a verification
unit in the actual end application to perform a final (and definitive)
check for the presence of patterns. Note that the sigMatch module
does not send any other information to the verification unit regard-
ing the patterns that may or may not be present in the data. This de-
sign ensures that sigMatch can be used as a portable “filter” across
a wide variety of existing pattern matching systems. This generic
approach is desirable, as multi-pattern matching applications have
varying characteristics. For example IDSs often have few short
signatures, while AVS databases often have a large number of long
signatures. In addition, while IDSs use the full capabilities of reg-
ular expressions, AVSs and IE systems often restrict themselves
primarily to the use of wildcard characters like * and ?. The sig-
Match technique can be used as a pre-processing filter step with all
these applications. Furthermore, sigMatch is designed to be a con-
servative filtering technique. So it can produce some false positive
matches, but it never misses a match (i.e., has no false negatives).
Thus, sigMatch is a “safe” filtering technique.

For speed and scalability, sigMatch uses an index, called the
sigTree, to index a conveniently chosen substring (q-gram) from
each signature. Consequently, if no substring indexed in the sigTree
is present in a data item, then that data item can be quickly dis-
carded as it is guaranteed to not have any content that matches the
signature database (this situation is called the “no-match” case).
Previous q-gram filter structures suggested in literature either use
tries [20] or Bloom filters [15]. While trie-based structures are
faster, Bloom filters (which are essentially bitmaps) scale better
with increasing number of signatures. As far as we know, sigTree
is the first structure that combines the benefits of both approaches.

The sigMatch technique is also designed to exploit processor
caches effectively. The size of previous index structures (such as
those used in [15, 20, 21]) increases rapidly as the size of the sig-
nature database increases. These structures quickly become larger
than the processor (L2) caches, and accessing these structures of-
ten requires at least one random memory accessper byteof the
scanned data item. Given the increasing gap between processor
speeds and memory access latencies [26], these algorithms are un-
able to leverage the full capabilities of current processors. Since in
many multi-pattern matching applications the “no-match” cases are
common, sigMatch uses a largely L2 cache-resident q-gram index
structure to quickly discard these no-match cases. Thus, it dra-
matically reduces the number of main memory accesses, resulting
in improved performance. In addition, the q-gram index structure
used in sigTree is designed to eliminate a significant fraction of
such no-match cases using only L1 cache references (which typ-
ically costs only one cycle to access, compared to a few tens of
cycles for access to the L2 cache, and few hundreds of cycles for
access to the main memory).

In order to test sigMatch, we integrated it with two of the largest
(from the perspective of signature database sizes) public state-of-

the-art systems: namely, ClamAV – a popular open-source AVS,
and Bro – a network IDS. We also tested sigMatch on a real IE
dataset used in DBLife [13], which uses the Perl regular expres-
sion engine for multi-pattern matching. We show that sigMatch
improves the performance of ClamAV by 10-12X, Bro by 4X and
DBLife by 15X. To test the scalability of our method for future
(larger) signature databases we mimic the ClamAV signature database
(which has about 90K regular expression signatures), and produce
synthetic signature databases that have up to 300,000 signatures.
For this large signature database, sigMatch improves the perfor-
mance of ClamAV by a factor of nearly 28.

The remainder of this paper is organized as follows. In Section 2,
we discuss related work. We provide an overview of the system
in Section 3. Section 4 contains our experimental evaluation, and
Section 5 contains our conclusions and directions for future work.

2. RELATED WORK
The multi-pattern matching problem has been well studied un-

der both the approximate (e.g. [10, 16]) and exact match criterion
(e.g [7,9,14,20]) using both hardware and software methods.

The hardware approaches (e.g. [14, 23]) generate multiple spe-
cialized circuits for regular expression matching automaton to search
the streaming data in parallel. However, such approaches are lim-
ited and are designed primarily for IDSs where the matching occurs
only in dedicated systems like mail gateways. For general multi-
pattern applications that are usually run on conventional machines,
such hardware solutions are generally not feasible.

Software methods for exact multi-pattern matching are either
shift table or automaton based. The shift table-based methods (e.g. [9,
12, 21, 25, 28]) use multiple pre-computed tables to determine the
next viable location where a pattern can occur. Automaton-based
methods (e.g. [7,19,22]) employ either aDFA or anNFA-based
representation for regular expressions. While theNFA represen-
tation is compact in terms of storage, they are generally slower than
theDFA representation. However, there is a state space explosion
in theDFA representation as the size of the signature database in-
creases. Recent approaches [19,22,27] have concentrated on reduc-
ing the memory requirements of DFAs using grouping and rewrit-
ing techniques. However, the performance of these systems de-
grades when the number of signatures increase beyond a few hun-
dred. All of these approaches are complementary to our approach,
as they concentrate on improving the efficiency of the verification
unit (see Figure 1), and thus can be combined with our approach to
further improve the overall performance of the system.

The filtering approaches for pattern matching can be broadly di-
vided into two categories – prefix and q-gram based approaches.

Prefix-based filters build a set of stringsP = {p1, p2, .., pn}

such that each signature/pattern in the database has a prefix inP .
The stringsp1, p2, ..., pn could be of the same [15] or different [20]
lengths. During scanning, if the pattern at a particular location in
the data item is not inP (determined by either exact [20] or ap-
proximate [15] string matching), then no pattern can be found at
this location and the scanner moves on to the next viable location,
possibly with the help of a shift table [28]. If the pattern does exist
in P , then some additional computation is performed to determine
whether this particular location contains a pattern in the database.
Most of the previous approaches suggested in literature for multi-
pattern matching (e.g. [2,15,20]) have relied on prefix-based filters.

Filters that use q-grams follow an approach similar to the prefix-
based filters but use substrings rather then prefixes. The advantage
of q-gram filters is that the cardinality of the setP is significantly
smaller when compared to prefix-based filters, so they provide a
better filter rate, and hence potentially improved performance. The
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disadvantage of using q-grams is that the entire data item has to be
scanned for the presence of patterns in the case of a match.

Our work is different from these previous efforts as it focuses
on building a generic cache-efficient q-gram based filter for multi-
pattern matching that can handle a wide spectrum of patterns, and
can easily be combined with any existing multi-pattern matching
application. Also to the best of our knowledge, our effort is the
first one to demonstrate a system that can scales to handle very
large pattern/signature databases.

3. SIGMATCH
In this section we describe sigTree (the q-gram index that we use

in sigMatch), and its construction method. But before we begin
with the sigTree description, we briefly present background infor-
mation about Bloom filters, which we use in the sigTree.

3.1 Bloom Filters: Background
A Bloom filter [8] is a bit array ofm bits that is used to check

if an element belongs to a set. Initially all bits in this array are set
to zero. When an element is added to the Bloom filter, a set of
k predefined hash functions are applied to the element to obtaink
values. The bit positions corresponding to these values are then set
to 1 in the array. To ascertain whether an element belongs to a set,
the same set ofk hash functions are applied to the element to obtain
k values. If at least one of the bit positions corresponding to these
values are not set in the bit array, then the element does not belong
to the set. If they are all set to 1, then the elementmaybelong to the
set. Due to collisions, the Bloom filter can provide false positives,
but it never results in a false negative.

Bloom filters have two main advantages. First, they require less
space compared to other data structures used for encoding sets,
such as tries [20] and hash tables [10]. Second, the time complex-
ity for adding and searching an element is constant independent of
the number of elements inserted into the Bloom filter. Of course,
as we “index” more elements in a Bloom filter the probability of
collision and the number of false positives increases. But this prob-
lem can be mitigated by increasing the number of bits in the Bloom
filter. Starobinski et al. [24] present a detailed analysis for finding
an appropriate Bloom filter size for a desired collision rate.

3.2 Overview of the sigTree Structure
In any q-gram based filtering technique, a substring fromeach

signature in the pattern database is indexed in a trie [20], or a Bloom
filter [15]. Tries are generally faster than Bloom filters as in the
latter at least one hash computation has to be performed at each
viable location in the data item (and there could be collisions in
the Bloom filter, which can lead to more false positives, and poor
performance). However, the memory requirement of tries is gener-
ally greater than that of a Bloom filter. The sigTree combines the
benefits of both these approaches.

An additional issue with tries is choosing the length of the sub-
string from each signature to index. If we pick short substrings,
then the index will not be very effective as a filter (i.e. it will result
in many false positives). On the other hand, if we pick substrings
that are very long, then the index size will be large. When the index
is large, it is unlikely to fit into the processor caches. Consequently,
node accesses in the trie will be very expensive as they will require
fetching data from main memory, which is often slower by an or-
der of magnitude or more, over fetching data from the processor
caches. The sigTree addresses these tradeoffs by intelligently pick-
ing discriminative short substrings, part of which is indexed in a
trie and the remaining part is indexed using a Bloom filter.

Figure 2: An example sigTree withb=2 and β=4 bytes.

At a high-level, the sigTree is essentially a truncated trie with a
Bloom filter/bitmap at the leaf level of the trie.

Figure 2 shows an example sigTree with four indexed signatures.
In this figure, each byte in the pattern is represented as a two digit
hexadecimal number, and the substring of the signature that is in-
dexed in the sigTree is underlined. Each sigTree node is a lookup
array of size 256, one for each possible byte value. (This size can
be reduced if the alphabet size is smaller, and vice versa.) A non-
leaf node has 256 pointers to child nodes. A leaf node could point
to a linked list or a Bloom filter, or both. Some or all of these leaf
pointers can be nulls. Each leaf node corresponds to a unique string
of lengthb (the height of the tree). This unique string is called the
candidate stringof that leaf node.

A sigTree is constructed from the signature database by indexing
exactly one substring (without any wildcard characters) of length
b + β from each signature. Hereb is the height of the index and
β is the number of bytes indexed in the Bloom filter. The firstb
bytes of the substring map the signature to a node, and the nextβ
bytes following theb bytes in the substring are used to hash into the
Bloom filter at that node using a “set” of hash functions. The linked
lists are used forshort signaturesthat do not haveb+β consecutive
bytes without any wildcard characters. The sigTree construction al-
gorithm is described in detail below in Section 3.4. Next we discuss
how the sigTree is used to detect hits/matches in the data items (see
Figure 1), and factors that influence the performance of the sigTree.

3.3 Matching with sigTree
Each byte of each data item that is streamed through the sig-

Match filter (see Figure 1) is run through the sigTree. The sigTree
detects a potential match in two cases. A match is referred to as
a true positiveif a pattern in the signature database exists in the
data item and sigTree detects it as a match. On the other hand, if
a pattern in the signature database doesn’t exist in the data item,
the match is afalse positive. There are two types of false posi-
tives. Type Afalse positives occur when the substring of a pattern
indexed in the sigTree exists in the data, but the actual full pattern
does not.Type Bfalse positives occur when the substring indexed
in the sigTree doesn’t exist in the data, but a potential match is
detected due to collisions in the Bloom filter.

Since calls to the verification unit (see Figure 1) are expensive,
for improved performance we want to reduce the number of false
positives. Type A false positives can be reduced by increasing the
length of the q-gram (q=b + β) indexed in the sigTree. However,
increasingb increases the cost of an index node traversal (as the
index is larger and accesses to the index node has a higher chance
of leading to a cache miss), while increasingβ increases the cost

1175



of computing the hash functions. A better approach to reduce the
type A false positives is to choose substrings from the pattern that
are less frequent in the data. We discuss techniques for reducing
type A false positives in Section 3.5.

Type B false positives are dependent on the collision rate in the
Bloom filter, which in turn is dependent on the hash functions used,
the size of each Bloom filter, and the length of the q-grams indexed
in the sigTree.

To better characterize design choices that can reduce the num-
ber of false positives when using a sigTree, consider the follow-
ing performance model for the sigTree, which is similar in spirit
to the performance modeling used in [15]: For simplicity, assume
that there are no short signatures in the pattern database and that
all leaf nodes are at the same height. Letpt be the the fraction of
non-empty leaf nodes andph be the probability that the hash func-
tions return a false positive. Assume that the computational costs
of the index tree traversal, hash computation and a call to the ver-
ification unit arect, ch andC respectively. Then, the cost of the
multi-pattern matching algorithm is:

ct + pt ∗ [ch + ph ∗ C] (1)

To maximize performance, we want (a) the sigTree to be largely
cache-resident and (b) the number of calls to the verification unit to
be minimal. Note that the cost of the verification unitC is orders
of magnitude larger thanch andct, as it often involves at least one
random memory access per scanned byte (and memory access is
orders of magnitude more expensive than a cache access). The cost
of tree traversalct is lower thanch as the sigTree is designed so
that the nodes can generally fit in the L1 cache, while the Bloom
filters generally reside in the L2 cache. So,ct < ch << C. Hence,
we need to keeppt andph small for improved performance.

The value ofpt depends onb, the height of the tree and the sub-
strings indexed in the sigTree. Increasing the height of the tree re-
ducespt, but it also increases the cost of the tree traversalct. Also
the height of the tree is restricted by the the shortest signature in the
pattern database. A better approach to reducept is to pick q-grams
from signatures that minimize the total number of non-empty leaf
nodes. We discuss an approach to do this in Section 3.4.

The value ofph depends on three factors – the number and com-
putational complexity of the hash functions used, the size of the
Bloom filter, and the number of patterns allocated to each node.
One way to reduceph is to increase the number and complexity of
the hash functions used, but this technique also increases the value
of ch. In our experiments (Appendix C.2), we found that using
a two-level hashing technique with cheap hash methods offers a
good balance. Consequently, in the remainder of this paper we use
a two-level hash function (xor+shift andRShash) as suggested by
Erdogan et. al [15]

Increasing the size of the Bloom filter directly reducesph, but
also increases the memory usage. We present a detailed evaluation
of the effect of Bloom filter size in Section 4.2.

Overloading a leaf node with a large cluster of signatures can
quickly increase the probability that a false negative is generated.
Hence for better performance we want the signatures to be evenly
distributed amongst the non-empty leaf nodes – i.e. the tree must
be (nearly) balanced. We discuss techniques for uniform allocation
of signatures in Section 3.4.2.

3.4 sigTree Construction
In this section, we describe the method for creating a sigTree

given the set of signaturesSig, the height of the treeb, and the num-
ber of bytes to be hashed in the Bloom filterβ. Before we present
the method for constructing a sigTree, we define a few terms that
are used in the discussion below.

Definition 1. A string str is aRepresentative Substring(RS) of a
signaturesig in a sigTreeT with parametersb, β if it satisfies the
following conditions.

1. The stringstr is a substring of the signaturesig.
2. The stringstr has a lengthb and contains no wildcard char-

acters.
3. The stringstr has at leastβ bytes following theb bytes with-

out any wildcard characters insig
4. If sig has no substring satisfying the third condition, then the

first b bytes of the longest substring without wildcard char-
acters insig is its only representative substring. Such signa-
tures are calledshort signatures.

Definition 2. The frequencyof a stringstr, w.r.t. a signature set
Sig, is defined as the number of signatures inSig for which str is
a RS.

Definition 3. A set of stringsS = {s1, s2, ..., sn}, each of length
b, is ab-gram coverof signature setSig, if every signature inSig
has at least one RS inS.

Definition 4. Let γ be some positive integer. A set of stringsS =
{s1, s2, ..., sn}, each of lengthb, is defined to be aγb-gram cover
of signature setSig, if every signature inSig has at leastγ or all
of its RSs (if it doesn’t haveγ RSs) inS.

The sigTree index construction involves a preprocessing step to
prepare the signature database for indexing, and the actual index
construction step. Each of these steps are described below.

Preprocessing:To construct a sigTree on a signature database,
we require that each signature in the database have at leastb con-
secutive bytes without any wildcard characters. However, this con-
dition may not be satisfied by certain signatures. For such signa-
tures, we use simple rewrite rules to convert them into equivalent
signatures that have at leastb consecutive character bytes. For ex-
ample the signature[A|a]b[C|c] is equivalent to the four signatures
Abc, AbC, abC andabc. We use similar rewrite rules in our imple-
mentation to ensure that we can find at least one substring in each
pattern to index in the sigTree.

Index Construction: The sigTree index is constructed using
four steps.

The first step is to construct a b-gram coverS for the signature
set. The cardinality of the b-gram cover must be small (to minimize
pt, the fraction of non-empty leaf nodes). A greedy algorithm for
constructing an effective b-gram cover is discussed in Section 3.4.1.

Next, an empty sigTree structure is created using the b-gram
coverS, where each leaf node with a candidate string inS is as-
signed an empty linked list and a Bloom filter, while all other leaf
nodes point to null.

The third step is to allocate signatures amongst these nodes. These
signatures must be equally distributed among the non-empty nodes
for better performance. We discuss an approach for effective sig-
nature allocation in Section 3.4.2.

The final step is to fill the Bloom filter and the linked list at each
non-empty leaf node with the strings from the signature database
allocated to that leaf node. We describe our approach for this task
in Section 3.4.3.

The pseudo code for the sigTree construction algorithm can be
found in Appendix A. A detailed example of sigTree construction
can be found in Appendix B.

3.4.1 b-gram Cover
The goal of this step is to find a b-gram cover for the signature

setSig, whose cardinality is minimal over all possible cover sets.
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Since a brute force approach for finding a minimal b-gram cover in-
volves searching an exponential number of possibilities, we suggest
a greedy approach. The intuition behind the algorithm is as follows:
Since most real datasets are neither random nor uniform, the distri-
bution of the frequencies of b-grams is expected to be skewed. We
exploit this feature to build an effective b-gram cover. The expecta-
tion here is that choosing b-grams with the highest frequencies will
lead to a more effective (i.e. smaller) cover set.

The algorithm works as follows: First, the b-gram that has the
highest frequency for the signature setSig is added toS, the b-
gram cover. All signatures that have this string as a RS are then
removed from the signature set. The b-gram with the second high-
est frequency is picked next, and this process is repeated. If the
addition of a b-gram toS doesn’t result in any signature being re-
moved fromSig, then it is removed fromS as all the signatures for
which this b-gram is a RS have already been accounted for by the
other strings inS. This process continues until all signatures have
at least one RS inS.

Next, we refine this set by removing any “redundant” strings. A
b-gramstr in a b-gram coverS of a signature setSig is said to be
redundantif S−{str} is also a b-gram cover ofSig. The simplest
method to remove redundant substrings is to remove one string at a
time fromS and test whether the remaining strings form a b-gram
cover. However, the order in which the strings are tested determines
the number of strings that can be removed. But, we know that the
b-grams added towards the end of the last iteration toS are RSs
of signatures that have few RSs, and are hence more likely to be
present in the minimal b-gram cover. So now we loop through the
setS in reverse, starting with the last added string. If we find that
a b-gram inS is not a RS of at least one signature inSig that
has no other RS inS, then that string is removed from the setS.
Empirically, we have found that this refinement step decreases the
cardinality of the b-gram cover by as much as 20%. The pseudo
code for this algorithm is shown in Appendix A.1.

3.4.2 Signature Allocation
In this step, we assign each signature in the signature setSig to

exactly one leaf node in the sigTree. A leaf node in the sigTree is
referred to as acandidate nodeof a signaturesig if the candidate
string of the nodestr is a RS ofsig, andstr is in the b-gram cover
S. The simplest approach for signature allocation is to pick a node
from the set of candidate nodes at random for each signature in
the database. However, for improved performance, the number of
signatures at the non-empty leaf nodes must be (nearly) balanced
in the sigTree, so that none of the Bloom filters are overloaded.

To achieve this goal, we follow two simple rules. First, a sig-
nature is assigned to a node only after all signatures with fewer
candidate nodes have been allocated. Second, given a set of candi-
date nodes for a signature, we always pick the node with the least
number of signatures allocated to it so far. Once a signature is allo-
cated to a nodeN , the nextβ bytes following the candidate string
in the signature is stored in an arrayVN corresponding to the node
N . Since short signatures do not haveβ bytes following the candi-
date string without any wildcard characters, the length of the string
stored inVN is less thanβ bytes long for these short signatures.
The pseudo code for this method is shown in Appendix A.1.1.

3.4.3 FillNode
The goal of this step is to populate the Bloom filter and linked

list at each sigTree leaf nodeN with the strings from the array
VN corresponding to that node. If the allocation of signatures is
uniform, this task is simple as each string in the arrayVN is inserted
into the Bloom filter if it isβ bytes long, or into the linked list if its

length is less thanβ.
However, if the allocation is uneven, this task is not trivial. As

stated earlier (Sections 3.2 and 3.3) overloading a node with a large
cluster of signatures increases the number of false positives gen-
erated, which adversely impacts performance. One way to address
this issue is to use a b-gram cover that facilitates uniform allocation.
To do this, we can construct a b-gram coverS for the signature set
Sig such that each signature inSig has at leastγ RSs inS, where
γ is a positive integer greater than 1. This technique ensures that
each signature inSig has at leastγ candidate nodes, which reduces
the chance of uneven allocation. However, the drawback of this ap-
proach is that it increases the cardinality of the b-gram cover which
affects the throughput of the system (as it increasespt, the fraction
of non-empty leaf nodes – c.f. Section 3.3).

The drawback of the approach above is that the cardinality of
the b-gram cover that we find is likely to be larger than the opti-
mal b-gram cover that we find using the method described in Sec-
tion 3.4.1. Since we want to keep the cardinality of the b-gram
cover to be as low as possible, we use the following alternate ap-
proach: Each non-empty leaf nodeN that has more than a certain
number of patterns allocated to it (higher than a thresholdMAX),
is split, and the strings inVN are indexed in its children. The first
byte of each string inVN determines the child node where it is in-
dexed. The remaining bytes of each string are hashed in the Bloom
filter or stored in the linked list at the appropriate child node. The
pseudo code for this algorithm can be found in Appendix A.1.2.

3.5 Data-Conscious sigMatch
Previous filter-based structures [15, 20, 28] that have been used

for multi-pattern matching, have not exploited the characteristics
of the underlying data items that are being matched against the sig-
natures. However, exploiting the underlying data characteristics
offers many opportunities for improving the performance of multi-
pattern matching systems.

We have also designed techniques that make the sigTree “data
conscious”, to reduce the number of false positives that are gener-
ated when using the sigTree. The basic idea here is to observe the
underlying data characteristics and continuously adapt the sigTree
structure so that the most “discriminative” strings (i.e. the ones
that are most effective in filtering out data items) from the signa-
ture database are indexed.

Appendix B.1 presents the data-conscious adaptation of the sig-
Match approach, and also presents results demonstrating the effec-
tiveness of this data-conscious approach.

4. EVALUATION AND RESULTS
In this section, we describe the results from our experiments.

We tested sigMatch by integrating it with three real-world systems;
namely, Bro – a network IDS, ClamAV – an anti-virus system, and
DBLife [13] – an IE system that focuses on content of interest to
the database community.

DBLife uses a regular expression library of about 61K signatures
to match newly crawled documents to find mentions of entities (e.g.
people and universities) that it is tracking. DBLife currently uses
Perl for matching the regular expressions. (Perl has an highly opti-
mized regular expression evaluation engine.)

Both Bro and ClamAV have been the focus of many pattern
matching techniques (e.g. [15, 19, 20, 27, 28]). They are also both
already highly optimized, as they are actually deployed in practice.
In addition, both have actual and large signature databases.

Using these three real-world systems we perform actual end-to-
end evaluations of sigMatch.

In our evaluation, we focus on three metrics: Throughput, Speedup
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Figure 3: Evaluation with ClamAV using
different file types: 89,903 signatures,
b=2, β=6 bytes, Bloom filter size =214

bits.

Figure 4: Evaluation with Bro using
TCP payload data: 1,200 Snort signa-
tures, b=2, β=3 bytes, Bloom filter size =
214 bits.

Figure 5: Evaluation with ClamAV using
a 100 MB collection of .exe files and vary-
ing signature database sizes:b=2, β=6
bytes, Bloom filter size =214 bits.

sigTree size (KB) L1 Cache Misses (in millions) L2 Cache Misses (in millions)
System Nodes only Nodes+BF w/o sigMatch w/ sigMatch % dec w/o sigMatch w/ sigMatch % dec Speedup
ClamAV (90K sigs) 23 2700 603.1 76.2 87.4 139.8 3.9 97.2 11.7X
Bro (1.2K sigs) 17 970 441.3 103.6 76.5 81.7 9.8 88.0 4.4X
DBLife (61K sigs) 21 2400 764.3 152.1 80.1 176.4 15.7 91.4 15X

Table 1: L1 and L2 cache misses for ClamAV, Bro and DBLife with and without sigMatch. Also shown in the memory usage of
sigTree with and without Bloom filters (BF). ClamAV results are for the 100MB exe corpus usingb=2,β=6 bytes, Bloom filter size =
214 bits. Bro results are for a scan on the TCP payload for Tuesday 06/03/98 withb=2,β=3 bytes, Bloom filter size =214 bits. DBLife
results are for a scan on 100 MB collection of web pages withb=2,β=4 bytes and Bloom filter size =214 bits.

and Filter Rate.Throughputis defined as the amount of data scanned
per second.Speedupis defined as the throughput achieved by the
system after integration with sigMatch divided by the throughput
of the original system (i.e. without sigMatch).Filter rate is the
fraction of the data items thrown out by sigMatch, i.e. the fraction
of data items that are true negatives as detected by sigMatch.

All experiments were run on a 2.00 GHz Intel Core 2 Duo pro-
cessor with 3 GB RAM with Ubuntu 8.04 OS, 32 KB L1 cache and
2 MB L2 cache. The cache misses quoted in the experiments were
measured using the cachegrind tool in Valgrind [6].

4.1 Comparison with Current Systems

4.1.1 Comparison with ClamAV
ClamAV is a popular open-source AVS. Currently, ClamAV has

545,191 virus definitions in its database. However, only 89,903 of
these signatures areregular expressionand they account for 99.3%
of the total scanning overhead in ClamAV [28]. (The other signa-
tures are MD5 hashes, which can directly be passed to ClamAV.) In
our evaluation, we use this set of≈90K regular expressions as our
signature database.

ClamAV uses a combination of banded row AC [7] and extended
BM [9] algorithms to perform multi-pattern matching. In order to
test the system we generated four corpuses, each containing a col-
lection of files of a particular type. The first corpus, labeled as
exe, was created from widely used Windows executables like MS
Office, Firefox etc. Conference papers from SIGMOD 2009 was
used to create the second corpus, which is labeled aspdf. The third
corpus,html, contains html data from a crawl of the top 100 most
popular websites in the United States (obtained from Alexa [1]).
The last corpus, labeled asrandom, is made up of randomly gen-
erated files. We chose these file types as virus scanners primarily
concentrate on executable files in personal computers, documents
in mail servers, and html files in mail gateways and routers. To fa-
cilitate comparison, for each corpus we used only the first 100MB

of data.
Figure 3 shows the comparison between the throughput of Cla-

mAV with and without sigMatch. The speedup achieved by inte-
grating sigMatch with ClamAV varies from 10-12X depending on
the type of the corpus. The primary reason for the improvement is
the difference in the cache misses between sigMatch and ClamAV.

The ClamAV data structures require nearly 21 MB of memory
in this experiment. Since the L2 cache is only 2MB, most of the
structure resides in the main memory. As a result, ClamAV tends
to require at least one random memory access per scanned byte.

On the other hand sigMatch uses a compact indexing structure
(sigTree) which occupies less than 3 MB (for 90K signatures and a
Bloom filter size of214 bits). Consequently, a significant portion of
the sigTree can fit in the processor caches. Also, since all the nodes
of the sigTree need less than 32 KB memory (Table 1), they tend
to fit within the L1 cache. Since most of the leaf nodes are empty
(in the above experiments the fraction of filled nodes,pt = 0.03),
sigMatch requires only L1 cache accesses most of the time. The
sigMatch method reduces the number of cache misses significantly
as (a) most of its data structure is cache-resident and (b) calls to
ClamAV are rare (the filter rate is between 0.93 and 0.96 for this
experiment).

For example, in the above experiment with theexe corpus, inte-
grating sigMatch with ClamAV reduces the L1 and L2 cache misses
by 87.4% and 97.2% respectively. Table 1 (row 1 below the title
row) provides detailed cache miss and memory usage statistics.

4.1.2 Comparison with Bro
In order to test with Bro, we used the Snort [4] signature set,

which has 1,200 signatures. Bro builds a DFA “on the fly” to per-
form multi-pattern matching. The regular expression patterns that
match the same kind of network traffic are grouped to cope with
the exponential number of DFA states. The scans were performed
on real world TCP packet traces obtained from the DARPA dataset
provided by MIT Lincoln Laboratory [3]. We used a smallerβ (3
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Memory Usage (in MB) L1 Cache Misses (in Millions) L2 Cache Misses (in Millions)
DB Size ClamAV sigMatch ClamAV sigMatch+ClamAV ClamAV sigMatch+ClamAV Filter Rate Speedup
30k 8.2 1.4 352.2 66.3 42.5 1.5 0.958 8.5x
90K 21.1 2.7 603.1 76.2 139.8 3.9 0.947 11.7X
150K 40.5 3.7 2280.2 93.5 179.2 6.9 0.945 19.7X
300K 81.1 5.1 3051.9 121.2 272.7 19.0 0.939 27.8X

Table 2: L1 and L2 cache misses, and memory usage for signature databases of different sizes. Results are for the 100MBexe corpus
with ClamAV, b=2,β=6 bytes, Bloom filter size =214 bits.

bytes) in our experiments with Bro as the signatures in the Snort
dataset are shorter than those in the ClamAV database.

Figure 4 shows the comparison between Bro and sigMatch+Bro
for the TCP payload captured for each day during a particular week
(05/03/98 – 09/03/98). The sigMatch method improved the perfor-
mance of Bro by a factor of 4, as it dramatically decreased the num-
ber of cache misses. For example, for the TCP payload captured on
Tuesday 06/03/98, the L1 and L2 cache misses were reduced by
76.5% and 88% respectively.

Table 1 (row 2) shows the detailed cache miss and memory usage
statistics for this experiment.

4.1.3 Comparison with DBLife
The DBLife signature database consists of 60931 regular expres-

sions that provide the name variations of prominent universities and
researchers in the database community. DBLife uses the Perl reg-
ular expression matching engine for multi-pattern matching. Perl
builds a DFA to match the text against the patterns. We integrated
sigMatch with this system and used a collection of 9914 web doc-
uments (≈100 MB) for testing.

SigMatch (withb=2, β=4 bytes and Bloom filter size =214 bits)
has a filter rate of nearly 97% and improved the throughput of the
multi-pattern matching system by a factor of nearly 15. This im-
provement is due to the decrease in the number of L1 and L2 cache
misses when sigMatch is integrated into the system. In this partic-
ular experiment, sigMatch reduces the L1 and L2 cache misses by
80.2% and 91.4% respectively. Table 1 (row 3) gives the memory
usage and cache miss statistics for this experiment.

4.1.4 Scalability Comparison
In order to test the scalability of the system, we developed a syn-

thetic signature generator, similar to the one used in Erdogan et
al. [15], to create larger signature databases that emulate the char-
acteristics of the real signature database. Using this generator we
generated virus signature databases that have up to 300K signa-
tures, using the original ClamAV signature database as the model.

Figure 5 shows the difference in throughput between ClamAV
and sigMatch+ClamAV for signature databases of various sizes. As
can be seen in this figure, the speedup achieved by using sigMatch
increases rapidly as the size of the signature database increases.
While for a database of 30K signatures, the speedup achieved is
only 8.5, sigMatch provides a speedup of nearly 28 for a database
of 300K signatures. The primary reason for this behavior is that
the memory usage of the sigTree structure increases at a modest
pace as the size of the signature database increases. For example,
the sigTree for 30K signatures has a memory requirement of 1.4
MB, while that for 300K signatures needs around 5 MB when each
Bloom filter has214 bits.

This modest increase in the sigTree size is because the memory
usage of the sigTree is dictated only bypt (the fraction of non-
empty nodes in Eq. 1) for a given Bloom filter size, and the increase
in pt with the the number of signatures is modest. Even for 300K
signaturespt is less than 0.08. Hence, a significant portion of the

sigTree structure can fit in the L2 cache even for 300K signatures.
On the other hand, the memory consumption of the ClamAV data

structure increases by nearly 10 times as the number of signatures
increases from 30K to 300K. ClamAV has a memory usage of 8.2
MB for 30,000 signatures, and 81.1 MB for 300K signatures. As
a result, the decrease in cache misses due to the addition of sig-
Match also increases rapidly as the size of the signature database
increases. Consequently, while the integration of sigMatch reduces
the L2 cache misses by around 40 million for 30K signatures, this
number increases to more than 250 million for 300K signatures.

The memory usage of sigMatch and ClamAV, and the cache miss
statistics for the system with and without sigMatch, for different
signature databases is shown in Table 2.

We performed similar experiments with the Bro dataset and ob-
tained similar results which are omitted in the interest of space.

4.2 Effect of Bloom Filter Size
In this experiment we used the synthetic signature databases de-

scribed in section 4.1.4 and compared the speedup achieved by in-
tegrating sigMatch with ClamAV for different Bloom filter sizes.

Figure 6(a) and (b) shows the effect of changing the Bloom fil-
ter size on the filter rate and the speedup respectively, for signature
databases ranging from 30K to 300K signatures. From Figure 6(a)
we see that initially the filter rate improves rapidly as the Bloom fil-
ter size increases. But, after a certain limit, around 16K bits in most
cases, there is diminishing return in the improvements to the filter
rate. In fact, as shown in Figure 6(b) after this limit, performance
actually degrades.

This behavior can be explained by examining the cache miss
numbers shown in Figure 6(c) for the 300K signature database. For
small Bloom filter values, the filter rate is low and hence nearly all
the data items are sent to ClamAV (compare the lines for ClamAV
and sigMatch+ClamAV in Figure 6(c)). As a result, increasing the
Bloom filter size only marginally reduces the overall number of L2
cache misses. However, as the Bloom filter size increases further,
the filter rate increases and the L2 cache misses decrease rapidly as
an increasing number of data items are discarded by the filter (since
most cache misses are caused by random memory accesses of Cla-
mAV). At this stage, increasing the Bloom filter size increases the
L2 cache misses incurred by sigMatch, but decreases the number
of data items sent to ClamAV due to the increase in the filter rate,
and overall system performance improves. The performance of the
system degrades when the increase in the sigMatch cache misses
is not compensated by a decrease in the number of ClamAV cache
misses due to the increase in filter rate. This degradation happens
sooner for larger databases as their sigTree structure has a larger
memory requirement.

4.3 Effect of Other sigTree Parameters
The other sigTree parameters that can impact the performance of

sigMatch are:b – the height of the tree,β – the number of bytes
indexed in the Bloom filter, and the Bloom filter hash functions. In
our experiments, we keepb fixed at 2 as the longest substring (with-
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Figure 6: (a) Filter Rate and (c) Speedup achieved after integrating sigMatch with ClamAV for different signature databases at
various Bloom filter sizes. (b) L2 cache misses for sigMatch, ClamAV, sigMatch+ClamAV for a scan with the 300K signature database.
The results are for a scan on a 100 MB collection of executable files. sigTree parametersb=2,β=6 bytes.

out any wildcard characters) of the shortest signature in all the three
signature databases is 2. Increasingβ doesn’t have a major impact
on the performance of the system as the increase in the filter rate
is compensated by the increase in hash computation time and the
number of signatures stored in the linked lists. Increasing the num-
ber of hash functions used improves the filter rate but increases the
hash computation time in the case of a match. In our experiments
we found that using a two level hash functions provides the best
performance. These experiments are discussed in more detail in
Appendix C.

5. CONCLUSION AND FUTURE WORK
In this paper, we have presented sigMatch, a generic, scalable

and efficient method for evaluating multi-pattern matching. Our
method leverages the insight that in many applications, most input
data items do not match with any member in the signature database.
We have developed a cache-friendly index structure that efficiently
filters a large number of these “no-match” cases. Using real data
sets we demonstrate that sigMatch significantly improves the per-
formance of three state-of-the-art multi-pattern matching systems
that are used in diverse domains. In addition, using synthetic sig-
nature databases, we show that sigMatch scales well to handle very
large signature databases. As part of future work, we plan on
exploring extension of sigMatch for multi-cores. We also plan
on developing similar techniques to speed up approximate pattern
matching. The idea here is to design a cache-efficient structure
similar to the sigTree structure, to speed up appoximate similarity
matching.
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APPENDIX

A. SIGTREE CONSTRUCTION
In this section we present the pseudo code for the sigTree con-

struction. The approach is described in Section 3.4.
Algorithm 1 outlines our approach for constructing the sigTree

given the height of the treeb, the number of bytes to be hashed into
the Bloom filterβ, and the signature setSig.

Algorithm 1 Construct sigTree
Input: Signature SetSig; height of the treeb; β, the number of

bytes hashed in the Bloom filter
Output: sigTreeT

Sig ← rewrite(Sig)
S ← b-gram Cover(Sig, b, β)
T ← createTree(b, S)
V ← sigAlloc(Sig, S, b, β)
for each non-empty leaf nodeN in T do

FillNode(N, VN , β)
return T

A.1 b-gram Cover
Algorithm 2 presents the pseudo code for constructing an effec-

tive b-gram coverS given the signature setSig, the height of the
treeb, andβ – the number of bytes to be hashed in the Bloom filter.
The method is described in Section 3.4.1.

Algorithm 2 b-gram Cover

Input: The signature setSig; the height of the treeb; β, the num-
ber of bytes hashed in the Bloom filter

Output: b-gram CoverS

Str ← All possible strings of lengthb
SortStr based on frequency.
Set1, Set2← Sig
S ← {}
str ← String inStr with the highest frequency
while Set1 is not emptydo

Found← signatures inSet1 for which str is a RS
if Found is not emptythen

Remove all signatures inFound from Set1
Add str to S

str ← String inStr with next highest frequency
for i← length(S) to 1 do

Found← signatures inSet2 for which S[i] is a RS
if Found is not emptythen

Remove all signatures inFound from Set2
else

RemoveS[i] from S
return S

A.1.1 Signature Allocation
Algorithm 3 presents the pseudo code for an effective allocation

method that aims to keep the number of signatures allocated to each
leaf node as uniform as possible. The inputs to this function are the
signature setSig, the height of the treeb, andβ – the number of
bytes to be hashed in the Bloom filter. The method is described in
Section 3.4.2.

Algorithm 3 SigAlloc
Input: Signature SetSig; S, the b-gram cover; height of the tree

b; β, the number of bytes hashed in the Bloom filter
Output: V , the set of strings to be indexed in each node.

SortSig based on the number of candidate nodes.
for i← 1 to length(Sig) do

N ← Candidate Node ofSig[i] with least number of sig-
natures allocated to it
str ← Candidate String ofN
Add nextβ bytes followingstr in Sig[i] to VN

return V

A.1.2 FillNode
Algorithm 4 (described in Section 3.4.3) presents our method

for populating each non-empty leaf node. The method works as
follows: If a node is not overloaded (i.e. the number of signatures
allocated to it is not greater than some thresholdMAX), then the
strings in the corresponding arrayVN are indexed in the Bloom
filter, or the linked list depending upon their length. If a node is
overloaded, it is split, and its signatures are allocated to the appro-
priate child node.

Algorithm 4 Fill Node
Input: N , a leaf node;VN , the set of strings to be indexed inN ;

β, the number of bytes indexed in the Bloom filter.

Nl ← Linked List at Node N
Nb ← Bloom Filter at Node N
if length(VN) < MAX then

for k ← 1 to length(VN) do
if length[VN [k]) < β then

Add VN [k] to Nl

else
Add hash(VN [k]) to Nb

if length(VN) > MAX then
newN ← splitNode(N)
for k ← 1 to length(VN) do

ind← first byte ofVN [k]
Add rest(VN [k]) to newVnewN[ind]

for i← 1 to length(newN) do
FillNode(newN [i], newVnewN[i], β − 1)

return

B. AN EXAMPLE
In this section, we present an example of the sigTree construction

for the signatures given below.

Sig 1: 10cd21eff85a59b4406606e81902b440cd21

Sig 2: 41cd21efff0b788ffbd46606245d97373

Sig 3: 305145d691*3430abacd214?767692efffc278

Sig 4: 6606cd213478710b126578*a789

Sig 5: 617476766e20636fefff 670757465210ca204e

Sig 6: 88ffea4b41

Sig 7: 7666abddb1*6606ab??ccca*c777888

For this example, let the sigTree parameters beb = 2 andβ =
4 bytes. Each byte in the signature is represented as a two digit
hexadecimal number for convenience. The wildcard character ‘*’
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is used to indicate that any number of arbitrary bytes can be at that
location, while the character ‘?’ is used to indicate that exactly one
arbitrary byte can be at that location.

The first step in the sigTree construction is to find an effective
b-gram coverS for the signature set. The approach (Algorithm 2)
that we use has three sub-tasks.

In the first sub-task we sort the set of all b-gramsStr based
on their frequency and create two copies of the signature setSig
namelySet1 andSet2.

In the second sub-task we use a greedy approach to build a b-
gram coverS. Here we add the b-gram with the highest frequency
str to S and remove all signatures that havestr as a RS fromSet1.
The string with the next highest frequency inStr is then picked and
this process is repeated. A string is only added toS if it is a RS of
at least one signature left inSet1. This sub-task terminates when
Set1 becomes empty.

In the final sub-task we refineS by removing the redundant
strings inS. In order to do this, we loop throughS in reverse,
starting with the last added string. For each b-gram, we remove all
signatures inSet2 which have this b-gram as a RS. If no signature
in Set2 has this b-gram as a RS then it is removed fromS as it is
redundant.

In the example above, the RS responsible for each signature to
be removed fromSet1 (second subtask) is marked in bold, and
underlined forSet2 (in the third subtask).

First we sort all the 2-grams based on their frequency. Initially
the setSet1 has all the signatures inSig. The 2-grams6606 and
cd21 have the highest frequency of 3.

Lets say we pick6606 first. It is added to S, and signatures 1,
2 and 4 are marked as found and removed from Set1. Note that al-
though6606 is a substring of signature 7, it is not a RS as it doesn’t
haveβ characters following it without any wildcard characters in
the signature.

Next, we pickcd21. However it is not added toS as all the
signatures that havecd21 as a RS have already been accounted for
by 6606.

Next, we have three 2-grams with the next highest frequency of
2, namelyefff, 7676 and 88ff. Lets say we pickefff first. It is
added toS and signature 5 is removed from Set1. Next7676 is
added toS and signature 4 is removed from Set1. Now we are left
with only the short signatures 6 and 7 each of which have exactly
one RS each –88ff and7666 respectively. So these two 2-grams
are added toS and the second sub-task is completed as Set1 is now
empty. Now,S = {6606,efff,7676,88ff,7666}.

Now we move to the third sub-task and refineS by removing
the redundant strings.Set2 now contains all the signatures inSig.
First we check7666 as it was the 2-gram last added toS. Signature
7 has7666 as its RS, and is removed from Set2. Next we pick88ff
and remove signatures 2 and 6 from Set2 as they have88ff as one
of their RS. Next, we pick7676 and remove signatures 5 and 3
from Set2. Thenefff is picked but since all signatures that have
efff as a RS have already been removed from Set2, it is redundant
and hence removed fromS. Finally, 6606 is picked fromS and
signatures 1 and 4 are removed from Set2, and the second iteration
is terminated as Set2 is now empty. The b-gram coverS = {88ff,
7666, 7676, 6606}

The next step is signature allocation (Algorithm 3). In this step,
we first sort the signature setSig based on the number of candidate
nodes that they have, and then allocate them in that order. Each
signature is allocated to its candidate nodeN which has the least
number of signatures allocated to it. For convenience, we refer to
each leaf node by its candidate string. Signatures 7, 6, 5, 4, 3 and 1
have exactly one candidate node each and are allocated to the nodes

Figure 7: An example sigTree.

7666, 88ff, 7676, 6606, 7676 and6606 respectively. Signature 2
has two candidate nodes –88ff and6606. The node88ff is picked
as it has fewer signatures allocated to it.

The last step is to populate the Bloom filter and linked list at
the leaf nodes. Other than the four nodes corresponding to the
strings inS, all other leaf nodes are empty. As the node corre-
sponding to7666 has just one short signature, it only has a linked
list. As 88ff has a short as well as a regular signature assigned to it,
it has a linked list and a Bloom filter. Since the other nodes (7676
and6606) have only regular signatures assigned to them, they only
have a Bloom filter each.

Figure 7 shows the sigTree built for the signatures.

B.1 Data-Conscious SigMatch
The intuition behind data-conscious multi-pattern matching is as

follows: If the data being scanned is uniformly random, then the
choice of strings (from each pattern in the signature database) that
we index in the sigTree does not affect the performance of the sys-
tem.

However, the distribution of patterns in the data encountered in
real world application is often skewed. Ideally, we would like to
pick the strings (for indexing) that have the least frequency in the
data that is going to be scanned (i.e. are highly selective). If a
sample of the data that the application will encounter is available
beforehand, it can be used to construct a sigTree which is data-
conscious.

Unfortunately, for many applications such as AVSs and IDSs, a
representative dataset is not readily available as the data they en-
counter varies widely from one system to another. Also in many
multi-pattern matching applications the data encountered changes
over time. Hence, in this section, we propose an online method for
modifying the sigTree using the data obtained after observing the
behavior of the system for a particular period of time. This period
of time is referred to as themonitoring phase.

Instead of indexing one substring from each signature in sigTree,
the data-conscious sigMatch indexesγ substrings from each signa-
ture. Then during the monitoring phase, it gathers statistics on these
γ substrings. At the end of the monitoring phase, it then prunes the
index and only assigns each substring to one node. These steps are
described in more detail below.

For the data-conscious sigMatch, the initial index construction
step has to find aγb-gram cover for the signature set (instead of a
simpler b-gram cover). The original index construction step (see
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Section 3.4) is modified to assignγ nodes to each signature if pos-
sible. The rest of the index building steps remain the same.

Then, during the monitoring phase, we collect statistics about the
number of false positives that are detected at each non-empty leaf
node.

After the monitoring phase, we pick all leaf nodes that have more
than a certain number of false positives decisions for deletion. Each
leaf node marked for deletion is then removed, if possible. A leaf
node can be deleted if every signature allocated to it has been allo-
cated to at least one other leaf node. The order in which we try to
delete the nodes determines the number of nodes that are actually
removed. The goal here is to reduce the number of false positives
by the largest possible value. For this part, we employ a greedy
approach that sorts the leaf nodes marked for deletion based on the
number of false positive decisions that they made. We then remove
the nodes in this order starting with the node that made the largest
number of false positive decisions.

Once all removable nodes are deleted, each signature in the database
can still be allocated to as many asγ nodes. Next, we prune the tree
further such that the fewest possible leaf nodes are left non-empty
(to reducept, the fraction of non-empty leaf nodes). For this step,
we use an approach similar to the one described in Section 3.4.2.
We first sort the signatures based on the number of nodes that they
have been allocated to. For each signature, we then pick the node
with the least number of signatures assigned to it, as long as it is not
zero. If all candidate nodes of a signature have no signatures allo-
cated to them, then we pick a random node amongst these choices.

Periodically, as the data changes, we use the original sigTree
constructed using theγb-gram (a copy of this sigTree can be stored
after it is first constructed above, so that it does not have to be
rebuilt), and re-tune the tree.

Section B.1.1 describes our approach to build a DC sigTree (dur-
ing the monitoring phase), and Section B.1.2 presents our approach
to tune this structure according to the statistics collected during the
monitoring phase to produce the “production” sigTree.

Algorithm 5 Construct DC sigTree

Input: Signature SetSig; height of the treeb; β, the number of
bytes hashed in the Bloom filter;γ, the number of nodes each
signature is allocated to.

Output: sigTreeT

Sig ← rewrite(Sig)
S ← γb-gram Cover(Sig, b, β, γ)
T ← createTree(b, S)
V ← γsigAlloc(Sig, S, b, β, γ)
for each non-empty leaf nodeN in T do

FillNode(N, VN , β)
return T

B.1.1 DC SigTree Construction
Algorithm 5 shows the pseudo code for constructing the DC

sigTree that is used in the monitoring phase. It is similar to the
sigTree construction algorithm discussed in A, but with one modi-
fication. Instead of allocating each signature to one node, we allo-
cate it to as many asγ nodes. So instead of finding a b-gram cover,
we find aγb-gram cover for the signature setSig.

An effectiveγb-gram cover can be found by using a technique
similar to the one described in Algorithm 2. The signature allo-
cation algorithm also varies from the technique described in Al-
gorithm 3. Instead of allocating a signature to the candidate node
with the least number of signatures, a signature is allocated to the
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Figure 8: Comparison between sigMatch and DC sigMatch
with ClamAV for different θ. These results are for a scan on a
50 MB random corpus using the the ClamAV database (89,903
signatures).b=2, β=6 bytes, Bloom filter size =214 bits, γ=5.

candidate nodes which have theγ fewest signatures allocated to
them.

B.1.2 DC SigTree Tuning
Algorithm 6 gives our approach for tuning the sigTree according

to the data characteristics.
During the monitoring phase, we collect the number of false pos-

itive matches detected by the Bloom filter at each non-empty leaf
node.

After the monitoring phase all nodes that produced more than
δ false positives are marked for potential deletion. Each of these
nodes are then deleted if possible. A node can be deleted if every
signature allocated to it is assigned to at least one other node. Once
all removable nodes have been deleted, we then remove all the ad-
ditional assignments for each signature in an effective way which
ensures that the resulting tree has the least number of non-empty
leaf nodes.

Algorithm 6 Tune DC sigTree
Input: Signature SetSig; γ, the number of nodes each signature

is allocated to;δ, parameter for node removal; sigTreeT .

N ← set of non-empty leaf nodes inT
Collect no. of false positives detected by each node inN during
the monitoring phase.
sortN based on no. of false positives detected
Remove← {}
for i← length(N) do

if N [i] < δ then
break;

Add N [i] to Remove
for i← length(Remove) do

DeleteRemove[i] from T if possible
Remove additional assignments for each signature inSig

B.1.3 Evaluating Data-Conscious SigMatch
To test the data-conscious sigMatch (DC sigMatch), we gener-

ated corpuses that produce more type A false positives (see Sec-
tion 3.3) using the following method: First, we collected a subset
QG of the q-grams indexed in the sigTree from the 89,903 signa-
tures in the ClamAV database. Then, we interleaved a randomly
chosen member fromQG into certain locations (chosen with a
probabilityθ) in therandom corpus described in Section 4.1.1.

Figure 8 compares the speedup achieved using sigMatch and DC
sigMatch for different values ofθ. The parameterθ provides a mea-
sure of the number of type A false positives detected in the corpus.
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Figure 9: (a) Filter rate and (b) Speedup achieved after inte-
grating sigMatch with ClamAV for different β (number of bytes
hashed in the Bloom filter) at various Bloom filter sizes. The re-
sults are for a scan on a 100 MB collection of executable files.
The sigTree parameterb=2.

Whenθ=0, the filter rate offered by sigMatch is very close to 1,
so very little improvement is achieved by tuning sigMatch to be
data-conscious. However, as we increaseθ, the speedup achieved
by sigMatch reduces rapidly, as the filter rate achieved drops due to
an increase in the type A false positives. In contrast, the filter rate
of DC sigMatch is not affected, and its speedup remains fairly con-
stant. DC sigMatch improves the speedup achieved by sigMatch
by a factor of nearly 3.5 for aθ value of 0.0001.

C. EFFECT OF OTHER SIGTREE PARAM-
ETERS

The sigTree parameters are the tree heightb, the length of the
string indexed in the Bloom filterβ, the set of hash functions used,
and the Bloom filter size. The effect of Bloom filter size has al-
ready been discussed in detail in Section 4.2. In this section we
discuss the impact of the other parameters namely:b, β, and the
hash functions.

In our experiments, we keepb fixed at 2 as the longest substring
(without any wildcard characters) of the shortest signature in both
the ClamAV and Bro signature databases is 2. Also increasing the
tree height increases the memory consumption of the tree dramat-
ically as each node consumes about 1024 bytes. Even for those
signature databases that have a longer minimum length, we recom-
mend building the tree to height 2 and then splitting a node only if
it has more than a certain number of patterns assigned to it. This
technique can quickly reduce memory usage as very few nodes are
expected to be “crowded” because of the way signatures are allo-
cated (section 3.4.2).

C.1 Effect of the Number of Bytes Hashed in
the Bloom Filter (β)

Figure 9 shows the effect of the parameterβ on the filter rate
and the speedup achieved when integrated with ClamAV. This ex-
periment used a 100 MB corpus of executable files, and the 89,903
regular expression signatures in the ClamAV signature dataset.

As can be seen in Figure 9, increasingβ doesn’t have a major
impact on the performance of the system. Normally we would ex-
pect increasingβ to increase the filter rate by reducing the number
of type A false positives (see Section 3.3) detected. However, in
our experiments we found that increasingβ does not improve the
filter rate (see Figure 9(a)). Consequently, the speedup is also not
significantly affected byβ (see Figure 9(a) (b)). This indicates that
signatures in this real world applications are distinct enough that
they can be distinguished even by short substrings (around 4 bytes).
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Figure 10: (a) Filter Percentage and (b) Speedup achieved after
integrating sigMatch with ClamAV while using different num-
ber of hash functions at various Bloom filter sizes. The results
are for a scan on a 100 MB collection of executable files. The
sigTree parameters areb=2 andβ=6 bytes

C.2 Effect of the Hash Functions
In this section we discuss the performance impact of the choice

of hash functions used by sigMatch. Hash functions play a crucial
role in the performance of sigMatch as they influence the number
of type B false positives (section 3.2) detected by sigMatch. The
criteria for hash functions is that they should be cheap to compute,
and they should produce relatively random distributions in order to
ensure that the collisions in the Bloom filter remain small.

If we decide to use only one hash function, we have two choices:
a) we can either choose hash functions that are used for general pur-
pose string matching, which tend to have a low collision rate but are
computationally expensive, or b) we can choose a computationally
cheaper hash function that is fast but can have a high collision rate.

Using multiple hash functions lets us combine the benefits of
both these options. The idea here is to use multiple computation-
ally cheap hash functions such asxor+shift [15] for the first few
hash functions. For the last few hash functions, we choose ex-
pensive methods to reduce the number of false positives. The ad-
vantage with this technique is that the expensive hash methods are
computed only when the first few hash methods return a false pos-
itive. The disadvantage with using multiple hash functions is the
additional computation involved when there is a match. Also when
more hash functions are used, more bits are set to 1 in the Bloom
filter, which reduces the filtering efficiency.

Figure 10(b) shows the effect of using different number of hash
functions in the sigTree index. We used three hash functionsmask,
xor+shift andRShash(as suggested by Erdogan et al. [15]), and
tested the system by using different combinations of these meth-
ods. In this experiment, the one hash function case uses the RShash
method, while the two hash function case uses the xor+shift and
RShash methods in that order. The three hash function case shown
in Figure 10(b) uses mask, xor+shift and RShash in that order.

As can be seen in Figure 10(b), when no hash functions are used,
the Bloom filters are non-existent and the filter rate is very low. Us-
ing multiple hash functions has a clear performance advantage over
using just a single hash function. Although using three hash func-
tions provides a marginally better filter rate (Figure 10(a)), it also
take a longer time to compute the true positive cases. Consequently,
for large Bloom filter sizes, the performance is best when sigTree
uses just two hash functions.
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