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ABSTRACT
We report on a query compilation technique that enables
the construction of alternative efficient query providers for
Microsoft’s Language Integrated Query (LINQ) framework.
LINQ programs are mapped into an intermediate algebraic
form, suitable for execution on any SQL:1999-capable rela-
tional database system.

This compilation technique leads to query providers that
(1) faithfully preserve list order and nesting, both being
core features of the LINQ data model, (2) support the com-
plete family of LINQ’s Standard Query Operators, (3) bring
database support to LINQ to XML where the original pro-
vider performs in-memory query evaluation, and, most im-
portantly, (4) emit SQL statement sequences whose size is
only determined by the input query’s result type (and thus
independent of the database size).

A sample query scenario uses this LINQ provider to marry
database-resident TPC-H and XMark data—resulting in a
unique query experience that exhibits quite promising per-
formance characteristics, especially for large data instances.

1. LINQ QUERY PROVIDERS
Language Integrated Query (LINQ) seamlessly embeds a

declarative query language facility into Microsoft’s .NET
language framework [14]. Developers use the familiar idioms
of their programming language—say, C#—plus a generic set
of Standard Query Operators (SQOs) to formulate queries
against lists of heap-resident C# objects, XML trees, or rela-
tional tables. LINQ providers then translate these programs
into an executable form chosen to match the kind of queried
data: a LINQ query against database-resident relational ta-
bles is compiled into a sequence of SQL statements, for ex-
ample. This translation is performed by the framework’s
LINQ to SQL provider. LINQ is widely perceived as a sign-
post to a new declarative form of data access [2,21] and the
availability of efficient LINQ providers will be instrumental.

The principal LINQ construct is the query comprehen-
sion, a generic iteration facility applicable to any data type
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1 XElement.Load("auction.xml").Descendants("closed_auction")
2 .SelectMany(auction => db.GetTable<Lineitem>(),
3 (auction, li) => new {auction, li})
4 .Where(t => (int)t.auction.Element("itemref")
5 .Attribute("item") == t.li.partkey)
6 .GroupBy(t => t.li.orderkey,
7 t => new { partkey = t.li.partkey,
8 diff = t.li.extendedprice -
9 (decimal)t.auction.Element("price") })

10 .Select(g => new { order = g.Key,
11 gain = g.Sum(t => t.diff),
12 partkeys = g.Select(t => t.partkey) })

Figure 1: Program P , rendered as a serialized LINQ expres-
sion tree. An equivalent in user-facing query syntax is shown
in Paragraph 1 (Appendix).

that exhibits the properties of a monad [25] (in LINQ, this
role is assumed by the generic types IQueryable<t> and
IEnumerable<t>). In a single LINQ query, developers may
mix and match operations against XML documents as well
as relational tables and then rely on the LINQ providers
in charge to perform the required data-specific operations
under the hood.

As of today, this conceptual appeal of the LINQ approach
is not fully realized by the LINQ provider implementations
that come enclosed with the .NET framework. While the
current LINQ to SQL and LINQ to Entities providers emit
SQL statements and thus delegate query evaluation to a
back-end RDBMS, all operations performed by the LINQ to
XML provider are performed in-memory (on heap-resident
representations of XML nodes). This mismatch of execution
sites leads to asymmetries: in a nested LINQ query compre-
hension, the provider in charge of the outermost enclosing
iteration “takes the lead.”

The sample Program P in Figure 1 features a typical sce-
nario of nested iteration: the leading SelectMany in line 2
iteratively binds variable auction to closed_auction el-
ement nodes extracted from XML document auction.xml

(see Paragraph 1 (Appendix) for comments on Program P
and a sketch of the queried data). The LINQ to XML pro-
vider thus is in charge of the outer iteration. Each iteration
leads to an invocation of the LINQ to SQL provider which is
in charge of the inner iteration over table Lineitem, binding
rows to variable li in line 3. This mode of evaluation hits
the RDBMS with an avalanche of SQL queries whose results
have to be transferred into the heap for further evaluation by
LINQ to XML (given that main memory capacity suffices).
In the case of Program P , the number of closed_auction
XML elements determines the size of that query avalanche,
amounting to 9 750 SQL queries for an auction.xml XMark
document of scale factor 1.0, for example.

162



LINQ
expression

tree

Augmented
expression

tree

Algebraic
program

3○

SQL:1999
queries

5○
Tabular
result

Result on
C# heap

1○ 2○

4○

6○

Figure 2: Stages in the Ferry-based LINQ provider.

A Ferry-based LINQ query provider. In the present work,
we describe an approach to LINQ provider construction that
is safe from query avalanches. Under the new regime,

it is exclusively a LINQ query’s static result type—not
the database instance size—that determines the number
of initiated database queries.

This marks a significant deviation from the .NET-supplied
providers. The performance impact is profound (Section 6).
The query avalanche issue affects programs that rely on an
interaction of the LINQ to Entities [1] or LINQ to SQL
providers with LINQ to XML, but also LINQ to SQL-only
programs may lead to the phenomenon (see Paragraph 6
(Appendix)).

One option to resolve the additional problem of execution
site asymmetry (in-memory vs. by-database) is to shift XML
processing into the database back-end. We thus

let the RDBMS host and process relational data as well
as—potentially sizable, larger than main memory—XML
instances,

represented according to one of the common tabular or na-
tive formats [10,16,22].

The alternative query provider builds on Ferry [9], query
compilation technology that enables off-the-shelf RDBMSs
to participate in the evaluation of functional programs over
nested, ordered list structures (a particularly good match
for the LINQ data model). This enables

database support for the complete family of LINQ SQOs
and faithful preservation of the semantics of list nesting
and order.

The Ferry-based provider employs a query compiler that
emits a table algebra dialect carefully designed to mimic
the capabilities of modern SQL:1999-capable database back-
ends. All relevant Ferry pieces are covered by this paper—
further details may be found in [7–9].

The resulting Ferry-based LINQ provider hooks into the
.NET framework and can act as drop-in replacement of the
existing provider’s query functionality [20]. LINQ’s update
tracking is not addressed in the present work.

In what follows, we will walk Program P through the stages
of the Ferry-based LINQ provider (Figure 2). This entails
normalization ( 1○, Section 2), a discussion of the faithful
relational representation of LINQ’s data model (Section 3),
algebraic compilation ( 2○, Section 4), as well as algebraic
optimization, SQL code generation, and execution ( 3○– 6○,
Section 5). Section 6 assesses the significant performance
impact of avalanche safety before we review closely related
efforts (Section 7). Section 8 concludes the discussion.

2. LINQ’S COMPREHENSION CORE
The LINQ provider takes over after the C# compiler has

transformed the user-facing LINQ query syntax of Figure 10

1 XElement.Load("auction.xml").Descendants("closed_auction")
2 .SelectMany(auction => table Lineitem (orderkey,. . .)
3 with key (orderkey,linenumber),
4 (auction, li) => (auction, li))
5 .Where(t => (int)t.1.Element("itemref")
6 .Attribute("item").Value == t.3)
7 .GroupBy(t => t.2,
8 t => (t.3,
9 t.7 - (decimal)t.1.Element("price").Value))

10 .Select(g => (g.1,
11 g.2.UnBox().Sum(t => t.2),
12 g.2.UnBox().Select(t => t.1).Box()))

Figure 3: Serialized expression tree of Program P after aug-
mentation and introduction of (Un)Box() invocations (see
Section 3).

(Appendix) into an expression tree of chained SQO applica-
tions (Figure 1) [3]. Note how these linear SQO invocation
chains bear an inherent asymmetry: the SelectMany early in
the chain (line 2) iterates over the list of closed_auction el-
ements and thus drives the whole query evaluation process.
This leads to the query avalanche issues (iterative execu-
tion of a, potentially huge, number of SQL queries) outlined
in Section 1.

As mentioned before, the LINQ semantics are built around
a core iteration construct, the query comprehension. LINQ
query comprehensions are a generalization of the list (or
monad) comprehension concept [13]. Variants appear in a
number of programming languages, e.g., Perl 6, Python,
Ruby, Scala, and, most notably, Haskell [11]. In LINQ, a
comprehension takes the form

from v in e1 select e2 ,

or, equivalently, formulated using the Select SQO,

e1.Select (v => e2) .

Select performs the iterated evaluation of expression e2
under bindings of variable v—these bindings are generated
from the values contained in e1 of type IQueryable<t> (in
other words: function v => e2 is mapped over e1). In
what follows, we will use the more compact [t] to denote
the type IQueryable<t> and write [x1,. . .,x`], with xi of
type t, to denote a list of type [t]. Similarly, we will write
(x1,. . .,xn) to abbreviate the C# record constructed by
new {f1 = x1,. . .,fn = xn} and use (t1 , . . . , tn) to denote its
anonymous type if xi is of type ti.

To prepare compilation, the Ferry-based LINQ provider
applies simple normalizing rewrites to the expression tree,
leading to the program of Figure 3 (ignore the Box() and
UnBox() calls for now):
(1) database table references (GetTable<d>()) are replaced

by explicit table d (· · ·) constructs, revealing table meta
information like keys (lines 2, 3),

(2) C# new {· · ·} record constructors and field name refer-
ences are turned into tuples and positional access (e.g.,
t.3 in line 6 replaces t.li.partkey in Figure 1),

(3) relationship traversals are turned into the appropriate
table references, and

(4) XML node atomization is made explicit in terms of Value
invocations (lines 6, 9).

We now discuss a suitable relational encoding of LINQ’s
ordered and nested data model before we describe the actual
algebraic LINQ compiler in Section 4.
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3. THE LINQ DATA MODEL
ON A RELATIONAL BACK-END

This work aims to construct a database-supported LINQ
query provider that properly reflects the semantics of LINQ’s
rich data model, featuring atomic types, XML node types,
as well as list and tuple constructors (producing values of
type [t] and (t , . . . , t), respectively). The following rela-
tional representation of values of this data model enables
a SQL database back-end to act as a LINQ processor that
preserves this semantics (including list order and nesting).

Atomic values, XML nodes, tuples. LINQ queries may oper-
ate over values of atomic C# types. Just like the .NET LINQ
to SQL provider, we use a direct mapping of such C# val-
ues into values of a corresponding SQL type1, translating the
C# type decimal into the SQL type NUMERIC(28), for exam-
ple. However, much unlike the .NET LINQ to XML provi-
der, we employ ORDPATH-style hierarchical identifiers [16]
to obtain a database-friendly representation of XML nodes.
These identifiers encode a node’s location in its containing
XML document tree (thus facilitating XML document nav-
igation) and are also used to perform lookups for further
XML node properties—tag name, node kind, etc.—in ta-
ble XMLdocs (Table 5, Appendix).

An n-tuple (v1,. . . ,vn), n > 1, of such items maps into a
table row of width n. A 1-tuple (v) and value v are treated
alike.

Ordered lists. As the relational back-end itself does not
provide row ordering guarantees, we let the compiler cre-
ate a runtime-accessible encoding of order. A list value
[x1,x2,. . .,x`]—let xi denote the n-tuple (vi1,. . .,vin)—is
mapped into a table of width 1 +n as shown in Figure 4(a).
Again, a singleton list [x] and its element x are repre-
sented alike. The attached pos column provides the hook
required to faithfully implement the assorted order-sensitive
LINQ SQOs, e.g., the position-aware Select ((v,p) => · · ·),
ElementAt, First, Reverse, Skip, or TakeWhile. .NET sup-
plies a translation that, in general, cannot preserve the order
semantics on the database back-end (see Section 4).

Nested lists. In the LINQ data model, tuple and list con-
structors may be nested to arbitrary depth. We embrace
such nesting on the flat 1NF SQL database back-end via
surrogate (foreign key) values, variants of which have been
used to realize non-first normal form databases (NF2) in the
late 1980s [18].

If a LINQ program produces a nested value, say the list
[ [x11,x12,. . .,x1`1],. . .,[xn1,xn2,. . .,xn`n] ], n > 1, the
Ferry-based provider will fork the compilation process to
translate the program into a bundle of two separate rela-
tional queries, Q0 and Q1. Figure 4(b) depicts the resulting
tabular encodings produced by the relational query bundle:
Q0, one query that computes the relational encoding of the

outer list [@1,. . . ,@n] in which all inner lists (includ-
ing empty lists) are represented by surrogates @i, and

Q1, one query that produces the encodings of all inner
lists—assembled into a single table. If the ith inner
list is empty, its surrogate @i will not appear in the
nest column of this table.

Note that the two constituent queries still are flat queries to
be evaluated over an 1NF database. Emitting such bundles

1http://msdn.microsoft.com/en-us/library/bb386947.
aspx.

pos item1 · · · itemn
1 v11 · · · v1n
2 v21 · · · v2n
: :
` v`1 · · · v`n

(a) Encoding a flat
ordered list.

Q1
nestpos item1 · · · itemn
@1 1 x11
: : :
@1 `1 x1`1
: : :
@n 1 xn1
: : :
@n `n xn`n

Q0
pos item1
1 @1
: :
n @n

(b) Encoding a nested list (Q0: outer
list, Q1: all inner lists).

Figure 4: Relational runtime encoding of order and nesting
on the database back-end.

of independent queries, like Q0 and Q1 above, enables the
provider to selectively produce the query result at different
list nesting levels—we briefly come back to this in Section 5.

In effect, the Ferry-based provider thus relies on a non-
parametric representation of values [4] in which the types
determine the efficient relational representation: in-line (for
tuples of atomic items) vs. surrogate-based (for lists). Fig-
ures 5 and 6 define a compile-time analysis and annota-
tion phase implementing the judgment e = e′ : τ , with τ ∈
{atom, list}, to infer the representation required for normal-
ized LINQ expression e.

(Un)Boxing. The annotation phase yields the augmented
expression tree e′ in which the Box() and UnBox() pseudo
SQOs identify those sub-expressions that require a change
of non-parametric value representation:
Box(), Rule 2 of Figure 5: If the result of a list-typed ex-

pression e1 (or e2) is to be embedded in a tuple, Box()
instructs the compiler to fork the compilation process:
a separate query is emitted that will compute the re-
lational representation of e1 (e2). The resulting table
will carry a nest column whose surrogates allow to refer
to the nested results. Section 4 discusses the relational
implementation of Box() and UnBox().

UnBox(), Rule 8: If the method signature of SQO f indi-
cates that the individual elements of a boxed argument
list ei (2 6 i 6 n) are required to compute f , UnBox()
triggers the compiler to dereference the surrogates and
emit a foreign key join to access the nested elements
of ei.

Figure 3 shows the expression tree of Program P after aug-
mentation with Box() and UnBox().

Types exclusively determine query forks. Observe that it is
exclusively the number of list constructors [·] in the query’s
result type that determines the forks and thus number of
queries contained in the emitted relational query bundle.
For Program P and its result type

[(int, decimal, [int])] ,

the bundle size thus is 2 (peek forward at Figure 8 where
the single fork is clearly visible). This is radically different
from the .NET-enclosed LINQ to SQL provider which may
yield sequences of SQL statements whose size is dependent
on the size of the queried database instance, resulting in the
severe query avalanche issue explained in Section 1. Un-
der Ferry’s particular approach to nesting, even LINQ pro-
grams yielding complex nested results will lead to a tractable
and statically predictable number of queries. Section 5 quan-
tifies the significant performance impact of this compilation
technique.
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e = e′ : atom

e.n = e′.n : atom
(1)

ei = e′i : τi i=1,2

(e1,e2) = (oτ1atom (e′1),oτ2atom (e′2)) : atom
(2)

v = v : atom
(3)

e = e′ : τ

(v1,...,vn) => e = (v1,...,vn) => e
′ : τ

(4)

tableR (c1,...,cn)
with key (k1,...,km)

=
tableR (c1,...,cn)
with key (k1,...,km)

: list

(5)

e = e′ : atom

(t)e = (t)e′ : atom
(6)

ei = e′i : atom i=1,2 ∗ ∈ {+, =, and, ...}
e1 ∗ e2 = e′1 ∗ e′2 : atom

(7)

ei = e′i : τi i=1,2 f :: (t1, ... , tn) � tn+1

e1.f(e2,...,en) =
oτ1
τ(t1)

(e′1).f(oτ2
τ(t2)

(e′2),...,oτn
τ(tn)

(e′n)) : τ(tn+1)

(8)

Figure 5: Inference of atom/list type annotations (non-
parametric value representation).

τ([t]) = list
τ((t1, ... , tn) � tn+1) = τ(tn+1)

τ(t) = atom

oττ (e) = e
oστ ((v1,...,vn) => e) = (v1,...,vn) =>oστ (e)

olist
atom (e) = e.Box()

oatom
list (e) = e.UnBox()

Figure 6: oσ
τ (e) introduces Box() or UnBox() if the actual (σ)

and required (τ) non-parametric representations of e diverge.

4. AN ALGEBRAIC LINQ COMPILER
The inference rules of Figure 7 devise a compositional al-

gebraic compilation scheme for LINQ. The compiler’s tar-
get language is a table algebra (see Table 1) whose opera-
tors have been designed to match the capabilities of mod-
ern SQL:1999 query processors. Featured operators include
base table access ( ), duplicate-preserving projection (π),
selection (σ), cross product and join, (×, 1), and grouped
aggregation (agg). Duplicate rows are also preserved by
·∪, \ and are only eliminated by an explicit δ. Operators
@, cast, �, and % attach a new column to their input ta-
ble. In particular, row ranking % is used to correctly en-
code list order and to produce surrogates (see the discus-
sion of columns pos and nest in Section 3): %a:〈b1,...,bn〉/c at-

Operator Semantics

πa1:b1,...,an:bn project onto columns bi, rename bi into ai
σp select rows satisfying predicate p
× Cartesian product
1a1,...,an natural join on columns a1, . . . , an
1p join with predicate p
δ eliminate duplicate rows
·∪ disjoint union
\ difference

@a:v attach constant value v in column a
casta:(t)b attach value of b casted to type t in a
�a:〈b1,...,bn〉 attach result of application ∗(b1, . . . , bn) in a
%a:〈b1,...,bn〉/c group by c, attach row rank (in bi order) in a
agga:〈b〉/c group by c, compute aggregate of b in a

R read from database-resident table R
a b c literal table with columns a, b, c

Table 1: Intermediate table algebra (with n-ary operator ∗ ∈
{+, =, and, . . . } and agg ∈ {count,max,min, . . . }).

taches dense ranks (1, 2, . . . ) inside each c-group in the order
given by columns b1, ... , bn. Operator % thus exactly mimics
SQL:1999’s DENSE_RANK function.

Comprehensions and bulk-oriented evaluation. Relational
query processors are specialists in bulk-oriented evaluation:
in this mode of evaluation, the system applies an opera-
tion to all rows in a given table. In absence of inter-row
dependencies, the system may process the individual rows
in any order or even in parallel. To actually operate the
database back-end in this bulk-oriented fashion, the com-
piler draws the necessary amount of independent work from
LINQ’s comprehensions. The query comprehension

[x1,. . .,xn].Select (v => e) = [e [x1/v],. . .,e [xn/v]]

performs n independent evaluations of expression e under
different bindings of v (e [x/y] denotes the consistent replace-
ment of free occurrences of y in e by x). The compiler ex-
ploits these semantics and applies a translation technique,
coined loop lifting [10], that compiles the comprehension into

an algebraic plan that receives the representation of
[x1,. . .,xn] to produce a single table containing the repre-
sentations of e [xi/v] (i = 1, . . . , n), i.e., for all iterations.

A dedicated iter column in the produced table is used to tell
the individual iterations apart. Loop lifting fully realizes the
independence of the iterated evaluations and enables the re-
lational query engine to take advantage of its bulk-oriented
processing paradigm: the results of the individual evalua-
tions of e may be produced in any order (or in parallel).

Here, we adopt and adapt loop lifting—which originally
had been designed to compile XQuery’s flwor construct [10],
yet a different incarnation of (flat) comprehensions—to cope
with LINQ’s nested data model and the family of SQOs.

Loop lifting for LINQ. The rule set of Figure 7 collectively
defines the “compiles to” (V̀) relation via judgment

Γ; loop ` e V̀ (q, cs, ts)

which compiles LINQ expression e into the algebraic plan
fragment q. The compiler maintains the following central
invariant: if e is of type [(t1, . . . , tn)], plan q will produce a
table with schema iter|pos|cs (with cs = item1| . . . |itemn) of
2 + n columns in which
(1) columns iter, pos contain information about iteration

and list order (see Section 3), and
(2) column itemi contains the values occurring in the ith

tuple position. If ti is a list type [si ], then itemi will be
a column of surrogate values. In this case, the mapping
ts will contain an entry itemi 7� (qi, csi, tsi), i.e., featur-
ing a forked algebraic plan qi that will compute the list
contents.

Compilation Rule 17 for the pseudo SQO Box() establishes
surrogates in column c, populates mapping ts accordingly,
and thus implements the query plan forking explained in Sec-
tion 3. Rule 18, defining the behavior of UnBox(), reverses
the effect of Box() via a surrogate-based equi-join. We thus
have e.Box().UnBox() = e, as expected.

Rule 7 compiles the comprehension e1.Select (v => e2)
and thus forms the core of the LINQ compiler. Indeed, the
compilation of other SQOs (e.g., Sum, SelectMany, Where,
GroupBy) is defined in terms of Select. Paragraph 2 (Ap-
pendix) discusses additional SQOs and their loop-lifted im-
plementation. Here we point out the following:
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Γ; loop ` e V̀ (q, [c1, c2, ... , cn, ...], ts)

Γ; loop ` e.n V̀(
πiter,pos,cn (q), [cn],

[
{cn 7� (qn, csn, tsn)} if cn 7� (qn, csn, tsn) ∈ ts
∅ otherwise

) (1)

Γ; loop ` ei V̀ (qi, csi, tsi) i=1,2

q ≡ @pos:1
(
πiter,cs1‖cs2 (q1 1iter q2)

)
Γ; loop ` (e1,e2) V̀ (q, cs1‖cs2, ts1‖ts2)

(2)

Γ(v) = (q, cs, ts)

Γ; loop ` v V̀ (q, cs, ts)
(3)

Γ; loop ` tableR (c1,...,cn)
with key (ck1,...,ckm)

V̀(
loop × %pos:〈ck1

,...,ckm 〉
( R), [c1, ... , cn],∅

)
(4)

Γ; loop ` e V̀ (q, [c],∅)
q0 ≡ πiter,pos,c:c′ (castc′:(t)c (q))

Γ; loop ` (t)e V̀ (q0, [c],∅)
(5)

∗ ∈ {+, -, *, /, =, <, and, or, ...}
Γ; loop ` ei V̀ (qi, [ci],∅) i=1,2

q ≡ πiter,pos,c:val
(
�val:〈c1,c2〉(q1 1iter q2)

)
Γ; loop ` e1 ∗ e2 V̀ (q, [c],∅)

(6)

{... , x 7� (qx, csx, tsx) , ...}; loop ` e1 V̀ (q1, cs1, ts1)
qv ≡ %inner:〈iter,pos〉(q1) map ≡ πiter,inner(qv) loopv ≡ πiter:inner(map)

Γlift ≡ {... , x 7�
(
πiter:inner,pos,csx (qx 1iter map), csx, tsx

)
, ...}

Γlift + {v 7�
(
@pos:1(πiter:inner,cs1 (qv)), cs1, ts1

)
}; loopv ` e2 V̀ (q2, cs2, ts2)

{... , x 7� (qx, csx, tsx) , ...}; loop ` e1.Select(v => e2) V̀(
πiter,pos,cs2 (%pos:〈inner〉/iter(πinner:iter,cs2 (q2) 1inner map)), cs2, ts2

) (7)

Γ; loop ` e1.Select(v => e2) V̀ (q1, [c],∅)
q2 ≡ sumc:〈c〉/iter(q1) q0 ≡ @c:0 (loop \ πiter(q2))

Γ; loop ` e1.Sum(v => e2) V̀ (@pos:1(q0 ·∪ q2), [c],∅)
(8)

Γ; loop ` e1.Select(v1 => e2.Select(v3 => e3 [v1/v2])) V̀ (q, cs, ts)

Γ; loop ` e1.SelectMany(v1 => e2,(v2,v3) => e3) V̀ (q, cs, ts)
(9)

Γ; loop ` e1 V̀ (q1, cs1, ts1) Γ; loop ` e1.Select(v => e2) V̀ (q2, [c],∅)

q ≡ πiter,pos:pos0,cs1
(
%pos0:〈pos〉/iter

(
q1 1iter,pos πiter,pos(σc(q2))

))
Γ; loop ` e1.Where(v => e2) V̀ (q, cs1, ts1)

(10)

Γ; loop ` e1.Select(v1 => e2) V̀ (q1, cs1,∅) Γ; loop ` e1.Select(v2 => e3) V̀ (q2, cs2, ts2)

qg ≡ πiter,pos,cs1,g
(
%g:〈iter,cs1〉(q1)

)
qi ≡ πiter:g,pos:pos0,cs2

(
%pos0:〈pos〉/g(q2 1iter,pos πiter,pos,g(qg))

)
Γ; loop ` e1.GroupBy(v1 => e2,v2 => e3) V̀

(
%pos:〈g〉/iter

(
δ(πiter,cs1,g(qg))

)
, [cs1, g], {g 7� (qi, cs2, ts2)}

) (11)

q0 ≡ loop × @pos:1 (πhid (σname=name∧kind=DOC( XMLdocs)))

Γ; loop ` XElement.Load(name) V̀ (q0, [hid],∅)
(12)

Γ; loop ` e V̀ (q, [c],∅)
q0 ≡ πiter,pos,value ( XMLdocs 1hid=c q)

Γ; loop ` e.Value V̀ (q0, [value],∅)
(13)

Γ; loop ` e V̀ (q, [c],∅)

Γ; loop ` e.Descendants(name) V̀
(
%pos:〈hid〉/iter

(
πiter,hid ((σname=name∧kind=ELEM( XMLdocs)) 1hidDescOf c q)

)
, [hid],∅

) (14)

Γ; loop ` e V̀ (q, [c],∅)

Γ; loop ` e.Element(name) V̀
(
σpos=1

(
%pos:〈hid〉/iter

(
πiter,hid ((σname=name∧kind=ELEM( XMLdocs)) 1hidChildOf c q)

))
, [hid],∅

) (15)

Γ; loop ` e V̀ (q, [c],∅)

Γ; loop ` e.Attribute(name) V̀
(
σpos=1

(
%pos:〈hid〉/iter

(
πiter,hid ((σname=name∧kind=ATTR( XMLdocs)) 1hidChildOf c q)

))
, [hid],∅

) (16)

Γ; loop ` e V̀ (q, cs, ts)

Γ; loop ` e.Box() V̀
(
@pos:1(πiter,c:iter(loop)), [c], {c 7� (q, cs, ts)}

) (17)

Γ; loop ` e V̀ (q, [c], {c 7� (qc, csc, tsc)})
q0 ≡ πiter:iter0,pos,csc (πiter0:iter,iter:c(q) 1iter qc)

Γ; loop ` e.UnBox() V̀ (q0, csc, tsc)
(18)

Figure 7: Inference rules defining the algebraic compiler for basic LINQ expressions (Rules 1–6), SQOs (Rules 7–11), LINQ to
XML methods (Rules 12–16), and (un)boxing (Rules 17–18). ‖ denotes list concatenation (see Rule 2).

• Rule 4 reads base table R and then derives a default
ordering in column pos based on R’s keys.
• Rules 14–16 use join predicates (e.g., ChildOf) de-

fined on XML node identifiers to implement the XPath-
style navigation embodied by the LINQ to XML meth-
ods Descendants, Element, and Attribute. The rules
use % to derive list order (pos) from XML document
order (hid) as required by the LINQ to XML seman-
tics.

The algebraic plan bundle—comprised of q and the entries in
ts—for LINQ program e is obtained through the evaluation

of ∅;
iter
1 ` e V̀ (q, cs, ts). In the case of Program P , this

leads to a trace of rule applications reviewed in Paragraph 3
(Appendix). In Paragraph 4 (Appendix) and [10, Section 4],

we elaborate on the general loop-lifting technique—including
the roles of Γ and the loop table.

With loop lifting, the complete family of LINQ SQOs comes
into reach of database-supported execution. In the absence
of a runtime-accessible encoding of order, the .NET LINQ
providers either (1) compile order-sensitive SQOs into un-
ordered substitute operations (Concat is translated into a
SQL UNION ALL while Take turns into SELECT TOP(·) over an
arbitrarily ordered table, for example), (2) resort to only
partially implement the SQO semantics (e.g., Concat and
Union accept flat lists only), or (3) flag these SQOs as be-
ing unsupported. Table 2 summarizes the levels of SQO
support in the Ferry-based as well as the .NET-supplied
LINQ providers.
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Ferry Standard Query Operators .NET

faithful



Aggregate, All, Any, Average, Count,
Contains, Distinct, Except,
Intersect, GroupBy, GroupJoin, Join,
Max, Min, OrderBy[Descending],
ThenBy[Descending], Select(v => ...),
SelectMany(v => ...), SequenceEqual,
Single[OrDefault], Sum, Where(v => ...),


faithful

partialConcat, First[OrDefault],
Skip, Take, Union

ElementAt[OrDefault], Last[OrDefault],
Reverse, Select((v,p) => ...),
SelectMany((v,p) => ...), SkipWhile,
TakeWhile, Where((v,p) => ...)), Zip

none

Table 2: Levels of database support for the SQO family in
the Ferry-based and .NET-supplied LINQ providers.

orderkey,
item2:res1,
item3:orderkey
order by orderkey

Q0

orderkey,
partkey
order by orderkey,

hid,
linenumber

Q1
sumres1:〈res〉/orderkey

�res:〈extendedprice,value〉

πorderkey,
extendedprice,value

castvalue:(dec)value3

1
hid3 ChildOf hid

πhid3:hid,
value3:value

σkind=ELEM∧
name=’price’

XMLdocs

1
partkey=value

Lineitem πhid,value

castvalue:(int)value2

1
hid2 ChildOf hid1

πhid2:hid,
value2:value

σkind=ATTR∧
name=’item’

XMLdocs

1
hid1 ChildOf hid

πhid1:hid

σkind=ELEM∧
name=’itemref’

XMLdocs

1
hidDescOf hid0

πhid

σkind=ELEM∧
name=’closed_auction’

XMLdocs

πhid0:hid

σkind=DOC∧
name=’auction.xml’

XMLdocs

Figure 8: Optimized algebraic plan bundle Q0,1 implement-
ing Program P .

5. (PARTIAL) BUNDLE EXECUTION
Compiling Program P yields an initial algebraic query

plan of about 150 operators. The plan features two roots,
representing the outer list nesting level of the query result
(Q0) and the inner lists of partkeys (Q1), respectively. At
this point we are able to reuse proven query optimization
and SQL:1999 code generation infrastructure: the Ferry-
based LINQ provider shares its table algebra dialect with
Pathfinder [7, 10], a purely relational compiler for XQue-
ry. Pathfinder’s optimizer is prepared to cope with query
plans of the indicated size. Extensive data-flow analysis and
operator property annotation—mainly based on properties
like functional dependencies or column usage—is followed
by a peephole-style plan simplification phase. In particular,
maintenance of pos columns and associated % operators are
removed if the source program semantics does not depend
on list order. The optimizer typically achieves a significant

Q1
orderkeypartkey

: :
@12 34
@12 58
@13 17
@13 25
@13 62

: :

Q0
orderkey item2 item3

: : :
12 305.52 @12
13 672.30 @13
: : :

Figure 9: Tabular result bundle for Program P .

plan size reduction and aims to reshape the final plan to
facilitate the subsequent SQL:1999 code generation [8].

Figure 8 depicts the optimized algebraic plan bundle (of
< 30 operators), exhibiting the two plan roots ( ) that re-
sult from query plan forking (Sections 3 and 4). The plan
roots are fed into Pathfinder’s SQL:1999 code generator
which applies a greedy strategy to derive a sequence of SQL
statements—assembled to form a SQL common table expres-
sion (WITH · · ·)—that collectively implement the input plan.
The final emitted SQL:1999 code for plans Q0 and Q1 is to
be found in Paragraph 5 (Appendix). Pathfinder has ma-
tured over the last seven years and has shown its capability
to compile functional, LINQ-style languages [9]. Compiler,
optimizer, and code generator are available in open source
form [20].

The evaluation of the SQL code for Q0 and Q1 yields two
tabular results as depicted in Figure 9. This table bundle
holds Program P ’s result (see Paragraph 1 (Appendix)) ac-
cording to the representation introduced in Section 3. The
table schemata slightly deviate from the compiler’s default
iter|pos|item1| · · · : the optimizer succeeded in identifying
columns other than the dedicated iter, pos to faithfully rep-
resent iteration and list order, respectively (see the order
by annotations attached to the plan roots in Figure 8).

Parallelism and partial instantiation. Recall that query fork-
ing yields a bundle of independent queries. The back-end
may thus execute the SQL queries of a bundle in any or-
der it sees fit or, possibly, concurrently. This is in contrast
to the avalanche of queries generated by the current .NET
providers: in this case, the LINQ to XML provider iter-
atively invokes LINQ to SQL and thus effectively controls
time and sequence of query submission. The LINQ to XML
provider only resumes execution once SQL query evaluation
completes.

Finally, query independence enables partial object instan-
tiation. The contents of table Q0 (Figure 9) on its own al-
ready permit the instantiation of C# objects of the form
new { order = o, gain = g, partkeys =© }. Here, © repre-
sents a “hole”, i.e., a C# method to be executed once the
partkeys field is actually accessed—only then would query
Q1 be submitted for execution by the database back-end.

6. IN THE LAB WITH THE BACK-ENDS
Loop lifting and avalanche safety promise a significant

runtime impact that we try to quantify here. To this end, we
married the well-known TPC-H [23] and XMark [19] bench-
mark data sets (Paragraph 1 (Appendix)) such that ≈ 48 %
of all TPC-H line items find a matching auction item in the
companion XMark document. We considered four different
scale factors of these data sets, ranging from a total of 2 MB
to 2 GB of data. The experiments were conducted under
.NET Framework 4, hosted on a 2.66 GHz Intel Core 2 Duo
computer with 3 GB of RAM (running Windows XP Profes-
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Scale Factor .NET LINQ Ferry-based LINQ
(data set size) SQL Server SQL Server RDBMSX

XMark TPC-H # queries � (sec) # queries � (sec) � (sec)

0.01 (1.1MB) 0.001 (1.0MB) 97 1.828 2 0.156 0.125
0.1 (11MB) 0.01 (10MB) 975 157.053 2 0.453 0.790

1 (110MB) 0.1 (100MB) 9 750 dnf 2 4.246 6.318
10 (1.1GB) 1 (1.0GB) (97 500) oom 2 40.106 86.420

Table 3: Number of SQL queries emitted by the LINQ providers and observed wall-clock execution times, average of 10 runs
(dnf: did not finish within hours, oom: raises out of memory exception).

sional SP3). Microsoft SQL Server 2008 Enterprise was the
primary database back-end.

We compiled Program P via the .NET-supplied as well as
the Ferry-based LINQ providers and exposed SQL Server’s
Index Tuning Wizard to the resulting query workload. The
proposed indexes were created, among these (1) a (partkey,
orderkey) B-tree index on table Lineitem in-lining column
extendedprice on the leaf level, and (2) a (name, kind) index
on table XMLdocs in-lining column hid in the index leaves.

The observed wall-clock query execution times are summa-
rized in Table 3. Nature and number of the SQL queries
emitted by both providers have been monitored using the
SQL Server Profiler. Almost identical behavior—in terms of
query nature and number—is shown by LINQ to SQL and
LINQ to Entities.

As anticipated, the query avalanche effect quickly over-
whelms the relational back-end. With the .NET LINQ to
XML provider in charge of the outer comprehension (line 2
in Figure 3), the LINQ to SQL provider is iteratively invoked
to query table Lineitem (one invocation per closed_auction
XML elements produced by the outer comprehension). Al-
ready for a medium scale factor and the associated 9 750 in-
vocations, the query evaluation effort and expensive context
switches between the involved LINQ providers add up to
work that cannot be finished within hours (dnf in Table 3).

In contrast, the Ferry-based provider is unaffected by the
asymmetry induced by the SQO call chain (recall Figure 1):
with the entire LINQ program compiled into database-exec-
utable code, exactly two queries (Paragraph 5 (Appendix))
are shipped for evaluation by the back-end RDBMS . The
number of queries issued remains constant with changing
database instance size and can indeed be forecasted exactly
by static type analysis—no query avalanche is set off.

Let us note that we consider issues of in-heap vs. database-
supported XML processing secondary to the principal ava-
lanche-safety goal.2 Rules 12–16 (Figure 7) which compile
LINQ to XML’s methods, depend just as little on an ORD-
PATH-based node encoding as Ferry’s SQL output is tied to
run on SQL Server. Any SQL:1999-capable query engine us-
ing a faithful XML infoset representation and processor—be
it native or relational—should make for an acceptable back-
end. To make this point, we picked a different relational
database system (coined “RDBMSX ”) off the shelf and
used preorder ranking to encode the XMark XML instances
(see Table 6; the predicates ChildOf, DescOf are easily
adapted [10]). The rightmost column of Table 3 attests that
we obtain a setup exhibiting avalanche safety along with the
same beneficial performance characteristics.

2In fact, query avalanches may also hit programs that speak
a single non-XML LINQ dialect only—the phenomenon is
showcased in Paragraph 6 (Appendix).

7. RELATED WORK
The community’s legitimate interest in the LINQ techno-

logy [2,21] is a continuation of the now decades-old search for
a true amalgam of database queries and programming lan-
guages. With its comprehension-based, principled approach
to iteration, LINQ lends itself to a formal approach to trans-
lation [3] and optimization. This marks an interesting spot
on the long route that led from Pascal/R in the late 1970s,
over relational approaches to program optimization [12], to
today’s language-integrated database abstractions like the
ActiveRecord component of Ruby on Rails.

Microsoft further develops the LINQ idea towards LRX—
LINQ over Relations and XML—in which a user-definable
mapping from XML Schema to tables derives a tailored re-
lational representation for a given XML instance [22]. In ad-
dition to table columns of atomic type, this representation
will typically contain literal XML fragments, i.e., columns of
type XML, to (1) facilitate a full-fidelity re-serialization of the
stored XML instance and (2) to allow the use of XPath or
XQuery-specific operations that could not be evaluated over
LRX’s tabular XML representation alone (e.g., descendant
location steps). LRX translates incoming LINQ queries into
a mix of SQL and embedded calls to Microsoft SQL Server’s
built-in XQuery engine.

In the light of LRX, the Ferry-based LINQ provider
follows a somewhat more elementary approach: we define
purely relational encodings of the LINQ data model and its
operations (SQOs) and thus bring a wider range of LINQ
constructs into the reach of the SQL query processor. This
significantly reduces the number of context switches between
SQL, XML, and in-heap processing phases. Further, the
unified relational approach enables a whole-LINQ-program
analysis and optimization that can reason over relational
and XML-related program parts alike; this has been identi-
fied as an open future work item in [22].

The introduction of Box() and UnBox() by the compiler
(Section 3) is inspired by techniques originally invented for
the optimized representation of values of polymorphic type
in programming languages [15]. Here, we let Box() control
the forking of the compilation process that emits bundles
of SQL queries. There is a correspondence with the opera-
tors ν/µ (or nest/unnest) introduced in the context of NF2

databases [6,18]. However, operators ν/µ unfold their effect
at runtime when a query is evaluated over a nested database,
while Box()/UnBox() are compile-time concepts that guide
code generation for a 1NF relational database system.

Our use of the surrogates @i resembles an ordered vari-
ant of van den Bussche’s approach to the simulation of the
nested algebra via the flat relational algebra [24]. While the
simulation derives variable-width keys from the data itself,
we employ compact %-generated surrogates—the former ap-
proach would seamlessly plug into the present framework.
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8. WRAP-UP
The present work describes the construction of an alter-

native LINQ query provider whose primary aim is to yield
a faithful and efficient relational account of both, the static
and the dynamic aspects of the LINQ data model. We saw
that the LINQ semantics may be understood in terms of
(1) tabular encodings of nested, ordered lists, records, as
well as XML nodes, and (2) an algebraic compiler that can
translate programs—built using the large family of LINQ
standard query operators—into bundles of independent re-
lational queries. This translation is true to the SQO seman-
tics and does not forfeit operator characteristics (e.g., the
dependence on or the preservation of order).

The Ferry-based LINQ provider employs a compilation
technique that embraces LINQ dialects over tabular as well
as XML data. This uniformity overcomes provider asymme-
try issues, one cause of iterative provider invocation (query
avalanches), leading to an inefficient serial query-after-query
mode of execution.

The algebraic LINQ compiler builds on a combination
of loop lifting and non-parametric value representations to
emit query bundles whose size is only dependent on the re-
sult type of the compiled program.

Work in flux. Beyond querying, a complete LINQ provider
facilitates object updates. Support for the required update
tracking in Ferry currently lies on the workbench.

As of today, Ferry’s optimizer turns to the constituent
queries of a bundle in isolation. Although this already goes
a long way in removing obsolete plan fragments (order main-
tenance, in particular), a whole-bundle view of optimization
clearly will further improve code quality. This relates to
sharing as well as the reuse of existing table columns as
surrogates (@i).

The algebraic compiler of Figure 7 is not particularly tied
to the specifics of LINQ. Its design is sufficiently generic to
allow adaptations that support similar language-integrated
query facilities. We develop a Ruby-based variant of Ferry
that will significantly extend the limits of database sup-
port currently available in ActiveRecord and its successor
ARel in the upcoming Ruby on Rails 3.0. We further in-
ject Ferry into the functional Links [5] multi-tiered pro-
gramming framework. This work will also serve as a play-
ground to experiment with true support for higher-order
functions [17] in Ferry.
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1 from auction in XElement.Load("auction.xml")
2 .Descendants("closed_auction")
3 from li in db.GetTable<Lineitem>()
4 where (int)auction.Element("itemref").Attribute("item") ==
5 li.partkey
6 group new { partkey = li.partkey,
7 diff = li.extendedprice -
8 (decimal)auction.Element("price") }
9 by li.orderkey into g

10 select new { order = g.Key,
11 gain = g.Sum(t => t.diff),
12 partkeys = g.Select(t => t.partkey) }

Figure 10: Program P expressed in the user-facing LINQ
query syntax. The C# compiler converts this form into
an expression tree of chained SQO invocations (shown in
Figure 1).

Lineitem
orderkey partkey extendedprice shipmode

: : : :
12 34 240.73 RAIL
12 58 187.00 SHIP
13 17 312.42 TRUCK
13 25 389.99 RAIL
13 62 246.50 SHIP
: : : :

Table 4: Sample of a TPC-H Lineitem table [23].

<closed_auctions>
<closed_auction>

<itemref item="34"/>
<price>122.21</price>

...
</closed_auction>

...
</closed_auctions>

Figure 11: Excerpt of XMark [19]
XML instance auction.xml.

XMLdocs
hid kind name value
: : : :

/1/1/6 ELEM closed_auctions "122.21..."
/1/1/6/1 ELEM closed_auction "122.21..."
/1/1/6/1/1 ELEM itemref ""
/1/1/6/1/1/1 ATTR item "34"
/1/1/6/1/2 ELEM price "122.21"
/1/1/6/1/2/1 TEXT − "122.21"

: : : :

Table 5: XML infoset encoding: ORDPATH iden-
tifiers [16] in column hid.

XMLdocs
pre size level kind
: : : :

812 96 2 ELEM
813 31 3 ELEM
814 1 4 ELEM
815 0 5 ATTR
816 1 4 ELEM
817 0 5 TEXT

: : : :

Table 6: XML infoset encoding:
preorder ranks [10].

Γ; loop ` e V̀ (q, cs, ts)
q0 ≡ πiter,pos:pos0,cs

(
%pos0:〈−pos〉/iter(q)

)
Γ; loop ` e.Reverse() V̀ (q0, cs, ts)

(19)

Γ; loop ` e1 V̀ (q2, cs2, ts2)
Γ; loop ` e2 V̀ (q1, [c],∅)

q0 ≡ πiter,pos,cs2
(
σpos6c(q1 1iter πiter,c(q2))

)
Γ; loop ` e1.Take(e2) V̀ (q0, cs, ts)

(20)

{... , x 7� (qx, csx, tsx) , ...}; loop ` ei V̀ (qi, csi, tsi) i=1,2

q ≡ πiter,pos,cs1‖cs2
(
q1 1iter,pos q2

)
qv ≡ %inner:〈iter,pos〉(q) map ≡ πiter,inner(qv) loopv ≡ πiter:inner(map)

qv1 ≡ @pos:1(πiter:inner,cs1 (qv)) qv2 ≡ @pos:1(πiter:inner,cs2 (qv))
Γlift ≡ {... , x 7�

(
πiter:inner,pos,csx (qx 1iter map), csx, tsx

)
, ...}

Γlift + {v1 7� (qv1 , cs1, ts1) , v2 7� (qv2 , cs2, ts2)}; loopv ` e3 V̀ (q3, cs3, ts3)

{... , x 7� (qx, csx, tsx) , ...}; loop ` e1.Zip(e2,(v1,v2) => e3) V̀(
πiter,pos,cs3 (%pos:〈inner〉/iter(πinner:iter,cs3 (q3) 1inner map)), cs3, ts3

) (21)

Figure 12: Extension of the algebraic LINQ compiler of Figure 7: implementations of the order-sensitive SQOs Reverse, Take,
and Zip.

APPENDIX

1 A marriage of TPC-H and XMark. What do you gain if
you bid for selected items on an Internet auction site instead
of ordering them from your usual supplier? The sample
LINQ Program P of Figure 10 tries to answer this question
by joining TPC-H table Lineitem with XMark auction data
(samples shown in Table 4 and Figure 11). To facilitate
this marriage, we made sure that selected Lineitem.partkeys
and XMark @item attributes can match: in the XMark
data, we removed the "item" prefix in @item attribute val-
ues (e.g., "item34" → "34") to facilitate the comparison
with TPC-H’s integer partkeys. While TPC-H tables live
in a relational database by default, we further populated
the database with table XMLdocs, containing the relational
XML infoset encoding of XMark instances (Figure 11). Ta-
bles 5 and 6 show equivalent samples of two such encodings,
one based on ORDPATH-style hierarchical identifiers [16]
as provided by SQL Server, one based on preorder traversal
ranks [10]. Any other faithful XML infoset encoding would
do, however (see Section 6).

The program of Figure 10 has been formulated in the
user-facing LINQ query syntax which, most notably, features
the from-in-where-select comprehension construct. Before

the LINQ provider takes over, the C# compiler turns the
query syntax into expression trees of chained invocations of
Standard Query Operators (also referred to as method syn-
tax, shown in Figure 1). Based on the table data of Ta-
bles 4 and 5, Program P will compute a result of type
[(int, decimal, [int])]:

[. . . (12, 305.52, [34, 58]),
(13, 672.30, [17, 52, 62]), . . . ]

(read: for order 12 with parts 34 and 58, bidding on the
auction site will yield a gain of 305.52).

2 Faithful loop-lifted implementations of LINQ’s Reverse,
Take, and Zip SQOs. The inference Rules 19–21 of Figure 12
plug into the algebraic LINQ compiler introduced in Sec-
tion 4 and add faithful support for the order-sensitive SQOs
Reverse, Take, and Zip. Analogous compilation rules for
ElementAt, First, and Skip follow immediately from Rule 20
(Take) if the positional predicate pos 6 c is adapted accord-
ingly.

The Zip SQO has been added with the C# 4.0 release:
e1.Zip(e2, (v1,v2) => e3) moves and applies the anonymous
“slider” function (v1,v2) => e3 over its input lists and effec-
tively performs a positional join of e1,2. This is directly
reflected by the join 1iter,pos in Rule 21.
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Figure 13: Inference rule applications traced while compiling
the LINQ program of Figure 3 (read from top to bottom:
Rule 7 is applied first). 17 marks the application of the
Box() rule.
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Figure 14: Unoptimized query plan and inference rule ap-
plication trace for the simple query (table R(a,b) with

key(a)).Select(x => x.1 + x.2). Table annotations indi-
cate intermediate results for subexpressions of the query.

3 Rule trace. Figure 13 traces all rule invocations per-
formed while compiling Program P . The trace nodes re-
fer to the compilation rules of Figure 7. The compiler ini-
tially invokes Rule 7 of Figure 7 to translate the outermost
Select and then recursively applies rules to compile sub-
expressions. The algebraic plan is synthesized in a bottom-
up fashion. When Box() is compiled via Rule 17, the com-
piler forks the compilation process once, leading to a plan
bundle of two algebraic queries (Q0,1 in Figure 8).

4 Loop-Lifted Compilation. We use the simple example ex-
pression

(table R(a,b) with key(a)).Select(x => x.1 + x.2) ,

its expression tree and the annotated inference rule trace in
Figure 14 to provide an intuition of loop-lifting.

Starting with an empty variable environment Γ and a sin-

gleton table loop ≡ iter
1 , the compiler invokes Rule 7 (re-

fer to the compilation rules of Figure 7). The antecedent
of Rule 7 invokes Rule 4 to initiate the compilation of the
Select SQO’s binding expression table R(a,b) with key(a).
This binding expression is of type [(int, int)]. Maintaining
the central compiler invariant (see Section 4), Rule 4 emits
a piece of algebraic plan code that evaluates to a table with
schema iter|pos|a|b of 2 + 2 columns in which columns iter
and pos contain information about iteration and list order
(see Section 3), and columns a and b carry the actual con-
tents of the rows in R (see table R in Figure 14). Observe
how (1) iteration order is determined by the current loop re-
lation, and (2) list order is derived from the keys of table R.
The binding subexpresssion table R(a,b) with key(a) is
to be evaluated once only. The second row 〈1, 2, 20, 40〉
in table R thus is to be interpreted as “in the first (and
only) evaluation of this expression, the value at the second
list position is (20,40)”.

From table R, Rule 7 derives a sequence of (two) bind-
ings for the Select SQO’s bound variable x (see query plan
section x and the resulting table x in Figure 14). The
Select’s body expression x.1 + x.2 is evaluated two times,
once for each such binding of variable x (column iter ∈
{1, 2} in table x). table x serves as a representation of
the bindings of x and is inserted into variable environment Γ
by Rule 7. This environment is later consulted by Rule 3 to
resolve variable references.

The body expression x.1 + x.2, an application of the bi-
nary operator +, is compiled under the control of Rule 6.
The antecedent of this rule recursively compiles the two ar-
guments, both of which are positional field accesses (handled
by Rule 1; see the two plan sections marked 1 in Figure 14).
Before the actual arithmetics via operator ⊕ is performed in
plan section 6, an equi-join on column iter merges the two
tables x.1 and x.2 that carry the arguments of the addi-
tion. Note how the resulting table + represents the result
of the addition for all evaluations of the Select body: in
the second iteration (iter = 2), the result is the int value 60

(= 20 + 40), for example.
Finally, Rule 7 transforms table + into table Select in Fig-

ure 14. While table + encodes the result of the Select SQO’s
body expression, table Select represents the result of the
Select SQO itself: the result is a single list (iter = 1) of
length two (pos ∈ {1, 2}).

5 Final SQL code generator output for Program P . Figures 15
and 16 show the SQL:1999 code that has been generated
from the algebraic query pair Q0,1 of Figure 8. Like Q0,1

themselves, the SQL queries are independent of each other
and permit concurrent execution by the back-end RDBMS.
Executing the code of Figure 15 (i.e., Q0) only admits the
partial instantiation of the resulting C# objects (see Sec-
tion 5).

6 Query avalanches in single-LINQ-dialect programs. The
query avalanche issue may hit programs that exclusively rely
on the .NET LINQ to SQL provider. To see this, consider
the LINQ program of Figure 17 that groups line items by
mode of shipment to prepare delivery. No XML processing
is involved: table Lineitem is the only (tabular) data source
and the program is executed under the control of the LINQ
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1 SELECT doc1.orderkey AS item1,
2 SUM (doc1.extendedprice -
3 CAST (doc6.value as DECIMAL)) AS item2,
4 doc1.orderkey AS item3
5 FROM Lineitem AS doc1,
6 XMLdocs AS doc2, XMLdocs AS doc3,
7 XMLdocs AS doc4, XMLdocs AS doc5,
8 XMLdocs AS doc6
9 WHERE doc2.kind = DOC

10 AND doc2.name = ’auction.xml’
11 AND doc3.kind = ELEM
12 AND doc3.name = ’closed_auction’
13 AND doc3.hid.IsDescendantOf(doc2.hid) = 1
14 AND doc4.kind = ELEM
15 AND doc4.name = ’itemref’
16 AND doc4.hid.GetAncestor(1) = doc3.hid
17 AND doc5.kind = ATTR
18 AND doc5.name = ’item’
19 AND doc5.hid.GetAncestor(1) = doc4.hid
20 AND doc1.partkey = CAST(doc5.value AS INTEGER)
21 AND doc6.kind = ELEM
22 AND doc6.name = ’price’
23 AND doc6.hid.GetAncestor(1) = doc3.hid
24 GROUP BY doc1.orderkey
25 ORDER BY doc1.orderkey ASC;

Figure 15: SQL code generated for query Q0 (Figure 8).

1 SELECT doc1.orderkey AS iter,
2 doc1.partkey AS item1
3 FROM Lineitem AS doc1,
4 XMLdocs AS doc2, XMLdocs AS doc3,
5 XMLdocs AS doc4, XMLdocs AS doc5
6 WHERE doc2.kind = DOC
7 AND doc2.name = ’auction.xml’
8 AND doc3.kind = ELEM
9 AND doc3.name = ’closed_auction’

10 AND doc3.hid.IsDescendantOf(doc2.hid) = 1
11 AND doc4.kind = ELEM
12 AND doc4.name = ’itemref’
13 AND doc4.hid.GetAncestor(1) = doc3.hid
14 AND doc5.kind = ATTR
15 AND doc5.name = ’item’
16 AND doc5.hid.GetAncestor(1) = doc4.hid
17 AND doc1.partkey = CAST(doc5.value AS INTEGER)
18 ORDER BY doc1.orderkey ASC, doc3.hid ASC,
19 doc1.linenumber ASC;

Figure 16: SQL code generated for query Q1 (Figure 8).

to SQL provider.
The provider applies a staged and iterative evaluation

strategy (see Algorithm 1). For n distinct orders, the LINQ
to SQL provider thus submits between 1+2×n and 1+4×n
SQL queries overall.3 The exact number is only determined
at runtime, dependent on the size and value distribution of
the queried TPC-H instance. Note that the SQL queries
in the resulting batch exhibit dependencies: the query of
line 1 and the iterated queries of lines 3, 5 yield parameter
marker bindings required to run subsequent queries. In con-

1 from li in db.GetTable<Lineitem>()
2 group li by li.orderkey into order
3 let shipment = from o in order
4 group new { orderkey = o.orderkey,
5 partkey = o.partkey }
6 by o.shipmode
7 select new {
8 order = order.Key,
9 byrail = shipment.FirstOrDefault(s => s.Key == "RAIL"),

10 byship = shipment.FirstOrDefault(s => s.Key == "SHIP") }

Figure 17: LINQ program: the line items of each order are
grouped by mode of shipment (by rail/by ship).

3The query avalanche phenomenon is an instance of the in-
famous, yet appropriately named 1+n Query Problem that
affects many implementations of object-relational mappers.

1 Query table Lineitem for the set of distinct orders
(assume that this yields n orderkeys). 〈1 query〉

2 For each of these n orders,
3 if the set of line items to be shipped by RAIL is

non-empty then 〈n queries〉
4 retrieve those line items, 〈0 ... n queries〉
5 if the set of line items to be shipped by SHIP is

non-empty then 〈n queries〉
6 retrieve those line items. 〈0 ... n queries〉

Algorithm 1: Iteration in the .NET LINQ to SQL provier.

sequence, the query batch is executed sequentially. Table 7
documents the immense performance impact of these data
dependencies. The figures in this table were obtained using
the experimental setup described in Section 6.

With the Ferry-based provider, the query batch size is
determined at compile-time, reflecting the number of list
type constructors in the program’s result type. Here, this
type reads [(int, (int, [(int, int)]), (int, [(int, int)]))]—or
[[·][·]] if we consider list type constructors only—invariably
yielding a query bundle of size 3 (Table 7). The queries in
this bundle are independent, allowing for the on-demand or
partial instantiation of the query result (Section 5): a C#

program that only consumes the order and byrail record
components, effectively performing a projection on type [[·]],
will execute only 2 of the 3 bundle queries. The current
.NET LINQ to SQL provider still submits the whole batch
in this case.

[ To wrap this discussion up: for the program of Figure 17,
LINQ to Entities crafts a single query of considerable com-
plexity (246 lines of SQL code vs. 8+22+22 lines in Ferry’s
bundle of SQL queries). Nested lists are represented “in-
line” line”, at the price of a wide result schema, data redun-
dancy with respect to the outer nesting level, and ubiquitous
NULL values. (It appears that a variant of this represen-
tation could be obtained from Ferry’s three-queries bun-
dle by a two-way outer-join.) Being monolithic, the LINQ
to Entities-generated SQL query precludes partial instan-
tiation. For a TPC-H instance of factor 0.1 (100 MB), the
query requires 14.124 s to compute the result of the program
of Figure 17. ]

Scale Factor .NET LINQ to SQL Ferry-based LINQ
(# orders) SQL Server SQL Server

TPC-H # queries � (sec) # queries � (sec)

0.001 (1 500) 4 258 4.012 3 0.327
0.01 (15 000) 43 030 364.800 3 0.422
0.1 (150 000) 430 496 > 5 hrs 3 3.100

1 (1 500 000) 4 303 502 dnf 3 55.589

Table 7: Number of SQL queries emitted and observed wall-
clock execution times for the LINQ program of Figure 17
(dnf: did not finish within 24 hours).
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