
TRAMP: Understanding the Behavior of Schema Mappings
through Provenance

Boris Glavic Gustavo Alonso Renée J. Miller Laura M. Haas
University of Zurich ETH Zurich University of Toronto IBM Almaden Research Center
glavic@ifi.uzh.ch alonso@inf.ethz.ch miller@cs.toronto.edu laura@almaden.ibm.com

ABSTRACT
Though partially automated, developing schema mappings remains
a complex and potentially error-prone task. In this paper, we present
TRAMP (TRAnsformation Mapping Provenance), an extensive suite
of tools supporting the debugging and tracing of schema mappings
and transformation queries. TRAMP combines and extends data
provenance with two novel notions, transformation provenance and
mapping provenance, to explain the relationship between trans-
formed data and those transformations and mappings that produced
that data. In addition we provide query support for transformations,
data, and all forms of provenance. We formally define transfor-
mation and mapping provenance, present an efficient implementa-
tion of both forms of provenance, and evaluate the resulting system
through extensive experiments.

1. INTRODUCTION
Schema mappings, declarative constraints that model relation-

ships between schemas, are the main enabler of data integration
and data exchange. They are used to translate queries over a target
schema into queries over a source schema (data integration) or to
generate executable transformations that produce a target instance
from a source instance (data exchange). These transformations are
generated from the logical specification of the mappings.

Schema mappings are often generated semi-automatically us-
ing tools like Clio [20, 10], BEA AquaLogic [5], and others [4].
The generation of executable transformations from mappings is
also largely automated. The complexity of large schemas, lack of
schema documentation, and the iterative, semi-automatic process
of mapping and transformation generation are common sources of
errors. These issues are compounded by limitations and idiosyn-
crasies of mapping tools (which can produce wildly different trans-
formations for the same input schemas [4]). Understanding and
debugging an integration, its mappings, and transformations is far
from trivial and is often a time consuming, expensive procedure.
In addition, schema mapping is often done over data sources that
are themselves dirty or inconsistent. Errors caused by faulty data
cannot be neatly and cleanly separated from errors caused by an
incorrect mapping or transformation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

As a result, a number of research efforts have emerged to support
users in debugging and understanding schema mappings and map-
ping alternatives (these include SPIDER[8] and MXL[25], along
with mapping understanding-by-example systems such as the Clio
data-viewer [26] and MUSE [3]). Such systems focus on fixing or
refining the mapping specification. In contrast, TRAMP (TRans-
formation MApping Provenance), the system we present in this
paper, is a more holistic approach that aims at providing a ro-
bust data integration debugging tool for tracing errors, no matter
what their source (the data, inconsistencies between data sources,
the schemas, schema constraints, the mappings, or the transforma-
tions). We argue that a robust tool for understanding the behaviour
of complex schema mappings has to make all elements of a map-
ping scenario (schemas, schema constraints, mappings, transforma-
tions, and data) and their inter-relationships query-able. Building
such a system involves non-trivial challenges from a conceptual and
a system design point of view: (1) integrate this functionality in a
single system that exploits a common approach to tracing errors -
rather than providing a loose collection of tools, and (2) provide a
uniform query interface for all elements of a mapping scenario and
their inter-relationships. The main contributions of the paper are:
•Two new types of provenance information, transformation-prov-

enance and mapping-provenance.
•A query facility for mapping scenario information and prove-

nance; with a focus on querying of mapping and transformation
provenance. This facility is fully integrated in SQL, thus, access to
all types of data, provenance, and the transformations themselves
can be combined in a single query.
•A full implementation and evaluation of TRAMP. TRAMP ef-

ficiently computes provenance for relational data, mappings spec-
ified as source-to-target tuple-generating-dependencies, and trans-
formations implemented in SQL.

The paper is organized as follows. In Section 2, we introduce
schema mappings and provenance background. Afterwards, we il-
lustrate common errors and the provenance and query functionality
needed to understand these errors (Section 3). In Section 4, we
formally introduce several notions of provenance. Building upon
this theoretical treatment, we discuss the implementation of these
ideas in the TRAMP system (Section 5). Section 6 presents perfor-
mance measurements. We discuss a debugging example in Section
7, review related work in Section 8, and conclude in Section 9.

2. BACKGROUND AND NOTATION
In this section, we introduce the background and notation for the

rest of the paper. Commonly, a schema mapping is modeled as a
tuple M = (S,T,Σst,Σs,Σt) where S is a source schema, T
is a target schema, and Σs (and Σt) are sets of constraints over
S (resp. T) [11, 17]. The constraints Σst are the mapping(s) rep-

1314

resenting the relationship between S and T. In our implementa-
tion, the source and target constraints (Σs and Σt) may be any
SQL constraint, including primary keys, unique constraints and
foreign keys. Our framework and definitions are general enough
to include any constraint, including the commonly studied tuple-
and equality-generating dependencies [1]. Our implementation as-
sumes the mapping, Σst, is a set of source-to-target tuple-genera-
ting dependencies (s-t tgds): ∀xφ(x) ⇒∃yψ(x,y) where φ(x) is
an SPJ query over S and ψ(x,y) is an SPJ query over T. Schema
mappings of this form are quite general and are the basis for most
work in data exchange and data integration.

For a given instance I of the source schema, an instance J of
the target schema is called a solution of a schema mapping M if
J satisfies all the constraints in Σt and I,J satisfy all the con-
straints in Σst. In general, there can be many such solutions for
a given schema mapping. One of these solutions will be produced
through transformations that implement the schema mapping. A
single transformation may implement several mappings, or a single
mapping may be implemented by several transformations. In addi-
tion to the many possible sources of errors, the tools used in data
exchange or data integration that are based on schema mappings
often generate transformations in a way that leads to unexpected
results, because ad hoc choices are made when several solutions
are possible (in data exchange systems) or different strategies for
query rewriting are used (in data integration systems).

To capture all the aspects that influence the result of a schema
mapping, we model a mapping scenario by explicitly including the
source and target instance, and the transformations T that imple-
ment the schema mappings Σst along with the relationship between
them. In this paper, we focus on transformations implemented in
SQL, but the ideas should be generalizable to other implementation
languages such as XSLT or Java.

Several notions of provenance have been introduced in the lit-
erature to describe the relationship between the input and output
data of a transformation. The most common semantics is to de-
fine the provenance of an output data item of a transformation to
contain all the input data items that contributed to its existence.
Therefore, we call such provenance data provenance. The differ-
ent types of data provenance differ in how provenance information
is represented and their definition of the term contribution (called
contribution semantics or CS) [14]. Examples are Why-provenance,
aka influence-CS (I-CS), and Where-provenance, aka copy-CS (C-
CS) [7]. Data provenance relates output and input data, but does
not provide any information about which parts of a transformation
were used to derive an output tuple. E.g., consider a transforma-
tion that uses the SQL union all operator. Each output tuple of the
union is produced by exactly one of the queries that are input to the
union. We refer to this type of provenance as transformation prove-
nance. Transformation provenance is similar in motivation to how-
provenance [15], but unlike how-provenance, it is operator-centric,
describing the contribution of each operator in a transformation.1

As mentioned above, in a mapping scenario each transformation
implements one or more mappings and vice versa. To be able to
understand such a mapping scenario it is crucial to know which
parts of a transformation correspond to which mapping(s) (as men-
tioned before we include this information in the mapping scenario)
and to be able to use this information in conjunction with trans-
formation provenance to determine which mappings were used to
derive some output data. We call this type of information mapping
provenance. We model transformation and mapping provenance as
annotated parts of the structure of a transformation. To be able to
1We discuss the relationship between how- and transformation-
provenance in more detail in Section 8.

benefit from such data it is necessary to be able to ask queries that
access the structure and/or runtime properties of queries. This type
of functionality is often referred to as Meta-querying [24].

3. ERROR TYPES
We now present common types of errors and discuss what in-

formation (especially provenance) can be used to trace them. We
distinguish between three error categories based on the origin of an
error: Mapping errors, Transformation errors, and Instance Errors.

3.1 Mapping Errors
Missing Mappings: A mapping missing from a mapping sce-

nario may lead to empty target relations or incomplete target re-
lations. Missing mappings may be caused by missing correspon-
dences (matches), missing schema constraints, and misinterpreting
the semantics of mappings and schemas. Correspondences can be
missed through errors by a matching tool [21]. Incomplete Map-
pings: Incomplete mappings (i.e., mappings that are missing rela-
tions or missing conditions) may also arise due to missing corre-
spondences or missing schema constraints. Oversized Mappings:
Oversized mappings (that is, mappings with too many relations)
may be caused by using an association in the source with different
semantics than the corresponding association in the target. Thus,
an oversized mapping associates relations that should not be as-
sociated according to the desired mapping semantics. Incorrect
Association Paths: Schema constraints, query logs, or even con-
nections in the data may be used by mapping systems to figure out
how to join source or target relations in a mapping. In a schema
there might be several ways to reach one relation from another via
connecting constraints, but not all of them represent a semantically
correct way of associating relations.

3.2 Transformation Errors
The most commonly used mapping languages today (including

the s-t tgds we consider) are constraints that specify properties that
must be true of the transformation. However, they do not determine
a unique target instance, and hence do not determine a unique trans-
formation. New types of errors arise due to the fact that a mapping
can be handled in different ways by the transformations that imple-
ment the mapping. Incorrect Handling of Atomic Values: This
type of error arises if either a non-atomic attribute is handled as an
atomic one or if incorrect functions are applied to split a non-atomic
attribute value. An example of this type of error is a transformation
that literally copies the values of a source attribute name that stores
the full names of persons to a firstname attribute in the target. Re-
dundant Data: A transformation that implements multiple, over-
lapping mappings may produce redundant data for a target relation.
This was one of the motivations to introduce nested mappings [12],
core mappings [18], and laconic mappings [23]. However, such
mappings are not considered by most mapping tools.

3.3 Instance Errors
Instance Data Errors: Incorrect source instance data can cause

errors in the target instance. Instance data errors may confuse a
user and lead her to conclude a correct mapping is incorrect.

3.4 How to Trace Errors
Data provenance helps in tracing erroneous target data back to

erroneous source data and in understanding mapping errors that are
caused by mapping data from the wrong sources. It can also be used
to trace Incorrect Handling of Atomic Values errors and Incomplete
Mappings by examining to which source relations the provenance

1315

of a result belongs. For Oversized Mappings and Incorrect Asso-
ciation Paths, data provenance can be used to understand where
the incorrect data is coming from. Transformation provenance is
extremely useful in understanding how data is integrated through a
mapping, because it allows us to understand which parts of a trans-
formation (that is, which operators in the transformation) produced
a data item. Naturally, transformation provenance is very useful
to debug transformation errors (Incorrect Handling of Atomic Val-
ues and Redundant Data). Also Oversized Mappings and Incor-
rect Association Paths errors can be seen in the transformation that
implements these mappings and can therefore be debugged using
transformation provenance. Mapping provenance can be used to
understand which of the mappings implemented by a transforma-
tion produced erroneous data, thus, limiting the scope of the error
tracing process and can be used to trace the same types of errors as
transformation provenance.

Meta-querying can be used to trace mapping errors if they are
understandable without data and run-time information. In contrast,
transformation errors are often dependent on run-time information
and are therefore normally not trace-able by using solely meta-
querying. Due to the fact that SQL is not well suited for access-
ing the hierarchical structure of transformations, meta-querying is
needed to drill down into transformation provenance information.
In principle we follow the approach for meta-querying presented
by Van den Bussche et al. [24]. In their work, queries are repre-
sented as XML data, because the hierarchical structure of a query
is reflected well in an XML representation. We provide a func-
tion fSQL→XML that transforms an SQL query text into its XML
representation (similar to the one presented by Van den Bussche
et al. [24]). Meta-querying functionality is realized by using the
built-in XPath and XSLT functionality of the underlying database
system. For convenience, we provide predefined XSLT-functions
that may be helpful in investigating transformation and mapping
provenance (see Appendix C and Glavic [13] for examples).

4. PROVENANCE FOR MAPPINGS
In this section, we formally define data provenance and the novel

concepts of transformation and mapping provenance for the rela-
tional data model.

4.1 Algebra
We briefly introduce the relational algebra that we use to express

queries. Relations are modeled as bags of tuples, thus, every tuple
t in a relation R has a multiplicity m (tm). We use t as a short-
hand for t1. The algebra is defined for bag-semantics, because SQL
uses bag-semantics and the transformations implementing a map-
ping are implemented in SQL. We use q with subscripts to denote
algebra expressions (queries) and Q to denote the relation that re-
sults from evaluating q. The schema of a relationR (or query result
Q) is denoted by R (respectively, Q). The operators of the algebra
are standard relational algebra operators: selection σC on a con-
dition C, projection ΠA on a list of expressions A over attributes,
functions, constants, and renaming (denoted as a → b), join op-
erators, and set operations. Join operations include inner join (><)
and outer joins (><, >< , ><). Aggregation αG,agg groups its
input on a list of group by attributes G and computes the aggregate
functions in the list agg for each group. We use ε to refer to a null-
value. The algebra includes the standard set operators union (∪),
intersection (∩), and set difference (−).

4.2 Data Provenance
Data provenance describes the relationship between a result of a

transformation and the inputs that contributed to it. In a relational

setting, this is usually interpreted as the input tuples of a query
q that contributed to an output tuple t of q. In TRAMP we use
PI-CS (Perm Influence Contribution Semantics), a modified ver-
sion of the contribution semantics [9] (which we will refer to as
Lineage-CS). In contrast to Lineage-CS, PI-CS produces more pre-
cise provenance for outer joins and union, and uses a different rep-
resentation of provenance information.

Lineage-CS models the provenance of a result tuple t of a query
q as a list W(q, t) =< Q∗

1, . . . , Q
∗
n > of subsets Q∗

i of the inputs
Qi of the query (where the inputs could be base relations or the re-
sult of other queries) that contribute to t. Modeling provenance as
independent sets of tuples has the disadvantage that the information
about which input tuples were combined to produce a result tuple is
not modeled. For instance, consider a query q = Πa(R><a=b S).
An output tuple t may be produced from several outputs of the join
that are all projected on t. Lineage-CS would represent the prove-
nance of t as two subsets of R and S containing the tuples from
R and S that were joined by the query and projected on t. Which
tuples contributed to t is apparent from this representation, but the
information about which tuple from R was joined with which tu-
ple from S is not modeled. To explicitly model which tuples were
used together in the creation of an output tuple, we changed the
provenance representation from a list of subsets of the input rela-
tions to a set of witness lists. A witness list w is an element from
(Qε

1×. . .×Qε
n) withQε

i = Qi∪ ⊥. Thus, a witness listw contains
a tuple from each input of an operator or the special value ⊥. The
value⊥ indicates that no tuple from an input relation belongs to the
witness list w (and, therefore, is useful in modeling outer joins and
unions which are both important in integration). Each witness list
represents one combination of input relation tuples that were used
together to derive a tuple. We now present a declarative definition
of PI-CS stating the conditions a set of witness lists has to fulfill to
be the provenance of a tuple t.

DEFINITION 1 (PI-CS PROVENANCE). For an algebra oper-
ator op with inputs Q1, . . . , Qn, and a tuple t ∈ op(Q1, . . . , Qn)
a set P(op, t) ⊆ W = (Qε

1 × . . . × Qε
n) where Qε

i = Qi∪ ⊥ is
the PI-CS provenance of t if it fulfills the following conditions:

op(P(op, t)) = {t} (1)
∀w ∈ P(op, t) : op(w) 6= ∅ (2)

¬∃P ′ ⊆ W : P ′ ⊃ P(op, t) ∧ P ′ |= (1), (2), (4) (3)

∀w,w′ ∈ P(op, t) : w ≺ w′ ⇒ w /∈ P(op, t) (4)
The first condition (1) in Definition 1 checks that the provenance

produces exactly t and nothing else by computing the result of the
operator op over the provenance. The second condition (2) guar-
antees that each witness list w (combination of tuples) in P con-
tributes something to t (removal of false positives). The third con-
dition (3) checks that P is the maximal set with these properties,
meaning that no witness lists that contribute to t are left out. The
provenance of a query is computed by recursively applying Def-
inition 1 to each operator of the query (for the exact transitivity
definition see Glavic [13]). An advantage of PI-CS is that the focus
on a single operator leads to a manageable evaluation strategy and
the provenance of each operator can be studied independent of the
provenance of other operators. Conditions 1 to 3 are the original
Lineage-CS conditions adapted to the witness list representation.
The fourth condition (4) is necessary to produce precise provenance
for outer joins and set union. This condition states that we will ex-
clude a witness list w from the provenance, if there is a ”smaller”
witness list w′ in the provenance that subsumes w. A witness list
w is subsumed by a witness list w′ (denoted by w ≺ w′) iff w′ can
be derived from w by replacing some input tuples from w with ⊥.

1316

P(σC(q1), t) = {< t >}
P(αG,agg(q1), t) = {< t′ >| t′ ∈ Q1 ∧ t.G = t′.G}
P(q1 ><C q2, t) = {< t.Q1, t.Q2 >}

1(a) PI-CS
R

a b
1 2
1 3
2 3
2 5

S
c
2
3

Qa

a
1
2

Qb

a b c
1 2 2
1 3 3
2 3 3
2 5 ε

Qc

a
1
2

qa = Πa(R><b=c S)

P(qa, (1)) = {< (1, 2), (2) >,< (1, 3), (3) >}
qb = R ><b=c S

P(qb, (2, 5, ε)) = {< (2, 5),⊥>}
qc = Πa(qb)

P(qc, (2)) = {< (2, 3), (3) >,< (2, 5),⊥>}
1(b) Data Provenance P

R S 1

1

1

1

T (qc, (2)) :θ<(2,3),(3)>(op) = 1

θ<(2,5),⊥>(op) =

(
0 if op = S

1 else

1(c) Transformation Provenance T

Figure 1: Provenance Examples

As an example of the problems of Lineage-CS with operators that
use some form of non-existence check, consider qb from Fig. 1(b).
According to Lineage-CS, the provenance of the result tuple t =
(2, 5, ε) would contain all tuples from relation S, but in fact none of
them contributed to t. We believe a better semantics for the prove-
nance of tuple t would be a witness list < (2, 5),⊥>. This indi-
cates that (2, 5) paired with no tuples from S influences t (rather
than saying every tuple of S is in the provenance of this tuple).
In addition to achieving this semantics, condition (4) changes the
semantics for the ∪ operator from that of Lineage-CS. Without con-
dition (4), there would be a single witness list < t1, t2 > if a result
t of a union is generated from two tuples t1 (left input) and t2 (right
input). We feel this is a bit misleading as it indicates that these two
tuples used together influence t, when in fact each, independently,
influences t. PI-CS provenance captures this intuition by defining
the provenance as {< t1,⊥>,<⊥, t2 >}.

Fig. 1(a) presents the PI-CS provenance of some operators ac-
cording to Definition 1. For example, the provenance of the output
t of a selection is the single witness list containing t, because se-
lection outputs unmodified input tuples. An output tuple t from an
aggregation is derived from a set of input tuples that belong to the
same group (have the same grouping attribute values as t). Fig. 1(b)
shows the provenance for three queries (qa, qb, and qc).

4.3 Transformation Provenance
For transformation provenance, we model which parts of a trans-

formation contribute to an output tuple. In contrast to data prove-
nance, transformation provenance is operator-centric rather than
data-centric. In motivation, it is similar to provenance approaches
for workflow-management systems, that traditionally have focused
more on transformations [22]. We model the transformation prove-
nance of a transformation q using an annotated algebra tree for q.

For an output tuple t and a witness list w in the data provenance of
t, the transformation provenance will include 1 and 0 annotations
on the operators of the transformation q. A 1 indicates this operator
on w influences t, a 0 indicates it does not.

DEFINITION 2 (ANNOTATED ALGEBRA TREE). An annota-
ted algebra tree for a transformation q is a pair (Treeq, θ) where
Treeq = (V,E) is a tree that contains a node for each algebra
operator used in q (including the base relations as leaves) and θ :
V ∈ Treeq → {0, 1} is a function that associates each operator
in the tree with an annotation from {0, 1}. We define a preorder on
the nodes to give each node an identifier (and to order the children
of binary operators). Let I(op) denote the identifier of the node
representing operator op.

We now have the necessary preliminaries to formally define trans-
formation provenance based on data provenance. Intuitively, each
witness list of the data provenance of a tuple t represents one eval-
uation of an algebra expression q. For each witness listw, each part
of the algebra expression has either contributed to the result of eval-
uating q on w or not. Therefore, we represent the transformation
provenance as a set of annotated algebra trees of q with one mem-
ber per witness list w. We use data provenance to decide whether
an operator op in q should get a 0 or a 1 annotation. Basically, if
evaluating the subtree subop under op on w results in the empty set
(subop(w) = ∅), then op has contributed nothing to the result tuple
t and should not be included in the transformation provenance.

DEFINITION 3 (TRANSFORMATION PROVENANCE). The
transformation provenance of an output tuple t of q is a set T (q, t)
of annotated-trees defined as follows:

T (q, t) = {(Treeq, θw) | w ∈ P(t)}

θw(op) =

(
0 if subop(w) = ∅
1 else

Fig. 1 shows the data (b) and transformation (c) provenance for
a result tuple (2) of query qc. The output tuple (2) has two witness
lists. The transformation provenance of (2) for the first witness list
is a tree with every node annotated by a 1 (shown on the left of Fig.
1(c)). For the second witness list the node for the base relation S
carries a 0 annotation, because it does not contribute to the result.

4.4 Mapping Provenance
In a mapping scenario, transformations may be derived from a

set of declarative schema mappings. For most non-trivial map-
pings several transformations exists that implement the mappings
correctly (they produce a target instance that satisfies Σst and Σt).
A single transformation may implement more than one mapping or
vice versa. For debugging we would like to know not only what
parts of a transformation produced a target tuple t, but also from
what mappings these transformations (or operators within a trans-
formation) were derived. Therefore, we define mapping prove-
nance based on transformation provenance and the relationship be-
tween transformations and mappings. The relationship between a
mapping and part of a transformation is modeled by adding addi-
tional annotations (specifically, mapping identifiers) to the algebra
tree for a transformation. For an algebra tree, Treeq = (V,E),
we introduce one new annotation function, µM , per mapping M ∈
Σst. The function µM is 1 for each operator that implements this
mapping and 0 otherwise. For example, consider the mappings
M1 : S(a) ⇒ ∃b : T (a, b) and M2 : S(a) ∧ R(a, b) ⇒ T (a, b)

1317

qd = Π1
c→d,b→e(S

3 ><2
c=aR

4)

Qd

d e
2 3
2 5
3 ε

M(qd, (2, 3)) = {{M2}}
M(qd, (2, 5)) = {{M2}}
M(qd, (3, ε)) = {{M1}}

µM1(op) =

(
1 I(op) ∈ {1, 2, 3}
0 I(op) ∈ {4}

µM2(op) = 1

Figure 2: Example Mapping Provenance

for target relation T with schema T = (d, e) and R and S as pre-
sented in Fig. 1. One possible transformation implementing these
mappings is presented in Fig. 2 (qd). We use superscripts (red) to
denote the identifier I(op) of an operator op. The access to base
relation S (operator 3) implements both mappings M1 and M2.
Tuples from S may flow through every operator above operator 3
in the tree so µM1 and µM2 annotate every operator on the path
from 3 (denoting access to S) to the root with annotation 1. Only
µM2 assigns a 1 to the node for R (operator 4), because it imple-
ments only M2.

Notice that the mapping annotation function will depend on the
language used for mappings. We have implemented mapping an-
notation functions for source-to-target tgds, but of course this could
be extended to other languages, including the visual mapping lan-
guages of some commercial tools. Below we formalize mapping
provenance using the annotation functions µM .

DEFINITION 4 (MAPPING PROVENANCE). The mapping pro-
venance M(q, t) for a tuple t from the result of query q is defined
using the mapping annotation functions µM over the transforma-
tion provenance T (q, t) as follows:

M(q, t) = {Mw | w ∈ P(q, t)}
Mw = {M | ∀op ∈ V : µM (op) = θw(op)}

As an example of mapping provenance consider Fig. 2, which
presents the result of applying qd to the source instance from Fig. 1
and the mapping provenance for each result tuple of qd.

5. IMPLEMENTATION
We have implemented TRAMP as an extension to the Perm rela-

tional provenance management system [13, 14]. We chose Perm,
because it supports PI-CS for data provenance. Furthermore, it uses
a native SQL implementation of provenance (using query rewrite)
which other available provenance systems such as Trio do not [2].
Implementing provenance computation as query rewrite has the ad-
vantage that it allows for seamless integration of on-demand prove-
nance computation in a DBMS and enables SQL query functional-
ity for provenance, while benefiting from the advanced optimiza-
tion techniques implemented by standard DBMS. We first present
a short overview of how PI-CS data provenance is implemented
in Perm. Afterwards we discuss how transformation and mapping
provenance support is added to the system.

5.1 Data Provenance
The data provenance in TRAMP is based on an extension of the

facilities available in Perm. Given a relational algebra expression
q for which the data provenance should be computed, an expres-
sion q+ is generated that computes the provenance of each result
tuple of q and returns the result tuples extended with provenance
information. Each tuple in Q+ contains an original result tuple t
and one of its witness lists w ((t, w)). A tuple t is duplicated if it

(R)T =ΠR,{I(R)}→T (R) (T1)

(σC)T (q) =ΠQ,(T ∪{I(σC)})→T (σC(qT)) (T2)

(ΠA)T (q) =ΠA,(T ∪{I(ΠA)})→T (qT) (T3)

(q1 ><C q2)
T =ΠQ1,Q2,(QT

1 .T ∪QT
2 .T ∪{I(q1><Cq2)})→T

(qT
1 ><C qT

2)
(T4)

(q1 ><C q2)
T =ΠQ1,Q2,(QT

1 .T ∪QT
2 .T ∪{I(q1><Cq2)})→T

(qT
1 ><C qT

2)
(T5)

(q1 ∪ q2)T =ΠQ1,(QT
1 .T ∪QT

2 .T ∪{I(q1∪q2)})→T

(qT
1 ∪ qT

2)
(T6)

Figure 3: Transformation Provenance Rewrite Rules

has more than one witness list. The provenance computation in q+

is realized by propagating witness lists from the input to the out-
put of the query. The query q+ is generated from q by applying
a set of algebraic rewrite rules. Each of these rewrite rules oper-
ates on a single operator of q. These rules were designed in such a
way that an arbitrary algebra statement can be rewritten by recur-
sively applying the rewrite rules for each operator of the statement.
The current version of Perm supports PI-CS and a form of C-CS
(Where-provenance).

Perm is realized as an extension of PostgreSQL. The query re-
writes are implemented in a module placed between the parser and
optimizer of PostgreSQL. Thus, Perm operates on the analyzed in-
ternal query tree representation of SQL statements used by Post-
greSQL. SQL is extended with several new keywords that trigger
and control provenance computation. For instance, the use of the
keyword PROVENANCE marks a query for data provenance com-
putation. A canonical translation between algebra expressions and
query trees is used to be able to implement the algebra rewrite rules
on the internal query tree representation of PostgreSQL [14].

5.2 Transformation Provenance
We implement transformation provenance in TRAMP as an ad-

ditional set of query rewrite rules. These rules transform a query
q into a query qT that will compute and output the transformation
provenance of q. As for data provenance the result of qT contains
the query result tuples enhanced with provenance information. To
be more specific, the schema Q of q is extended with an additional
attribute T that is used to store transformation provenance informa-
tion. In Section 4, we modeled the transformation provenance of a
result tuple t as a set of annotated algebra trees (one tree per wit-
ness list w). Note that each element of this set represents the same
algebra tree with different annotation functions θw. Therefore, we
factor out the static part (that is the tree) and use the provenance
attribute T to store only the annotation functions. Each value of T
stores the θw for one witness-list w of t (represented as the set of
operators that have a 1-annotation). As for data provenance, result
tuples are duplicated if necessary to represent their complete prove-
nance. We internally represent an annotation set as a bit-vector, be-
cause its space requirements are low, and the union operation used
frequently in the rewrite rules is efficient (bit-wise disjunction).

Each transformation provenance rewrite rule computes a new set
of annotations from the annotation sets of the rewritten inputs of an
operator. Fig. 3 presents the rewrite rules for the most common
algebra operators (see Glavic [13] for the other outer join types and
set operations). The rewrite rule T1 for a base relation access adds
the singleton annotation set for the operator {I(R)} as the value

1318

for attribute T to its result relation. A selection is rewritten by rule
T2 by applying the unmodified selection, but in qT the identifier
of the selection is added to the annotation set. T3, the rewrite rule
for projection, works analogously. The rewrite rule for inner and
outer join (T4 and T5) union the annotation sets of their rewritten
inputs and add the identifier for the join to the result. Note that this
is correct behavior for outer joins if we define the union of a set
with the null value as T1 ∪ ε = T1.

To provide a useful transformation provenance representation to
the user and enable meta-querying of this type of provenance the
bit-vector representation is transformed into either SQL text with
markup or XML in the result of a query. Which representation is
chosen is specified by the user by issuing the keyword TRANSSQL
or TRANSXML to trigger transformation provenance computation.
The translation from the bit-vector to the external representation is
implemented as UDFs fSQL and fXML that are applied in the out-
ermost projection of the rewritten query. The SQL representation is
the original query except for parts that do not belong to the transfor-
mation provenance, which are enclosed by <NOT> and </NOT>.
The XML representation is a hierarchical representation of an SQL
statement where each clause is modeled as an XML element.

5.2.1 Rewrite Algorithm
The query rewrite for transformation provenance computation

consists of the following steps:
(1) Statically analyze the query tree to enumerate the operators

in the query and attach a bit-vector that represents the singleton set
I(op) to each operator op.

(2) Apply the transformation provenance rewrite rules in a top-
down manner to instrument the query to propagate and combine the
per operator bit-vectors.

(3) Add an invocation of function fSQL or fXML to the top
query block that transforms the bit-vector of the top query block
into SQL or XML representations.

For certain operators the transformation provenance is indepen-
dent of the actual data processed by the query. If a subtree of
a query contains only operators with static transformation prove-
nance we avoid redundant run-time computations by pre-computing
the bit-vector for this subtree. See Glavic [13] for details.

5.3 Mapping Provenance
To implement mapping provenance, SQL is extended with the

ability to annotate parts of a query using the new keyword ANNOT.
These annotations are used to represent the correspondences be-
tween mappings and transformations as defined by the annotation
functions µM presented in Section 4. If the transformations are
generated from a set of s-t tgd mappings, we can automatically an-
notate the base relations of a transformation according to the map-
pings.2 For other mapping languages, a user can specify the ap-
propriate mapping annotations of a transformation or the mapping
system can be changed to create these annotations. These annota-
tions are only used for transformation provenance computation and
are ignored during normal query processing.

To support mapping provenance the transformation provenance
computation is modified to use these annotations in the final rep-
resentation construction. The mapping annotation function µM for
a mapping M is derived from the annotations and represented as a
bit-vector that contains a zero at a position i, if µM (op) = 0 for
the operator op with I(op) = i, and a one otherwise. Recall that a
mapping belongs to the transformation provenance iff µM (op) =
θw(op) holds for each op. Translated to the bit-vector representa-
2The annotations for the other operators in the query are derived by
propagating an annotation on a child to its parent.

tions of µM and θw this is an equality-check on these bit-vectors.
In the final result representation, mappings are represented as ad-
ditional annotations in the representation (e.g., SELECT... FROM
<M1>R</M1> ...). Examples for transformation and mapping prov-
enance computations are presented in Appendix B.

THEOREM 1. The algorithms for transformation and mapping
provenance based on the algebraic rewrite rules generate complete
and correct results, i.e., they correctly compute the transformation
provenance (Def. 3) and mapping provenance (Def. 4).

PROOF. To prove this claim for transformation provenance we
define a relational representation of this provenance type based on
Def. 3. The equivalence of the relational representation and the
result of rewritten queries is proven by induction over the struc-
ture of an algebra expression. Details can be found in Glavic [13].
The correctness and completeness for mapping provenance follows
from the correctness and completeness of transformation prove-
nance. If the transformation provenance rewrite generates correct
annotation sets then evaluating µM = θw over these sets generates
mapping provenance satisfying Def. 4.

6. PERFORMANCE EVALUATION

6.1 Experimental Setup
To evaluate the scalability of TRAMP, we conducted a series of

performance measurements. All experiments were performed on
an Intel 1.66 GHz dual core machine with 1GB of main memory
running Mac OS X 10.5.8. The goal of the experiments is to deter-
mine the overhead of the transformation provenance computation
with respect to running standard queries. For the experiments we
used the Amalgam benchmark [19]. We used one of the Amal-
gam schemas as the source schema, generated a new schema as
the target schema, and created mappings between these schemas.
The target schema was carefully defined for the mapping scenario
to include different kinds of mappings that lead to a broad vari-
ety of transformations (different relationships between mappings
and transformations, different kinds of SQL queries). Instances of
the source schema of sizes ranging from 1.000 to 1.000.000 pub-
lications were generated for the experiments. The original Amal-
gam data set contains about 10.000 publications. Larger instances
were filled with randomly generated entries. We generated two
sets of queries. The first set of queries (Q1) contains the trans-
formations for the Amalgam schema mappings scenario discussed
above. To evaluate the effect of different types of mappings, espe-
cially types not present in Q1, on the performance of provenance
computation we generated a second set of queries (Q2) each imple-
menting a mapping that represents one of the basic scenarios from
the STbenchmark [4]. The benchmark scenarios had to be adapted
to the relational model, because the original benchmark generates
XML data. These mappings are also defined over the Amalgam
source schema (see Appendix D for a detailed description of the
schemas, mappings, and transformations).

6.2 Scalability
For both sets of queries and for all database sizes, we measured

the normal query execution time (norm), the execution time for
transformation provenance computation without generating a rep-
resentation from the raw bit-vectors (tprov), and the execution time
including SQL (tsql) and XML (txml) representation construction.
Each query was repeated (10 to 100 times depending on the database
size). The average execution time for executing the complete query
sets Q1 and Q2 are presented in Fig. 4 (a) and (b). In addition we

1319

(a)

 0.1

 1

 10

 100

 1000

1 5 10 50 100 500 1000
 0.1

 1

 10

 100

 1000

Av
er

ag
e

Ru
n

Ti
m

e
(s

ec
)

Instance Size (#publs in thousands)

normal
tprov

tsql
txml

(b)

 0.1

 1

 10

 100

1 5 10 50 100 500 1000
 0.1

 1

 10

 100

Av
er

ag
e

Ru
n

Ti
m

e
(s

ec
)

Instance Size (#publs in thousands)

normal
tprov

tsql
txml

(c)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

1 5 10 50 100 500 1000

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

Av
er

ag
e

Re
la

tiv
e

Ru
n

Ti
m

e

Instance Size (#publs in thousands)

normal
tprov

tsql
txml

(d)

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

1 5 10 50 100 500 1000
 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

Av
er

ag
e

Re
la

tiv
e

Ru
n

Ti
m

e

Instance Size (#publs in thousands)

normal
tprov

tsql
txml

Figure 4: Experimental Results (Q1 and Q2), absolute (a and b) and relative (c and d)

present the relative runtime overhead of the three forms of transfor-
mation provenance computation in comparison to the normal query
execution times (Fig. 4 (c) and (d)). The first set of queries exhibits
a linear runtime for query execution without provenance compu-
tation, because the operations applied by these queries are mostly
unions and joins on indexed attributes that process complete input
tables and mostly each input tuple is only joined with a few other
tuples. In comparison with the normal query execution the prove-
nance computation induces a maximal overhead of 13% for tprov,
45% for tsql, and 128% for txml. As expected the SQL and XML
representation constructions incur an additional overhead, because
they have to be computed in addition to the bit-vector computa-
tions and rewrites. For query set Q2 we measured maximal over-
heads of 9% for tprov, 37% for tsql and 60% for txml. These results
demonstrate that it is feasible to use TRAMP for debugging map-
pings scenarios with large instances as the cost of the basic queries
is reasonable even without having explored several potential opti-
mizations. We would like to emphasize that a constant factor over-
head for computing the provenance of a transformation which maps
a complete source relation is rather impressive if compared to the
cost exhibited by the computation of alternative provenance types,
e.g., Why-Not provenance (see Section 8).

7. DEBUGGING EXAMPLE
To illustrate the type of debugging process supported by TRAMP,

we present an example debugging session for one of the error types
identified in Section 3. Debugging examples for the remaining er-
ror types are presented in Appendix A.

7.1 Missing Mappings
Source Schema Article(Title, Journal)

InProceedings(Title, Conference)
Target Schema Publication(Title, Venue)

Mappings
M1 :∀Article(a, b) ⇒ Publication(a, b)

M2 :∀InProceedings(a, b) ⇒ Publication(a, b)

Transformations
T1: SELECT Title, Journal AS Venue FROM Article;

As mentioned in Section 3, a missing mapping may be caused by
a missing correspondence. For instance, if in the example schemas
presented above the correspondences between the InProceedings
relation and the Publications relation is missed, then only mapping
M1 (and notM2) is created. To investigate the cause of the missing
conference publications in the target instance, a user may start by
querying the mapping and transformation provenance of transfor-
mation T1 that generates the Publication relation (mapping M1):

SELECT TRANSPROV ∗ FROM P u b l i c a t i o n ;

This query reveals that all tuples have been created by mapping
M1 and that the InProceedings relation is not accessed by this map-
ping and its transformation. This means a mapping is missing that
maps data from the InProceedings relation. By explicitly modeling
the correspondences and making them query-able TRAMP enables
the user to track the reasons for the missing mapping. E.g., the
user can search for correspondences between InProceedings and
another relation by using XPath to query the XML representation
of the correspondences. This would reveal that no correspondences
are defined for this relation and new correspondences need to be
created to enable a mapping tool to generate mapping M2.

8. RELATED WORK
The need to support users in understanding the results of schema

mapping has been addressed before, although not in as comprehen-
sive and inclusive manner as in TRAMP. The Clio data-viewer [26]
and Muse [3] systems helps a user in understanding a schema map-
ping by presenting the result of applying a transformation for a
schema mapping on small example source instances (examples cho-
sen by the tool). Both approaches do not allow a user to trace the
origins of an arbitrary target tuple as data, mapping and transfor-
mation provenance do. In addition, they do not directly support
understanding of either incorrect transformations (generated from
correct mappings) or dirty source data.

SPIDER [8] uses provenance in defining routes computed for a
subset of a target instance. Each route is a possible way of pro-
ducing the tuples of interest by sequentially applying mappings to
tuples (route-steps) in the source instance (and the tuples gener-
ated by previous mapping applications in the route). A route com-
bines data with mapping provenance. SPIDER does not provide
any querying facilities over the routes and lacks support for debug-
ging incorrect transformations. MXQL [25] generates provenance
eagerly during the execution of a transformation. The generated
target instance is enriched with transformations that store mapping
provenance and provenance that relates source to target schema el-
ements (schema provenance). In contrast to TRAMP, MXQL sup-
ports neither meta-querying nor transformation provenance.

Our notions of data, transformation and mapping provenance
are related to past work on data provenance. Since TRAMP is built
on top of Perm, it supports both PI-CS and C-CS provenance [14].
PI-CS bears some similarities to the Why-provenance definition of
Cheney et al. [7], but the PI-CS representation (witness lists) pro-
vides more information (combination of input tuples). Transforma-
tion provenance has some similarities with How provenance [15]
and Why-not provenance [6]. How provenance has the disadvan-
tage that, unlike transformation provenance, it does not record any
information about which operators of a query contributed to a re-
sult. Since many provenance types can be modeled using the semir-
ing framework on which how provenance is based on, one obvious

1320

question is if PI-CS and transformation provenance are also in-
stances of this model. Interestingly, this is not the case. For both
types of provenance there exists a database instance of annotated
relations (such relations are called K-relations [15]), two queries q1
and q2, and a tuple t in the result of the queries that carries the same
semiring annotation, but has different transformation and PI-CS
provenance (see appendix E). Note that this holds independently
of which semiring is used. The major difference between Why-
not provenance and our approach is that we compute and present
transformation provenance for each witness list, whereas Why-not
provenance is computed for an input pattern and there is only one
output for a certain input pattern. Furthermore, no method to query
provenance is provided. Finally, to compute Why-not provenance,
the data provenance of several parts of the query have to be com-
puted. Our implementation has the advantage that, though we also
define transformation provenance based on data provenance, we
never have to pay the price of instantiating this information in the
computation of transformation provenance.

Different forms of mapping provenance have been implemented
in Orchestra [15] and MXQL [25]. Orchestra uses schema map-
pings to propagate updates between peers with different schemas.
How provenance is used to store the origin of data in a peer in-
stance. Mapping provenance is modeled by adding functions to the
how-provenance semiring model. The mapping provenance pro-
vided by MXQL represents static (meaning instance independent)
information [25]. MXQL uses annotations to associate information
about both mappings and source schemas with target data. How-
ever, using static information (instead of combining this with run-
time information as TRAMP does) has the disadvantage that it is not
possible to determine exactly which mappings produced a tuple.

9. CONCLUSION
We have presented TRAMP, a holistic approach to schema map-

ping debugging. TRAMP integrates several kinds of provenance,
including the novel notions of transformation and mapping prove-
nance, in a single system, and provides efficient and powerful query
support for this information. We have shown how only the full com-
bination of all these facilities can answer many questions that are
important in understanding and disambiguating the sources of the
myriad of errors than can occur when integrating data. We demon-
strated by means of an extensive experimental evaluation that this
new functionality can be efficiently computed by using bit-set op-
erations and run-time pruning based on static query analysis.

In the future it would be interesting to investigate whether it
is possible to develop an approach that explains how to change a
transformation to cause the inclusion of some tuples in its result
(as the recent Artemis system [16] does for data). Furthermore, we
could combine our approach with example-based approaches like
Muse and approaches that operate on the logical specification of
mappings like SPIDER. Another promising venue for future work
is extending the meta-querying facilities of the system and provid-
ing a tighter integration with mapping systems.

10. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.
[2] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth,

S. Nabar, T. Sugihara, and J. Widom. An Introduction to
ULDBs and the Trio System. IEEE Data Engineering
Bulletin, 29(1):5–16, 2006.

[3] B. Alexe, L. Chiticariu, R. Miller, and W. Tan. Muse:
Mapping Understanding and Design by Example. In ICDE,
pages 10–19, 2008.

[4] B. Alexe, W. Tan, and Y. Velegrakis. STBenchmark:
Towards a Benchmark for Mapping Systems. PVLDB,
1(1):230–244, 2008.

[5] M. Blow, V. R. Borkar, M. J. Carey, C. Hillery,
A. Kotopoulis, D. Lychagin, R. Preotiuc-Pietro, P. Reveliotis,
J. Spiegel, and T. Westmann. Updates in the AquaLogic Data
Services Platform. In ICDE, pages 1431–1442, 2009.

[6] A. Chapman and H. Jagadish. Why Not? In SIGMOD, pages
523–534, 2009.

[7] J. Cheney, L. Chiticariu, and W. Tan. Provenance in
Databases: Why, How, and Where. Foundations and Trends
in Databases, 1(4):379–474, 2009.

[8] L. Chiticariu and W. Tan. Debugging Schema Mappings with
Routes. In VLDB, pages 79–90, 2006.

[9] Y. Cui and J. Widom. Lineage Tracing in a Data
Warehousing System. In ICDE, page 683, 2000.

[10] R. Fagin, L. M. Haas, M. A. Hernández, R. J. Miller,
L. Popa, and Y. Velegrakis. Clio: Schema Mapping Creation
and Data Exchange. Springer, 2009.

[11] R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data Exchange:
Semantics and Query Answering. Theoretical Computer
Science, 336(1):89–124, 2005.

[12] A. Fuxman, M. Hernandez, H. Ho, R. Miller, P. Papotti, and
L. Popa. Nested Mappings: Schema Mapping Reloaded. In
VLDB, pages 67–78, 2006.

[13] B. Glavic. Perm: Efficient Provenance Support for Relational
Databases. PhD thesis, University of Zurich, 2010.

[14] B. Glavic and G. Alonso. Perm: Processing Provenance and
Data on the same Data Model through Query Rewriting. In
ICDE, pages 174–185, 2009.

[15] T. Green, G. Karvounarakis, and V. Tannen. Provenance
Semirings. In PODS, pages 31–40, 2007.

[16] M. Herschel, M. Hernández, and W. Tan. Artemis: A System
for Analyzing Missing Answers. In VLDB, pages
1550–1553, 2009.

[17] M. Lenzerini. Data Integration: A Theoretical Perspective. In
PODS, pages 233–246, 2002.

[18] G. Mecca, P. Papotti, and S. Raunich. Core schema
mappings. In SIGMOD Conference, pages 655–668, 2009.

[19] R. J. Miller, D. Fisla, M. Huang, D. Kymlicka, F. Ku, and
V. Lee. The Amalgam Schema and Data Integration Test
Suite, 2001. www.cs.toronto.edu/ miller/amalgam.

[20] R. J. Miller, L. M. Haas, and M. Hernández. Schema
Mapping as Query Discovery. In VLDB, pages 77–88, 2000.

[21] E. Rahm and P. Bernstein. A Survey of Approaches to
Automatic Schema Matching. VLDB Journal,
10(4):334–350, 2001.

[22] Y. L. Simmhan, B. Plale, and D. Gannon. A Survey of Data
Provenance in e-Science. SIGMOD Rec., 34(3):31–36, 2005.

[23] B. ten Cate, L. Chiticariu, P. G. Kolaitis, and W.-C. Tan.
Laconic schema mappings: Computing the core with sql
queries. PVLDB, 2(1):1006–1017, 2009.

[24] J. Van den Bussche, S. Vansummeren, and G. Vossen.
Towards Practical Meta-Querying. Information Systems,
30(4):317–332, 2005.

[25] Y. Velegrakis, R. Miller, and J. Mylopoulos. Representing
and Querying Data Transformations. In ICDE, pages 81–92,
2005.

[26] L. Yan, R. Miller, L. Haas, and R. Fagin. Data-driven
Understanding and Refinement of Schema Mappings. In
SIGMOD, pages 485–496, 2001.

1321

APPENDIX
A. EXAMPLES FOR DEBUGGING DIFFER-

ENT ERROR TYPES
To illustrate the usefulness of TRAMP for debugging the error

types presented in Section 3, we present an example for each of
these error types and demonstrate how TRAMP is used to debug
the errors.

A.1 Incomplete Mapping
Source Schema Employee(Name,Dep)
Target Schema WorksAt(Name, DepId)

Department(DepId, Name)

Mappings

M1 : Employee(a, b) ⇒∃cDepartment(c, b)
M2 : Employee(a, b) ⇒∃cWorksAt(a, c)

∧Department(c, b)
Transformations

T1: SELECT SK1(Name) AS DepId, Dep AS Name FROM Employee;

Mapping M1 presented above is an incomplete version of map-
ping M2. Assume the correspondence between the attribute Dep
in the source and the Name attribute from Department has been
missed. This will result in an empty WorksAt relation in the target
instance. This error can be debugged by querying the XML rep-
resentations of mappings (to ascertain that no mapping maps data
to the WorksAt relation) and correspondences (to check if a corre-
spondence is defined between some source relation and the Work-
sAt relation). These analyses identify the missing correspondence
between the Employee and WorksAt relations. A mapping tool can
be used to create the missing correspondence and transform M1

into the correct mapping M2.

A.2 Oversized Mappings
Source Schema Scientist(Name, Affiliation)
Target Schema Researcher(Name, Affiliation)

Institute(Name, Location)

Mappings
M1 :Scientist(a, b) ⇒ ∃cResearcher(a, b) ∧ Institute(b, c)

Transformations
T1: SELECT Name, Affiliation FROM Scientist s;
T2: SELECT Affiliation AS Name, SK1(Name) FROM Scientist s;

Assume the Affiliation attribute in the source schema presented
above represents the PhD granting institution, but Affiliation in the
target is a works-in relationship. In this case mapping M1 is over-
sized. A correct mapping would only map the name of a scientist.
M1 is implemented by transformations T1 and T2. T1 generates the
Researcher relation and T2 generates the Institute relation. Data
provenance can be used to trace the source of this error:

SELECT PROVENANCE ∗
FROM R e s e a r c h e r r , I n s t i t u t e i
WHERE r . A f f i l i a t i o n = i . Name ;

The query above uses a join between the Researcher and Insti-
tute relations to retrieve the provenance of each researcher and her
associated institute. As evident in the result of this query, each Re-
searcher tuple and associated Institute tuple is derived from a sin-
gle Scientist tuple in the source. So either the source instance data
is erroneous or the mapping contains an error. To decide which

case applies, the user can state queries over the provenance to re-
trieve the provenance of researchers for which the affiliation and
PhD granting institutions are known. Having realized that M1 is
oversized, the mapping tool should be used to generate a mapping
that maps only the name attribute of a scientist.

A.3 Incorrect Association Paths

Source Schema Address(aId, City, Country)
Employee(Name, dId, aId)
Department(dId, Name, aId)

Target Schema Person(Name, LivesAt, WorksFor)
Mappings

M1 :Address(a, b, c) ∧ Employee(d, e, f)

∧Department(e, g, a)
⇒ Person(d, a, g)

M2 :Address(a, b, c) ∧ Employee(d, e, a)
∧Department(e, f, g)
⇒ Person(d, a, f)

Transformations

T1:

SELECT e . Name ,
a . C i t y AS LivesAt ,
d . Name AS WorksFor

FROM Address a , Employee e , Depar tmen t d
WHERE a.aId = d.aId AND e . dId = d . d Id ;

Assume mapping M1 was created to map addresses, employees
and departments to the Person relation in the target schema pre-
sented above. If the LivesAt attribute of relation Person stores the
home cities of persons, then the mapping tool (or user) has chosen
an incorrect association path, because M1 maps the address asso-
ciated with an department to the LivesAt attribute. Both data prove-
nance and transformation provenance can be used to trace this error.
Each person is derived from an address, employee and department.
This is revealed by asking the following query:

SELECT PROVENANCE ∗ FROM t a r g e t . P e r so n ;

That the address of a department instead of a employee is mapped
to the target is apparent in the data provenance, because the aId at-
tributes of the department and address tuples used to derive a target
tuple are the same. If the user does not recognize this equality,
(s)he may proceed by retrieving the transformation provenance of
the Person relation. The transformation provenance clarifies that
the department and address have been joined instead of employee
and address. Retrieving the definition of mappingM1 confirms that
the mapping is the source of the error. The mapping tool can then
be used to replace mapping M1 by mapping M2.

A.4 Incorrect Handling of Atomic Values
Source Schema Employee(FirstName, LastName)
Target Schema Person(Name, Gender)

Mappings
M1 :Employee(a, b) ⇒ ∃cPerson(a, c)

M2 :Employee(a, b) ⇒ ∃cPerson(concat(a, b), c)

Transformations

T1: SELECT FirstName AS Name , SK1(Name) FROM Employee

As an example for this type of error consider a source schema
with an employee relation that stores the first and last names of em-
ployees and a target schema with persons (name and gender). As-
sume there are correspondences between the FirstName and Last-
Name attributes in the source and the name attribute in the target

1322

schema. We further assume that these correspondences have been
misinterpreted leading to the creation of mapping M1 presented
above that copies the first name to the target name attribute. If this
error is recognized by realizing that the names of persons in the tar-
get are all first name, then TRAMP could be used to investigate the
source of the error. At first a data provenance query may be issued
to investigate the source data from which the incorrect names are
derived.
SELECT PROVENANCE ∗ FROM t a r g e t . P e r so n ;

This query reveals that the name attribute values have been copied
from first names in the source and that the source contains correct
last names for these persons (the data provenance contains the tu-
ple with first and last names from which a person is derived from).
Thus, the error must have been caused by the mapping or trans-
formation. Mapping provenance can be used to reveal which map-
pings were used to derive the tuples in the target Persons relation.
E.g.:
SELECT ge tAnno t (t p r o v) , name
FROM

(SELECT TRANSXML ∗ FROM t a r g e t . P e r so n) AS t p ;

This query returns the name attributes of all target person tuples
with the mappings that generated them by computing the transfor-
mation provenance and extracting the mapping annotations (getAn-
not, see Appendix C). The result reveals that all tuples have been
created by mappingM1. If the target relation contains a large num-
ber of tuples, the user can use the hasAnnot meta-querying function
(see Appendix C) to check that in fact all tuples have been created
by mapping M1. E.g., by adding a selection condition that checks
for tuples that have been derived by other mappings:
WHERE NOT hasAnnot (t p r o v , ’M1’) ;

The source of the error has been narrowed down to mapping M1

and the transformation that implements this mapping. For this sim-
plistic example the user would probably directly use the mapping
system to correct the mapping. For more complex cases it may be
necessary to inspect the mapping and transformation beforehand.

A.5 Redundant Data
Source Schema Employee(SSN, Name)

Superior(empSSN, supSSN)
Target Schema Staff(Name, Superior)

Mappings
M1 :Employee(a, b) ⇒ ∃cStaff(b, c)

M2 :Employee(a, b), Employee(c, d), Superior(a, c)

⇒ Staff(b, d)

Transformations

T1 :

SELECT e . Name AS Name , SK1(e.Name) AS S u p e r i o r
FROM Employee e
UNION
SELECT e . Name AS Name , e2 . Name AS S u p e r i o r
FROM Employee e , Employee e2 , S u p e r i o r s
WHERE s . empSSN = e . SSN AND s . supSSN = e2 . SSN ;

Assume transformation T1 presented above was created by a
mapping tool to implement mappings M1 and M2. This transfor-
mation generates redundant tuples for employees that have a super-
visor, because these employees are mapped twice; once without the
supervisor (M1) and once with the supervisor (M2). Note that there
are mapping tools that would generate T1 as the transformation for
this set of mappings instead of using an outer join to avoid the gen-
eration of duplicates. A user may recognize that several employees
are included two times in the target Staff relation. Retrieving the
data provenance for these employees:

SELECT PROVENANCE ∗ FROM t a r g e t . S t a f f ;

will reveal that both versions of an employee are derived from
the same Employee tuple (and one version is also derived from a
second Employee and Superior tuple). A check for duplicates of
employee tuples in the source will clarify that the error is caused
by the mapping and/or transformation. Asking the following query

SELECT TRANSPROV ∗ FROM t a r g e t . S t a f f ;

confirms that one of the employee duplicates is generated by
mapping M1 and the left input of the union in T1 and the second
one by M2 and, thus, the right input of the union in T1. Check-
ing the definitions of these mappings, the user will realize that both
mappings are correct, and, thus, the error must have been caused
by the transformation. If the mapping tool supports it, the user
can request a different transformation or correct the transformation
manually.

A.6 Instance Data Errors
Source Schema Person(Name, AddrId)

Address(Id, City)
Target Schema LivesAt(Name, City)

Mappings
M1 :Person(a, b) ∧Address(b, c) ⇒ LivesAt(a, c)

Instances
Person

Name AddrId
Clara 2
.

Address
Id City
1 Bern
2 Paris

.

Mapping M1 presented above maps persons and addresses to a
LivesAt relation. Assume that the source instance contains the er-
roneous information that Clara lives in Paris, but actually she lives
in Bern. This instance data error may be easily misconceived as
a mapping error. If a user retrieves the data provenance for the
(Clara, Paris) tuple from the LivesAt relation, (s)he will realize
that this tuple is derived from the (Clara, 2) and (2, Paris) tuples
in the source instance. Hence, after verifying the faultiness of this
part of the source instance, it is clear that the error is caused by
erroneous instance data and the query has revealed exactly which
parts of the source instance caused the error.

B. EXAMPLES FOR COMPUTING PROVE-
NANCE

B.1 Transformation Provenance
Fig. 5(a) demonstrates the use of the TRANSSQL keyword to

trigger transformation provenance computation for query qd from
the mapping provenance example presented in Section 4. The al-
gebra tree of this query is depicted on the left in Fig. 5(b). Step 1
of the rewrite algorithm generates the bit-vectors for each operator
in the query (Fig. 5(b) in the middle). The right-hand side of the
left-join is static, therefore, a fixed bit-vector for this subtree is pre-
computed. The same applies for the combination of projection, left
join and the left input of the join. Either all or none of these oper-
ators are in the transformation provenance. Therefore, they can be
represented as a single bit-vector (shown on the right of Fig. 5(b)).
Fig. 5(c) depicts the query after application of the transformation
provenance rewrite rules (Step 2 of the rewrite algorithm). In this
example, the basic structure of the query is preserved and the prove-
nance computation is limited to a projection expression. Function
ε in the example is used to check if attribute b is null (it returns

1323

(a)
SELECT TRANSSQL S . c AS d , R . b AS e
FROM S LEFT JOIN R ON (S . c = R . a) ;

(c)
SELECT

S . c AS d , R . b AS e , fSQL (1110 ∨ ε(b, 0001)) AS t p r o v
FROM S LEFT JOIN R ON (S . c = R . a) ;

(b)

0 0 1 0
S R S R S R

0 1 0 0

1 0 0 0

0 0 0 1

1 1 1 0

0 0 0 1

(d)
d e tprov
2 3 SELECT S.c AS d, R.b AS e FROM S LEFT JOIN R ON (S.c = R.a);
2 5 SELECT S.c AS d, R.b AS e FROM S LEFT JOIN R ON (S.c = R.a);
3 NULL SELECT S.c AS d, R.b AS e FROM S LEFT JOIN <Not>R</Not> ON (S.c = R.a);

Figure 5: Example of the Computation of Transformation Provenance

(a)
SELECT S . c AS d , R . b AS e
FROM

S ANNOT(’M1’ , ’M2’)
LEFT JOIN

R ANNOT(’M2’)
ON (S . c = R . a) ;

(b)
0 0 1 0

S R
0 0 0 1

0 1 0 0

1 0 0 0
1 1 1 0M1

1 1 1 1M2

(c)
d e tprov
2 3 <M2>SELECT S.c AS d, R.b AS e FROM S LEFT JOIN R ON (S.c = R.a);</M2>
2 5 <M2>SELECT S.c AS d, R.b AS e FROM S LEFT JOIN R ON (S.c = R.a);</M2>
3 NULL <M1>SELECT S.c AS d, R.b AS e FROM S LEFT JOIN <Not>R</Not> ON (S.c = R.a);</M1>

Figure 6: Example of the Computation of Mapping Provenance

an empty bit-vector if its first argument is null and its second argu-
ment otherwise). The final representation is generated by function
fSQL (rewrite algorithm Step 3). The result of the rewritten query
is presented in Fig. 5(d). For the third tuple, the right input of the
left outer join did not contribute anything to the result and is there-
fore not in the transformation provenance. In contrast, all operators
contributed to the first and second result tuple.

B.2 Mapping Provenance
Fig. 6(a) demonstrates how the new keyword ANNOT is used to

annotate parts of a query to model the relationships between map-
pings and their transformations (In this example mappings M1 and
M2 from Section 4). Fig. 6(b) presents the bit-vectors for the map-
ping annotation functions µM1 and µM2 for query qd. Recall that
M2 corresponds to the complete query and M1 does not corre-
spond to the right input of the outer join. Fig. 6(c) presents the
result of computing the transformation provenance (and because
of the annotations also the mapping provenance) for qd using the
TRANSSQL keyword.

C. META-QUERYING FUNCTIONS
Here we present the THIS construct and two XML meta-querying

functions as an example of the kind of XSLT and XPath based
meta-querying included in TRAMP (see Fig. 7): hasAnnot and getAn-
nots. The function hasAnnot(XML,annot) checks if the query rep-
resented as parameter XML has the annotation annot. This function
is realized as a XPath expression over the XML query representa-
tion. getAnnots(XML) returns all annotations used in a query tree
given as parameter XML. The THIS construct enables a query to
inspect its own XML representation (or the XML representation of
one of its subqueries). This is implemented as a query rewrite that
replaces the THIS construct with an XML constant that is gener-
ated using the same XML generation as in fSQL→XML.

Name Semantics
THIS Returns the XML representation of the query it is used in.

hasAnnot Checks if an XML document contains a certain annotation.
getAnnot Return all annotations used in an XML query representation.

Figure 7: Meta-querying Functions and Constructs

D. DATASET AND QUERY DESCRIPTIONS
In this part of the appendix, we give a short description of the

Amalgam dataset, source and target schema, and the mappings
that were used for the performance evaluation presented in Sec-
tion 6. Fig. 8 presents the source and target schemas used in the
evaluation. The schemas are based on the Amalgam [19] integra-
tion benchmark. Amalgam uses real-world data (containing errors)
and several schemas which represent bibliographic data from var-
ious sources. For the experiments, we used a modified version of
Schema S1 from Amalgam as the source schema and a new schema
as the target schema. The source schema models authors, institu-
tions, various types of publications (e.g, relation article), and the
relationships between authors and their publications (for instance,
relation techpublished). The target schema represents the same in-
formation organized in a different way. Several properties of a pub-
lication are outsourced into separate relations (e.g., dates) and there
is only a single relation that represents publications (regardless of
their type). In addition, the affiliation of an author is recorded in the
tauthor relation directly, rather than in a separate institute relation.

Fig. 9 presents some of the mappings we used to map data from
the source and target schema. Mappings M1 and M2 map authors
from the source to the target schema, splitting the name attribute
into first and last name.3 M1 handles authors independent of their
affiliations and M2 maps authors with an affiliation (stored in the

3We assume the existence of functions first and last that return the
first (respectively, last) name from a name string.

1324

Source Schema
institute(inst id, name, location)
inproceedings (inproc id, title, bktitle, year, month, pages, vol, num, loc, class, note, annote)
article (article id, title, journal, year, month, pages, vol, num, loc, class, note, annote)
techreport (tech id, title, inst, year, month, pages, vol, num, loc, class, note, annote)
book (book id, title, publisher, year, month, pages, vol, num, loc, class, note, annote)
incollection (coll id, title, bktitle, year, month, pages, vol, num, loc, class, note, annote)
misc (misc id, title, howpub, confloc, year, month, pages, vol, num, loc, class, note, annote)
manual (man id, title, org, year, month, pages, vol, num, loc, class, note, annote)
author (auth id, name, inst)
inprocpublished (inproc id, auth id)
articlepublished (article id, auth id)
techpublished (tech id, auth id)
bookpublished (book id, auth id)
incollpublished (coll id, auth id)
miscpublished (misc id, auth id)
manualpublished (man id, auth id)

Target Schema
tauthor (auth id, first name, last name, affiliation)
dates (date id, year, month)
classification (class id, name)
journal (jname, publisher)
issue (issue id, journal, vol, num)
publication (title, author id, date id, pages, class id, issue id)
notes (pub title, pub author, notetext)

Figure 8: Amalgam Schemas

M1 :author(a, b, c) ⇒ ∃d, e : tauthor(d, first(b), last(b), e)

M2 :author(a, b, c) ∧ institute(c, d, e) ⇒ ∃f : tauthor(f, first(b), last(b), d)

M3 :techreport(a, b, c, d, e, f, g, h, i, j, k, l) ∧ techpublished(a, m) ∧ author(m, n, o) ∧ institute(c, p, q) ∧ institute(o, r, s) ⇒
∃t, u, v, w : publication(b, t, u, f, v, w) ∧ date(u, d, e) ∧ classification(v, j) ∧ notes(b, t, k) ∧ notes(b, t, l) ∧ tauthor(t, first(n), last(n), r)

M4 :article(a, b, c, d, e, f, g, h, i, j, k, l) ∧ articlepublished(a, m) ∧ author(m, n, o) ∧ institute(o, p, q) ⇒
∃r, s, t, u, v : publication(b, r, s, f, t, u) ∧ date(s, d, e) ∧ classification(t, j) ∧ notes(b, r, k) ∧ notes(b, r, l)

∧ journal(c, v) ∧ issue(u, c, g, h) ∧ tauthor(r, first(n), last(n), p)

Figure 9: Mappings between the Amalgam Schemas

relation institute). The techreport and article relations are verti-
cally partitioned into relations publications, journal, issue, notes,
classification, and date (using M3 and M4). In addition, the au-
thors for each publication are also mapped by these two mappings.
In mapping M3 the institute relation is referenced twice. The first
reference represents the institute of an author and the second one
the institute field of the techreport relation. The mappings between
the other publication types in the source and the target publication
relation are analogous to M3 and M4 and, therefore, not presented
here. For each relation in the source that stores publications, we de-
fined two mappings: one for M3 and M4 (or their analogs) and one
that maps publications of authors without an affiliation. The trans-
formations we generated to implement the mappings use outer joins
to deal with overlapping mappings. If several, non-overlapping
mappings map data to the same target relation (as is the case for
the relation publication) they are implemented as a single transfor-
mation that unions the transformations of the individual mappings.
E.g., the overlapping mappings M1 and M2 (mapping authors and
their affiliations) are implemented by the following transformation:

SELECT
’SK1 ’ | | a . name | | COALESCE(i . name , ’ ’) AS a u t h i d ,
g e t f i r s t n a m e (a . name) AS f i r s t n a m e ,
g e t l a s t n a m e (a . name) AS l a s t n a m e ,
CASE WHEN i . name IS NULL

THEN ’SK2 ’ | | a . name
ELSE i . name END AS a f f i l i a t i o n

FROM
s o u r c e . a u t h o r ANNOT(’M1’ , ’M2’) a
LEFT JOIN
s o u r c e . i n s t i t u t e ANNOT(’M2’) i
ON (a . i n s t = i . i n s t i d) ;

As mentioned in Section 6, we use two sets of queries in the
performance evaluation. The first set contains the transformations
for the mappings described above. The second set of queries (Q2)
models basic scenarios from the STbenchmark [4] schema mapping
benchmark. These mappings are also defined over the Amalgam
source schema. The following scenarios were modeled: Copying,
Horizontal Partition, Vertical Partition, self-Joins, Denormaliza-
tion, Aggregation, Keys and Object Fusion, Atomic Value Manage-

Scenario Query Description
Copying Returns all tuples from inproceedings
H. Part. Returns articles from publication
V. Part. Extracts dates from techreport
self J. Returns all author, co-author combinations
Denorm. Merges dates and publications
Aggr. Returns the number of publications per author
KO Fusion Generates a single publication relation from the

source publication relations
AV Man. Splits author names

Table 1: Description of Query Set 2

ment. We could not use the original benchmark scenario generator,
because it generates XML data. Table 1 gives a short description
for each of these queries.

E. SEMIRING COUNTEREXAMPLE
We show that transformation provenance cannot be defined in

the semiring model [15] by presenting two queries q1 and q2, a
database instance I , and a tuple t such that for any semiring (K,+, ·, 0, 1)
andK-annotated version of I we haveQK

1 (t) = QK
2 (t) and T (q1,

t) 6= T (q2, t). That is, there are two queries for which t has differ-
ent transformation provenance, but carries the same semiring-an-
notation. Hence, transformation provenance cannot be modeled in
the semiring model (we use identifier sets to represent T):

R = {(a)} S = T = ∅ t = (a)

q1 = R2 ∪1 S3 q2 = (R3 ∪2 S4) ∪1 T 5

T (q1, t) = {1, 2} 6= {1, 2, 3} = T (q2, t)

QK
1 (t) = (R ∪ S)K(t) = RK((a)) + SK((a)) = RK((a))

= RK((a)) + SK((a)) + TK((a)) = QK
2 (t)

Note that we use the fact that in the semiring model tuples that
do not belong to a relation are annotated with the 0 element of
the semiring and that 0 is the neutral element of the + operation.
A similar example exists that demonstrates that PI-CS cannot be
defined in the semiring model.

1325

