
VoR-Tree: R-trees with Voronoi Diagrams for Efficient
Processing of Spatial Nearest Neighbor Queries∗

Mehdi Sharifzadeh
†

Google

mehdish@google.com

Cyrus Shahabi
University of Southern California

shahabi@usc.edu

ABSTRACT
A very important class of spatial queries consists of nearest-
neighbor (NN) query and its variations. Many studies in
the past decade utilize R-trees as their underlying index
structures to address NN queries efficiently. The general ap-
proach is to use R-tree in two phases. First, R-tree’s hierar-
chical structure is used to quickly arrive to the neighborhood
of the result set. Second, the R-tree nodes intersecting with
the local neighborhood (Search Region) of an initial answer
are investigated to find all the members of the result set.
While R-trees are very efficient for the first phase, they usu-
ally result in the unnecessary investigation of many nodes
that none or only a small subset of their including points
belongs to the actual result set.

On the other hand, several recent studies showed that the
Voronoi diagrams are extremely efficient in exploring an NN
search region, while due to lack of an efficient access method,
their arrival to this region is slow. In this paper, we propose
a new index structure, termed VoR-Tree that incorporates
Voronoi diagrams into R-tree, benefiting from the best of
both worlds. The coarse granule rectangle nodes of R-tree
enable us to get to the search region in logarithmic time
while the fine granule polygons of Voronoi diagram allow
us to efficiently tile or cover the region and find the result.
Utilizing VoR-Tree, we propose efficient algorithms for vari-
ous Nearest Neighbor queries, and show that our algorithms
have better I/O complexity than their best competitors.

1. INTRODUCTION
∗This research has been funded in part by NSF grants IIS-
0238560 (PECASE), IIS-0534761, and CNS-0831505 (Cy-
berTrust), the NSF Center for Embedded Networked Sens-
ing (CCR-0120778) and in part from the METRANS Trans-
portation Center, under grants from USDOT and Caltrans.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation.
†The work was completed when the author was studying
PhD at USC’s InfoLab.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

An important class of queries, especially in the geospatial
domain, is the class of nearest neighbor (NN) queries. These
queries search for data objects that minimize a distance-
based function with reference to one or more query objects.
Examples are k Nearest Neighbor (kNN) [13, 5, 7], Reverse
k Nearest Neighbor (RkNN) [8, 15, 16], k Aggregate Nearest
Neighbor (kANN) [12] and skyline queries [1, 11, 14]. The
applications of NN queries are numerous in geospatial deci-
sion making, location-based services, and sensor networks.

The introduction of R-trees [3] (and their extensions) for
indexing multi-dimensional data marked a new era in de-
veloping novel R-tree-based algorithms for various forms
of Nearest Neighbor (NN) queries. These algorithms uti-
lize the simple rectangular grouping principle used by R-
tree that represents close data points with their Minimum
Bounding Rectangle (MBR). They generally use R-tree in
two phases. In the first phase, starting from the root node,
they iteratively search for an initial result a. To find a, they
visit/extract the nodes that minimize a function of the dis-
tance(s) between the query points(s) and the MBR of each
node. Meanwhile, they use heuristics to prune the nodes
that cannot possibly contain the answer. During this phase,
R-tree’s hierarchical structure enables these algorithms to
find the initial result a in logarithmic time.

Next, the local neighborhood of a, Search Region (SR) of a
for an NN query [5], must be explored further for any possi-
bly better result. The best approach is to visit/examine only
the points in SR of a in the direction that most likely con-
tains a better result (e.g., from a towards the query point q
for a better NN). However, with R-tree-based algorithms the
only way to retrieve a point in this neighborhood is through
R-tree’s leaf nodes. Hence, in the second phase, a blind
traversal must repeatedly go up the tree to visit higher-level
nodes and then come down the tree to visit their descendants
and the leaves to explore this neighborhood. This traversal
is combined with pruning those nodes that are not intersect-
ing with SR of a and hence contain no point of SR. Here,
different algorithms use alternative thresholds and heuris-
tics to decide which R-tree nodes should be investigated
further and which ones should be pruned. While the em-
ployed heuristics are always safe to cover the entire SR and
hence guarantee the completeness of result, they are highly
conservative for two reasons: 1) They use the distance to
the coarse granule MBR of points in a node N as a lower-
bound for the actual distances to the points in N . This
lower-bound metric is not tight enough for many queries
(e.g., RkNN) 2) With some queries (e.g., kANN), the irreg-

1231

ular shape of SR makes it difficult to identify intersecting
nodes using a heuristic. As a result, the algorithm exam-
ines all the nodes intersecting with a larger superset of SR.
That is, the conservative heuristics prevent the algorithm
to prune many nodes/points that are not even close to the
actual result.

A data structure that is extremely efficient in exploring
a local neighborhood in a geometric space is Voronoi dia-
gram [10]. Given a set of points, a general Voronoi diagram
uniquely partitions the space into disjoint regions. The re-
gion (cell) corresponding to a point o covers the points in
space that are closer to o than to any other point. The dual
representation, Delaunay graph, connects any two points
whose corresponding cells share a border (and hence are
close in a certain direction). Thus, to explore the neighbor-
hood of a point a it suffices to start from the Voronoi cell
containing a and repeatedly traverse unvisited neighboring
Voronoi cells (as if we tile the space using visited cells). The
fine granule polygons of Voronoi diagram allows an efficient
coverage of any complex-shaped neighborhood. This makes
Voronoi diagrams efficient structures to explore the search
region during processing NN queries. Moreover, the search
region of many NN queries can be redefined as a limited
neighborhood through the edges of Delaunay graphs. Con-
sequently, an algorithm can traverse any complex-shaped SR
without requiring the MBR-based heuristics of R-tree (e.g,
in Section 4 we prove that the reverse kth NN of a point p is
at most k edges far from p in the Delaunay graph of data).

In this paper, we propose to incorporate Voronoi dia-
grams into the R-tree index structure. The resulting data
structure, termed VoR-Tree, is a regular R-tree enriched
by the Voronoi cells and pointers to Voronoi neighbors of
each point stored together with the point’s geometry in its
data record. VoR-Tree uses more disk space than a regu-
lar R-Tree but instead it highly facilitates NN query pro-
cessing. VoR-Tree is different from an access method for
Voronoi diagrams such as Voronoi history graph [4], os-tree
[9], and D-tree [17]. Instead, VoR-Tree benefits from the
best of two worlds: coarse granule hierarchical grouping of
R-trees and fine granule exploration capability of Voronoi
diagrams. Unlike similar approaches that index the Voronoi
cells [18, 6] or their approximations in higher dimensions
[7], VoR-Tree indexes the actual data objects. Hence, all R-
tree-based query processing algorithms are still feasible with
VoR-Trees. However, adding the connectivity provided by
the Voronoi diagrams enables us to propose I/O-efficient al-
gorithms for different NN queries. Our algorithms use the
information provided in VoR-tree to find the query result by
performing the least number of I/O operations. That is, at
each step they examine only the points inside the current
search region. This processing strategy is used by R-tree-
based algorithms for I/O-optimal processing of NN queries
[5]. While both Voronoi diagrams and R-trees are defined
for the space of Rd which makes VoR-Tree applicable for
higher dimensions, we focus on 2-d points that are widely
available/queried in geospatial applications.

We study three types of NN query and their state-of-the-
art R-tree-based algorithms: 1) kNN and Best-First Search
(BFS) [5], 2) RkNN and TPL [16], and 3) kANN and MBM
[12] (see Appendix F for more queries). For each query,
we propose our VoR-Tree-based algorithm, the proof of its
correctness and its complexities. Finally, through extensive
experiments using three real-world datasest, we evaluate the

(a)

p

V(p)

V. neighbor of p V. edge of p

V
.
ve

rt
ex

 o
f

p

(b)

Figure 1: a) Voronoi diagram, b) Delaunay graph

performance of our algorithms.
For kNN queries, our incremental algorithm uses an im-

portant property of Voronoi diagrams to retrieve/examine
only the points neighboring the (k−1)-th closest points to
the query point. Our experiments verify that our algorithm
outperforms BFS [5] in terms of I/O cost (number of ac-
cessed disk pages; up to 18% improvement). For RkNN
queries, we show that unlike TPL [16], our algorithm is
scalable with respect to k and outperforms TPL in terms
of I/O cost by at least 3 orders of magnitude. For kANN
queries, our algorithm through a diffusive exploration of the
irregular-shaped SR prunes many nodes/points examined by
the MBM algorithm [12]. It accesses a small fraction of disk
pages accessed by MBM (50% decrease in I/O).

2. BACKGROUND
The Voronoi diagram of a given set P = {p1, . . . , pn} of

n points in Rd partitions the space of Rd into n regions.
Each region includes all points in Rd with a common closest
point in the given set P according to a distance metric D(., .)
[10]. That is, the region corresponding to the point p ∈ P
contains all the points q ∈ Rd for which we have

∀p′ ∈ P, p′ 6= p, D(q, p) ≤ D(q, p′) (1)

The equality holds for the points on the borders of p’s and
p′’s regions. Figure 1a shows the ordinary Voronoi diagram
of nine points in R2 where the distance metric is Euclidean.
We refer to the region V (p) containing the point p as its
Voronoi cell. With Euclidean distance in R2, V (p) is a con-
vex polygon. Each edge of this polygon is a segment of the
perpendicular bisector of the line segment connecting p to
another point of the set P . We call each of these edges a
Voronoi edge and each of its end-points (vertices of the poly-
gon) a Voronoi vertex of the point p. For each Voronoi edge
of the point p, we refer to the corresponding point in the set
P as a Voronoi neighbor of p. We use V N(p) to denote the
set of all Voronoi neighbors of p. We also refer to point p
as the generator of Voronoi cell V (p). Finally, the set given
by V D(P) = {V (p1), ..., V (pn)} is called the Voronoi dia-
gram generated by P with respect to the distance function
D(., .). Throughout this paper, we use Euclidean distance
function in R2. Also, we simply use Voronoi diagram to
denote ordinary Voronoi diagram of a set of points in R2.

Now consider an undirected graph DG(P) = G(V,E) with
the set of vertices V = P . For each two points p and p′ in V ,
there is an edge connecting p and p′ in G iff p′ is a Voronoi
neighbor of p in the Voronoi diagram of P . The graph G is
called the Delaunay graph of points in P . This graph is a
connected planar graph. Figure 1b illustrates the Delaunay
graph corresponding to the points of Figure 1a. In Section
4.2, we traverse the Delaunay graph of the database points
to find the set of reverse nearest neighbors of a point.

We review important properties of Voronoi diagrams [10].
Property V-1: The Voronoi diagram of a set P of points,

1232

V D(P), is unique.
Property V-2: Given the Voronoi diagram of P , the near-
est point of P to point p ∈ P is among the Voronoi neighbors
of p. That is, the closest point to p is one of generator points
whose Voronoi cells share a Voronoi edge with V (p). In Sec-
tion 4.1, we utilize a generalization of this property in our
kNN query processing algorithm.
Property V-3: The average number of vertices per Voronoi
cells of the Voronoi diagram of a set of points in R2 does not
exceed six. That is, the average number of Voronoi neigh-
bors of each point of P is at most six. We use this property
to derive the complexity of our query processing algorithms.

3. VOR-TREE
In this section, we show how we use an R-tree (see Ap-

pendix A for definition of R-Tree) to index the Voronoi dia-
gram of a set of points together with the actual points. We
refer to the resulting index structure as VoR-Tree, an R-tree
of point data augmented with the points’ Voronoi diagram.

Suppose that we have stored all the data points of set
P in an R-tree. For now, assume that we have pre-built
V D(P), the Voronoi diagram of P . Each leaf node of R-
tree stores a subset of data points of P . The leaves also
include the data records containing extra information about
the corresponding points. In the record of the point p, we
store the pointer to the location of each Voronoi neighbor of
p (i.e., V N(p)) and also the vertices of the Voronoi cell of p
(i.e., V (p)). The above instance of R-tree built using points
in P is the VoR-Tree of P .

Figure 2a shows the Voronoi diagram of the same points
shown in Figure 11. To bound the Voronoi cells with infinite
edges (e.g., V (p3)), we clip them using a large rectangle
bounding the points in P (the dotted rectangle). Figure 2b
illustrates the VoR-Tree of the points of P . For simplicity,
it shows only the contents of leaf node N2 including points
p4, p5, and p6, the generators of grey Voronoi cells depicted
in Figure 2a. The record associated with each point p in
N2 includes both Voronoi neighbors and vertices of p in a
common sequential order. We refer to this record as Voronoi
record of p. Each Voronoi neighbor p′ of p maintained in
this record is actually a pointer to the disk page storing p′’s
information (including its Voronoi record). In Section 4, we
use these pointers to navigate within the Voronoi diagram.

In sum, VoR-Tree of P is an R-tree on P blended with
Voronoi diagram V D(P) and Delaunay graph DG(P) of P .
Trivially, Voronoi neighbors and Voronoi cells of the same
point can be computed from each other. However, VoR-
Tree stores both of these sets to avoid the computation cost
when both are required. For applications focusing on specific
queries, only the set required by the corresponding query
processing algorithm can be stored.

4. QUERY PROCESSING
In this section, we discuss our algorithms to process dif-

ferent nearest neighbor queries using VoR-Trees. For each
query, we first review its state-of-the-art algorithm. Then,
we present our algorithm showing how maintaining Voronoi
records in VoR-Tree boosts the query processing capabilities
of the corresponding R-tree.

4.1 k Nearest Neighbor Query (kNN)
Given a query point q, k Nearest Neighbor (kNN) query

finds the k closest data points to q. Given the data set
P , it finds k points pi ∈ P for which we have D(q, pi) ≤

(a)

3

2

1

54

12

14

1

2

3

7

8

4

5

6

7

6

13

(b)

N
4

N
5

N
3

N
2

N
1

N
7

N
6

R

p
4

p
5

p
6

… …… …

V(p
6
)={...}

VN(p
5
)={ p

1
, p

2
, p

6
, p

4
, p

7
}

V(p
5
)={…}

VN(p
6
)={ p

5
, p

2
, p

3
, p

12
, p

4
}

V(p
4
)={a, b, c, d, e, f}

VN(p
4
)={ p

5
, p

6
, p

12
, p

14
, p

8
, p

7
}

Figure 2: a) Voronoi diagram and b) the VoR-Tree
of the points shown in Figure 11

D(q, p) for all points p ∈ P \ {p1, . . . , pk} [13]. We use
kNN(q)={p1, . . . , pk} to denote the ordered result set; pi is
the i-th NN of q.

The I/O-optimal algorithm for finding kNNs using an
R-tree is the Best-First Search (BFS) [5]. BFS traverses
the nodes of R-tree from the root down to the leaves. It
maintains the visited nodes N in a minheap sorted by their
mindist(N, q). Consider the R-tree of Figure 2a (VoR-Tree
without Voronoi records) and query point q. BFS first visits
the root R and adds its entries together with their mindist()
values to the heap H (H={(N6, 0),(N7, 2)}). Then, at each
step BFS accesses the node at the top of H and adds all its
entries into H. Extracting N6, we get H={(N7, 2),(N3, 3),
(N2, 7),(N1, 17)}. Then, we extract N7 to get H={(N5, 2),
(N3, 3),(N2, 7),(N1, 17),(N4, 26)}. Next, we extract the point
entries of N5 where we find p14 as the first potential NN
of q. Now, as mindist() of the first entry of H is less
than the distance of the closest point to q we have found
so far (bestdist=D(p14, q)=5), we must visit N3 to explore
any of its potentially better points. Extracting N3 we real-
ize that its closest point to q is p8 with D(p8, q)=8>bestdist
and hence we return p14 as the nearest neighbor (NN) of q
(NN(q)=p14). As an incremental algorithm, we can con-
tinue the iterations of BFS to return all k nearest neighbors
of q in their ascending order to q. Here, bestdist is the dis-
tance of the k-th closest point found so far to q .

For a general query Q on set P , we define the search region
(SR) of a point p ∈ P as the portion of R2 that may contain
a result better than p in P . BFS is considered I/O-optimal
as at each iteration it visits only the nodes intersecting the
SR of its best candidate result p (i.e., the circle centered at
q and with radius equal to D(q, p)). However, as the above
example shows nodes such as N3 while intersecting SR of
p14 might have no point closer than p14 to q. We show how
one can utilize Voronoi records of VoR-Tree to avoid visiting
these nodes.

First, we show our VR-1NN algorithm for processing 1NN

1233

queries (see Figure 13 for the pseudo-code). VR-1NN works
similar to BFS. The only difference is that once VR-1NN
finds a candidate point p, it accesses the Voronoi record of
p. Then, it checks whether the Voronoi cell of p contains
the query point q (Line 8 of Figure 13). If the answer is
positive, it returns p (and exits) as p is the closest point to
q according to the definition of a Voronoi cell. Incorporat-
ing this containment check in VR-1NN, avoids visiting (i.e.,
prunes) node N3 in the above example as V (p14) contains q.

To extend VR-1NN for general kNN processing, we utilize
the following property of Voronoi diagrams:
Property V-4: Let p1, . . . , pk be the k > 1 nearest points
of P to a point q (i.e., pi is the i-th nearest neighbor of
q). Then, pk is a Voronoi neighbor of at least one point
pi ∈ {p1, . . . , pk−1} (pk ∈ V N(pi); see [6] for a proof).

This property states that in Figure 2 where the first NN
of q is p14, the second NN of q (p4) is a Voronoi neighbor of
p14. Also, its third NN (p8) is a Voronoi neighbor of either
p14 or p8 (or both as in this example). Therefore, once we
find the first NN of q we can easily explore a limited neigh-
borhood around its Voronoi cell to find other NNs (e.g., we
examine only Voronoi neighbors of NN(q) to find the second
NN of q). Figure 14 shows the pseudo-code of our VR-kNN
algorithm. It first uses VR-1NN to find the first NN of q
(p14 in Figure 2a). Then, it adds this point to a minheap
H sorted on the ascending distance of each point entry to
q (H=(p14, 5)). Subsequently, each following iteration re-
moves the first entry from H, returns it as the next NN of
q and adds all its Voronoi neighbors to H. Assuming k = 3
in the above example, the trace of VR-kNN iterations is:
1) p14 = 1st NN, add V N(p14) ⇒ H=((p4, 7), (p8, 8), (p12, 13), (p13, 18)).

2) p4 = 2nd NN, add V N(p4) ⇒ H=((p8, 8), (p12, 13), (p6, 13), (p7, 14),

(p5, 16), (p13, 18)). 3) p8 = 3rd NN, terminate.

Correctness: The correctness of VR-kNN follows the cor-
rectness of BFS and the definition of Voronoi diagrams.
Complexity: We compute I/O complexities in terms of
Voronoi records and R-tree nodes retrieved by the algo-
rithm. VR-kNN once finds NN(q) executes exactly k it-
erations each extracting Voronoi neighbors of one point.
Property V-3 states that the average number of these neigh-
bors is constant. Hence, the I/O complexity of VR-kNN is
O(Φ(|P |) + k) where Φ(|P |) is the complexity of finding 1st
NN of q using VoR-Tree (or R-tree). The time complexity
can be determined similarly.
Improvement over BFS: We show how, for the same kNN
query, VR-kNN accesses less number of disk pages (or VoR-
Tree nodes) comparing to BFS. Figure 3a shows a query
point q and 3 nodes of a VoR-Tree with 8 entries per node.
With the corresponding R-tree, BFS accesses node N1 where
it finds p1, the first NN of q. To find q’s 2nd NN, BFS visits
both nodes N2 and N3 as their mindist is less than D(p2, q)
(p2 is the closest 2nd NN found in N1). However, VR-kNN
does not access N2 and N3. It looks for 2nd NN in Voronoi
neighbors of p1 which are all stored in N1. Even when it
returns p2 as 2nd NN, it looks for 3rd NN in the same node
as N1 contains all Voronoi neighbors of both p1 and p2. The
above example represents a sample of many kNN query sce-
narios where VR-kNN achieves a better I/O performance
than BFS.

4.2 Reverse k Nearest Neighbor Query (RkNN)
Given a query point q, Reverse k Nearest Neighbor (RkNN)

query retrieves all the data points p ∈ P that have q as one

(a)

1

2

3

1

2

3

4

(b)

1

2

1

2

Figure 3: a) Improving over BFS, b) p ∈ R2NN(q)

of their k nearest neighbors. Given the data set P , it finds
all p ∈ P for which we have D(q, p) ≤ D(q, pk) where pk is
the k-th nearest neighbor of p in P [16]. We use RkNN(q) to
denote the result set. Figure 3b shows point p together with
p1 and p2 as p’s 1st and 2nd NNs, respectively. The point p
is closer to p1 than to q and hence p is not in R1NN(q). How-
ever, q is inside the circle centered at p with radius D(p, p2)
and hence it is closer to p than p2 to p. As p2 is the 2nd NN
of p, p is in R2NN(q).

The TPL algorithm for RkNN search proposed by Tao et
al. in [16] uses a two-step filter-refinement approach on an
R-tree of points. TPL first finds a set of candidate RNN
points Scnd by a single traversal of the R-tree, visiting its
nodes in ascending distance from q and performing smart
pruning. The pruned nodes/points are kept in a set Srfn

which are used during the refinement step to eliminate false
positives from Scnd. We review TPL starting with its fil-
tering criteria to prune the nodes/points that cannot be in
the result. In Figure 3b, consider the perpendicular bisector
B(q, p1) which divides the space into two half-planes. Any
point such as p locating on the same half-plane as p1 (de-
noted as Bp1(q, p1)) is closer to p1 than to q. Hence, p can-
not be in R1NN(q). That is, any point p in the half-plane
Bp1(q, p1) defined by the bisector of qp1 for an arbitrary
point p1 cannot be in R1NN(q). With R1NN queries, TPL
uses this criteria to prune the points that are in Bp1(q, p1)
of another point p1. It also prunes the nodes N that are in
the union of Bpi(q, pi) for a set of candidate points pi. The
reason is that each point in N is closer to one of pi’s than
to q and hence cannot be in R1NN(q). A similar reasoning
holds for general RkNN queries. Considering Bp1(q, p1) and
Bp2(q, p2), p is not inside the intersection of these two half-
planes (the region in black in Figure 3b). It is also outside
the intersection of the corresponding half-planes of any two
arbitrary points of P . Hence, it is not closer to any two
points than to q and therefore p is in R2NN(q).

With R1NN query, pruning a node N using the above
criteria means incrementally clipping N by bisector lines of
n candidate points into a convex polygon Nres which takes
O(n2) times. The residual region Nres is the part of N that
may contain candidate RNNs of q. If the computed Nres is
empty, then it is safe to prune N (and add it to Srfn). This
filtering method is more complex with RkNN queries where
it must clip N with each of

(
n
k

)
combinations of bisectors

of n candidate points. To overcome this complexity, TPL
uses a conservative trim function which guarantees that no
possible RNN is pruned. With R1NN, trim incrementally
clips the MBR of the clipped Nres from the previous step.
With RkNN, as clipping with

(
n
k

)
combinations, each with

k bisector lines, is prohibitive, trim utilizes heuristics and
approximations. TPL’s filter step is applied in rounds. Each
round first eliminates candidates of Scnd which are pruned
by at least k entries in Srfn. Then, it adds to the final result
RkNN(q) those candidates which are guaranteed not to be

1234

1

2

4

7

3

5

6

8

Figure 4: Lemma 1

pruned by any entry of Scnd. Finally, it queues more nodes
from Srfn to be accessed in the next round as they might
prune some candidate points. The iteration on refinement
rounds is terminated when no candidate left (Scnd=∅).

While TPL utilizes smart pruning techniques, there are
two drawbacks: 1) For k>1, the conservative filtering of
nodes in the trim function fails to prune the nodes that can
be discarded. This results into increasing the number of can-
didate points [16]. 2) For many query scenarios, the number
of entries kept in Srfn is much higher than the number of
candidate points which increases the workspace required for
TPL. It also delays the termination of TPL as more refine-
ment rounds must be performed.
Improvement over TPL: Similar to TPL, our VR-RkNN
algorithm also utilizes a filter-refinement approach. How-
ever, utilizing properties of Voronoi diagram of P , it elimi-
nates the exhaustive refinement rounds of TPL. It uses the
Voronoi records of VoR-Tree of P to examine only a limited
neighborhood around a query point to find its RNNs. First,
the filter step utilizes two important properties of RNNs
to define this neighborhood from which it extracts a set of
candidate points and a set of points required to prune false
hits (see Lemmas 2 and 3 below). Then, the refinement step
finds kNNs of each candidate in the latter set and eliminates
those candidates that are closer to their k-th NN than to q.

We discuss the properties used by the filter step. Consider
the Delaunay graph DG(P). We define gd(p, p′) the graph
distance between two vertices p and p′ of DG(P) (points of
P) as the minimum number of edges connecting p and p′ in
DG(P). For example, in Figure 1b we have gd(p, p′)=1 and
gd(p, p′′)=2.

Lemma 1. Let pk 6=p be the k-th closest point of set P
to a point p ∈ P . The upper bound of the graph distance
between vertices p and pk in Delaunay graph of P is k (i.e.
gd(p, pk) ≤ k).

Proof. The proof is by induction. Consider the point p
in Figure 4. First, for k=1, we show that gd(p, p1)≤1. Prop-
erty V-4 of Section 4.1 states that p1 is a Voronoi neighbor of
p; p1 is an immediate neighbor of p in Delaunay graph of P
and hence we have gd(p, p1)=1. Now, assuming gd(p, pi)≤i
for 0≤i≤k, we show that gd(p, pk+1)≤k+1. Property V-4
states that pk+1 is a Voronoi neighbor of at least one pi ∈
{p1, . . . , pk}. Therefore, we have gd(p, pk+1) ≤ max(gd(p, pi))
+1 ≤ k+1.

In Figure 5, consider the query point q and the Voronoi
diagram V D(P∪{q}) (q added to V D(P)). Lemma 1 states
that if q is one of the kNNs of a point p, then we have
gd(p, q)≤k; p is not farther than k distance from q in Delau-
nay graph of P∪{q}. This yields the following lemma:

Lemma 2. If p is one of reverse kNNs of q, then we have
gd(p, q) ≤ k in Delaunay graph DG(P∪{q}).

As the first property of RNN utilized by our filter step,
Lemma 2 limits the local neighborhood around q that may

1

2
3

4

9

4 5 6

123

5

7

6

8

10

11

12

Figure 5: VR-RkNN for k = 2

contain q’s RkNNs. In Figure 5, the non-black points can-
not be R2NNs of q as they are farther than k=2 from q
in DG(P∪{q}). We must only examine the black points as
candidate R2NNs of q. However, the number of points in k
graph distance from q grows exponentially with k. There-
fore, to further limit these candidates, the filter step also
utilizes another property first proved in [15] for R1NNs and
then generalized for RkNNs in [16]. In Figure 5, consider
the 6 equi-sized partitions S1, . . . , S6 defined by 6 vectors
originating from q.

Lemma 3. Given a query point q in R2, the kNNs of q
in each partition defined as in Figure 5 are the only possible
RkNNs of q (see [16] for a proof).

The filter step adds to its candidate set only those points
that are closer than k+1 from q in DG(P∪{q}) (Lemma 2).
From all candidate points inside each partition Si (defined
as in Figure 5), it keeps only the k closest ones to p and
discards the rest (Lemma 3). Notice that both filters are
required. In Figure 5, the black point p9 while in distance
2 from q is eliminated during our search for R2NN(q) as it
is the 3rd closest point to q in partition S4. Similarly, p10,
the closest point to q in S6, is eliminated as gd(q, p10) is 3.

To verify each candidate p, in refinement step we must
examine whether p is closer to q than p’s k-th NN (i.e.,
pk). Lemma 1 states that the upper bound of gd(p, pk) is
k (gd(p, pk)≤k). Candidate p can also be k edges far from
q (gd(p, q)≤k). Hence, pk can be in distance 2k from q
(all black and grey points in Figure 5). All other points
(shown as grey crosses) are not required to filter the candi-
dates. Thus, it suffices to visit/keep this set R and compare
them to q with respect to the distance to each candidate p.
However, visiting the points in R through V D(P) takes ex-
ponential time as the size of R grows exponentially with k.
To overcome this exponential behavior, VR-RkNN finds the
k-th NN of each candidate p which takes only O(k2) time
for at most 6k candidates.

Figure 15 shows the pseudo-code of the VR-RkNN algo-
rithm. VR-RkNN maintains 6 sets Scnd(i) including candi-
date points of each partition (Line 2). Each set Scnd(i) is a
minheap storing the (at most) k NNs of q inside partition
Si. First, VR-RkNN finds the Voronoi neighbors of q as if
we add q into V D(P) (Line 3). This is easily done using the
insert operation of VoR-Tree without actual insertion of q
(see Appendix B).

In the filter step, VR-RkNN uses a minheap H sorted on
the graph distance of its point entries to q to traverse V D(P)
in ascending gd() from q. It first adds all neighbors pi of q
to H with gd(q, pi)=1 (Lines 4-5). In Figure 5, the points
p1, . . . , p4 are added to H. Then, VR-RkNN iterates over the
top entry of H. At each iteration, it removes the top entry p.

1235

(a)
1

2

3

(b)
1

2

3

Figure 6: a) f=sum , b) f=max

If p, inside Si, passes both filters defined by Lemma 2 and 3,
the algorithm adds (p,D(q, p)) to the candidate set of parti-
tion Si (Scnd(i); e.g., p1 to S1). It also accesses the Voronoi
record of p through which it adds the Voronoi neighbors of
p to H (incrementing its graph distance; Lines 12-15). The
filter step terminates when H becomes empty. In our ex-
ample, the first iteration adds p1 to Scnd(1), and p5, p6 and
p7 with distance 2 to H. After the last iteration, we have
Scnd(1) = {p1, p5}, Scnd(2) = {p6, p7}, Scnd(3) = {p4, p11},
Scnd(4) = {p3, p8}, Scnd(5) = {p2, p12}, and Scnd(6) = {}.

The refinement step (Line 17) examines the points in each
Scnd(i) and adds them to the final result iff they are closer to
their k-th NN than to q (R2NN={p1, p2}). Finding the k-th
NN is straightforward using an approach similar to VR-kNN
of Section 4.1.

4.3 k Aggregate Nearest Neighbor Query (kANN)
Given the set Q={q1, . . . , qn} of query points, k Aggregate

Nearest Neighbor Query (kANN) finds the k data points in
P with smallest aggregate distance to Q. We use kANN(q)
to denote the result set. The aggregate distance adist(p,Q)
is defined as f(D(p, q1), . . . , D(p, qn)) where f is a monoton-
ically increasing function [12]. For example, considering P
as meeting locations and Q as attendees’ locations, 1ANN
query with f=sum finds the meeting location traveling to-
wards which minimizes the total travel distance of all at-
tendees (p minimizes f=sum in Figure 6a). With f=max,
it finds the location that leads to the the earliest time that
all attendees arrive (assuming equal fixed speed; Figure 6b).
Positive weights can also be assigned to query points (e.g.,
adist(p,Q)=

∑n
i=1 wiD(p, qi) where wi ≥ 0). Throughout

this section, we use functions f and adist() interchangeably.
The best R-tree-based solution for kANN queries is the

MBM algorithm [12]. Similar to BFS for kNN queries,
MBM visits only the nodes of R-tree that may contain a
result better than the best one found so far. Based on two
heuristics, it utilizes two corresponding functions that re-
turn lower-bounds on the adist() of any point in a node
N to prune N : 1) amindist(N,M)=f(nm, . . . , nm) where
nm=mindist(N,M) is the minimum distance between the
two rectangles N and M , the minimum bounding box of
Q, and 2) amindist(N,Q) = f(nq1, . . . , nqn) where nqi=
mindist(N, qi). For each node N , MBM first examines if
amindist(N,M) is larger than the aggregate distance of the
current best result p (bestdist= adist(p,Q)). If the answer
is positive, MBM discards N . Otherwise, it examines if the
second lower-bound amindist(N,Q) is larger than bestdist.
If yes, it discards N . Otherwise, MBM visits N ’s children.
Once MBM finds a data point it updates its current best
result and terminates when no better point can be found.

We show that MBM’s conservative heuristics which are
based on the rectangular grouping of points into nodes do
not properly suit the shape of kANN’s search region SR (the
portion of space that may contain a better result). Hence,
they fail to prune many nodes. Figures 7a and 7b illustrate
SRs of a point p for kANN queries with aggregate functions
f=sum and f=max, respectively (regions in grey). The

1

2

3

(a) f=sum (b) f=max
Figure 7: Search Region of p for function f

point p′ is in SR of p iff we have adist(p′, Q)≤adist(p,Q).
The equality holds on SR’s boundary (denoted as SRB). For
f=sum (and weighted sum), SR has an irregular circular
shape that depends on the query cardinality and distribu-
tion (an ellipse for 2 query points) [12]. For f=max, SR
is the intersection of n circles centered at qi’s with radius=
max(D(p, qi)). The figure shows SRBs of several points as
contour lines defined as the locus of points p ∈ R2 where
adist(p,Q)=c (constant). As shown, SR of p′ is completely
inside SR of p iff we have adist(p′, Q)<adist(p,Q). The fig-
ure also shows the centroid q of Q defined as the point in
R2 that minimizes adist(q,Q). Notice that q is inside SRs
of all points.

MBM once finds p as a candidate answer to kANN, tries
to examine only the nodes N that intersect with SR of p.
However, the conservative lower-bound function amindist()
causes MBM not to prune nodes such as N in Figure 7a that
fall completely outside SR of p (amindist(N,Q)=3+8+2=13
<adist(p,Q)=14).

Now, we describe our VR-kANN algorithm for kANN
queries using the example shown in Figure 8 (see Figure 16
for pseudo-code). VR-kANN uses VoR-Tree to traverse the
Voronoi cells covering the search space of kANN. It starts
with the Voronoi cell that contains the centroid q of Q (Line
1). The generator of this cell is the closest point of P to q
(pq=p2 in Figure 8). VR-kANN uses a minheap H of points
p sorted on the amindist(V (p), Q) which is the minimum
possible adist of any point in Voronoi cell of p (Line 2). The
function plays the same role as the two lower-bound func-
tions used in heuristics of MBM. It sets a lower-bound on
adist() of the points in a Voronoi cell. Later, we show how
we efficiently compute this function. VR-kANN also keeps
the k points with minimum adist() in a result heap RH with
their adist() as keys (Line 3). With the example of Figure
8, VR-kANN first adds (p2, 0) and (p2, 40) into H and RH,
respectively. At each iteration, VR-kANN first deheaps the
first entry p from H (Line 6). It reports any point pi in RH
whose adist() is less than amindist(V (p), Q). The reason is
that the SR of pi has been already traversed by the points
inserted in H and no result better than pi can be found (see
Lemma 5). Finally, it inserts all non-visited Voronoi neigh-
bors of p into H and RH (p1, p3, p4, p6, and p7; p1 and p2
are the best 1st and 2nd ANN in RH; Lines 11-15). The
algorithm stops when it reports the k-th point of RH. In
our example VR-kANN subsequently visits the neighbors of
p1, p3, p4, p5, p6, and p8 where it reports p1 and p2 as the
first two ANNs. It reports p3 and stops when it deheaps p10
and p7.

Appendix E discusses the functions FindCentroidNN()
used to find the closest data point pq to centroid q and
amindist(V (p), Q) that finds the minimum possible adist()
for the points in V (p).

1236

Figure 8: VR-kANN for k = 3

5. PERFORMANCE EVALUATION
We conducted several experiments to evaluate the perfor-

mance of query processing using VoR-Tree. For each of four
NN queries, we compared our algorithm with the competi-
tor approach, with respect to the average number of disk
I/O (page accesses incurred by the underlying R-tree/VoR-
Tree). For R-tree-based algorithms, this is the number of
accessed R-tree nodes. For VoR-Tree-based algorithms, the
number of disk pages accessed to retrieve Voronoi records is
also counted. Here, we do not report CPU costs as all al-
gorithms are mostly I/O-bound. We investigated the effect
of the following parameters on performance: 1) number of
NNs k for kNN, kANN, and RkNN queries, 2) number of
query points (|Q|) and the size of MBR of Q for kANN, and
3) cardinality of the dataset for all queries.

We used three real-world datasets indexed by both R*-
tree and VoR-Tree (same page size=1K bytes, node capac-
ity=30). USGS dataset, obtained from the U.S. Geological
Survey (USGS), consists of 950, 000 locations of different
businesses in the entire U.S.. NE dataset contains 123, 593
locations in New York, Philadelphia and Boston 1. GRC
dataset includes the locations of 5, 922 cities and villages
in Greece (we omit the experimental result of this dataset
because of similar behavior and space limitation). The ex-
periments were performed by issuing 1000 random instances
of each query type on a DELL Precision 470 with Xeon 3.2
GHz processor and 3GB of RAM (buffer size=100K bytes).
For convex hull computation in VR-S2, we used the Graham
scan algorithm.

In the first set of experiments, we measured the average
number of disk pages accessed (I/O cost) by VR-kNN and
BFS algorithms varying values of k. Figure 9a illustrates
the I/O cost of both algorithms using USGS. As the fig-
ure shows, utilizing Voronoi cells in VR-kNN enables the
algorithm to prune nodes that are accessed by BFS. Hence,
VR-kNN accesses less number of pages comparing to BFS,
especially for larger values of k. With k=128, VR-kNN dis-
cards almost 17% of the nodes which BFS finds intersecting
with SR. This improvement over BFS is increasing when
k increases. The reason is that the radius of SR used by
BFS’s pruning is first initialized to D(q, p) where p is the

1http://geonames.usgs.gov/, http://www.rtreeportal.org/

(a)

0

5

10

15

20

25

30

35

1 4 16 64 256
k

n
u

m
b

er
 o

f
a

cc
es

se
d

 p
a

g
es

VR-kNN BFS

USGS (b)

0

5

10

15

20

25

30

35

1 4 16 64 256k

n
u

m
b

er
 o

f
a

cc
es

se
d

 p
a

g
es VR-kNN BFS

NE

(c)

1

10

100

1000

10000

100000

1 4 16 64
k

n
u

m
b

er
 o

f
a

cc
es

se
d

 p
a

g
es

VR-RkNN TPL

USGS (d)

1

10

100

1000

10000

1 4 16 64
k

n
u

m
b

er
 o

f
a

cc
es

se
d

 p
a

g
es

VR-RkNN TPL

NE

Figure 9: I/O vs. k for ab) kNN, and cd) RkNN

k-th visited point. This distance increases when k increases
and causes many nodes intersect with SR and hence not be
pruned by BFS. VR-kNN however uses Property V-4 to de-
fine a tighter SR. We also realized that this difference in
I/O costs increases if we use smaller node capacities for the
utilized R-tree/VoR-Tree. Figure 9b shows a similar obser-
vation for the result of NE.

The second set of experiments evaluates the I/O cost of
VR-RkNN and TPL for RkNN queries. Figures 9c and 9d
depict the I/O costs of both algorithms for different values
of k using USGS and NE, respectively (the scale of y-axis
is logarithmic). As shown, VR-RkNN significantly outper-
forms TPL by at least 3 orders of magnitude, especially for
k>1 (to find R4NN with USGS, TPL takes 8 seconds (on
average) while VR-RkNN takes only 4 milliseconds). TPL’s
filter step fails to prune many nodes as k trim function is
highly conservative. It uses a conservative approximation
of the intersection between a node and SR. Moreover, to
avoid exhaustive examinations it prunes using only n com-
binations of

(
n
k

)
combinations of n candidate points. Also,

TPL keeps many pruned (non-candidate) nodes/points for
further use in its refinement step. VR-RkNN’s I/O cost
is determined by the number of Voronoi/Delaunay edges
traversed from q and the distance D(q, pk) between q and
pk=k-th closest point to q in each one of 6 directions. Unlike
TPL, VR-RkNN does not require to keep any non-candidate
node/point. Instead, it performs single traversals around its
candidate points to refine its results. VR-RkNN’s I/O cost
increases very slowly when k increases. The reason is that
D(q, pq) (and hence the size of SR utilized by VR-RkNN)
increases very slowly with k. TPL’s performance is variable
for different data cardinalities. Hence, our result is differ-
ent from the corresponding result shown in [16] as we use
different datasets with different R-tree parameters.

Our next set of experiments studies the I/O costs of VR-
kANN and MBM for kANN queries. We used f=sum and
|Q|=8 query points all inside an MBR covering 4% of the
entire dataset and varied k. Figures 10a and 10b show the
average number of disk pages accessed by both algorithms
using USGS and NE, respectively. Similar to previous re-
sults, VR-kANN is the superior approach. Its I/O cost is
almost half of that of MBM when k≤16 with USGS (k≤128
with NE dataset). This verifies that VR-kANN’s traversal
of SR from the centroid point effectively covers the circu-
lar irregular shape of SR of sum (see Figure 7a). That is,

1237

(a)

0

10

20

30

40

50

60

1 4 16 64 256k

n
u

m
b

er
 o

f
a

cc
es

se
d

 p
a

g
es VR-kANN MBM

USGS (b)

0

10

20

30

40

50

60

70

80

1 4 16 64 256k

n
u

m
b

er
 o

f
a

cc
es

se
d

 p
a

g
es VR-kANN MBM

NE

(c)

0

10

20

30

40

50

60

70

80

0.25% 1% 2.25% 4% 16%

MBR(Q)

n
u

m
b

er
 o

f
a

cc
es

se
d

 p
a

g
es

VR-kANN MBM

USGS (d)

0

10

20

30

40

50

60

70

80

0.25% 1% 2.25% 4% 16%

MBR(Q)

n
u

m
b

er
 o

f
a

cc
es

se
d

 p
a

g
es VR-kANN MBM

NE

Figure 10: I/O vs. ab) k, and cd) MBR(Q) for kANN

the traversal does not continue beyond a limited neighbor-
hood enclosing SR. However, MBM’s conservative heuristic
explores the nodes intersecting a wide margin around SR
(a superset of SR). Increasing k decreases the difference be-
tween the performance of VR-kANN and that of MBM. The
intuition here is that with large k, SR converges to a circle
around the centroid point q (see outer contours in Figure
7a). That is, SR becomes equivalent to the SR of kNN with
query point q. Hence, the I/O costs of VR-kANN and MBM
converge to that of their corresponding algorithms for kNN
queries with the same value for k.

The last set of experiments investigates the impact of
closeness of the query points on the performance of each
kANN algorithm. We varied the area covered by the MBR(Q)
from 0.25% to 16% of the entire dataset. With f=sum
and |Q|=k=8, we measured the I/O cost of VR-kANN and
MBM. As Figures 10c and 10d show, when the area covered
by query points increases, VR-kANN accesses much less disk
pages comparing to MBM. The reason is a faster increase in
MBM’s I/O cost. When the query points are distributed in a
larger area, the SR is also proportionally large. Hence, the
larger wide margin around SR intersects with much more
nodes leaving them unpruned by MBM. We also observed
that changing the number of query points in the same MBR
does not change the I/O cost of MBM. This observation
matches the result reported in [12]. Similarly, VR-kANN’s
I/O cost is the same for different query sizes. The reason is
that VR-kANN’s I/O is affected only by the size of SR. In-
creasing the number of query points in the same MBR only
changes the shape of SR not its size.

The extra space required to store Voronoi records of data
points in VoR-Trees increases the overall disk space com-
paring to the corresponding R-Tree index structure for the
same dataset. The Vor-Trees (R*-trees) of USGS and NE
datasets are 160MB (38MB) and 23MB (4MB), respectively.
That is, a Vor-Tree needs at least 5 times more disk space
than the space needed to index the same dataset using an
R*-Tree. Considering the low cost of storage devices and
high demand for prompt query processing, this space over-
head is acceptable to modern applications of today.

6. CONCLUSIONS
We introduced VoR-Tree, an index structure that incor-

porates Voronoi diagram and Delaunay graph of a set of
data points into an R-tree that indexes their geometries.
VoR-Tree benefits from both the neighborhood exploration
capability of Voronoi diagrams and the hierarchical struc-

ture of R-trees. For various NN queries, we proposed I/O-
efficient algorithms utilizing VoR-Trees. All our algorithms
utilize the hierarchy of VoR-Tree to access the portion of
data space that contains the query result. Subsequently,
they use the Voronoi information associated with the points
at the leaves of VoR-Tree to traverse the space towards the
actual result. Founded on geometric properties of Voronoi
diagrams, our algorithms also redefine the search region of
NN queries to expedite this traversal.

Our theoretical analysis and extensive experiments with
real-world datasets prove that VoR-Trees enable I/O-efficient
processing of kNN, Reverse kNN, k Aggregate NN, and spa-
tial skyline queries on point data. Comparing to the com-
petitor R-tree-based algorithms, our VoR-Tree-based algo-
rithms exhibit performance improvements up to 18% for
kNN, 99.9% for RkNN, and 64% for kANN queries.
7. REFERENCES
[1] S. Börzsönyi, D. Kossmann, and K. Stocker. The Skyline

Operator. In ICDE’01, pages 421–430, 2001.

[2] J. V. den Bercken, B. Seeger, and P. Widmayer. A Generic
Approach to Bulk Loading Multidimensional Index
Structures. In VLDB’97, 1997.

[3] A. Guttman. R-trees: a Dynamic Index Structure for
Spatial Searching. In ACM SIGMOD ’84, pages 47–57,
USA, 1984. ACM Press.

[4] M. Hagedoorn. Nearest Neighbors can be Found Efficiently
if the Dimension is Small relative to the input size. In
ICDT’03, volume 2572 of Lecture Notes in Computer
Science, pages 440–454. Springer, January 2003.

[5] G. R. Hjaltason and H. Samet. Distance Browsing in
Spatial Databases. ACM TODS, 24(2):265–318, 1999.

[6] M. Kolahdouzan and C. Shahabi. Voronoi-Based K Nearest
Neighbor Search for Spatial Network Databases. In
VLDB’04, pages 840–851, Toronto, Canada, 2004.

[7] S. Berchtold, B. Ertl, D. A. Keim, H. Kriegel, and T. Seidl.
Fast Nearest Neighbor Search in High-Dimensional Space.
In ICDE’98, pages 209–218, 1998.

[8] F. Korn and S. Muthukrishnan. Influence Sets based on
Reverse Nearest Neighbor Queries. In ACM SIGMOD’02,
pages 201–212. ACM Press, 2000.

[9] S. Maneewongvatana. Multi-dimensional Nearest Neighbor
Searching with Low-dimensional Data. PhD thesis,
Computer Science Department, University of Maryland,
College Park, MD, 2001.

[10] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial
Tessellations, Concepts and Applications of Voronoi
Diagrams. John Wiley and Sons Ltd., 2nd edition, 2000.

[11] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
Skyline Computation in Database Systems. ACM TODS,
30(1):41–82, 2005.

[12] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui.
Aggregate Nearest Neighbor Queries in Spatial Databases.
ACM TODS, 30(2):529–576, 2005.

[13] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
Neighbor Queries. In SIGMOD’95, pages 71–79, USA, 1995.

[14] M. Sharifzadeh and C. Shahabi. The Spatial Skyline
Queries. In VLDB’06, September 2006.

[15] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse Nearest
Neighbor Queries for Dynamic Databases. In ACM
SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, pages 44–53, 2000.

[16] Y. Tao, D. Papadias, and X. Lian. Reverse kNN Search in
Arbitrary Dimensionality. In VLDB’04, pages 744–755,
2004.

[17] J. Xu, B. Zheng, W.-C. Lee, and D. L. Lee. The D-Tree: An
Index Structure for Planar Point Queries in Location Based
Wireless Services. IEEE TKDE, 16(12):1526–1542, 2004.

[18] B. Zheng and D. L. Lee. Semantic Caching in Location
-dependent Query Processing. In SSTD’01, pages 97–116.

1238

9

3

21

54

6

7

11

10

12

13

14

1

2

3

7

8

4

5

mindist(N
7

, q)

m
in

d
is

t(
N

6
,
q
)

6

p
1

e
1

N
4

N
5

N
3

N
2

N
1

N
7

N
6

R

e
3

e
4

e
5

e
2

e
6

e
7

p
2
p
3

p
4
p
5

p
14

p
8

p
7

p
10

p
9

p
11

p
12
p
13

p
6

Figure 11: Points indexed by an R-tree

APPENDIX
A. R-TREES

R-tree [3] is the most prominent index structure widely used for
spatial query processing. R-trees group the data points in Rd us-
ing d-dimensional rectangles, based on the closeness of the points.
Figure 11 shows the R-tree built using the set P = {p1, . . . , p13} of
points in R2. Here, the capacity of each node is three entries. The
leaf nodes N1, . . . , N5 store the coordinates of the grouped points
together with optional pointers to their corresponding records.
Each intermediate node (e.g., N6) contains the Minimum Bound-
ing Rectangle (MBR) of each of its child nodes (e.g., e1 for node
N1) and a pointer to the disk page storing the child. The same
grouping criteria is used to group intermediate nodes into upper
level nodes. Therefore, the MBRs stored in the single root of
R-tree collectively cover the entire data set P . In Figure 11, the
root node R contains MBRs e6 and e7 enclosing the points in
nodes N6 and N7, respectively.

R-tree-based algorithms utilize some metrics to bound their
search space using the MBRs stored in the nodes. The widely used
function is mindist(N, q) which returns the minimum possible
distance between a point q and any point in the MBR of node
N . Figure 11 shows mindist(N6, q) and mindist(N7, q) for q. In
Section 4, we show how R-tree-based approaches use this lower-
bound function.

B. VOR-TREE MAINTENANCE
Given the set of points P , the batch operation to build the VoR-

Tree of P first uses a classic approach such as Fortune’s sweepline
algorithm [10] to build the Voronoi diagram of P . The Voronoi
neighbors and the vertices of the cell of each point is then stored
in its record. Finally, it easily uses a bulk construction approach
for R-trees [2] to index the points in P considering their Voronoi
records. The resulted R-tree is the VoR-Tree of P .

To insert a new point x in a VoR-Tree, we first use VoR-Tree
(or the corresponding R-tree) to locate p, the closest point to x
in the set P . This is the point whose Voronoi cell includes x.
Then, we insert x in the corresponding R-tree. Finally, we need
to build/store Voronoi cell/neighbors of x and subsequently up-
date those of its neighbors in their Voronoi records. We use the
algorithm for incremental building of Voronoi diagrams presented
in [10]. Figure 12 shows this scenario. Inserting the point x resid-
ing in the Voronoi cell of p1, changes the Voronoi cells/neighbors
(and hence the Voronoi records) of points p1, p2, p3 and p4. We
first clip V (p1) using the perpendicular bisector of line segment
xp1 (i.e., line B(x, p1)) and store the new cell in p1’s record. We
also update Voronoi neighbors of p1 to include the new point x.
Then, we select the Voronoi neighbor of p1 corresponding to one
of (possibly two) Voronoi edges of p1 that intersect with B(x, p1)
(e.g., p2). We apply the same process using the bisector line
B(x, p2) to clip and update V (p2). Subsequently, we add x to
the Voronoi neighbors of p2. Similarly, we iteratively apply the

p
2

p
3

p
4

p
1

v
1

v
2

v
3

v
4

x

Figure 12: Inserting the point x in VoR-Tree

Algorithm VR-1NN (point q)
01. minheap H = {(R, 0)}; bestdist =∞;
02. WHILE H is not empty DO
03. remove the first entry e from H;
04. IF e is a leaf node THEN
05. FOR each point p of e DO
06. IF D(p, q) < bestdist THEN
07. bestNN = p; bestdist = D(p, q);
08. IF V (bestNN) contains q THEN RETURN bestNN ;
09. ELSE // e is an intermediate node
10. FOR each child node e′ of e DO
11. insert (e′,mindist(e′, q)) into H;

Figure 13: 1NN algorithm using VoR-Tree

process to p3 and p4 until p1 is selected again. At this point
the algorithm terminates and as the result it updates the Voronoi
records of points pi and computes V (x) as the regions removed
from the clipped cells. The Voronoi neighbors of x are also set
to the set of generator points of updated Voronoi cells. Finally,
we store the updated Voronoi cells and neighbors in the Voronoi
records corresponding to the affected points. Notice that find-
ing the affected points p1, . . . , p4 is straightforward using Voronoi
neighbors and the geometry of Voronoi cells stored in VoR-Tree.

To delete a point x from VoR-Tree, we first locate the Voronoi
record of x using the corresponding R-tree. Then, we access its
Voronoi neighbors through this record. The cells and neighbors of
these points must be updated after deletion of x. To perform this
update, we use the algorithm in [10]. It simply uses the intersec-
tions of perpendicular bisectors of each pair of neighbors of x to
update their Voronoi cells. We also remove x from the records of
its neighbors and add any possible new neighbor to these records.
At this point, it is safe to delete x from the corresponding R-tree.

The update operation of VoR-Tree to change the location of x
is performed using a delete followed by an insert. The average
time and I/O complexities of all three operations are constant.
With both insert and delete operations, only Voronoi neighbors
of the point x (and hence its Voronoi record) are changed. These
changes must also be applied to the Voronoi records of these
points which are directly accessible through that of x. According
to Property V-3, the average number of Voronoi neighbors of a
point is six. Therefore, the average time and I/O complexities of
insert/delete/update operations on VoR-Trees are constant.

C. KNN QUERY
Figures 13 and 14 show the pseudo-code of VR-1NN and VR-

kNN, respectively.

Algorithm VR-kNN (point q, integer k)
01. NN(q) = VR-1NN(q);
02. minheap H = {(NN(q), D(NN(q), q))};
03. V isited = {NN(q)}; counter = 0;
04. WHILE counter < k DO
05. remove the first entry p from H;
06. OUTPUT p; increment counter;
07. FOR each Voronoi neighbor of p such as p′ DO
08. IF p′ /∈ V isited THEN
09. add (p′, D(p′, q)) into H and p′ into V isited;

Figure 14: kNN algorithm using VoR-Tree

1239

Algorithm VR-RkNN (point q, integer k)
01. minheap H = {}; V isited = {};
02. FOR 1 ≤ i ≤ 6 DO minheap Scnd(i) = {};
03. V N(q) = FindVoronoiNeighbors(q);
04. FOR each point p in V N(q) DO
05. add (p, 1) into H; add p into V isited;
06. WHILE H is not empty DO
07. remove the first entry (p, gd(q, p)) from H;
08. i = sector around q that contains p ;
09. pn = last point in Scnd(i) (infinity if empty);
10. IF gd(q, p) ≤ k and D(q, p) ≤ D(q, pn) THEN
11. add (p,D(q, p)) to Scnd(i);
12. FOR each Voronoi neighbor of p such as p′ DO
13. IF p′ /∈ V isited THEN
14. gd(q, p′) = gd(q, p) + 1;
15. add (p′, gd(q, p′)) into H and p′ into V isited;
16. FOR each candidate set Scnd(i) DO
17. FOR the first k points in Scnd(i) such as p DO
18. pk = k-th NN of p;
19. IF D(q, p) ≤ D(pk, p) THEN OUTPUT p ;

Figure 15: RkNN algorithm using VoR-Tree

Algorithm VR-kANN (set Q, integer k, function f)
01. pq = FindCentroidNN(Q, f);
02. minheap H = {(pq, 0)};
03. minheap RH = {(pq, adist(pq, Q))};
04. V isited = {pq}; counter = 0;
05. WHILE H is not empty DO
06. remove the first entry p from H;
07. WHILE the first entry p′ of RH has
08. adist(p′, Q) ≤ amindist(V (p), Q) DO
09. remove p′ from RH; output p′;
10. increment counter; if counter = k terminate;
11. FOR each Voronoi neighbor of p such as p′ DO
12. IF p′ /∈ V isited THEN
13. add (p′, amindist(V (p′), Q)) into H;
14. add (p′, adist(p′, Q)) into RH;
15. add p′ into V isited;

Figure 16: kANN algorithm using VoR-Tree

D. RKNN QUERY
Figure 15 shows the pseudo-code of VR-RkNN.

Correctness:

Lemma 4. Given a query point q, VR-RkNN correctly finds
RkNN(q).

Proof. It suffices to show that the filter step of VR-RkNN is
safe. This follows building the filter based on Lemmas 1, 2, and
3.

Complexity: VR-RkNN once finds NN(q) starts finding k clos-
est points to q in each partition. It requires retrieving O(k)
Voronoi records to find these candidate points as they are at
most k edges far from q. Finding k NN of each candidate point
also requires accessing O(k) Voronoi records. Therefore, the I/O
complexity of VR-RkNN is O(Φ(|P |) + k2) where Φ(|P |) is the
complexity of finding NN(q).

E. KANN QUERY
Figure 16 shows the pseudo-code of VR-kANN.

Centroid Computation: When q can be exactly computed

Figure 17: Finding the cell containing centroid q

(e.g., for f=max it is the center of smallest circle containing Q),
VR-kANN performs a 1NN search using VoR-Tree and retrieves
pq . However, for many functions f , the centroid q cannot be pre-
cisely computed [12]. With f=sum, q is the Fermat-Weber point
which is only approximated numerically. As VR-kANN only re-
quires the closest point to q (not q itself), we provide an algorithm
similar to gradient descent to find pq2. Figure 17 illustrates this
algorithm. We first start from a point close to q and find its
closest point p1 using VR-1NN (e.g., the geometric centroid of Q
with x = (1/n)

∑n
i=1 qi.x and y = (1/n)

∑n
i=1 qi.y) for f=sum).

Second, we compute the partial derivatives of f=adist(q,Q) with
respect to variables q.x and q.y:

∂x =
∂adist(q,Q)

∂x
=

∑n
i=1

(x−xi)√
(x−xi)2+(y−yi)2

∂y =
∂adist(q,Q)

∂y
=

∑n
i=1

(y−yi)√
(x−xi)2+(y−yi)2

(2)

Computing ∂x and ∂y at point p1, we get a direction d1. Draw-
ing a ray r1 originating from p1 in direction d1 enters the Voronoi
cell of p2 intesecting its boundary at point x1. We compute the
direction d2 at x1 and repeat the same process using a ray r2 orig-
inating from x1 in direction d2 which enters V (pq) at x2. Now,
as we are inside V (pq) that includes centroid q, all other rays
consecutively circulate inside V (pq). Detecting this situation, we
return pq as the closest point to q.

Minimum aggregate distance in a Voronoi cell: The func-
tion amindist(V (p), Q) can be conservatively computed as adist(
vq1, . . . , vqn) where vqi=mindist(V (p), qi) is the minimum dis-
tance between qi and any point in V (p). However, when the cen-
troid q is outside V (p), minimum adist() happens on the bound-
ary of V (p). Based on this fact, we find a better lower-bound for
amindist(V (p), Q). For point p1 in Figure 17, if we compute the
direction d1 and ray r1 as stated for centroid computation, we re-
alize that amindist(p′, Q) (p′ ∈ V (p)) is minimum for a point p′

on the edge v1v2 that intersects with r1. The reason is the circular
convex shape of SRs for adist(). Therefore, amindist(V (p), Q) re-
turns adist(vq1, . . . , vqn) where vqi=mindist(v1v2, qi) is the min-
imum distance between qi and the Voronoi edge v1v2.

Correctness:

Lemma 5. Given a query point q, VR-kANN correctly and in-
crementally finds kANN(q) in the ascending order of their adist()
values.

Proof. It suffices to show that when VR-kANN reports p, it
has already examined/reported all the points p′ where adist(p′, Q)
≤ adist(p,Q). VR-kANN reports p when for all the cells V in H,
we have amindist(V,Q) ≥ adist(p,Q). That is, all these visited
cells are outside SR of p. In Figure 17, p2 is reported when H
contains only the cells on the boundary of the grey area which
contains SR of p2. As VR-kANN starts visiting the cells from the
V (pq) containing centroid q, when reporting any point p, it has
already examined/inserted all points in SR of p in RH. As RH
is a minheap on adist(), the results are in the ascending order of
their adist() values.

Complexity: The Voronoi cells of visited points constitute an
almost-minimal set of cells covering SR of result (including k
points). These cells are in a close edge distance to the returned k
points. Hence, the number of points visited by VR-kANN is O(k).
Therefore, the I/O complexity of VR-kANN is O(Φ(|P |) + k)
where Φ(|P |) is the complexity of finding the closest point to cen-
troid q.

General aggregate functions: In general, any kANN query
with an aggregate function for which SR of a point is continuous
is supported by the pseudo-code provided for VR-kANN. This
covers a large category of widely used functions such as sum,
max and weighted sum. With functions such as f=min, each
SR consists of n different circles centered at query points of Q.

2[12] uses a similar approach to approximate the centroid.

1240

(a) Dominance region of p
1

C(q
1
, p

1
)

q
1

q
2

p
2

p
3

p
1

(b)

p
1

N

q
2

p
3

q
1

Figure 18: Dominance regions of a) p1, and b) {p1, p3}

As the result, Q has more than one centroid for function f . To
answer a kANN query with these functions, we need to change
VR-kANN to perform parallel traversal of V D(P) starting from
the cells containing each of nc centroids.

F. SPATIAL SKYLINE QUERY (SSQ)
Given the set Q = {q1, . . . , qn} of query points, the Spatial

Skyline (SSQ) query returns the set S(Q) including those points
of P which are not spatially dominated by any other point of P .
The point p spatially dominates p′ iff we have D(p, qi) ≤ D(p′, qi)
for all qi ∈ Q and D(p, qj) < D(p′, qj) for at least one qj ∈ Q [14].
Figure 18a shows a set of nine data points and two query points
q1 and q2. The point p1 spatially dominates the point p2 as both
q1 and q2 are closer to p1 than to p2. Here, S(Q) is {p1, p3}.

Consider circles C(qi, p1) centered at the query point qi with
radius D(qi, p1). Obviously, qi is closer to p1 than any point
outside C(qi, p1). Therefore, p1 spatially dominates any point
such as p2 which is outside all circles C(qi, pi) for all qi ∈ Q (the
grey region in Figure 18a) For a point p, this region is referred as
the dominance region of p [14].

SSQ was introduced in [14] in which two algorithms B2S2 and
VS2 were proposed. Both algorithms utilize the following facts:

Lemma 6. Any point p ∈ P which is inside the convex hull of
Q (CH(Q))3 or its Voronoi cell V (p) intersects with CH(Q) is
a skyline point (p ∈ S(Q). We use definite skyline points to refer
to these points.

Lemma 7. The set of skyline points of P depends only on the
set of vertices of the convex hull of Q (denoted as CHv(Q)).

The R-tree-based B2S2 is a customization of a general skyline
algorithm, termed BBS, [11] for SSQ. It tries to avoid expensive
dominance checks for the definite skyline points inside CH(Q),
identified in Lemma 6, but also prunes unnecessary query points
to reduce the cost of each examination (Lemma 7). VS2 employs
the Voronoi diagram of the data points to find the first skyline
point whose local neighborhood contains all other points of the
skyline. The algorithm traverses the Voronoi diagram of data
points of P in the order specified by a monotone function of their
distances to query points. Utilizing V D(P), VS2 finds all definite
skyline points without any dominance check.

While both B2S2 and VS2 are efficiently processing SSQs, there
are two drawbacks: 1) B2S2 still uses the rectangular grouping
of points together with conservative mindist() function in its fil-
ter step and hence, similar to MBM for kANN queries, it fails to
prune many nodes. To show a scenario, we first define the domi-
nance region of a set S as the union of the dominance regions of all
points of S (grey region in Figure 18b for S={p1, p3}). Any point
in this region is spatial dominated by at least one point p ∈ S.
Now, consider the MBR of R-tree node N in Figure 18b. B2S2

does not prune N (visits N) as we have mindist(N, q2)<D(p1, q2)
and mindist(N, q1)<D(p3, q1), and hence N is not dominated by
neither by p1 nor by p3. However, N is completely inside the dom-
inance region of {p1, p3} and cannot contain any skyline point.
2) VS2, while computationally more efficient that B2S2, provides
no guarantee on its I/O-efficiency. Also, the algorithm does not
support arbitrary monotone functions for reporting the result.

We propose our VoR-Tree-based algorithm for SSQ which in-
crementally returns the skyline points ordered by a monotone
function provided by the user (progressive similar to BBS [11]
and B2S2). To start, we first study the search region of a set S

3The unique smallest convex polygon that contains Q.

Algorithm VR-S2 (set Q, function f)
01. compute the convex hull CH(Q);
02. pq = FindCentroidNN(Q, f);
03. minheap H = {(pq, 0)};
04. minheap RH = {(pq, adist(pq, Q))};
05. set S(Q) = {}; V isited = {pq};
06. WHILE H is not empty DO
07. remove the first entry p from H;
08. WHILE the first entry p′ of RH has

adist(p′, Q) ≤ amindist(V (p), Q) DO
09. remove p′ from RH;
10. IF p′ is not dominated by S(Q) THEN
11. add p′ into S(Q);
12. FOR each Voronoi neighbor of p such as p′ DO
13. IF p′ /∈ V isited THEN
14. add p′ into V isited;
15. IF V (p′) is not dominated by S(Q) and RH THEN
16. add (p′, amindist(V (p′), Q)) into H;
17. IF p′ is a definite skyline point or

p′ is not dominated by S(Q) and RH THEN
18. add (p′, adist(p′, Q)) into RH;
19. WHILE RH is not empty DO
20. remove the first entry p′ from RH;
21. IF p′ is not dominated by S(Q) THEN
22. add p′ into S(Q);

Figure 19: SSQ algorithm using VoR-Tree

in SSQ. This is the region that may contain points that are not
spatially dominated by a point of S. Therefore, SR is easily the
complement of the dominance region of S (white region in Figure
18b). It is straightforward to see that SR of S is a continuous
region as it is defined based on the union of a set of concentric
circles C(qi, pi).

An I/O-efficient algorithm once finds a set of skyline points
S must examine only the points inside the SR of S. Our VR-
S2 algorithm shown in Figure 19 satisfies this principle. VR-S2

reports skyline points in the ascending order of a user-provided
monotone function f=adist(). It maintains a result minheap RH
that includes the candidate skyline points sorted on adist() values.
To maintain the order of output, we only add these candidate
points into the final ordered S(Q) when no point with less adist()
can be found.

The algorithm’s traversal of V D(P) is the same as that of VR-
kANN with aggregate function adist() (compare the two pseudo-
codes). Likewise, VR-S2 uses a minheap H sorted on amindist(
V (p), Q). It starts this traversal from a definite skyline point
which is immediately added to the result heap RH. This is the
point pq whose Voronoi cell contains the centroid of function f
(here, f=sum).

At each iteration, VR-S2 deheaps the first entry p of H (Line

7). Similar to VR-kANN, it examines any point p′ in RH whose

adist() is less than p’s key (amindist(V (p), Q)) (Line 8). If p′

is not dominated by any point in S(Q), it adds p′ to S(Q) (see

Lemma 8). Similar to B2S2 and VS2, for dominance checks VR-

S2 employs only the vertices of convex hull of Q (CHv(Q)) in-

stead of the entire Q (Lemma 7). Subsequently, accessing p’s

Voronoi records, it examines unvisited Voronoi neighbors of p

(Line 12). For each neighbor p′, if V (p′) is dominated by any

point in S(Q) or RH (discussed later), VR-S2 discards p′. The

reason is that V (p′) is entirely outside SR of current S(Q) ∪RH

. Otherwise, it adds p′ to H. At the end, if p′ is a definite

skyline point or is not dominated by any point in S(Q) or RH,

VR-S2 adds it to RH. When the heap H becomes empty, any

remaining point in RH is examined against the points of S(Q)

and if not dominated is added to S(Q) (Line 19). In Figure 8,

VR-S2 visits p1-p27 and incrementally returns the ordered set

S(Q)={p1, p2, p3, p6, p8, p9, p10}.

Spatial domination of a Voronoi cell: To provide a safe

pruning approach, we define a conservative heuristic for the dom-

1241

ination of V (p). We declare V (p) as spatially dominated if we

have mindist(V (p), qi)≥D(s, qi) for a point s in current candi-

date S(Q). We show that all points of V (p) are dominated.

Assume that the above condition holds. For any point x in

V (p), we have D(x, qi)≥mindist(V (p), qi). By transitivity we

get D(x, qi)≥D(s, qi). That is, each x in V (p) is spatially domi-

nated by s ∈ S(Q). For example, V (p13) is dominated by p1 as

we have

mindist(V (p13), q1) = 12 > D(p1, q1) = 2,

mindist(V (p13), q2) = 16 > D(p1, q2) = 15,

mindist(V (p13), q3) = 33 > D(p1, q3) = 23.

Correctness:
Lemma 8. Given a query set Q, VR-S2 correctly and in-

crementally finds skyline points in the ascending order of
their adist() values.

Proof. To prove the order, notice that VR-S2’s traversal
is the same as VR-kANN’s traversal. Thus, according to
Lemma 5 the result is in the ascending order of adist().

To prove the correctness, we first prove that if p is a sky-
line point (p ∈ S(Q)) then p is in the result returned by
VR-S2. The algorithm examines all the points in the SR of
the result it returns which is a superset of the actual S(Q).
As any un-dominated point is in this SR, VR-S2 adds p
to its result. Then, we prove if VR-S2 returns p, then we
have p is a real skyline point. The proof is by contradic-
tion. Assume that p is spatially dominated by a skyline
point p′. Earlier, we proved that VR-S2 returns p′ at some
point as it is a skyline point. We also proved that when VR-
S2 adds p to its result set, it has already reported p′ as we
have adist(p′, Q)<adist(p,Q). Therefore, while examining
p, VR-S2 has checked it against p′ for dominance and has
discarded p. This contradicts our assumption that p is in
the result of VR-S2.

Complexity: Similar to VR-kANN, VR-S2 also visits only
the points neighboring a point in the result set S(Q). Hence,
it accesses only O(|S(Q)|) Voronoi records. Therefore, the
I/O complexity of VR-S2 is O(|S(Q)|+Φ(|P |)) where Φ(|P |)
is the I/O complexity of finding the point from which VR-S2

starts traversing V D(P).
Our experiments with three datasets showed that VR-S2

always outperforms the competitor algorithms. As the sec-
ond best algorithm, VS2 accesses almost the same number
of disk pages as VR-S2 does. However, notice that VR-S2

not only provides proven bounds on its I/O cost but also
utilizes arbitrary functions to order its result.

1242

