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ABSTRACT
To enable smart environments and self-tuning data centers, we are
developing the Aspen system for integrating physical sensor data,
as well as stream data coming from machine logical state, and
database or Web data from the Internet. A key component of this
system is a query processor optimized for limited-bandwidth, pos-
sibly battery-powered devices with multiple hop wireless radio com-
munications. This query processor is given a portion of a data inte-
gration query, possibly including joins among sensors, to execute.

Several recent papers have developed techniques for computing
joins in sensors, but these techniques are static and are only appro-
priate for specific join selectivity ratios. We consider the problem
of dynamic join optimization for sensor networks, developing solu-
tions that employ cost modeling, as well as adaptive learning and
self-tuning heuristics to choose the best algorithm under real and
variable selectivity values. We focus on in-network join computa-
tion, but our architecture extends to other approaches (and we com-
pare against these). We develop basic techniques assuming selec-
tivities are uniform and known in advance, and optimization can be
done on a pairwise basis; we then extend the work to handle joins
between multiple pairs, when selectivities are not fully known. We
experimentally validate our work at scale using standard datasets.

1. INTRODUCTION
A new class of monitoring and control applications is emerging,

which integrates data from multiple networked sensor devices and
Internet sources, to obtain high-level status information and ulti-
mately support complex monitoring and control logic. Examples
include hospitals automatically guiding visitors and physicians to
patients or equipment, environmental monitors helping data centers
optimize their energy consumption, or power grids using weather
and usage forecasts to optimize electricity generation. Today’s
forerunners to these sensor systems run a single application and
have limited extensibility to new devices or data types; the chal-
lenge in tomorrow’s world will be supporting multiple applications
and achieving seamless integration with data from other sensor sys-
tems, databases, feeds, streams, and Web services. To achieve this,
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an easy-to-adopt, yet sophisticated and extensible development in-
frastructure is needed — which features a uniform interface for pos-
ing queries and defining views over all available data in the system
(remote or local). The Aspen system (see overview in Appendix A)
develops such an acquisition and integration architecture, with a
particular emphasis on distributed sensor data.

Aspen uses a federated query processing model based on Stream
SQL, where some query processing subsystems operate on server-
type hardware, and others “scale down” to more limited devices
and networks (e.g., ad-hoc wireless networks of Crossbow motes or
PDAs). Our target applications require joining data from different
types of sensors, and we support this task with a sensor query sub-
system that is the focus of this paper. Numerous approaches have
been proposed for computing joins in sensor networks. Yet, to the
best of our knowledge, no prior work optimizes joins in a multi-
hop wireless sensor network, taking into account operator selectiv-
ities to minimize message traffic (and thus network load, chance of
dropped messages, congestion, latency, and power consumption).
Moreover, in case of multiple concurrent queries, minimizing re-
source consumption is even more critical.

Join optimization in a sensor network differs from traditional dis-
tributed query optimization in several ways: (1) the cost minimized
is often network utilization (thus power and congestion indirectly),
rather than CPU or disk usage; (2) individual tuples are partitioned
across different sensors, making access cost (in network messages)
variable; (3) low bandwidth often necessitates decentralized opti-
mization, with limited information at each node; (4) groups of sen-
sors (not just pairs) may join, leading to possible optimizations; (5)
data characteristics may vary across regions and over time. These
differences require a new approach to the query optimization prob-
lem. To illustrate the types of queries we aim to answer (and opti-
mize), we consider energy monitoring in a data center.
Query R. Consider an instrumented data center. A meter mon-
itors the energy used by each machine, and temperature sensors
monitor the area around the machines. Sensors are wireless to
avoid dependence on a crashed or overheated server. When energy
or temperature exceed a threshold, readings from adjacent sensors
of both types should be paired up and reported to the base sta-
tion. Low latencies allow the base station to immediately reduce
the work allocated to overheated machines.
Query P. Given many racks of machines with temperature sen-
sors, it may be convenient to use a mesh (multi-hop wireless) net-
work to relay data from these sensors. An event should be triggered
(i.e., a join output should be produced) if the difference between any
pair of sensors in different regions exceeds a threshold.

These queries may not produce large amounts of output (since
they are primarily event detectors). However, fast response times
are essential (e.g., to support load balancing), and it is vital not to
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drop join results due to congestion. Moreover, the data properties
(selectivities, transmission rates) may vary across regions, making
it essential to adapt to local and temporal variations.

In this paper we develop core techniques for addressing the chal-
lenges of query optimization in a highly distributed, decentralized
multi-hop wireless sensor network, whether the sensor devices are
primitive motes or powerful PCs. Our contributions are as follows:
• We develop decentralized algorithms for cost-based query

optimization of joins, using distributed coordination.
• We develop a strategy that dynamically learns producer and

operator selectivities and uses them for continuous query op-
timization in the presence of both spatial and temporal changes.
• Through extensive experiments using synthetic and real-world

data, we experimentally demonstrate the effectiveness of our
join optimization strategies versus previous approaches.

Our query optimization techniques address a number of impor-
tant factors: non-uniform distribution of values, leading to differ-
ent selectivities over different sets of sources; overlapping compu-
tation due to tuples that join with multiple other tuples; and dy-
namic changes, e.g., as devices fail or environmental conditions
change. We assume that sensors are embedded within the environ-
ment (hence stationary) and that queries are long-lived and focused
on event detection (where events are relatively rare). Our goals are
to minimize message transmissions both in the long run and dur-
ing an event (which translates into reduced congestion and battery
usage) and reduce path lengths (which results in less latency).

Section 2 describes our problem setting. We then consider how
to optimize joins when selectivities are known in advance (Sec-
tion 3, evaluated in Section 4). Section 5 considers more com-
plex joins, and Section 6 shows how to learn selectivities and re-
optimize for them. Section 7 studies failures. We review related
work in Section 8 and conclude in Section 9.

2. SETTING AND PROBLEM STATEMENT
We focus on executing a single windowed join computation (se-

lected by the federated optimizer) over data streaming from a plethora
of wireless sensor devices. We seek to be platform agnostic, devel-
oping a solution that can scale down to the popular Crossbow mote
architecture and up to powerful PC nodes on 802.11 networks. (We
assume a reader relatively familiar with ad hoc wireless sensor net-
works, although we review the basics in Appendix C.)

As in prior work on declarative sensor data management sys-
tems, we abstract groups of sensors into conceptual relations, based
on sensor types, administrative domains, or other similar criteria.
We adopt the windowed join [3] model of computation over stream-
ing data: we are given an operation S 1θ T , where S and T
represent two (possibly overlapping) collections of sensors and θ
represents a predicate over the (scalar) attributes of pairs of tu-
ples (s ∈ S, t ∈ T ). As sensors sample new readings, they send
these readings to participate in the join. In a “push”-based man-
ner, the join buffers new tuples arriving from S and joins them with
buffered tuples from T , and vice versa. The join query typically
specifies a time or size window over each source stream, which de-
fines a bound on the size of the buffer for each source: each newly
arriving tuple is to be joined against the contents of the opposite
buffer (each s tuple with the buffered T tuples, and vice versa). We
assume relations are partitioned into sets of independent windows
based on grouping attributes — the query maintains the last k sam-
ples, or k time units’ samples, for each partition key value — to
avoid the need for global window coordination across nodes.

If all attributes are dynamic in the system, then the only feasi-
ble strategy is to perform a join at the base station: no consistent
pruning mechanism exists. Fortunately, many attributes in a sensor
network are actually static: e.g. node IDs, coordinates, or other

types of identifiers (name, group ID, capabilities) After converting
the query into conjunctive normal form, we pre-evaluate clauses
that refer exclusively to static attributes. Pre-evaluating a selection
clause determines each node’s eligibility to participate in the query;
pre-evaluating a join clause establishes that a node might join with
others in any given cycle (depending on the dynamic attributes).

Query processing in a sensor network consists of four main tasks:
(1) find promising paths for computing the join; (2) retain the best
paths and place join nodes along them using a cost model; (3) en-
sure that all relevant source and join nodes are informed of the de-
cision; (4) begin execution, i.e., sampling data and computing join
results. We now describe how these steps are optimized.

2.1 Join Optimization Problem
Depending on the type of sensor network, different optimization

goals might be formulated: latency, network congestion, energy
consumption, or some combination thereof. While our optimiza-
tion methods are agnostic to the cost model, we implemented
a specific cost model instance, whose benefits we experimentally
demonstrate for both battery and AC-powered devices: we focus
on reducing overall traffic and congestion or hot spots. Optimizing
these provides secondary benefits in reducing energy consumption
and traffic at the most stressed nodes, and it reduces overall latency.

Distributed database systems use extensions of System-R’s dy-
namic programming algorithm to determine an efficient join strat-
egy. They assume each table or table fragment has (approximately)
uniform access cost, and only a few fragments exist for each ta-
ble. The optimizer chooses an order of evaluation (and shipment)
among a set of joins, while picking a specific algorithm to compute
each join expression. Being centralized, the optimizer has enough
memory to use dynamic programming (or memoization) to explore
alternative join strategies, and it has reliable access cost and data
distribution information.

In our context, those assumptions do not hold. Data (with charac-
teristics often not known in advance) is partitioned across a multi-
hop network, making the cost of join dependent on its distribution,
network topology, and number of alternate routes between nodes.
Depending on the substrate, even communication cost to different
nodes is non-uniform: in a tree-based sensor network routing sub-
strate, it is typically less expensive to route to the root node than to
another equally distant node. 1

Goals. We have several desiderata for our join optimization so-
lution: (1) locality awareness, exploiting variations in data distri-
butions, (2) decentralized query optimization, with self-optimizing
nodes not relying on the base station to perform the join compu-
tation, 2 (3) adaptivity, tracking changes in data distributions over
time, (4) scaling up to hundreds of nodes, matching the expecta-
tion that some sensor network deployments might be dense — yet
scaling down to nodes with 10s of KB of RAM (as in a mote de-
vice), and (5) balance between minimizing network transmissions
and path lengths on one hand, and avoiding significant congestion
in any single area of the network on the other.
Challenges. Join optimization in a sensor network is limited
by resource constraints, distributed knowledge, and dynamicity. In
general, it is extremely expensive to acquire full connectivity infor-
mation, even at the base. Instead each node has limited knowledge
about its surrounding network (nodes within one radio hop) and its
position in the primary routing tree (depth, parent and children). It
can route to its parent or children. Some sensor networks also sup-
1Every node knows its parent, so messages do not need to specify
a path to the root, as they would for any other destination.
2This results in less flooding of the root, less latency in making
decisions, and less overall state transmission in the system.
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Figure 1: Different classes of join algorithms.
port routing to a destination node at a position (e.g., GPSR [13]),
or to nodes holding a static value (BestRoute [11], which indices
values at the network nodes). Once destination nodes are located,
they may return a message back to the initiator containing a path
vector, which is used to directly route subsequent messages.

The optimization task consists of determining whether a given
node is eligible to participate in any joins with other nodes in the
system, and if so, determining a join strategy for that node.

2.2 Common Join Strategies
Executing a join requires (i) determining which pairs will send

data to be joined; (ii) deciding which paths data is to be sent along
in order to accomplish the join; (iii) deciding where to buffer the
data and perform the computation, at some join node. The join
node does the actual windowed join computation and sends results
to the base station if necessary.

The join node can be the root node (we term this join at the
base). Conversely, given a join with at least one static-valued key,
suppose join computations are performed asymmetrically: source
nodes s ∈ S “search” for target nodes t ∈ T that might (in any
given sampling cycle) join with them based on this key. Then, the
join node is placed along the path connecting the (s, t) pair. We
term this strategy as pairwise, since each (s, t) pair chooses its own
join node. In the case of GHT, which allows for geographic routing
to a destination based on its hash value, we can perform grouped
joins, where all nodes with the same join key use the same join
node. (Joining at the base is also a grouped join, with a single
group.) Finally, we might send all data from the S nodes “through”
the base, from where it is re-routed to the T nodes, which in turn
perform join computations and return answers back to the base.
We see these options visualized in Figure 1. To make the discus-
sion more concrete, we summarize the actual algorithms for each
class that we study in this paper. Appendix D presents detailed cost
formulas for each algorithm. In the appendix and the remainder
of this section, we refer to any pre-processing work as initiation
(and its cost in bytes transferred as initiation cost), per-cycle pro-
cessing of dynamic state as computation (with bytes transferred as
computation cost), and overall memory usage as storage cost.
Grouped Join: At the Base. This straightforward scheme pushes
down selection conditions, then sends all satisfying source tuples to
the base station, which performs the join computation. All join op-
erations are grouped and applied at the base. An advantage of this
Naive algorithm (as we refer to this basic strategy) is the lack of
per-query setup (excluding initial routing tree construction). Dis-
advantages are high memory consumption at the base (potentially
a buffer for every sensor node), congestion near the base, and high
computation cost. One refinement is adding a pre-computation step
for static join clauses, thus eliminating source nodes which cannot
participate in any joins. Base uses this strategy, trading costlier
initiation for cheaper computation.
Grouped Join: DHT/GHT. Instead of involving the base, we
might spread the grouped join computation across multiple nodes.
In a wireless IP-based network, this can be achieved with a dis-
tributed hash table (DHT); and in a mote-based network with a ge-
ographic hash table (GHT). 3 Both strategies route to a join node
3Unlike other substrates GHT requires geographical information.

based on the hash value of the join key. For DHT this node is the
one with hashed IP value closest to the hashed key; for GHT, it
is the node with location closest to the key. A GHT-based strat-
egy places all computation for a given key at the same node whose
placement (and therefore query execution cost) is unpredictable, as
it may be arbitrarily distant from the source nodes.
Through-the-Base Join. The algorithm of Yang+07 [16] reduces
storage cost at the base station by sending data from the source
nodes through the base, and back down to the destination nodes.
Those nodes perform the join and return data to the base. This
strategy often has higher computation cost than joining at the base.
Pairwise Join: Innet. In recent work [11] we proposed to place
join nodes anywhere on a path between the source nodes. The ideal
location of the join point depends on selectivities, as we show in
this paper. In [11] we provide details of how routing is achieved for
the Innet algorithm using a combination of multiple trees that share
the same source nodes. To summarize, we construct the initial net-
work using the standard routing tree construction algorithm of [10].
To create successive trees, we choose a new root node furthest from
any existing roots, then build the new tree using the same algo-
rithm. During tree construction, certain attribute information (par-
ticularly join keys) is indexed using summary structures like Bloom
filters or R-trees in the trees’ routing tables. Routing employs sev-
eral techniques to reduce message traffic and avoid cyclic paths: it
employs an extension of semantic routing trees (supporting Bloom
filters and multidimensional R-trees over data); it emphasizes ex-
ploring from a node down its subtrees, but for completeness also
searches up each subtree. A search ascending a subtree can then
search downwards from each node, but never go upwards again.
After finding paths between nodes satisfying all static predicates,
join nodes are placed and the computation begins.

3. BASIC OPTIMIZATION STRATEGIES
In this section we describe a scheme for performing join opti-

mization in a sensor network. For now, we develop a model under
the assumptions that (1) selectivities are uniform across the net-
work, (2) they are constant and known in advance to the optimizer,
and (3) each sensor node from relation S joins with at most one
node from T (for simplicity we will denote this a 1:1 join, even
though some sensors may not participate in the join). We relax all
of these assumptions later. Our optimization method works for a
single join between relations S and T . We refer to a node s ∈ S as
a producer, and likewise for t ∈ T .

When Aspen receives a query, it converts it to CNF and dis-
seminates it to all nodes. Then pre-computation and network ex-
ploration are performed in order to minimize the per-cycle cost of
query execution. Each node computes all selection predicates ex-
clusively referring to static attributes, and any that are unsatisfied
will not generate data for the query. Next, static join predicates
are computed: exploration discovers pairs of nodes with attributes
satisfying the predicates, and communication paths are established
between the nodes. Matching our discussion above, exploration
can follow several approaches:

1. Grouped: sensors from both S and T send to a common
node based on their join key, relying either on GHT, or on
routing to the base station.

2. Through-the-base: sensors from S route to the base station,
which then routes to T nodes based on the join key.

3. Pairwise: sensors from S route in a multicast style to find T
nodes with a matching join key.

Each of these strategies results in a series of unicast or multi-
cast message transmissions. When an exploration message is for-
warded, a path vector may be used to record visited nodes. When
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the target is reached, the path vector can be reversed and a response
to the source sent without further exploration. (We assume sym-
metric communication links.) While in tree-structured networks
the target is reachable along only one path, if using full connectiv-
ity graphs (as in GHT) or multiple trees (as in [11]) the target may
receive multiple messages from the same source, along different
paths. At this point (except for the through-the-base or join-at-base
strategies), our query optimizer:
• Determines which paths to use.
• Determines where to place join nodes along the paths, given

the restrictions of the routing substrate.
• Checks if joining at the base station is cheaper.

The first two steps are broadly analogous to the dynamic program-
ming algorithm used in a conventional optimizer, while the last cor-
responds to join algorithm selection. Next we describe the process
of cost-based selection of paths and placement of join nodes.

3.1 Join Cost Estimate for Window Size w
In the case of Innet, as the network is explored, not only are

paths between (s, t) pairs found, but additional information is recorded
for optimizing the join node placement. For each node j on the
prospective path P from s to t, an integer h denoting j’s number
of hops to the base station (the resulting array is delta encoded for
compression). Let Dn1n2 be the number of hops between nodes
n1 and n2. For Innet we can write a cost expression for a pair of s
and t nodes and any j on P as: σsDsj +σtDtj +(σs+σt)wσstDjr

This considers the likelihood that each producer sends data to
j (with rates σs and σt respectively), and the likelihood that this
data produces join results to be forwarded to the base station. Data
from either s or t, in expectation, produceswσst result tuples when
joining in the window maintained by j. In addition to considering
j’s on P , t also considers performing the pairwise join at the base
station. In this case the cost is computed as σsDsr + σtDtr .

For the through-the-base, the cost differs slightly because mes-
sages are forwarded from each s node through the root to a set of t
nodes, regardless of t’s selectivity: σsDsr+(σs+(σs+σt)wσst)Dtr .

3.2 Join Algorithm Selection
Based on a comparison of the cost estimates — both for different

join node placements and different available algorithms — node t
should choose the best scheme among the alternatives. In practice,
it is straightforward to take either GHT or Innet and compare ver-
sus joining at or through the base: every node knows its distance
from the base and can estimate the cost to forward there. However,
GHT and Innet are not comparable, as GHT is a grouped strategy.

Once the t node chooses a join node j, it sends a nomination
message to j, containing the triple (sourceID, targetID, sequence).
Node j in turn notifies s that it will be performing this pairwise (s,
t) join. 4 Due to the explicit minimization, our strategy is never
more expensive than joining at the base station, provided we
use the same initiation strategy to discover the joining pairs. This
claim is true because the pairs are independent. We do not claim
that this scheme can match full global coordination, which can con-
sider, e.g., how the results of several joins might be merged into the
same packets. (However, if the selectivities are real numbers, such
a global solution encodes NP-Hard Knapsack.) After finishing opti-
mization, query execution is quite straightforward. The designated
join node buffers source tuples from nodes it joins — maintaining a
join window of size w. 5 New tuples are enqueued into the window
(evicting expired ones) and joined the other relation’s windows.
4While better paths are discovered, t continues to nominate new
join nodes for the (s, t) pair, until the end of initiation.
5Here we assume tuple-based windows. For time-based windows,
we maintain space sufficient for the maximum expected data rate.

Table 1: Attributes used in queries
Static attributes

id: unique identifier. x: [7, 60] exponential spatial distrib.,
center has higher values. y: [0, 10) uniform random distrib.
cid and rid: column and row numbers in a 4 by 4 grid.
pos: real-life position (256m by 256m grid).

Dynamic attributes
u: [0, d1/σste) uniform random distrib. v: real-life humidity.

Table 2: Queries used in experiments
1:1, Join with random endpoints (Query 0)

(σid=random∧hS(u)S) 1S.u=T.u (σid=random∧hT (u)T )
where hP (u) is short for (hash(u)%d1/σpe = 0).
Non-1:1, uniform join endpoints (Query 1)

(σid<25∧hS(u)S) 1S.x=T.y+5∧S.u=T.u (σid>50∧hT (u)T )
Join at perimeter (Query 2, based on Query P)

(σrid=0∧hS(u)S) 1S.cid=T.cid∧S.id%4=T.id%4∧S.u=T.u

(σrid=3∧hT (u)T )
Region-based join (Query 3, based on Query R)

S 1Dst<5m∧s.id<t.id∧abs(s.v−t.v)>1000 T

4. EVALUATION OF JOIN OPTIMIZATION
The mote implementation amounted to 15,100 lines of nesC,

generating 101KB of IRIS code which uses 4.5KB of RAM. We
run TOSSIM [9], which models radio errors and retransmis-
sions, on a cluster of 20 2.4GHz Core 2 Quad workstations. We
support select-project-single join queries with predicates over 16-
bit integer attributes (common for most hardware). At a join node
j we maintain: (1) a list containing (s, t) pairs to join; (2) paths to
producer nodes; (3) window of values from each producer.

4.1 Experimental Workload
We study several network topologies generated with different de-

ployment densities (6, 7, 8 and 13 neighbors on average), and one
from the Intel Research-Berkeley dataset. 6 In the paper we focus
on the 7-neighbor and Intel dataset topologies; Appendix C shows
the properties of the Innet routing substrate for all topologies.

Our query workload considers both spatially correlated and un-
correlated data, with attributes listed in Table 1. Though pos is
not required by the Innet substrate, it can be used for region-based
queries. Specifically, pos allows us to compute the Euclidean dis-
tance Dst for a (s, t) pair. Regarding u, though our algorithms are
not distribution dependent, to simplify analysis we pick integer σst
s.t. for any u1 and u2 Prob[u1 = u2] = σst. Values for attribute
v were obtained from the Intel dataset. For x, y, cid, rid and id we
build Bloom filter summary structures; and for pos, an R-tree.

Table 2 shows a diverse query workload. For Query 0 no pro-
ducer joins with more than one other producer (termed a 1:1 join).
Query 1 allows producers to join with multiple other producers
(termed an m:n join), with producers well distributed throughout
the network. Query 2 is an m:n join at the perimeter. Queries 0–2
are run using synthetic data, with given σs, σt and σst varied across
experiments. Query 3 is region-based join, using real-life data. For
Queries 0–2, each producer generates as much as 800 u samples for
runs consisting of up to 800 sampling cycles. Each sampling cycle
itself consists of 100 transmission cycles. For Query 3 producers
generate 65535 v samples. Experiments are averaged across 9 runs
and 95% confidence intervals are provided. For more detail about
supported query types and implementation refer to Appendix B.

4.2 Join Algorithm Performance
To show potential for optimization, we experimentally compare

the performance of the basic join algorithms — expected to vary
considerably as the relative selectivities change. Figures 2 and 3 are

6db.csail.mit.edu/labdata/labdata.html
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Naive incurs high traffic and maximum load (being preferable
only for short queries, as it has no initiation cost). Base is signif-
icantly better — and the most efficient basic algorithm for Query

Q0 Innet-cmg JS5 WS3 1

0

50

100

150

200

250

1/
10

:1
1/

6:
1/

2
1/

2:
1/

2
1/

2:
1/

6
1:

1/
10

1/
10

:1
1/

6:
1/

2
1/

2:
1/

2
1/

2:
1/

6
1:

1/
10

1/
10

:1
1/

6:
1/

2
1/

2:
1/

2
1/

2:
1/

6
1:

1/
10

1/
10

:1
1/

6:
1/

2
1/

2:
1/

2
1/

2:
1/

6
1:

1/
10

1/
10

:1
1/

6:
1/

2
1/

2:
1/

2
1/

2:
1/

6
1:

1/
10

Tr
af

fic
 (K

B
)

Relative selectivity of 1/10:1
Relative selectivity of 1/6:1/2
Relative selectivity of 1/2:1/2
Relative selectivity of 1/2:1/6
Relative selectivity of 1:1/10
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1 when σs is high (S nodes send the majority of the data) and σst
is high (but worse than the improvements Innet-cmg and -cmpg).
GHT always does poorly due to its long routing paths. Finally, In-
net provides the best performance in all cases of Query 2, and in
Query 1 if σs is low. For higher σs Base becomes the better choice.
In Figure 5 all strategies exhibit similar load distribution profiles.

An in-depth examination of Innet on Query 1 reveals an impor-
tant drawback of the strategy: the pairwise cost model does not take
into account that a single s tuple might be joining with multiple t
tuples — and that this computation could be shared if the join node
was placed at the base station. This explains why Base, a grouped
strategy, sometimes works better. Motivated by need for further im-
provements, in Section 5 we describe Innet-cmg and Innet-cmpg.

We show experimental validation on mesh networks in Appendix F.

4.3 Centralized vs. Distributed Optimization
We next show the benefits of our distributed optimization scheme

as compared to a centralized one: namely, that centralized opti-
mization causes high congestion near the base when it collects the
information (connectivity, static attribute values) it requires. Fig-
ure 6(a) shows that our distributed initiation (optimization) scheme
is up to 3 times more efficient at the base than centralized optimiza-
tion, even when ignoring the extra traffic required to distribute the
query plan back to the network. Moreover, if we periodically re-
optimize to adapt to new conditions (Section 6), this overhead is
incurred each time. Importantly, Figure 6(b) shows that the cen-
tralized case incurs a latency up to 5 times greater than the decen-
tralized case. Furthermore, Figure 7 shows that the decentralized
computation yields traffic levels within 3% of the optimum cen-
tralized scheme, independent of network topology. These results
are for a query consisting of 1:1 joins between 10 random pairs of
nodes, with σs = 1 and σt = σst = 0.

4.4 Cost Model Performance
Finally, we seek to determine whether the cost model places the

join node appropriately, in the absence of shared computation. We
study Query 0 in which each S tuple joins with at most one T tuple.
In Figure 4, again we group the runs based on relative source se-
lectivity ratios: the true ratios of σs:σt, starting from the left, were
1
10

:1, 1
6

: 1
2

, 1
2

: 1
2

, 1
2

: 1
6

, and 1: 1
10

. We ran Innet with join nodes opti-
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Algorithm 1 GROUPOPT()

1: if a new pair is found by p then recompute cost difference ∆Cp
2: if ∆Cp has changed, or a new Gc is found as a result of the new pair

then send ∆Cp to Gc
3: if Gc has received ∆Cp for each p ∈ G then
4: set decision Gc.D to be innet join if

∑
p∈G ∆Cp < 0 and join at

base otherwise
5: Give it next sequence number Gc.D.seq and send to each p
6: end if
7: At some p ∈ G, let Gc′ be the coordinator that sent Gc′.D.
8: if Gc′.id < Gc.id or (Gc′.id = Gc.id and Gc′.D.seq >
Gc.D.seq) then accept Gc′.D and set Gc = Gc′

mized for each of the different selectivities. Our algorithm should
provide the best performance when it is given the true selectivi-
ties, i.e., the dark bar will be the lowest in each group, and this is
the case. Innet did not do as well for the other queries, because
of shared computation. We conclude that the pairwise algorithm,
Innet, with optimization techniques used to choose a join node,
performs well when multiple tuples do not mutually join. Grouped
techniques such as Base work better when there is more sharing.

5. MULTI-JOIN-PAIR OPTIMIZATION (MPO)
In this section we develop a set of techniques that choose be-

tween a pairwise algorithm and grouped algorithm, using a fully
distributed strategy that can make a different choice for each set of
join keys. We focus specifically on the Innet and Base algorithms,
respectively, as good-performing exemplars of the two classes.

5.1 Network-Level Resource Sharing
We implement several techniques in our query engine to make

multi-pair computation more efficient. These are described in de-
tail in Appendix E, but we briefly summarize two major features.
For each producer p we build a multicast tree T rooted, using paths
established between p and other producer nodes with which p joins.
The multicast tree maintains state at each internal node in the tree,
enabling packet transmissions’ path vectors to be compressed. Ad-
ditionally, we implement a path collapse feature as follows. Sup-
pose producer p sends data values to two join nodes, j1 and j2,
using two node-disjoint (except for p) paths, P1: [p . . . n1 . . . j1]
and P2: [p . . . n2 . . . j2]. If for some pair of nodes (n1, n2) there
exists a link between n1 and n2, the two paths can be collapsed
into a multicast tree that is rooted at p, passes through n1 and n2,
and has j1 and j2 as leaf nodes. We let nodes along P1 and P2 op-
portunistically snoop on messages traveling on neighboring paths,
and they notify p if an optimization opportunity is discovered.

5.2 Group-based Optimization
We focus on join queries where the predicates are commutative

and transitive: if we put all s ∈ S nodes on one side of a bipartite
graph and all t ∈ T nodes on the other, and add edges between
each (s, t) pair that joins, then each node will be part of a complete
bipartite subgraph (i.e., if s1 joins with t1 and t2, and t2 joins with

s2, then t1 also joins with s2). An example of this is an equijoin.
We term each complete bipartite subgraph a group, and separately
determine for each group whether it should compute a series of
pairwise joins, or a single grouped join (at the base station).

For each group of participating producer nodes G, let us desig-
nate a unique group coordinatorGc to be the node with the smallest
ID inG. We now rewrite the traffic cost expression in a relative way
for each producer p (from S or T ) that participates in the group, as
a difference between performing a fully in-network computation,
and computation at the base station (Npj represents the number of
pairs that join node j is handling between p and other producers):

∆Cp = σp
∑
j(Dpj + wσstNpjDjr)− σpDpr

Each producer p sends its own cost difference ∆Cp toGc. Based
on

∑
p∈G ∆Cp, Gc determines whether for G as a whole it is

cheaper to perform a fully in-network join, or a join at the base;
it notifies all nodes in G about its decision D. Thus, at the expense
of a slightly higher optimization cost, we can achieve a lower com-
putation cost than in the case of a straightforward application of
the pairwise cost model. We point out that in our algorithm each
group arrives at a join strategy independently of the others: there
is no flow of data values between groups. Also, the algorithm is
decentralized: each group elects its own Gc. Figure 1 shows pseu-
docode for the algorithm. Most of its complexity lies in managing
consistency with respect to Gc and decisions. With minor changes,
the algorithm can also be used to handle symmetric and transitive
predicates, with joining nodes forming a complete graph.

5.3 Performance of Multi-Pair Optimization
We revisit Figures 2 and 3 for Queries 1 and 2 results for Innet-

cmg (with added multicasting and group optimization) and Innet-
cmpg (which also adds path collapsing, as this technique was par-
ticularly useful in combination with group optimization). The MPO
techniques match or beat the standard Base and Innet (and best all
of the other algorithms). Innet-cmpg is never worse than Innet-
cmg and for Query 2 it gives slight improvement.
Cost Model Validation and Comparisons. Section 4.4 showed
the basic optimization strategy was appropriate for Query 0, but
not for the other queries. Figure 8, however, shows the MPO strat-
egy making good decisions. For each group of selectivities, we ran
Innet-cmpg for 5 sets of actual selectivities. MPO uses correct se-
lectivity estimates to generate better plans. Interestingly, even ball-
park estimates give reasonable performance, whereas very inac-
curate estimates can be expensive, making the strategy both useful
and robust.
Breakdown of MPO Contributions. Figure 9(a) compares al-
gorithm performance against running time, measured in sampling
cycles. Figure 9(b) varies join selectivity from 5% to 20%. For
queries running for 30 sampling cycles or more, Naive is not com-
petitive in traffic (and never in maximum load). Innet-cm is the
best choice for queries 30-240 cycles in duration, and for even
longer queries, Innet-cmpg achieves up to 25% additional gain.
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(c) 800 sampling intervals
Figure 11: Traffic generated for Query 0 σst = 20%, w = 3, shows effect of execution duration on learning

6. ADAPTIVE RE-OPTIMIZATION
So far we have assumed knowledge of the correct values of σs,

σt and σst (except when testing the performance of the cost model),
and their uniformity and stability across producer nodes. We now
relax those assumptions. Our cost-based optimization mechanism
assigns a join node during join initiation for every pair of producer
nodes (s, t). We extend this mechanism to trigger a new join node
assignment for a given pair when we detect that cost model pa-
rameters have changed significantly, in order to keep computation
running optimally. If a change of join node occurs, the tuples in
the old join window are transferred to the one in the new join node,
resuming query computation seamlessly without loss of results.
σs, σt and σst can be determined at a join node j, which tracks

the number of tuplesNs andNt received from every s and t node it
handles, along with the number of join resultsNst produced for the
(s, t) pair. According to a pre-specified time interval, j re-estimates
σst; for every tuple from either producer wσst results are gener-
ated: σst = Nst/(w(Ns + Nt)). Producer selectivities are deter-
mined using the number of values received: σp = Np/T , where T
is the number of sampling cycles since j became the join node for
the producer pair. We trigger a new join node placement when the
current parameter estimates diverge by more than 33% from their
previous values. (We experimentally found this ratio was a good
compromise between maintaining near-optimal execution and low
adaptivity overhead.) We also trigger MPO by recomputing the
traffic cost expression ∆Cp. Ns, Nt, Nst and T are periodically
reset to 0 to allow learning within a local time span.

6.1 Validation on Synthetic Data
Learning the Correct Selectivity. Here we start executing with
wrong estimates, which do not change for the entire execution run.
Figure 10 repeats the experiment of Figure 8 using Innet-cmpg for
Queries 0–2, but for 200 sampling cycles, with and without learn-
ing. The groups of bars, as before, represent actual selectivities; the
individual bars, provided estimates. The upper segment of each bar
indicates the difference between running Innet-cmpg with learning
turned off or on. For example, for Query 1 the fifth column of the
first group shows that when we initially optimize for σs:σt = 1: 1

10

and run with actual ratio of 1
10

:1, we can reduce the computation
traffic from 685KB to 235KB if we learn the selectivities (upper
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Figure 12: Spatial and tem-
poral learning evaluation
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Figure 13: Intel dataset with
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and per node. Note the log scale.

bar marked with ’+’/green). Occasionally, when the provided es-
timates are correct, we experience slightly higher traffic caused by
the learning overhead (’-’/red). Under incorrect initial selectivities,
however, we always observe large gains. Figure 11 shows that as
we increase the number of sampling cycles from 200 to 800, the
performance under incorrect initial estimates approaches the per-
formance under correct estimates, thus largely removing the need
to know the correct selectivities ahead of time for sufficiently long
queries. The 1

2
: 1
2

result is interesting because given two paths of
equal length, unless the distances to the base station vary, there
is no difference in the analytical cost model expression for their
traffic. The learning algorithm quickly settles to a local optimum:
some paths which were rejected during join initiation due to er-
roneous cost estimates may have provided better solutions. The
limited amount of state we maintain does not allow us to remember
all paths for a given pair of joining nodes.
Adjusting to Skewed Data and Correlated Predicates. We next
consider the case where every producer node can have a different
selectivity. Figure 12(a) shows an experiment where half of the
nodes generate values according to Sel1: σs = 10%, σt = 100%

and σst = 5% and the other half under Sel2: σs = 100%, σt = 10%

and σst = 20%. Computation proceeds for 800 sampling cycles.
Columns Sel1 and Sel2 show traffic when we initially optimize
for all nodes using either Sel1 or Sel2, respectively. Column Full
knowledge shows an oracle aware of the actual selectivities at each
node. Columns Sel1 learn and Sel2 learn show performing initi-
ation for all nodes with Sel1 and Sel2 respectively — but learning
each node’s correct selectivities during computation. The learning
schemes approach the oracle, reducing traffic by up to 70%.
Adapting to Changing Selectivities. Finally, we study behav-

1285



0

2

4

6

8

10

12

14

10% 20%
Join selectivity

De
lay

 (c
yc

les
)

No failures
With failures

(a) Result delay

0

5

10

15

20

10% 20%
Join selectivity

Tr
af

fic
 (K

B)

No failures
With failures

(b) Total traffic
Figure 14: Effects of join node failure

ior when we start executing with the right selectivities, but those
change in the middle of the run. Figure 12(b) shows an experi-
ment in which for the first 400 sampling cycles the query com-
putation proceeds according to Sel1 and for the second 400 —
under Sel2. For column Sel1 we perform query initiation using
estimates for Sel1, with no foreknowledge that those will change
halfway through the execution run. (Similarly for Sel2.) Column
Full knowledge shows the strategy of an oracle anticipating the
change. For Sel1 learn and Sel2 learn, we start identically to Sel1
and Sel2, respectively, but we learn and adjust to the correct se-
lectivities. As in the previous experiment, with learning we can
approach the oracle’s performance, gaining as much as 50%.

6.2 Learning and Real-Life Data
Figure 13 shows the performance of the learning model on real-

life data, running query Query 3 initially optimized for σs = σt =

100% and σst = 100%. During initiation, those parameters caused
all join nodes to be placed at the base station, executing identically
to Naive/Base. As join computation proceeded and selectivity esti-
mates became available, the join nodes were gradually transferred
from the base station to in-network nodes, and the computation pro-
ceeded in a fashion identical to Innet full knowledge (itself run-
ning with correct parameters σs = σt = 100% and σst = 20%). We
get within 10% of the total traffic of Innet full knowledge, retaining
similar base station and maximum node load, making Innet learn
the most attractive strategy due to its load profiles and its ability to
dynamically adapt.

7. NODE FAILURE
Trivial failures such as intermittently dropped packets are easily

handled by our communication layer. For permanent failures (e.g.,
signal obstruction, battery depletion, or node crash), we provide
best-effort recovery, avoiding data loss whenever possible, with
minimal loss of performance. Node failures are repaired transpar-
ently using a limited-exploration repair strategy described in [11].
If failure occurs when trying to reach a join node and the repair
fails, then the producer switches to joining at the base station (for-
warding its last w tuples, enabling the base to reconstruct the join
window). If the base station is unreachable, the node will wait for
the routing trees to be rebuilt. We experimentally study a simple
query consisting of only one join pair, with σst = 10% and 20%.
As a baseline, we let the computation proceed without failure, and
then we fail the join node at times varying from 45% to 55% into
the run, averaging the results. Figure 14 shows the delay increases
by only about 6 cycles, and the traffic behaves similarly to joining
at the base. We discuss mobility issues in Appendix G.

8. RELATED WORK
Our work is closely related to operator placement in distributed

databases [4, 12, 15], though there bandwidth and power constraints
with servers are less severe and relations are less fragmented. Our
sensor query system resembles that of TinyDB [10] and Cougar [7],
but we support join across heterogeneous sensors and interface to
a federated query processor. In addition to [16] (discussed previ-
ously), join in sensor networks has been considered in specialized
settings. Synopsis joins [17] propagate synopses to prune messages

that cannot contribute to the final join answers. The work of [1]
assumes one of the sources is a static table rather than a stream.
The work of [5] assumes disjoint regions for the source nodes to
be joined, then computes a region “on the way to the base station”
for nodes that join, then distributes a table snapshot among those
nodes; [6] similarly focuses on sources in disjoint regions, but pro-
vides cost models. These works do not easily generalize to the type
of setting we describe in our introduction. [18] returns “top-k”
answers in a ranked join model.

9. CONCLUSIONS AND FUTURE WORK
We have demonstrated a cost model based optimization scheme

for distributed join computation in multi-hop networks. We pre-
sented various fully distributed optimization techniques to further
extend the performance, scalability and flexibility of the model. We
have validated the performance for mesh network deployments. As
future work we plan to implement our model on Crossbow IRIS and
Imote2 hardware and implement building monitoring applications.
We will extend our framework to support multi-join queries, mobile
data producers and destinations for join results, frequent changes
in node membership, and node failure recovery, while maintaining
our current low memory requirements and low in-network traffic.
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APPENDIX
A. ASPEN SYSTEM OVERVIEW
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Figure 15: Aspen system architecture
The overall Aspen system consists of a single query and data

integration interface over a federated query processor, as shown
in Figure 15. Query processing subsystems run on wired Internet
hosts (based on a DHT for communication) or on wireless mesh
networks (based on our substrate from [11]); and on low-powered
wireless devices like Crossbow motes. This paper has focused on
the sensor components, and in the appendices of this paper we show
that our techniques also scale to wireless mesh networks.

Using a single language and programming model, developers
can define mediated schemas that can be queried, and schema map-
pings describing how to translate data from sources (sensors, “soft
sensors,” and databases) to the mediated schema. A query reformu-
lation component (based on algorithms from [8]) is used to com-
pose the query and the mappings, and the result is fed into the fed-
erated query optimizer. Based on a combination of heuristics and
cost modeling, the optimizer divides the query plan into compo-
nents that can be separately executed in the stream or sensor query
engines. In turn, each of these engines separately optimizes and
executes its portion of the query. Data may be fed from the sensor
subsystem to the stream query engine.

B. SUPPORTED QUERY TYPES
Our sensor subsystem supports StreamSQL-style queries con-

sisting of selection and join predicates over two sensor relations.
Query 1, for example, is expressed with the following query:

SELECT S.id, T.id, S.time
FROM S, T [windowsize=3 sampleinterval=100]
WHERE S.id < 25 AND hash(S.u) % 2 = 0

AND T.id > 50 AND hash(T.u) % 2 = 0
AND S.x = T.y + 5 AND S.u = T.u

Sensor relations S and T are pre-defined and include a schema
with 28 attributes. 18 of the attributes are populated with actual
physical sensor measurements (e.g., temperature, light, humidity,
battery level, RFID being detected, ADC values) or soft readings
(e.g., memory available at the mote, local time, etc.). The remain-
ing attributes can be updated by user request from the base station
using directed multi-hop flooding (e.g., each mote can be assigned
a role, room number, or 3D location). The update rate for physi-
cal sensors is specified as part of the query, as are an assortment of
other parameters (query start and end times, join window size, etc.)

Selection and join predicates can include not only standard com-
parisons and Boolean operations, but also the standard arithmetic
operators and a handful of utility functions (e.g., hash functions
and random value generators). When a query is posed at the base
station node, the query preprocessor first separates the predicates
in the query into selections and joins. Then, predicates from each

group are separated into static and dynamic subgroups, depend-
ing of their attributes being exclusively static or not. Each static
join predicate is further fed into a pattern matcher, which, given a
collection of summaries built on various static attributes, decides
whether the predicate is suitable for content routing using our sub-
strate. In essence, the pattern matcher separates the primary join
predicates usable for routing from the remaining secondary join
predicates, evaluated after the routing stage has completed. Fol-
lowing this, the parsed query is disseminated in the sensor network.

C. WIRELESS NETWORK SUBSTRATE
We assume a sensor network in which communication is over

multiple ad hoc wireless “hops,” which covers a wide range of tech-
nologies including citywide mesh networks, many building net-
works, and most types of ad hoc sensor networks. Query results
should be routed to a base station, which is powerful enough to
process the data. (Typically the base station will be a PC being
used either to collect the data or to relay it across the Internet.) We
assume that every node knows how far away it is from the base
station, and how to route to a neighbor that is one hop closer to the
base station. We also assume that there exists a content-addressable
routing substrate over which messages can be sent based on a key
attribute. This substrate might be geographic hashing (GHT [13])
over a mote network, a distributed hash table (DHT [14]) over an
802.11 network, or better yet the multi-tree routing substrate we
proposed in [11]. GHT and DHTs randomly assign a single node
to be the destination of a given key, and ignore locality. The multi-
tree substrate of [11] is based on a generalization of semantic rout-
ing trees [10] and the Generalized Search Tree (GiST) [2]: here
we pre-index static attributes at each node, and route to the node(s)
holding a particular index value.

Not technically a part of query optimization, the initial construc-
tion of sensor routing trees nonetheless plays an important role.
Specifically, as described in [11] we assume the ability to do point-
to-point (or point-to-multipoint) routing within the network, based
on particular attribute values. This is achieved by having routing ta-
bles at each node, and assigning each node to multiple overlapping
trees. For each indexed attribute (which must be static or slowly
changing), there is a routing table at every node for each tree: this
table describes the values of the indexed attribute that exist in the
subtree rooted at the current node. Our specific implementation
uses a generalization of the semantic routing trees of [10], which
can encode 1-dimensional intervals (as in TinyDB) as well as rect-
angles, Bloom filters, or histograms — each of these structures may
be useful for particular datatypes and value ranges.

We also allow for nodes to be extended with static attributes dur-
ing tree construction, e.g., we could add a floor attribute to building
sensors, and flood the network with a series of messages mapping
each sensor node ID to a particular value. These extended attributes
become part of the sensor’s schema.

We briefly illustrate the performance characteristics of our sub-
strate in finding paths between nodes that may join: this governs
the performance of the join algorithms in the paper. We study
several different topologies: random with 6, 7, 8, and 13 average
neighbors per node (“sparse random”,“moderate,” “medium,” and
“dense random”); and grid with an average of 7 neighbors (“grid”).
Experiments were conducted on 3 different sensor layouts for each
random topology. See [11] for more details. Figure 16 reproduces
the key result from that work: in terms of the path and load per-
formance in a mote network, we perform significantly better than a
single-tree routing scheme, or a scheme using hash-based routing
to geographical coordinates (GHT/GPSR).

As mentioned previously, we want our algorithm to scale beyond
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Figure 18: Mesh net scaleup

motes, e.g., to powerful devices over a multi-hop mesh network
(e.g., a citywide network). To show that our routing/path-finding
algorithm indeed scales appropriately, we developed a Java-based
implementation of the same algorithms over a simulated 802.11
mesh network. The overall trends, shown in Figures 17 and 18,
look very similar to the mote results, except that the hash-based
scheme (based on a distributed hash table [14]) produces slightly
better path lengths than GPSR/GHT. This is because the DHT al-
gorithms do not require traversing the boundary of a connectivity
gap (see [13]); but as a consequence the maximum load increases.
Finally, our results scale nicely, as shown by Figure 18, which
examines performance in 50- through 200-node networks. (This
second experiment produces similar results when conducted over
motes [11].) This establishes the versatility of our communication
substrate, and that it produces high-quality paths. In the rest of the
paper we consider how to make use of these paths in join optimiza-
tion and execution.

D. DETAILED COST MODEL
In Table 3 we describe the cost model we use for each join

method. Assume a join key k, and that there exist cs nodes from
relation S with k, and ct nodes from relation T .

Let us assume that costs are defined in terms of the number of
tuples sent. 7 As is standard in cost based query-optimization, our
initial cost-based model for joins requires estimates for the rates
at which producers send data. Let s ∈ S and t ∈ T be a pair of
sensor nodes that might join. Let σs and σt be the probability that s
and t will send data for a given sampling interval, thereby defining
their production rates (σp being the rate of an arbitrary producer
p). Define σst as the probability that two values sent by a pair of
producer nodes will join and form a resulting tuple. Intuitively, σp
is the probability that some (possibly internal) selection predicate
over the producer is true, and σst — that the join predicate is true.
Finally, let w be a query-specific window size.

E. NETWORK RESOURCE SHARING
This section describes several network-level techniques we use

to improve communication and join computation efficiency.
Multicast Trees: We build a multicast tree T rooted at some
producer p using paths established between p and in-network join
nodes, where data from p joins with other producer nodes. T is
used to efficiently deliver data values to the join nodes. For best
performance, we maintain state at each internal node i of T having
more than one child. The state encodes T ’s subtree rooted at i.
In this way the transmission overhead is reduced, as p needs to
address only a few i nodes, rather than send encoded representation
of T along with every data value. In case T changes, p pushes an
updated copy and all i nodes update their state. This technique was
especially helpful when σs 6= σt.
7The cost metric can be easily modified to instead consider bytes
or packets sent, or to scale by nodes’ remaining battery life.

Notation: r = root node (base station); σs = probability of s ∈ S nodes
satisfying selection predicates (resp. for σt, t ∈ T ); φs→t = selectivity
of s ∈ S that satisfy static selection and pre-filter conditions (similarly
φt→s); cs = number of s ∈ S nodes with the same join key (resp. for
ct); set of all j = join nodes selected by algorithm;Dsj (andDtj ) = hops
between nodes s (t, resp.) and associated join node; Dar (Dst) = hops
between node a and root (s and t, resp.). Cost is in the form contribution
of sources + contribution of targets + contribution of join.

Naive (grouped at base)
Initiation: 0 (done by initial routing tree construction)

Computation: σsΣsDsr + σtΣtDtr + 0
Storage: w(σs|S|+ σt|T |) values at base

Base (grouped at base)
Initiation: 2(σsΣsDsr + σtΣtDtr)

Computation: σsΣs(φs→tDsr) + σtΣt(φt→sDtr) + 0
Storage: w(σsφs→t|S|+σtφt→s|T |) values at base

Yang+07 (through-the-root)
Initiation: 0 (done by initial routing tree construction)

Computation: σsΣsDsr+0+(σs|S|/|T |+(σs+σt)wσst)ΣtDtr
Storage: |S| values at base

GHT (grouped by key at join node j = hash(key))
Initiation: ≥ σsΣsDsj + σtΣtDtj

Computation: σsΣsDsj+σtΣtDtj+(σs+σt)csctwσstΣjDjr
Storage: csctw per join node

In-Net (pairwise along s→ t path; j chosen using a cost model)

Initiation: ≥ ΣsDst for each pair of nodes satisfying
static selection and pre-filtering conditions

Computation: σsΣsDsj+σtΣtDtj+(σs+σt)csctwσstΣjDjr
Storage: csctw per join node

Table 3: Join algorithm costs, assuming uniform value distri-
bution and spatial distribution, and independent predicates

It is notable that creating an optimal multicast tree by itself is a
challenging problem.

THEOREM 1. If each node has an arbitrary list of neighbors,
then choosing the number of broadcasts to multicast a tuple from
one source to a subset of nodes is as hard as the set cover problem.

The intuition of the proof is as follows. In a distributed setting, a
node cannot assume specific information other than what it discov-
ers from its neighbors. This forces us to not assume any property
of the graph, making the problem NP-hard. We omit the detailed
proof of the reduction; but given a set-cover instance we represent
it as a bipartite graph where each vertex L on the left corresponds
to a given set and each element corresponds to a vertex on the right.
A set A is a neighbor of an element a iff a ∈ A. There are no other
edges. We add a source s which has all the set-vertices as a neigh-
bor. Note that the multicast from s to all the elements would require
a subset of L to relay the tuples and this subset must define a set
cover. To see the context in case of joins, suppose that s ∈ S and
all the elements define R. If the rate at which s produces a tuple is
less than 1/2 the rate at which any of the elements produce a tuple;
and the join selectivity is ≈ 0 (for example if the query is an intru-
sion detection query which is usually false) it is straightforward to
see that the number of tuples sent/relayed is exactly the size of a set
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Algorithm 2 PATHCOLLAPSEDETECT(This,Nbr,Next, Src,
Dest, PathV )
Input
This: current node, where the algorithm is executed.
Nbr: neighboring node whose data message is being snooped.
Next: the node to which Nbr is sending.
Src: source node where the data message originated.
Dest: destination node, where the message is ultimately headed.
PathV : path vector used to forward the message. (might only
contain portion of path from Nbr to Dest)
Output
T : tuple describing optimization opportunity.
1: if This 6= Next and This 6= Dest and Dest 6= Base station

and FlowExists(Src,Dest,Nbr) = FALSE then
2: for all entries F in FlowBuffer do
3: if F.Dest 6= Base station and F.Prev 6= This and

F.Prev 6= Nbr and F.Next 6= Nbr then
4: if F.Src = Src and IsNeighbor(Next) = FALSE and

F.Dest < Dest then
5: Set tuple T = (This, Nbr, F.Dest, Dest, {})
6: if T does not occur in PathCollapseBuffer then
7: Add T to PathCollapseBuffer
8: Send T to producer F.Src
9: end if

10: else if F.Dest = Dest and |PathV | > 1 and F.hops >
|PathV | and F.Next 6= This and F.Src > Src then

11: Set tuple T = (This, Nbr, Dest, Dest, PathV )
12: if T does not occur in PathCollapseBuffer then
13: Add T to PathCollapseBuffer
14: Send T to producer F.Src
15: end if
16: end if
17: end if
18: end for
19: end if

cover. Thus minimizing the number of tuples sent corresponds to
minimizing the set-cover which is NP-hard and has no constant fac-
tor approximation. This serves to justify our decision to implement
a lightweight heuristic based construction for multicast trees.
Path collapsing: Suppose producer p sends data values to two
join nodes, j1 and j2, using two node-disjoint (except for p) paths,
P1: [p . . . n1 . . . j1] and P2: [p . . . n2 . . . j2]. If for some pair of
nodes (n1, n2) there exists a link between n1 and n2, the two paths
can be collapsed into a multicast tree that is rooted at p, passes
through n1 and n2 in some order, and has j1 and j2 as leaf nodes.
The relative ordering of n1 versus n2 depends on their distances to
p, as well as the other path lengths. To achieve this optimization,
nodes along P1 and P2 opportunistically snoop on data value mes-
sages on neighboring paths, and if they discover an optimization
opportunity, they notify p. This can also be achieved by periodic
gossip messages broadcast by the nodes on the path. p considers
all possible optimizations received and computes the best multicast
tree. We also perform a similar optimization for paths which share
the same destination join node, instead of the same producer node.
In this case, we aim to improve the probability of two data values
traversing the same intermediate nodes and be combined into one
physical packet using the opportunistic merging described below.

Algorithms 2 and 3 show implementation details related to the
path collapsing scheme. PathCollapseDetect is being executed by
every node in the network upon the interception of any data mes-
sage. If a tuple T (encoding an optimization) is generated, it is sent
to the respective producer node, which in turn executes PathCol-
lapseApply to make necessary modifications to paths to join nodes
and potentially to the multicast tree used to send data values to

Algorithm 3 PATHCOLLAPSEAPPLY(This,N1, N2, Dest1,
Dest2, PathV )
Input
This: producer receiving optimization opportunity.
N1, N2: nodes between which a link exists.
Dest1: destination of path on which N1 is located.
Dest2: destination of path on which N2 is located.
PathV : path segment from to N2 to Dest2. (might be empty)
1: Set Swapped to FALSE
2: repeat
3: repeat
4: Set Changed to FALSE
5: Save current paths to all join nodes
6: if exists a join node J1 s.t. Dest1 appears after N1 on the path

P1 to J1 and N2 is not on P1 then
7: if |PathV | = 0 then
8: if exists a join node J2 s.t. Dest2 appears after N2 on the

path P2 to J2 and N1 is not on P2 then
9: Update path to J1 by concatenating segment from This

to N2 and segment from N1 to J1

10: Set Changed to TRUE
11: end if
12: else
13: Update path to J1 by concatenating segment from This

to N1 and PathV
14: Set Changed to TRUE
15: end if
16: end if
17: if Changed then
18: Build updated multicast tree Tnew
19: Compute cost Cnew of the updated multicast Tnew
20: if Cnew < Cbest then
21: Set Tbest = Tnew
22: if 1.1 ∗ Cnew < Csend then
23: Set Tsend = Tnew
24: end if
25: else
26: Restore changes made to join nodes
27: end if
28: end if
29: until Changed = FALSE
30: if |PathV | = 0 and Swapped = FALSE then
31: Set Swapped to TRUE
32: Swap N1 and N2

33: Swap Dest1 and Dest2
34: continue
35: end if
36: until |PathV | > 0 or Swapped

those join nodes.
Since we assume symmetric communication links, any pair of

nodes can mutually snoop on their messages and thus PathCol-
lapseDetect is written in a way to allow only one of the neighboring
nodes to issue an optimization decision. This is achieved with the
help of comparison of the unique identifiers of the nodes, such as
those in lines 4 and 10. Such tiebreakers allows the algorithms to
converge and be communication efficient.

Several data structures are used in the algorithms, some of which
are a core part of the implementation of our system. IsNeigh-
bor(Node) is a boolean function which returns TRUE if the cur-
rent node can directly communicate withNode, and FALSE oth-
erwise. FlowExists(Src, Dest, Next) is a boolean function which
checks the existence of a given data flow through the current node
(as specified by a source node, destination node and next node on
the path). FlowExists uses a data flow buffer data structure, which
is essentially soft state also used for a variety of other purposes,
such as opportunistically traversing the network without a path vec-
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Figure 19: Query 1, w = 3 on 100 node mesh networks, 100 sampling cycles, averaged across 9 runs
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Figure 20: Query 2, w = 1 on 100 node mesh networks, 100 sampling cycles, averaged across 9 runs

tor, path repair and load balancing.
If a tuple T is generated, it is sent to the source node without a

path vector, using only the data flow buffer. Being part of an op-
portunistic optimization, T is not always guaranteed to reach the
source node. For example, if a given intermediate node handles too
many data flows, it might evict some of the older entries from its
data flow buffer. In practice however, our routing substrate achieves
good load balancing and thus we need no more than five entries in
the data flow buffer to achieve significant optimizations. PathCol-
lapseBuffer is also a soft state data structure, one exclusively used
by PathCollapseDetect. Its sole purpose is to avoid sending identi-
cal optimizations multiple times to the same producer node when-
ever possible, thus helping reduce network traffic. If, however, a
duplicate optimization is being received, it will have no effect as it
will not lead to an improvement of the cost of the multicast tree.

With regard to PathCollapseApply it is worth noting that while
we do accept optimizations as long as they improve on the cost of
the best tree Tbest found so far (Cnew < Cbest), we would not nec-
essarily use the new multicast tree Tnew to send messages until it
becomes significantly better (at least 10% lower cost) than the cur-
rent multicast tree Tsend we use. In other words, the following must
hold: Cnew ≤ Cbest∧1.1∗Cnew ≤ Csend. This 10% threshold is
desirable because we use multicast caching, and thus any update to
Tsend necessitates pushing the updated multicast tree into the net-
work, at an added communication cost. As seen in lines 30 to 33, in
the case of common source, the algorithm also tries swapping the
two neighboring nodes and re-applying the optimization, doubling
the number of explored multicast trees per optimization tuple.
Other opportunistic techniques: We “merge” data values orig-
inating from different nodes, but traveling to the same destination
node via some common intermediate node n. Node n periodically
checks if its buffer of outgoing messages contains data values shar-
ing the same destination, and if so merges them into one physical
packet to reduce transmission overhead. This technique is used for
data values sent by multiple producers to the same join node or for
results sent by join nodes and producers to the base station. We

explicitly do not wait for merges, and no additional propagation
delays are introduced. In fact, in some circumstances we may actu-
ally reduce the delay due to decreased traffic and congestion around
n. This is a generalization of a technique used in TinyDB.

F. MORE POWERFUL NETWORKS
In the main paper, we focused on validating performance on

mote networks. However, the goal of Aspen is to “scale up” to more
complex devices as well. For multi-hop wireless networks such as
mesh networks, short paths and low bandwidth are important just
as they are in a mote network — primarily to minimize latency and
dropped packets. Figures 19 and 20 show total traffic on a mesh
network with exactly the same topologies, source data traces and
duration as Figures 2 and 3, respectively. However, we count mes-
sages rather than bytes transferred, since 802.11 link layer and TCP
header overhead dominates packet data size. We also do not modify
the 802.11 link layer and hence do not perform path collapsing. As
in the mote case, the MPO-optimized Innet-cmg outperforms all
of the other schemes, with Base being the next best scheme (versus
DHT and Naive). Relative performance matches closely with the
mote results, i.e., our techniques and conclusions generalize.

G. MOBILE NODES
While our target domain is sensor and stream nodes embedded

within an environment, we studied whether our approach can ac-
commodate a limited number of mobile nodes (e.g., PDAs) mov-
ing at a moderate rate. We constrain such nodes to be leaf nodes in
the network topology, to avoid significant updates whenever they
move. In an experiment we forced a node to move within the
medium random topology by picking a new set of parent nodes,
and measured the propagation delay in updating all routing trees.
On average, 19.4 cycles (seconds in real-time) are needed for the
system to completely propagate updates of the summary structures
of all the affected nodes. The total amount of network traffic gen-
erated was 1195 bytes. If an average node had 10m of radio range,
this would support continuous connectivity with a movement rate
of approximately 10m per 20 seconds, or 0.5m per second. For
faster rates the network will catch up to the object as it slows.
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