
Towards Certain Fixes with Editing Rules and Master Data

Wenfei Fan1,2 Jianzhong Li2 Shuai Ma1 Nan Tang1 Wenyuan Yu1

1University of Edinburgh 2Harbin Institute of Technology
{wenfei@inf.,shuai.ma@, ntang@inf., wenyuan.yu@}ed.ac.uk lijzh@hit.edu.cn

Abstract
A variety of integrity constraints have been studied for data
cleaning. While these constraints can detect the presence
of errors, they fall short of guiding us to correct the errors.
Indeed, data repairing based on these constraints may not
find certain fixes that are absolutely correct, and worse, may
introduce new errors when repairing the data. We propose
a method for finding certain fixes, based on master data,
a notion of certain regions, and a class of editing rules. A
certain region is a set of attributes that are assured correct
by the users. Given a certain region and master data, editing
rules tell us what attributes to fix and how to update them.
We show how the method can be used in data monitoring
and enrichment. We develop techniques for reasoning about
editing rules, to decide whether they lead to a unique fix
and whether they are able to fix all the attributes in a tuple,
relative to master data and a certain region. We also provide
an algorithm to identify minimal certain regions, such that
a certain fix is warranted by editing rules and master data
as long as one of the regions is correct. We experimentally
verify the effectiveness and scalability of the algorithm.

1. Introduction
Real-life data is often dirty: 1%–5% of business data con-

tains errors [25]. Dirty data costs us companies alone 600
billion dollars each year [10]. These highlight the need for
data cleaning, to catch and fix errors in the data. Indeed, the
market for data cleaning tools is growing at 17% annually,
way above the 7% average forecast for other it sectors [17].
An important functionality expected from a data cleaning

tool is data monitoring [6, 26]: when a tuple t is created
(either entered manually or generated by some process), it
is to find errors in t and correct the errors. That is, we want
to ensure that t is clean before it is used, to prevent errors
introduced by adding t. As noted by [26], it is far less costly
to correct t at the point of entry than fixing it afterward.
A variety of integrity constraints have been studied for

data cleaning, from traditional constraints (e.g., functional
and inclusion dependencies [4, 8, 30]) to their extensions
(e.g., conditional functional and inclusion dependencies [12,
5, 19]). These constraints help us determine whether data
is dirty or not, i.e., whether errors are present in the data.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 1317,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

However, they fall short of telling us which attributes of t
are erroneous and moreover, how to correct the errors.

Example 1.1: Consider an input tuple t1 given in Fig. 1(a).
It specifies a supplier in the uk: name (fn, ln), phone num-
ber (area code AC and phone phn), address (street str, city,
zip code) and items supplied. Here phn is either home phone
or mobile phone, indicated by type (1 or 2, respectively).

It is known that if AC is 020, city should be Ldn, and
when AC is 131, city must be Edi. These can be expressed as
conditional functional dependencies (cfds [12]). The tuple
t1 is inconsistent: t1[AC] = 020 but t1[city] = Edi.

The cfds detect that either t1[AC] or t1[city] is incorrect.
However, they do not tell us which of the two attributes is
wrong and to what value it should be changed. 2

Several heuristic methods have been studied for repairing
data based on constraints [3, 4, 9, 15, 22, 20]. For the reasons
mentioned above, however, these methods do not guarantee
to find correct fixes in data monitoring; worse still, they
may introduce new errors when trying to repair the data.
For instance, tuple s1 of Fig. 1(b) indicates corrections to
t1. Nevertheless, all of the prior methods may opt to change
t1[city] to Ldn; this does not fix the erroneous t1[AC] and
worse, messes up the correct attribute t1[city].

This motivates the quest for effective methods to find cer-
tain fixes that are guaranteed correct [18, 20]. The need for
this is especially evident in monitoring critical data, in which
an error may have disastrous consequences [20]. To this end
we need editing rules that tell us how to fix errors, i.e., which
attributes are wrong and what values they should take. In
contrast, constraints only detect the presence of errors.

This is possible given the recent development of master
data management (MDM [23]). An enterprise nowadays typ-
ically maintains master data (a.k.a. reference data), a sin-
gle repository of high-quality data that provides various ap-
plications with a synchronized, consistent view of its core
business entities. MDM is being developed by IBM, SAP,
Microsoft and Oracle. In particular, master data has been
explored to provide a data entry solution in the SOA (Service
Oriented Architecture) at IBM [26], for data monitoring.

Example 1.2: A master relation Dm is shown in Fig. 1(b).
Each tuple in Dm specifies a person in the uk in terms of the
name, home phone (Hphn), mobile phone (Mphn), address,
date of birth (DOB) and gender. An example editing rule is:

◦ eR1: for an input tuple t, if there exists a master tuple
s in Dm with s[zip] = t[zip], then t should be updated
by t[AC, str, city] := s[AC, str, city], provided that t[zip]
is certain, i.e., it is assured correct by the user.

This rule makes corrections to attributes t[AC] and t[str], by
taking values from master data s1. Another editing rule is

◦ eR2: if t[type] = 2 (indicating mobile phone) and if
there is a master tuple s with s[Mphn] = t[phn], then

173

fn ln AC phn type str city zip item
t1: Bob Brady 020 079172485 2 501 Elm St. Edi EH7 4AH cd
t2: Robert Brady 131 6884563 1 null Ldn null cd
t3: Robert Brady 020 6884563 1 null null EH7 4AH dvd
t4: Mary Burn 029 9978543 1 null Cad null book

(a) Example input tuples t1 and t2

fn ln AC Hphn Mphn str city zip DOB gender
s1: Robert Brady 131 6884563 079172485 51 Elm Row Edi EH7 4AH 11/11/55 M
s2: Mark Smith 020 6884563 075568485 20 Baker St. Lnd NW1 6XE 25/12/67 M

(b) Example master relation Dm

Figure 1: Example input tuples and master relation

t[FN, LN] := s[FN, LN], as long as t[phn, type] is certain.

This standardizes t1[FN] by changing Bob to Robert.

As another example, consider input tuple t2 given in
Fig. 1(a), in which attributes t2[str, zip] are missing, and
t2[AC] and t2[city] are inconsistent. Consider an editing rule

◦ eR3: if t[type] = 1 (indicating home phone) and if there
exists a master tuple s in Dm such that s[AC, phn] =
t[AC,Hphn], then t[str, city, zip] := s[str, city, zip], pro-
vided that t[type,AC, phn] is certain.

This helps us fix t2[city] and enrich t[str, zip] by taking the
corresponding values from the master tuple s1. 2

Contributions. We propose a method for data monitoring,
by capitalizing on editing rules and master data.

(1) We introduce a class of editing rules defined in terms
of data patterns and updates (Section 2). Given an input
tuple t that matches a pattern, editing rules tell us what at-
tributes of t should be updated and what values from master
data should be assigned to them. In contrast to constraints,
editing rules have a dynamic semantics, and are relative to
master data. All the rules in Example 1.2 can be written as
editing rules, but they are not expressible as constraints.

(2) We identify and study fundamental problems for reason-
ing about editing rules (Section 3). The analyses are relative
to a region (Z, Tc), where Z is a set of attributes and Tc is
a pattern tableau. One problem is to decide whether a set
Σ of editing rules guarantees to find a unique (determinis-
tic [18, 20]) fix for input tuples t that match a pattern in
Tc. The other problems concern whether Σ is able to fix
all the attributes of such tuples. Intuitively, as long as t[Z]
is assured correct, we want to ensure that editing rules can
find a certain fix for t. We show that these problems are
conp-complete, np-complete or #p-complete, but we iden-
tify special cases that are in polynomial time (ptime).

(3) We develop an algorithm to derive certain regions from
a set Σ of rules and master data Dm (Section 4). A certain
region (Z, Tc) is such a region that a certain fix is warranted
for an input tuple t as long as t[Z] is assured correct and t
matches a pattern in Tc. We naturally want to recommend
minimal such Z’s to the users. However, we show that the
problem for finding minimal certain regions is np-complete.
Nevertheless, we develop an efficient heuristic algorithm to
find a set of certain regions, based on a quality model.

(4) We experimentally verify the effectiveness and scalability
of the algorithm, using real-life hospital data, dblp as well
as synthetic data tpc-h and rand (Section 5). We find
that the algorithm scales well with the size of master data
and the size of editing rules. We also show that certain
regions automatically derived by the heuristic algorithm are
comparable to certain regions manually designed, when they
are used to clean input tuples.

Taken together, these yield a data entry solution. A set of
certain regions are first recommended to the users, derived
from editing rules and master data available. Then for any
input tuple t, if the users ensure that any of those regions
in t is correct, the rules guarantee to find a certain fix for t.

Related work. Several classes of constraints have been
studied for data cleaning (e.g., [3, 4, 8, 5, 12, 22, 30]; see [11]
for a survey). As remarked earlier, editing rules differ from
those constraints in the following: (a) they are defined in
terms of updates, and (b) their reasoning is relative to mas-
ter data and is based on its dynamic semantics, a departure
from our familiar terrain of dependency analysis. They are
also quite different from edits studied for census data re-
pairing [15, 18, 20], which are conditions defined on a single
record and are used to detect errors.

Closer to editing rules are matching dependencies (mds
[13]). We shall elaborate their differences in Section 2.

Rules have also been studied for active databases (see [29]
for a survey). Those rules are far more general than edit-
ing rules, specifying events, conditions and actions. Indeed,
even the termination problem for those rules is undecidable,
as opposed to the conp upper bounds for editing rules. Re-
sults on those rules do not carry over to editing rules.

Data monitoring is advocated in [6, 14, 26]. A method
for matching input tuples with master data was presented
in [6], but it did not consider repairing the tuples. There
has been a host of work on data repairing [3, 4, 8, 5, 12,
15, 18, 20, 22, 30], aiming to find a consistent database D′

that minimally differs from original data D. It is to repair a
database rather than cleaning an input tuple at the point of
entry. Although the need for finding certain fixes has long
been recognized [18, 20], prior methods do not guarantee
that all the errors in D are fixed, or that D′ does not have
new errors. Master data is not considered in those methods.

Editing rules can be extracted from business rules. They
can also be discovered from sample data along the same lines
as mining constraints for data cleaning (e.g., [7, 19]).

2. Editing Rules
We study editing rules for data monitoring. Given a mas-

ter relation Dm and an input tuple t, we want to fix errors
in t use editing rules and data values in Dm.

We specify input tuples t with a relation schema R. We
use A ∈ R to denote that A is an attribute of R.

The master relationDm is an instance of a relation schema
Rm, which is often distinct from R. As remarked earlier, Dm

can be assumed consistent and complete [23].

Editing rules. An editing rule (eR) φ defined on (R,Rm)
is a pair ((X,Xm)→ (B,Bm), tp[Xp]), where

◦ X and Xm are lists of distinct attributes in schemas
R and Rm, respectively, where |X| = |Xm|,

174

◦ B is an attribute such that B ∈ R \X, and Bm ∈ Rm,
◦ tp is a pattern tuple over a set of distinct attributes
Xp in R, where for each A ∈ Xp, tp[A] is either a or ā
for a constant a drawn from the domain of A.

We say that a tuple t of R matches pattern tp[Xp], denoted
by t[Xp] ≈ tp[Xp], if for each attribute A ∈ Xp, (a) t[A] = a
if tp[A] is a, and (b) t[A] ̸= a if tp[A] is ā.

Example 2.1: Consider the supplier schema R and master
relation schema Rm shown in Fig. 1. The rules eR1, eR2

and eR3 described in Example 1.2 can be expressed as the
following editing rules defined on (R,Rm).

φ1: ((zip, zip) → (B1, B1), tp1 = ())
φ2: ((phn,Mphn) → (B2, B2), tp2[type] = (2))
φ3: ((phn,Hphn) → (B3, B3), tp3[type,AC] = (1, 0800))
φ4: ((AC,AC) → (city, city), tp4[AC] = (0800))

Here eR1 is expressed as three editing rules of the form φ1,
for B1 ranging over AC, str and city. In φ1, both X and
Xm consist of zip, and B and Bm are B1. Its pattern tuple
tp1 poses no constraint. Similarly, eR2 is expressed as two
editing rules of the form φ2, in which B2 is either fn or
ln. The pattern tuple tp2[type] = (2), requiring that phn is
mobile phone. The rule eR3 is written as φ3 for B3 ranging
over str, city, zip, where tp3[type,AC] requires that type = 1
(home phone) yet AC ̸= 0800 (toll free, non-geographic).
The eR φ4 states that for a tuple t, if t[AC] ̸= 0800 and

t[AC] is correct, we can update t[city] using master data. 2

We next give the semantics of editing rules.
We say that an eR φ and a master tuple tm ∈ Dm apply to

t, denoted by t →(φ,tm) t
′, if (a) t[Xp] ≈ tp[Xp], (b) t[X] =

tm[Xm], and (c) t′ is obtained by the update t[B] := tm[Bm].
That is, if t matches tp and if t[X] agrees with tm[Xm],

then we assign tm[Bm] to t[B]. Intuitively, if t[X,Xp] is
assured correct, we can safely enrich t[B] with master data
tm[Bm] as long as (a) t[X] and tm[Xm] are identified, and
(b) t[Xp] matches the pattern in φ. This yields a new tuple
t′ with t′[B] = tm[Bm] and t′[R \ {B}] = t[R \ {B}].
We write t→(φ,tm)= t if φ and tm do not apply to t, i.e., t

is unchanged by φ if either t[Xp] ̸≈ tp[Xp] or t[X] ̸= tm[Xm].

Example 2.2: As shown in Example 1.2, we can correct t1
by applying the eRs φ1 and master tuple s1 to t1. As a result,
t1[AC, str] is changed to (131, 51 Elm Row). Furthermore,
we can normalize t1[fn] by applying φ2 and s1 to t1, such
that t1[fn] is changed from Bob to Robert.

The eRs φ3 and master tuple s1 can be applied to t2, such
that t2[city] is corrected and t2[str, zip] is enriched. 2

Remarks. (1) As remarked earlier, editing rules are quite
different from cfds [12]. A cfd ψ = (X → Y, tp) is defined
on a single relation R, where X → Y is a standard fd and tp
is a pattern tuple onX and Y . It requires that for any tuples
t1, t2 of R, if t1 and t2 match tp, then X → Y is enforced on
t1 and t2. It has a static semantics: t1 and t2 either satisfy
or violate ψ, but they are not changed. In contrast, an eR
φ specifies an action: applying φ and a master tuple tm to t
yields an updated t′. It is defined in terms of master data.

(2) The mds of [13] also have a dynamic semantics. An md ϕ
is of the form ((X,X ′), (Y, Y ′),OP), where X,Y and X ′, Y ′

are lists of attributes in schemas R,R′, respectively, and OP
is a list of similarity operators. For a tuple t1 of R1 and
a tuple t2 of R2, ϕ assures that if t1[X] and t2[X

′] match
w.r.t. the operators in OP, then t1[Y] and t2[Y

′] are identi-

fied as the same object. In contrast to editing rules, (a) mds
are for record matching, not for data cleaning. They specify
what attributes should be identified, but do not tell us how
to update them. (b) mds do not carry data patterns. (c) mds
do not consider master data, and hence, their analysis is far
less challenging. Indeed, the static analyses of editing rules
are intractable, while the analysis of mds is in ptime [13].

cfds and mds cannot be expressed as eRs, and vice versa.

(3) To simplify the discussion we consider a single master
relation Dm. Nonetheless the results of this work readily
carry over to multiple master relations.

3. Ensuring Unique and Certain Fixes
Consider a master relation Dm of schema Rm, and a set

Σ of editing rules defined on (R,Rm). Given a tuple t of R,
we want to find a “certain fix” t′ of t by using Σ and Dm,
i.e., (a) no matter how eRs of Σ and master tuples in Dm

are applied, Σ and Dm yield a unique t′ by updating t; and
(b) all the attributes of t′ are ensured correct.

Below we first formalize the notion of certain fixes. We
then study several problems for deciding whether Σ and Dm

suffice to find a certain fix, i.e., they ensure (a) and (b).

3.1 Certain Fixes and Certain Regions

When applying an eR φ and a master tuple tm to t, we
update t with a value in tm. To ensure that the change
makes sense, some attributes of t have to be assured correct.
In addition, we cannot update t if either it does not match
the pattern of φ or it cannot find a master tuple tm in Dm

that carries the information needed for correcting t.

Example 3.1: Consider the master relation Dm given in
Fig. 1(a) and a set Σ0 consisting of φ1, φ2, φ3 and φ4 of
Example 2.1. Given input tuple t3 of Fig. 1(a), both (φ1, s1)
and (φ3, s2) apply to t3. However, they suggest to update
t3[city] with distinct values Edi and Lnd. The conflict arises
because t3[AC] and t3[zip] are inconsistent. Hence to fix t3,
we need to assure that one of t3[AC] and t3[zip] is correct.

Now consider tuple t4 of Fig. 1(a). We find that no eRs

in Σ0 and tuples in Dm can be applied to t4, and hence, we
cannot decide whether t4 is correct. This is because Σ0 and
Dm do not cover all the cases of input tuples. 2

This motivates us to introduce the following notion.

Regions. A region is a pair (Z, Tc), where Z is a list of
attributes in R, and Tc is a pattern tableau consisting of a
set of pattern tuples with attributes in Z, such that for each
tuple tc ∈ Tc and each attribute A ∈ Z, tc[A] is one of , a
or ā. Here a is a constant in the domain of A, and is an
unnamed variable (wildcard).

Intuitively, a region tells us that to correctly fix errors in
a tuple t, t[Z] should be assured correct, and t[Z] should
“satisfy” a pattern in Tc (defined below). Here Tc specifies
what cases of input tuples are covered by eRs and Dm.

A tuple t of R satisfies a pattern tuple tc in Tc, denoted by
t
 tc, if for each A ∈ Z, either tc[A] = , or t[A] ≈ tc[A].
That is, t
 tc if either tc[A] is a wildcard, or t[A] matches
tc[A] when tc[A] is a or ā. We refer to t as a tuple covered
by (Z, Tc) if there exists tc ∈ Tc such that t
 tc.

Consider an eR φ = ((X,Xm) → (B,Bm), tp[Xp]) and a
master tuple tm. We say that φ and tm correctly apply to
a tuple t w.r.t. (Z, Tc), denoted by t→((Z,Tc),φ,tm) t

′, if (a)
t →(φ,tm) t

′, (b) X ⊆ Z, Xp ⊆ Z, B ̸∈ Z, and (c) there
exists a pattern tuple tc ∈ Tc such that t
 tc.

175

That is, it is justified to apply φ and tm to t for those t
covered by (Z, Tc) if t[X,Xp] is correct. As t[Z] is correct,
we do not allow it to be changed by enforcing B ̸∈ Z.
Example 3.2: Referring to Example 3.1, a region for
tuples of R is (ZAH, TAH) = ((AC, phn, type), {(0800, , 2)}).
Hence, if t3[AC, phn, type] is correct, then (φ3, s2) can be
correctly applied to t3, yielding t3 →((AC,phn),TAC,φ3,s2) t

′
3,

where t′3[str, city, zip] = s2[str, city, zip], and t
′
3 and t3 agree

on all the other attributes of R. 2

Observe that if t →((Z,Tc),φ,tm) t
′, then t′[B] is also as-

sured correct. Hence we can extend (Z, Tc) by including B
in Z and by expanding each tc in Tc such that tc[B] = .
We denote the extended region as ext(Z, Tc, φ).
For instance, ext((AC, phn, type), TAH, φ3) is (Z′, T ′),

where Z′ consists of AC, phn, type, str, city and zip, and T ′

has a single tuple t′c = (0800, , 2, , ,).

Certain fix. For a tuple t of R covered by (Z, Tc), we want
to make sure that we can get a unique fix t′ no matter how
eRs in Σ and tuples in Dm are applied to t.
We say that a tuple t′ is a fix of t by (Σ, Dm), denoted by

t →∗
((Z,Tc),Σ,Dm) t

′, if there exists a finite sequence t0 = t,

t1, . . ., tk = t′ of tuples of R, and for each i ∈ [1, k], there
exist φi ∈ Σ and tmi ∈ Dm such that
(a) ti−1 →((Zi−1,Ti−1),φi,tmi

) ti, where (Z0, T0) = (Z, Tc),

and (Zi, Ti) = ext(Zi−1, Ti−1, φi);
(b) ti[Z] = t[Z]; and
(c) for all φ ∈ Σ and tm ∈ Dm, t′ →((Zm,Tm),φ,tm) t

′.
Intuitively, (a) each step of the correcting process is justified;
(b) t[Z] is assumed correct and hence, remains unchanged;
and (c) t′ is a fixpoint and cannot be further updated.
We say that t has a unique fix by (Σ, Dm) w.r.t. (Z, Tc) if

there exists a unique t′ such that t→∗
((Z,Tc),Σ,Dm) t

′.

When there exists a unique fix t′ of t, we refer to Zm as
the set of attributes of t covered by (Z, Tc,Σ, Dm).
The fix t′ is called the certain fix if the set of attributes

covered by (Z, Tc,Σ, Dm) includes all the attributes in R.
Intuitively, if t has a certain fix t′ then (a) it has a unique

fix and (b) all the attributes of t′ are correct provided that
t[Z] is correct. A notion of deterministic fix was addressed
in [18, 20]. It refers to unique fixes, i.e., (a) above, without
requiring (b). Further, it is not defined relative to (Z, Tc).

Example 3.3: By the set Σ0 of eRs of Example 3.1 and
the master data Dm of Fig. 1(b), tuple t3 of Fig. 1(a) has a
unique fix w.r.t. (ZAH, TAH), namely, t′3 given in Example 3.2.
However, as observed in Example 3.1, if we extend the region
by adding zip, denoted by (ZAHZ, TAH), then t3 no longer has
a unique fix by (Σ0, Dm) w.r.t. (ZAHZ, TAH).
As another example, consider a region (Zzm, Tzm), where

Zzm = (zip, phn, type), and Tzm has a single tuple (, , 2). As
shown in Example 2.2, tuple t1 of Fig. 1(a) has a unique
fix by Σ0 and Dm w.r.t. (Zzm, Tzm), by correctly applying
(φ1, s1) and (φ2, s2). It is not a certain fix, since the set
of attributes covered by (Zzm, Tzm,Σ0, Dm) does not include
item. Indeed, the master data Dm of Fig. 1(b) has no infor-
mation about item, and hence, does not help here. To find a
certain fix, one has to extend Zzm by adding item. In other
words, its correctness has to be assured by the users. 2

Certain region. We say that (Z, Tc) is a certain region for
(Σ, Dm) if for all tuples t of R that are covered by (Z, Tc), t
has a certain fix by (Σ, Dm) w.r.t. (Z, Tc).
We are naturally interested in certain regions since they

warrant absolute corrections, which are assured either by
the users (the attributes in Z) or by master data (R \ Z).
Example 3.4: As shown in Example 3.3, (Zzm, Tzm) is not
a certain region. One can verify that a certain region for
(Σ0, Dm) is (Zzmi, Tzmi), where Zzmi extends Zzm with item,
and Tzmi consists of patterns of the form (z, p, 2,) for z, p
ranging over s[zip,Mphn] for all master tuples s in Dm. For
tuples covered by the region, a certain fix is warranted. 2

3.2 Reasoning about Editing Rules

Given a set Σ of eRs and a master relation Dm, we want
to make sure that they can correctly fix all errors in those
input tuples covered by a region (Z, Tc). This motivates us
to study several problems for reasoning about editing rules,
and establish their complexity bounds (all the proofs are in
the appendix, and some proofs are highly nontrivial).

The consistency problem. One problem is to decide
whether (Σ, Dm) and (Z, Tc) do not have conflicts.

We say that (Σ, Dm) is consistent relative to (Z, Tc) if for
each input tuple t of R that is covered by (Z, Tc), t has a
unique fix by (Σ, Dm) w.r.t. (Z, Tc).

Example 3.5: There exist (Σ, Dm) and (Z, Tc) that are
inconsistent. Indeed, (Σ0, Dm) is not consistent relative to
(ZAHZ, TAHZ) of Example 3.3, since tuple t3 does not have a
unique fix by (Σ0, Dm) w.r.t. (ZAHZ, TAHZ). 2

The consistency problem is to determine, given (Z, Tc) and
(Σ, Dm), whether (Σ, Dm) is consistent relative to (Z, Tc).

Theorem 3.1: The consistency problem is conp-complete,
even for relations with infinite-domain attributes only. 2

The consistency analysis of eRs is more intriguing than its
cfd counterpart, which is np-complete but is in ptime when
all attributes involved have an infinite domain [12]. It is also
much harder than mds, which is in quadratic-time [13]. Nev-
ertheless, it is decidable, as opposed to the undecidability for
reasoning about rules for active databases [29].

The coverage problem. Another problem is to determine
whether (Σ, Dm) is able to fix errors in all attributes of input
tuples that are covered by (Z, Tc).

The coverage problem is to determine, given any (Z, Tc)
and (Σ, Dm), whether (Z, Tc) is a certain region for (Σ, Dm).

No matter how desirable to find certain regions, the cov-
erage problem is intractable, although it is decidable.

Theorem 3.2: The coverage problem is conp-complete. 2

To derive a certain region (Z, Tc) from (Σ, Dm), one wants
to know whether a given list Z of attributes could make a
certain region by finding Tc, and if so, how large Tc is.

The Z-validating problem is to decide, given (Σ, Dm) and
a list Z of attributes, whether there exists a nonempty
tableau Tc such that (Z, Tc) is a certain region for (Σ, Dm).

The Z-counting problem is to determine, given (Σ, Dm)
and Z, how many pattern tuples can be found from (Σ, Dm)
to construct Tc such that (Z, Tc) is a certain region.

Both problems are beyond reach in practice. In particular,
the Z-counting problem is as hard as finding the number of
truth assignments that satisfy a given 3SAT instance [16].

Theorem 3.3: (1) The Z-validating problem is np-
complete. (2) The Z-counting problem is #p-complete. 2

One would naturally want a certain region (Z, Tc) with
a “small” Z, such that the users only need to assure the
correctness of a small number of attributes in input tuples.

176

The Z-minimum problem is to decide, given (Σ, Dm) and
a positive integer K, whether there exists a set Z of at-
tributes such that (a) |Z| ≤ K and (b) there exists a pattern
tableau Tc such that (Z, Tc) is a certain region for (Σ, Dm).
This problem is also intractable. Worse still, there exists

no approximate algorithm for it with a reasonable bound.

Theorem 3.4: The Z-minimum problem is (1) np-
complete, and (2) cannot be approximated within c log n in

ptime for a constant c unless np ⊆dtime (npolylog(n)). 2

Tractable cases. The intractability results suggest that we
consider special cases that allow efficient reasoning.

Fixed Σ. One case is where the set Σ is fixed. Indeed, editing
rules are often predefined and fixed in practice.

Concrete Tc. Another case is where no pattern tuples in Tc

contain wildcard ‘ ’ or ā, i.e., they contain a only.

Direct fix. We also consider a setting in which (a) for all eRs

φ = ((X,Xm) → (B,Bm), tp[Xp]) in Σ, Xp ⊆ X, i.e., the
pattern attributes Xp are also required to find a match in
Dm, and (b) each step of a fixing process employs (Z, Tc),
i.e., ti−1 →((Z,Tc),φi,tmi

) ti, without extending (Z, Tc).
Each of these restrictions makes our lives much easier.

Theorem 3.5: The consistency problem and the coverage
problem are in ptime if we consider (a) a fixed set Σ of eRs,
(b) a concrete pattern tableau Tc, or (c) direct fixes. 2

However, it does not simplify the other problems.

Corollary 3.6: When only direct fixes are considered,
the Z-validating, Z-counting and Z-minimum problems
remain np-complete, #p-complete, both np-complete and
approximation-hard, respectively. 2

One might think that fixing master data Dm would also
simplify the analysis of eRs. Unfortunately, it does not help.

Corollary 3.7: Both the consistency problem and the cov-
erage problem remain conp-complete when Dm is fixed. 2

4. Computing Certain Regions
An important issue concerns how to automatically derive

a set of certain regions from a set Σ of eRs and a master rela-
tionDm. These regions are recommend to users, such that Σ
and Dm warrant to find an input tuple t a certain fix as long
as the users assure that t is correct in any of these regions.
However, the intractability and approximation-hardness of
Theorems 3.2, 3.3 and 3.4 tell us that any efficient algo-
rithms for deriving certain regions are necessarily heuristic.
We develop a heuristic algorithm based on a characteriza-

tion of certain regions as cliques in graphs. Below we first in-
troduce the characterization and then present the algorithm.
We focus on direct fixes, a special case identified in Sec-
tion 3.2 that is relatively easier (Theorem 3.5) but remains
intractable for deriving certain regions (Corollary 3.6).
Proofs of all the results of this section are in the appendix.

4.1 Capturing Certain Regions as Cliques

We first introduce a notion of compatible graphs to char-
acterize eRs and master data. We then establish the con-
nection between certain regions and cliques in such a graph.

Compatible graphs. Consider Σ = { φi | i ∈ [1, n]} defined
on (R,Rm), where φi = ((Xi, Xmi)→ (Bi, Bmi), tpi [Xpi]).
We use the following notations.

(1) For a list X ′
i of attributes in Xi, we use λφi(X

′
i) to

denote the corresponding attributes in Xmi . For instance,
when (Xi,Xmi) = (ABC, AmBmCm), λφi(AC) = AmCm.

We also use the following: (a) lhs(φi) = Xi, rhs(φi) =
Bi; (b) lhsm(φi) = Xmi , rhsm(φ) = Bmi ; and (c)
lhsp(φi) = Xpi . For a set Σc of eRs, we denote ∪φ∈Σclhs(φ)
by lhs(Σc); similarly for rhs(Σc), lhsm(Σc) and rhsm(Σc).

(2) Consider pairs (φi, tm) and (φj , t
′
m) of eRs and mas-

ter tuples such that tpi [Xpi] ≈ tm[λφi [Xpi]] and tpj [Xpj]
≈ t′m[λφj [Xpj]]. We say that tm and t′m are conflict tuples
if (a) Bi = Bj and tm[Bmi] ̸= t′m[Bmj], and (b) for each
attribute A ∈ Xi ∩Xj , tm[λφi(A)] = t′m[λφj (A)].

That is, (φi, tm) and (φj , t
′
m) may incur conflicts when

they are applied to the same input tuple. To avoid taking
conflict tuples in Tc, we remove conflict tuples from Dm,
and refer to the result as the reduced master data Ds.

(3) We say that eR-tuple pairs (φi, tm) and (φj , t
′
m) are com-

patible if (a) Bi ̸= Bj , Bi ̸∈ Xj , Bj ̸∈ Xi, and (b) for each
attribute A ∈ Xi ∩Xj , tm[λφi(A)] = t′m[λφj (A)].

Intuitively, we can apply (φi, tm) and (φj , t
′
m) to the

same input tuple t if they are compatible.

We are now ready to define compatible graphs.
The compatible graph G(V,E) of (Σ, Dm) is an undirected

graph, where (1) the set V of nodes consists of eR-tuple
pairs (φi, tm) such that φi ∈ Σ, tm ∈ Ds, and tpi [Xpi] ≈
tm[λφi [Xpi]]; and (2) the set E of edges consists of (u, v)
such that u and v in V are compatible with each other.

The graph G(V,E) depicts what eR-tuple pairs are com-
patible and can be applied to the same tuple. Note that V
(resp. E) is bounded by O(|Σ||Dm|) (resp. O(|Σ|2|Dm|2)).
The connection. We now establish the connection between
identifying certain regions (Z, Tc) for (Σ, Dm) and finding
cliques C in the compatible graph G(V,E).

Consider a clique C = {v1, . . . , vk} in G, where for each
i ∈ [1, k], vi = (φi, tmji

). Let ΣC be the set of eRs in the

clique C. Then it is easy to verify (a) lhs(ΣC)∩rhs(ΣC) = ∅,
and (b) |rhs(ΣC)| = |C| = k, i.e., the number of attributes
in rhs(ΣC) is equal to the number of nodes in C.

Let Z = R \ rhs(ΣC), and tc be a tuple with attributes
in Z such that (a) tc[lhs(ΣC)] = tj1 ◃▹ . . . ◃▹ tjk [lhs(ΣC)],
where for each i ∈ [1, k], tji [XiBi] = tmji

[XmiBmi], and (b)

tc[A] = ‘ ’ for all remaining attributes A ∈ Z. Here ◃▹ is the
natural join operator. Then it is easy to verify that (Z, {tc})
is a certain region for (Σ, Dm). Hence we have:

Proposition 4.1: Each clique in the compatible graph G of
(Σ, Dm) corresponds to a certain region for (Σ, Dm). 2

This allows us to find certain regions by employing algo-
rithms (e.g., [21, 24]) for finding maximal cliques in a graph.

Compressed graphs. However, the algorithms for finding
cliques take O(|V ||E|) time on each clique. When it comes
to compatible graph, it takes O(|Σ|3|Dm|3) time for each
certain region, too costly to be practical on large Dm.

In light of this we compress a compatible graphG(V,E) by
removing master tuples from the nodes. More specifically,
we consider compressed compatible graph Gc(V c, Ec), where
(1) V c is Σ, i.e., each node is an eR in Σ, and (2) there is an
edge (φi, φj) in E

c iff there exist master tuples tm, t
′
m such

that ((φi, tm), (φj , t
′
m)) is an edge in E.

Observe that Gc is much smaller than G and is indepen-
dent of master data Dm: V c is bounded by O(|Σ|) and Ec

is bounded by O(|Σ|2). On the other hand, however, it is
no longer easy to determine whether a clique yields a cer-

177

tain region. More specifically, let C be a clique in Gc and
Z = R\rhs(ΣC). The Z-validating problem for a clique is to
determine whether there exists a nonempty pattern tableau
Tc such that (Z, Tc) is a certain region for (Σ, Dm).

Theorem 4.2: The Z-validating problem for a clique in a
compressed graph Gc is np-complete. 2

A heuristic. To cope with the intractability we develop a
heuristic algorithm to validate Z. We partition Z into Z1

and Z2 such that only Z2 is required to match a list Zm of
attributes in Rm, where the correctness of Z1 is to be assured
by the users. Here Z2 and Zm are lhs(ΣC) and lhsm(ΣC),
respectively, derived from a clique C in the compressed graph
Gc. We denote this by W = (Z1, Z2 ∥ Zm), where Z =
Z1 ∪ Z2, Z1 ∩ Z2 = ∅ and |Z2| = |Zm|.
The W -validating problem asks whether there exists tm

in Ds such that (Z1Z2, {tc}) is a certain region for (Σ, Ds),
where tc[Z1] consists of ‘ ’ only and tc[Z2] = tm[Zm]. That
is, tc is extracted from a single master tuple, not a combi-
nation from multiple. In contrast to Theorem 4.2, we have:

Proposition 4.3: There exists an O(|Σ||Ds| log |Ds|)-time
algorithm for the W -validating problem. 2

Based on this, the algorithm works as follows. Given Z
and a clique C, it first partitions Z into W = (Z1, Z2 ∥ Zm).
It then finds a tuple tc using the O(|Σ||Ds| log |Ds|)-time al-
gorithm. To ensure the correctness we require that for any
φi and φj in Gc, lhs(φi) and lhs(φj) are disjoint. In fact,
a set of certain regions can be generated when validating
W , one for each master tuple in Ds. We employ this idea to
generate certain regions from cliques in the compressed com-
patible graph (in Procedure cvrtClique, see the appendix).

4.2 A Graph-based Heuristic Algorithm

Based on the graph characterization we provide Algorithm
compCRegions (see Fig. 6 in the appendix).
The algorithm takes as input a positive integer K, a set

Σ of eRs and master data Dm. It returns an array M of
certain regions (Z, Tc) such that M [Z] = (Z, Tc).
It first computes a reduced master relation Ds, and builds

the compressed compatible graph Gc of (Σ, Ds). It then
finds up to K maximal cliques in Gc, and converts these
cliques into certain regions. Finally, it constructs M by
merging certain regions having the same Z (see the appendix
for the details of the algorithm and a running example).
The algorithm guarantees to return a nonempty set M

of certain regions, by Propositions 4.1 and 4.3. It is in
O(|Σ|2|Dm| log |Dm|+K|Σ|3+K|Σ||Dm| log |Dm|) time. In
practice, |Σ| and K are often small. We shall verify its ef-
fectiveness and efficiency in Section 5.

A preference model. When there exist more than K max-
imum cliques we need to decide which K cliques to pick. To
this end, the algorithm adopts a preference model that ranks
certain regions (Z, Tc) based on the following factors.
◦ The number |Z| of attributes in Z. We naturally want
Z to be as small as possible. The larger the size of a
clique C is, the smaller |Z| is for Z derived from C.
◦ The accuracy ac(A) of A ∈ R, indicating the confidence

placed by the user in the accuracy of the attribute.
The smaller ac(A) is, the more reliable A is.

The algorithm uses a total order O for the eRs in Σ such
that O(φ) < O(φ′) if ac(rhs(φ)) < ac(rhs(φ′)). It finds
maximum cliques (small regions). Cliques having eRs φ with

unreliable rhs(φ) are returned first. Hence, small Z with
reliable attributes derived from the cliques are selected.

10 20 30 40 50 60 70 80 90
d: Duplicate rate (%)

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

(Z,compTc) - HOSP
(Z,compTc) - DBLP
(Z,compTc) - TPC-H
(Z,Tc) - All

(a) Varying d%

2.5 5 7.5 10 12.5 15 17.5 20
|Dm |: # of tuples in Dm (�1,000)0.78

0.81

0.84

0.87

0.9

Re
ca

ll

(Z,compTc) - HOSP
(Z,compTc) - DBLP
(Z,compTc) - TPC-H
(Z,Tc) - All

(b) Varying |Dm|
Figure 2: Tuple Level Recall

5. Experimental Study
We next present an experimental study using both real-

life data and synthetic data. Two sets of experiments were
conducted to verify (1) the effectiveness of the certain re-
gions obtained; and (2) the efficiency and scalability of al-
gorithm compCRegions in deriving certain regions. For the
effectiveness study, we used the incremental repairing algo-
rithm developed in [9], IncRep, for comparison.

Experimental setting. Real-life data (hosp and dblp)
was used to test the efficacy of certain regions derived by
our algorithm in real world. Synthetic data (tpc-h and
rand) was employed to control the characteristics of data
and editing rules, for an in-depth analysis.

(1) hosp (Hospital Compare) data is publicly available from

U.S. Department of Health & Human Services1. There are
37 eRs designed for hosp.

(2) dblp data is from the dblp Bibliography2. There are
16 eRs designed for dblp.

(3) tpc-h data is from the dbgen generator 3. There are
55 eRs designed for tpc-h.

(4) rand data was generated by varying the following pa-

rameters: (a) the number of attributes in the master relation
Rm; (b) the number of attributes in the relation R; (c) the
number of master tuples; (d) the number of editing rules
(eRs); and (e) the number of attributes in lhs of eRs.

We refer the reader to the appendix for the details of the
datasets, the editing rules designed, and Algorithm IncRep.

Implementation. All algorithms were implemented in
Python 2.6, except that the C implementation4 in [24] was
1http://www.hospitalcompare.hhs.gov/
2http://www.informatik.uni-trier.de/∼ley/db/
3http://www.tpc.org/tpch/
4http://research.nii.ac.jp/∼uno/code/mace.htm

178

10 20 30 40 50 60 70 80 90
d: Duplicate rate(%)

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

IncRep - HOSP
(Z,compTc) - HOSP
IncRep - DBLP
(Z,compTc) - DBLP
IncRep - TPC-H
(Z,compTc) - TPC-H

(a) Varying d%

2.5 5 7.5 10 12.5 15.0 17.5 20
|Dm |: # of tuples in Dm (�1,000)0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

IncRep - HOSP
(Z,compTc) - HOSP
IncRep - DBLP
(Z,compTc) - DBLP
IncRep - TPC-H
(Z,compTc) - TPC-H

(b) Varying |Dm|

5 10 15 20 25 30 35 40 45 50
n: Noise rate(%)

0.0

0.2

0.4

0.6

0.8

1.0

F-
M

ea
su

re

IncRep - HOSP
(Z,compTc) - HOSP
IncRep - DBLP
(Z,compTc) - DBLP
IncRep - TPC-H
(Z,compTc) - TPC-H

(c) Varying n%

Figure 3: F-Measure w.r.t. d%, |Dm| and n%

used to compute maximal cliques. All experiments were run
on a machine with an Intel Core2 Duo P8700 (2.53GHz)
CPU and 4GB of memory. Each experiment was repeated
over 5 times and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Effectiveness. We used real-life datasets hosp
and dblp, and synthetic tpc-h data to verify the effective-
ness of certain regions found by our heuristic compCRegions.
The tests were conducted upon varying three parameters:

d%, |Dm| and n%, where d% means the probability that an
input tuple can match a tuple in Dm; |Dm| is the cardinal-
ity of master data; n% is the noise rate, which represents
the percentage of attributes with errors in the input tuples.
When one parameter was varied, the others were fixed.
The comparisons were quantified with two measures, in

tuple level and in attribute level, respectively.

Tuple level comparison. The tuple level recall is defined as:

recallt = # of corrected tuples / # of error tuples

The results for varying d% and |Dm| are shown in Fig. 2(a)
and 2(b), respectively. Notably for the (Z, Tc) derived, its
recall is close to the duplicate rate d%, irrelevant to the
datasets tested. Hence, in Fig. 2(a) and Fig. 2(b), the curve
annotated by (Z, Tc)-ALL is used to represent the curves for
all datasets. Moreover, compTc stands for the complete Tc.
In Fig. 2(a), we fixed |Dm| = 20000 while varying d% from

10% to 90%. When the master data covers more portions
of the input tuples (from 10% to 90%), the recall increases
(from 0.1 to 0.9). This tells us the following: (1) the effi-
cacy of certain regions is sensitive to duplicate rates. Hence,
the master data should be as complete as possible to cover
the input tuples; and (2) the effect of certain regions (Z, Tc)
derived by compCRegions is worse than complete Tc, as ex-
pected, since some valid pattern tuples were not selected
by our heuristic method. However, when d% is increased,
the recall via heuristic (Z, Tc) becomes close to that of the
complete Tc, validating the effectiveness of compCRegions.
In Fig. 2(b), we fixed d% = 80% while varying |Dm| from

2500 to 20000. The recall of (Z, compTc) increases when
increasing |Dm|, as expected. Observe that the curve for
hosp grows faster than the ones for tpc-h or dblp. This is
data-dependent, due to the fact that the number of hospitals
in US is much smaller than the distinct entities in tpc-h
sale records or dblp publications. By increasing |Dm|, hosp
has a higher probability to cover more portions of the input
tuples, which is reflected in Fig. 2(b).
This reveals that the completeness of master data is pivot.

When Dm is assured consistent and complete [23], our algo-
rithm can find certain regions with good recalls.

Attribute level comparison. For the attribute level quantifi-
cation, we used a fine-grained measure F-measure [1]:

F-measure = 2(recalla · precision)/(recalla + precision)
recalla = # of corrected attributes / # of error attributes
precision = # of corrected attributes/# of changed attributes

We compared the F-measure values of adopting
(Z, compTc) with IncRep [9]. We remark that the pre-
cision of compCRegions is always 100%, if the user assures
the correctness of attributes in certain regions, as defined.

Figures 3(a), 3(b) and 3(c) show the results of F-measure
comparisons when varying the parameters d%, |Dm| and
n%, respectively. Observe the following: (1) in most cases,
when varying the three parameters described above, the F-
measure of (Z, compTc) is better than that of IncRep, for all
the datasets. This tells us that the certain regions and mas-
ter data are more effective in guaranteeing the correctness of
fixes than up-to-date techniques without leveraging master
data, e.g., IncRep. (2) Even when |Dm| is small, (Z, compTc)
can leverage Dm and perform reasonably well, if Dm can
match a large part of certain regions of input tuples (e.g.,
d% is 80%), as depicted in Fig. 3(b). (3) The certain re-
gions derived by compCRegions is insensitive to the noise
rate, whereas IncRep is sensitive, as verified in Fig. 3(c).

This set of experiments verified that the proposed method
performed well in fixing errors in data while assuring its
correctness. The results also validate that the two most
important factors are d% and Dm. When |Dm| is large and
d% is high, certain fixes could be expected.

Exp-2: Efficiency and scalability. We evaluated the
efficiency and scalability of both compCRegions in this set of
experiments. Since real-life data is not flexible to vary the
three parameters |Dm|, |Σ| and K (the number of maximal
cliques), we used tpc-h and rand data.

For tpc-h data, we have 55 eRs. When varying |Σ|, we
randomly assigned these rules with pattern tuples so that
we could always reach the number of eRs needed. For the
rand data, the default setting of |Rm|, |R|, |Dm|, |Σ|, |lhs|
and K are 40, 20, 50, 5000, 4 and 100, respectively. When
varying one parameter, the others were fixed.

We only report here the impact of the three most impor-
tant factors: |Σ|, |Dm| and K. The results for the other
parameters are omitted due to space limitations.

Figures 4(a), 4(b), and 4(c) show the running time of
computing compCRegions when varying |Σ|, |Dm| and K,
respectively. From these figures we can see the following.

(1) In all the cases, compCRegions could be computed effi-
ciently. Note that for all datasets, Algorithm compCRegions
was executed only once, irrelevant to the size of input data
to be fixed. Therefore, it could be considered as a pre-
computation. The time in minute level is thus acceptable.

(2) Figures 4(a) and 4(c) show sub-linear scalability, and

179

25 50 75 100 125 150 175 200
|�|: # of eRs

0

1

2

3

4

5

6

7

8
Ru

nn
in

g
tim

e
(m

in
)

RAND
TPC-H

(a) Running time w.r.t. |Σ|

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
|Dm |: # of tuples in Dm (�1,000)0

2

4

6

8

10

12

14

16

Ru
nn

in
g

tim
e

(m
in

)

RAND
TPC-H

(b) Running time w.r.t. |Dm|

25 50 75 100 125 150 175 200
K: # of maximal cliques

0

1

2

3

4

5

Ru
nn

in
g

tim
e

(m
in

)

RAND
TPC-H

(c) Running time w.r.t. K

Figure 4: The Scalability w.r.t. |Σ|, |Dm| and K

better still, Figure 4(b) shows super-linear scalability.
The trends in these results match our complexity analy-
sis in Section 4.2, i.e., in O(|Σ|2|Dm| log |Dm| + K|Σ|3 +
K|Σ||Dm| log |Dm|) time. This indicates that Algorithm
compCRegions is scalable, and works well in practice.

Summary. From the experimental results we found the
following. (1) The certain regions derived by our algorithm
are effective and of high quality: at both the tuple level
and the attribute level, our experiments have verified that
the algorithm works well even with limited master data and
high noise rate. (2) The completeness of master data (the
amount of master data available) is critical to computing
certain fixes. (3) Our algorithm scales well with the sizes of
master data, editing rules and the number of certain regions.

6. Conclusion
We have proposed editing rules that, in contrast to con-

straints used in data cleaning, are able to find certain fixes by
updating input tuples with master data. We have identified
fundamental problems for deciding certain fixes and certain
regions, and established their complexity bounds. We have
also developed a graph-based algorithm for deriving certain
regions from editing rules and master data. As verified by
our experimental study, these yield a promising method for
fixing data errors while ensuring its correctness.
We are extending Quaid [9], our working system for data

cleaning, to support master data and to experiment with
real-life data that Quaid processes. We are also exploring
optimization methods to improve our derivation algorithm.
Another topic is to develop methods for discovering editing
rules from sample inputs and master data, along the same
lines as discovering other data quality rules [7, 19].

Acknowledgments. Fan and Ma are supported in part by
EPSRC E029213/1.

7. References
[1] F-measure. http://en.wikipedia.org/wiki/F-measure.
[2] T. Akutsu and F. Bao. Approximating minimum keys and

optimal substructure screens. In COCOON, 1996.
[3] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query

answers in inconsistent databases. In PODS, 1999.
[4] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-

based model and effective heuristic for repairing constraints
by value modification. In SIGMOD, 2005.

[5] L. Bravo, W. Fan, and S. Ma. Extending dependencies with
conditions. In VLDB, 2007.

[6] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani. Ro-
bust and efficient fuzzy match for online data cleaning. In
SIGMOD, 2003.

[7] F. Chiang and R. Miller. Discovering data quality rules. In
VLDB, 2008.

[8] J. Chomicki and J. Marcinkowski. Minimal-change integrity
maintenance using tuple deletions. Inf. Comput., 197(1-
2):90–121, 2005.

[9] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving
data quality: Consistency and accuracy. In VLDB, 2007.

[10] W. W. Eckerson. Data quality and the bottom line: Achiev-
ing business success through a commitment to high quality
data. The Data Warehousing Institute, 2002.

[11] W. Fan. Dependencies revisited for improving data quality.
In PODS, 2008.

[12] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Condi-
tional functional dependencies for capturing data inconsis-
tencies. TODS, 33(2), 2008.

[13] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record
matching rules. PVLDB, 2(1), 2009.

[14] T. Faruquie et al. Data cleansing as a transient service. In
ICDE, 2010.

[15] I. Fellegi and D. Holt. A systematic approach to automatic
edit and imputation. J. American Statistical Association,
71(353):17–35, 1976.

[16] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, 1979.

[17] Gartner. Forecast: Data quality tools, worldwide, 2006-2011.
Technical report, Gartner, 2007.

[18] P. Giles. A model for generalized edit and imputation of
survey data. The Canadian J. of Statistics, 16:57–73, 1988.

[19] L. Golab, H. J. Karloff, F. Korn, D. Srivastava, and B. Yu.
On generating near-optimal tableaux for conditional func-
tional dependencies. In VLDB, 2008.

[20] T. N. Herzog, F. J. Scheuren, and W. E. Winkler. Data Qual-
ity and Record Linkage Techniques. Springer, 2009.

[21] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. On
generating all maximal independent sets. Inf. Process. Lett.,
27(3):119–123, 1988.

[22] S. Kolahi and L. Lakshmanan. On approximating optimum
repairs for functional dependency violations. In ICDT, 2009.

[23] D. Loshin. Master Data Management. Knowledge Integrity,
Inc., 2009.

[24] K. Makino and T. Uno. New algorithms for enumerating all
maximal cliques. In SWAT, 2004.

[25] T. Redman. The impact of poor data quality on the typical
enterprise. Commun. ACM, 41(2):79–82, 1998.

[26] G. Sauter, B. Mathews, and E. Ostic. Information service
patterns, part 3: Data cleansing pattern. IBM, 2007.

[27] L. G. Valiant. The complexity of enumeration and reliability
problems. SIAM J. Comput., 8(3):410–421, 1979.

[28] V. V. Vazirani. Approximation Algorithms. Springer, 2003.
[29] J. Widom and S. Ceri. Active database systems: triggers and

rules for advanced database processing. Morgan Kaufmann,
1996.

[30] J. Wijsen. Database repairing using updates. TODS,
30(3):722–768, 2005.

180

APPENDIX: Proofs and Algorithms

Proof of Theorem 3.1

(I) We first show that the problem is in conp, by provid-
ing an np algorithm for its complement, i.e., the algorithm
returns ‘yes’ iff (Σ, Dm) is not consistent relative to (Z, Tc).
We define dom to be the set of all constants appearing in

Dm and Σ, and introduce a variable v representing a distinct
constant not in dom. It suffices to consider R tuples t such
that for each attribute A of R, t[A] is either a constant in
dom or the variable v.
The np algorithm works as follows:

(a) guess a tuple tc in Tc;
(b) guess an R tuple t such that for each attribute A of R,
t[A] is a constant in dom or the variable v; and
(c) If t
 tc, then check whether (Σ, Dm) is consistent rela-
tive to (Z, {t[Z]}). If not, the algorithm returns ‘yes’.
By Theorem 3.5 (see its proof below), checking whether

(Σ, Dm) is consistent relative to (Z, {t[Z]}) is in ptime since
t[Z] consists of only constants. Thus, the algorithm is in np.

(II) We next show that the problem is conp-hard, by reduc-
tion from the 3SAT problem to its complement.
An instance ϕ of 3SAT is of the form C1∧· · ·∧Cn, where Ci

is a disjunction of at most three literals. The 3SAT problem
is to determine whether ϕ is satisfiable. It is known to be
np-complete (cf. [16]).
Given an instance ϕ of the 3SAT problem, we construct

the following: (a) schemas R and Rm, (b) a master relation
Dm of schema Rm, (c) a pattern tableau Tc consists of a
single tuple tc for a set Z of attributes of schema R, and (d)
a set Σ of eRs, such that (Σ, Dm) is consistent relative to
(Z, Tc) if and only if the instance ϕ is not satisfiable. 2

Proof of Theorem 3.2

(I) We show that the problem is in conp by giving a conp
algorithm. The algorithm is the same as the one developed
in the proof of Theorem 3.1, except that in the last step, it
uses a variation of the ptime algorithm given in Theorem 3.5
such that it only returns ‘yes’ if both the set S is empty, and
if the tuple t is wildcard free.

(II) We show that the problem is conp-hard by reduction
from the 3SAT problem to its complement. Given an in-
stance ϕ of the 3SAT problem, we construct schemas R and
Rm, a master relation Dm of Rm, a set Z∪{B} of attributes
of R, and a set Σ of eRs such that (Z, Tc) is a certain region
for (Σ, Dm) if and only if ϕ is not satisfiable. 2

Proof of Theorem 3.3

(I) The Z-validating problem is np-complete.

(1) We show the problem is in np, by providing an np algo-
rithm that, given Z, returns ‘yes’ iff there exists a non-empty
pattern tableau Tc such that (Z, Tc) is a certain region for
(Σ, Dm). Observe that if so, there must exist a tuple tc
consisting of only constants such that (Z, {tc}) is a certain
region for (Σ, Dm). Thus it suffices to consider pattern tu-
ples consisting of constants only.
Define active domain dom and variable v as in the proof

of Theorem 3.1. The np algorithm works as follows.
(a) Guess a tuple tc such that for each attribute A ∈ Z,
tc[A] is either a constant in dom or the variable v.
(b) If (Z, {tc}) is a certain region for (Σ, Dm), then the al-
gorithm returns ‘yes’; and it returns ‘no’, otherwise.

Similar to the proof of Theorem 3.1, it is easy to see that
the algorithm is in np and is correct.

(2) We show the problem is np-hard by reduction from 3SAT.
Given an instance ϕ of 3SAT, we construct schemas R and
Rm, a master relation Dm of Rm, a set Z of attributes of
R, and a set Σ of eRs such that Z is valid iff ϕ is satisfiable.

(II) The Z-counting problem is #p-complete.
The reduction above is parsimonious. That is, the num-

ber of satisfiable truth assignments for the 3SAT instance is
equal to the number of pattern tuples tc such that (Z, {tc})
is a certain region for (Σ, Dm).

The #3SAT problem, which is the counting version of the
3SAT problem, is #p-complete [16, 27]. From this it follows
that the Z-counting problem is also #p-complete. 2

Proof of Theorem 3.4

(I) The Z-minimum problem is np-complete.

(1) We show the problem is in np by giving an np algorithm.
Consider a set Σ of eRs over schemas (R,Rm), and a positive
integer K ≤ |R|. The algorithm works as follows.
(a) Guess a set Z of attributes in R such that |Z| ≤ K.
(b) Guess a pattern tuple tc, and check whether (Z, tc[Z])
is a certain region for (Σ, Dm).
(c) If so, it returns ‘yes’; and it returns ‘no’ otherwise.

The correctness of the np algorithm can be verified along
the same lines as the proof of Theorem 3.3.

(2) We show that the problem is np-hard by reduction from
the minimum key problem, which is np-complete [2].

(II) We show that the Z-minimum problem cannot be ap-
proximated within a factor of c logn in polynomial time for
any constant c unless np ⊆ dtime (npolylog(n)). This can be
verified by an approximation preserving reduction [28] from
the minimum set cover problem, along the same lines as the
one for the minimum key problem for functional dependen-
cies (fds) [2]. 2

Proof of Theorem 3.5

Consider (Z, Tc) and (Σ, Dm). Assume w.l.o.g. that there is
a single tuple tc ∈ Tc. When there are multiple tuples in Tc,
we can test them one by one by the same algorithms below.

Statements (a) and (b). We first show that if the consis-
tency problem (resp. the coverage problem) is in ptime for
case (b), then it is in ptime for case (a). We then show that
both problems are in ptime for case (b).

(I) We first show that it suffices to consider case (b) only.
We define active domain dom and variable v as in the proof

of Theorem 3.1. It suffices to consider R tuples t such that
for each attribute A of R, t[A] is either a constant in dom
or the variable v. Since we only need to consider attributes
that appear in Σ, there are at most O(|dom||Σ|) tuples of R
to be considered, a polynomial when fixing Σ.

For such an R tuple t, if t ̸
 tc ∈ Tc, there exists a unique
fix, but no certain fix, for t. If t
 tc ∈ Tc, it is easy to see
that there is a unique fix (resp. certain fix) for t by (Σ, Dm)
w.r.t. (Z, {tc}) if and only if (Σ, Dm) is consistent relative to
(Z, {t[Z]}) (resp. (Z, {t[Z]}) is a certain region for (Σ, Dm)).
From this it follows that we only need to consider case (b).

(II) We show that the consistency problem for case (b) is
in ptime, by giving a ptime algorithm such that (Σ, Dm) is
consistent relative to (Z, Tc) iff the algorithm returns ‘yes’.

181

(III) We next show that the coverage problem for case (b) is
in ptime. Indeed, the ptime algorithm developed above can
be applied here, but it only returns ‘yes’ at step (c) if when
the set S is empty and the tuple t only consists of constants.
This completes the proof for statements (a) and (b).

Statement (c). We show that the consistency and coverage
problems are in ptime for direct fixes, one by one as follows.

(I) We first show how to check the relative consistency via
sql queries, which yields a ptime algorithm for the problem.
Given a set Z of certain attributes, let ΣZ be the set of

eRs φ in Σ such that lhs(R,φ) ⊆ Z, but rhs(R,φ) ̸∈ Z.
We first define an sql queryQφ for an eR φ= ((X,Xm)→

(B,Bm), tp[Xp]) in ΣZ , as follows.

1. select distinct (Xm, Bm) as (X,B)
2. from Rm

3. where Rm.Xp ≈ tp[Xp] and Rm.Xm
 tc[X]

We use Qφ(X,B) and Qφ(X) to denote the result of the sql
query projected on attributes X ∪ {B} and X, respectively.
We then define an sql query Q(φ1,φ2) for two eRs φ1

= ((X1X,Xm1Xm) → (B,Bm1), tp1 [Xp1]) and φ2 =
((X2X,Xm2X

′
m) → (B,Bm2), tp2 [Xp2]) such that X1 ∩X2

is empty and |X| = |Xm| = |X ′
m|. Here X may be empty.

1. select R1.X1,R1.X,R2.X2

2. from Qφ1 (X1X,B) as R1, Qφ2 (X2X,B) as R2

3. where R1.X = R2.X and R1.B ̸= R2.B

For two eRs φ1 = ((X1, Xm1)→ (B1, Bm1), tp1 [Xp1]) and
φ2 = ((X2, Xm2) → (B2, Bm2), tp2 [Xp2]) such that B1 ̸=
B2, we define sql query Q(φ1,φ2) that always returns ∅.
Observe that (Σ, Dm) is consistent relative to (Z, {tc}) if

and only if for all eRs φ1 and φ2 in ΣZ , the queries Q(φ1,φ2)

return an empty result. The sql query Q(φ1,φ2) is obviously
in ptime, and hence, the consistency problem is in ptime
for direct fixes.

(II) For the coverage problem, observe that (Z, Tc) is a cer-
tain region for (Σ, Dm) if and only if:
1. (Σ, Dm) is consistent relative to (Z, Tc), and
2. for each B ∈ R\Z, there exists an eR φ = ((X,Xm)→

(B,Bm), tp[Xp]) in Σ such that (a) X ∈ Z and tc[X]
consists of only constants, (b) tp[Xp] ≈ tc[Xp], and (c)
there is a master tuple tm ∈ Dm with tm[Xm] = tc[X].

Both conditions are checkable in ptime, and hence, so is the
coverage problem. 2

Proof of Corollary 3.6

(I) For the Z-validating problem and the Z-counting prob-
lem, a close look at the proofs in Theorems 3.3 reveals that
those proofs also work for this special case.

(II) The np-hardness of the Z-minimum problem is shown
by reduction from the minimum node cover problem, which
is np-complete [16].
A node cover in a graph G(V,E) is a subset V ′ ⊆ V such

that for each edge (u, v) of the graph, at least one of u and v
belongs to the set V ′. Given a graph G(V,E) and a positive
integer K ≤ |V |, the node cover problem asks whether there
exists a node cover V ′ in G having |V ′| ≤ K.
Consider an instance vc = (G(V,E),K) of the node cover

problem, where V = {v1, . . . , v|V |} and E = {e1, . . . , e|E|}.
We construct schemas (R,Rm) and a set Σ of eRs such that
there is a solution to vc iff there is a solution to the con-
structed minimum Z instance.

Algorithm validateW

Input: W = (Z1, Z2 ∥ Zm), a set Σ of eRs on schemas (R,Rm),
and a reduced master relation Ds of Rm.

Output: true if W is valid, or false otherwise.

1. t := ∅; /* t is an R tuple */

2. for each master tuple tm in Ds do
3. t[Z2] := tm[Zm]; t[R \ Z2] := (, . . . ,);
4. for each φ in Σ having X ⊆ Z2 and B ̸∈ (Z1Z2) do

/* Here φ = ((X,Xm) → (B,Bm), tp[Xp]) */

5. if t[Xp] ≈ tp[Xp] and t′m[Xm] = t[X] (t′m ∈ Ds)
6. then t[B] := t′m[Bm];

7. if t[R \ Z1] contains only constants then return true;

8. return false.

Figure 5: Algorithm validateW

(III) The approximation hardness of the Z-minimum prob-
lem is shown by an approximation preserving reduction [28]
from the minimum set cover problem, a minor modification
of the one for the minimum key problem [2]. 2

Proof of Corollary 3.7

The reductions given in the proofs of Theorem 3.1 and The-
orem 3.2 both use a fixed master relation, which have five
attributes and three master tuples. As a result, the conp
lower bounds remain intact for the consistency and cover-
age problems when the master relation Dm is fixed. 2

Proof of Proposition 4.1

Consider a clique C = {v1, . . . , vk} in G, where for each
i ∈ [1, k], vi = (φi, tmji

). Let ΣC be the set of eRs in the
clique C. By the definition of the compatible graph, we have
the following: (a) lhs(ΣC)∩rhs(ΣC) = ∅; and (b) |rhs(ΣC)|
= |C| = k, i.e., the number of attributes in rhs(ΣC) is equal
to the number of nodes in C.

Let Z = R \ rhs(ΣC), and tc be a tuple with attributes
in Z such that (a) tc[lhs(ΣC)] = tj1 ◃▹ . . . ◃▹ tjk [lhs(ΣC)],
where for each i ∈ [1, k], tji [XiBi] = tmji

[XmiBmi], and (b)

tc[A] = ‘ ’ for all the remaining attributes A ∈ Z.
Since there are no conflict tuples in the compatible graph,

for all R tuples t
 tc, the eR-tuple pairs in the clique C
guarantee that the tuple t has a certain fix.

Hence, we can derive a certain region for (Σ, Dm) from
each clique in the compatible graph G. 2

Proof of Theorem 4.2

By reduction from the 3SAT problem to the Z-validating
problem, where (a) for each attribute B ∈ (R \ Z), there is
exactly one eR φ with lhs(φ) = B, and (b) the eRs form a
clique in the compressed compatible graph. The reduction
in the proof of Theorem 3.3 is such a reduction. From this
it follows that the Z-validating problem for a clique in a
compressed graph Gc is np-complete. 2

Proof of Proposition 4.3

We show this by giving algorithm validateW, shown in Fig. 5.
We first show that the algorithm runs in O(|Σ||Ds| log |Ds|)
time, and then verify its correctness.

(I) We first show the algorithm is in O(|Σ||Ds| log |Ds|) time.

1. For each eR φ ∈ Σ such that lhs(φ) ∈ Z2 and rhs(φ) ̸∈
(Z1Z2), we first build a hash index based on lhsm(φ)
for master tuples in Ds. This takes O(|Σ||Ds| log |Ds|)
time, and this part is not shown in the pseudo-code.

182

2. There are at most O(|Ds||Σ|) loops (lines 2–7). Each
innermost loop takes O(log |Ds|) time (lines 5–6).
Hence in total it takes O(|Σ||Ds| log |Ds|) time.

Putting these together, it is easy to see that the algorithm
indeed runs in O(|Σ||Ds| log |Ds|) time.

(II) We now show the correctness of the algorithm.
That is, given W = (Z1, Z2 ∥ Zm), there is a non-empty

pattern tableau Tc such that (Z1Z2, Tc) is a certain region
for (Σ, Dm) iff algorithm validateW returns true. Recall that
we only focus on direct fixes (Section 3).
First, assume that the algorithm returns ‘yes’. Then there

exists a master tuple tm that makes t[R \ Z1] contain only
constants. It suffices to show that (Z, tm[Zm]) is a certain
region. Indeed, this is because (a) the algorithm guarantees
that for all tuples t of R, if t[Z] = tm[Zm], then t[A] is a
constant for all attributes A ∈ (R \ Z1Z2) (line 6), and (b)
there are no conflict tuples in Ds.
Conversely, assume that W is valid. That is, there exists

a master tuple tm in Ds such that (Z1Z2, {tc}) is a cer-
tain region for (Σ, Ds), where tc[Z1] consists of ‘ ’ only and
tc[Z2] = tm[Zm].
For the master tuple tm, t[R \Z1] must contain only con-

stants, and the algorithm returns true. 2

Details of Algorithm compCRegions

Algorithm compCRegions is presented in Fig. 6. It first com-
putes a reduced master relation Ds (line 1), and builds the
compressed compatible graph Gc of (Σ, Ds) (line 2). It
then invokes Procedure findCliques to find up to K maxi-
mal cliques in Gc (line 3). These cliques are converted into
certain regions by Procedure cvrtClique (line 5). Finally, it
constructs M by merging certain regions with the same Z
(lines 6-7). Here M is guaranteed nonempty since (a) every
graph has at least one maximal clique, and (b) cvrtClique
finds a certain region from each clique (see below).
Procedure findCliques is presented following the algorithm

given in [21] for the ease of understanding. However, we
used the algorithm in [24] in the experiments. These al-
gorithms output a maximal clique in O(|V ||E|) time for a
graph G(V,E), in a lexicographical order of the nodes. Pro-
cedure findCliques first generates a total order for eRs in
Σ (lines 1–3). Then it recursively generates K maximal
cliques (lines 4–12). This part is a simulation of the al-
gorithm in [21], which outputs maximal independent sets.
This takes O(K|Σ|3) time in total. The correctness of Pro-
cedure findCliques is ensured by that of the algorithm in [21].
Procedure findCliques makes use of the methods of [21, 24]

to find maximal cliques. Those methods have proven effec-
tive and efficient in practice. Indeed, the algorithm of [24]
can find about 100, 000 maximal cliques per second on sparse
graphs (http://research.nii.ac.jp/∼uno/code/mace.htm).
Given a clique C, Procedure cvrtClique derives a set of

certain regions, using the heuristic given in Section 4.1. It
first extracts Z2 and Zm from the set ΣC of eRs in C (line 1).
For each master tuple tm, it then identifies a set Z1Z2 of
attributes and a pattern t[Z1Z2] such that (Z1Z2, {t[Z1Z2]})
forms a certain region (lines 2–7). The rational behind this
includes: (a) no conflict tuples are in Ds, and (b) for any
B ∈ (R \ Z2), t[B] is a constant taken from Ds (line 7).

Example 7.1: Consider the master relation Dm in
Fig. 1(b), and Σ′ = {φ(FN,2), φ(LN,2), φ(AC,1), φ(str,1), φ(city,1),
φ4} consisting of eRs derived from φ1, φ2 and φ4 of Exam-

Algorithm compCRegions

Input: A number K, a set Σ of eRs defined on (R,Rm),
and a master relation Dm of Rm.

Output: An array M of regions (Z, Tc).

1. Compute Ds from Dm by removing conflict tuples;
2. Build the compressed compatible graph Gc for (Σ, Ds);
3. M : = ∅; Γ := findCliques(K,Gc);
4. for each clique C in Γ do
5. S := cvrtClique (C,Σ, Ds);
6. for each (Z, tc) in S do
7. M [Z] := (Z,M [Z].Tc ∪ {tc});
8. return M .

Procedure findCliques

Input: Number K, a compressed compatible graph Gc(V c, Ec).
Output: A set Γ of at most K maximal cliques.

1. let H[1..h] be the list of attributes in rhs(V c);
/* Sorted in decreasing order w.r.t. attribute confidence */

2. let Σ[i] (i ∈ [1, h]) be the list of eRs φ with rhs(φ) = H[i];
/* Partition eRs (nodes) w.r.t. their rhs attributes */

3. Let O be a total order on V c, and O(φ) < O(φ′) for φ ∈ Σ[i],
φ′ ∈ Σ[j] (i < j);

4. Greedily find a maximal clique C;
5. Γ := ∅; Que.push (C); /* Que is a priority queue */

6. while (|Γ| < K and there are changes in Que) do
7. C := Que.pop (); Γ := Γ ∪ {C};
8. for all φ2 ∈ N (φ1) having φ1 ∈ C and O(φ1) < O(φ2) do

/* N (v) is the non-neighbors of node v ∈ V c */

9. Vj := { φ | φ ∈ V c and O(φ) ≤ O(φ2)};
10. Cj := (C ∩ Vj \ N (φ2)) ∪ {φ2};
11. if Cj is a maximal clique in the subgraph Gc[Vj]
12. then Enlarge Cj to a maximal clique of Gc; Que.push (Cj);
13. return Γ.

Procedure cvrtClique

Input: A clique C in the graph Gc, a set Σ of eRs on schemas
(R,Rm), and a reduced master relation Ds of Rm.

Output: A set S of (Z, tc) pairs.

1. S := ∅; Z2 := lhs(ΣC); Zm := lhsm(ΣC);

2. for each master tuple tm in Ds do
3. t[Z2] := tm[Zm]; t[R \ Z2] := (, . . . ,); /* t is an R tuple */

4. for each φ in Σ with X ⊆ Z2 and B ∈ rhs(ΣC) do
/* Here φ = ((X,Xm) → (B,Bm), tp[Xp]) */

5. if t[Xp] ≈ tp[Xp] and t′m[Xm] = t[X] (t′m ∈ Ds)
6. then t[B] := t′m[Bm];

7. S : = S ∪ {(Z1Z2, t[Z1Z2])}; /* t[Z1] contains exactly ‘ ’ */

8. return S;

Figure 6: A Graph-based Algorithm

ple 2.1 by, e.g., instantiating B1 with AC, str and city.
The algorithm first builds a compressed graph Gc(V c, Ec)

such that V c = Σ′, and there is an edge in Ec for all node
pairs except for node pairs (φ(AC,1), φ4) and (φ(city,1), φ4).

For K = 2, findCliques finds two cliques C1 = {φ(FN,2),
φ(LN,2), φ(AC,1), φ(str,1), φ(city,1)} and C2 = {φ(FN,2), φ(LN,2),
φ(str,1), φ4}, by checking eRs following their order in Σ′.

The algorithm returns two certain regions (Z1, Tc1) and
(Z2, Tc2), where Z1 = (zip, phn, type, item) with Tc1 =
{t1,1, t1,2} and Z2 = (zip, phn,AC, type, item) with Tc2 =
{t2,1, t2,2}. For each i ∈ [1, 2], (a) t1,i[type, item] = (,),
t1,i[zip, phn] = si[zip,Mphn]; and (b) t2,i[type, item] = (,),
t2,i[zip, phn,AC] = si[zip,Mphn,AC] for si of Fig. 1(b). 2

Correctness and complexity. The algorithm guarantees
to return a nonempty set M of certain regions, by Proposi-
tions 4.1 and 4.3. It is in O(|Σ|2|Dm| log |Dm| + K|Σ|3 +
K|Σ||Dm| log |Dm|) time: it takes O(|Σ|2|Dm| log |Dm|)
time to build a compressed compatible graph (lines 1-2),
O(K|Σ|3) time to find cliques (line 3), and O(K|Σ||Dm|

183

log |Dm|) time to derive certain regions from the cliques
(lines 4-7). In practice, |Σ| and K are often small. We
verify its effectiveness and efficiency in Section 5. 2

Additional Materials for the Experimental Study

We present more details on the datasets, the eRs that we
designed for each data set, and the algorithm IncRep.

Datasets and editing rules.
(1) hosp data. The data is maintained by the U.S. Depart-
ment of Health & Human Services, and comes from hospitals
that have agreed to submit quality information for Hospital
Compare to make it public.
There are three tables: HOSP, HOSP MSR XWLK, and

STATE MSR AVG, where (a) HOSP records the hospital in-
formation, including id (provider number, its ID), hName
(hospital name), phn (phone number), ST (state), zip (ZIP
code), and address; (b) HOSP MSR XWLK records the
score of each measurement on each hospital in HOSP, e.g.,
mName (measure name), mCode (measure code), and Score
(the score of the measurement for this hospital); and (c)
STATE MSR AVG records the average score of each measure-
ment on hospitals in all US states, e.g., ST (state), mName
(measure name), sAvg (state average, the average score of
all the hospitals in this state).
We created a big table by joining the three tables with

natural join, among which we chose 19 attributes as the
schema of both the master relation Rm and the relation
R. We designed 37 eRs in total for the hosp data. Five
important ones are listed as follows.

φ1 : ((zip, zip) → (ST, ST), tp1[zip] = (nil));
φ2 : ((phn, phn) → (zip, zip), tp2[phn] = (nil));
φ3 : (((mCode, ST), (mCode, ST)) → (sAvg,sAvg), tp3 = ());
φ4 : (((id, mCode), (id, mCode)) → (Score,Score), tp4 = ());
φ5 : ((id, id) → (hName,hName), tp5 = ()).

(2) dblp data. The dblp service is well known for pro-
viding bibliographic information on major computer science
journals and conferences. We first transformed the XML-
formatted data into relational data. We then created a big
table by joining the inproceedings data (conference papers)
with the proceedings data (conferences) on the crossref at-
tribute (a foreign key). Besides, we also included the home-
page info (hp) for authors, which was joined by the home-
page entries in the dblp data.
From the big table, we chose 12 attributes as the schema

of both the master relation Rm and the relation R, includ-
ing ptitle (paper title), a1 (the first author), a2 (the second
author), hp1 (the homepage of a1), hp2 (the homepage of
a2), btitle (book title), and publisher.
We designed 16 eRs for the dblp data, shown below.

φ1 : ((a1, a1) → (hp1, hp1), tp1[a1] = (nil));
φ2 : ((a2, a1) → (hp2, hp1), tp2[a2] = (nil));
φ3 : ((a2, a2) → (hp2, hp2), tp3[2] = (nil));
φ4 : ((a1, a2) → (hp1,hp2), tp4[a2] = (nil));
φ5 : (((type, btitle, year), (type, btitle, year)) →

(A, A), tp5[type] = (‘conference’));
φ6 : (((type, crossref), (type, crossref) →

(B, B), tp6[type] = (‘conference’));
φ7 : (((type, a1, a2, title, pages), (type, a1, a2, title, pages)) →

(C, C), tp7[type] = (‘conference’)).
Here the attributes A,B and C range over the sets
{isbn, publisher, crossref}, {btitle, year, isbn, publisher} and

{isbn, publisher, year, btitle, crossref}, respectively.
Observe that in eRs φ2 and φ4, the attributes are mapped

to different attributes. That is, even when the master rela-
tion Rm and the relation R share the same schema, some
eRs still could not be syntactically expressed as cfds, not to
mention their semantics.

(3) tpc-h data. The TPC BenchmarkTMH (tpc-h) is a
benchmark for decision support systems. We created a big
table by joining eight tables based on their foreign keys.
The schema of both the master relation Rm and the relation
R is the same as the one of the big table consisting of 58
attributes, e.g., okey (order key), pkey (part key), num (line
number), tprice (order total price), ckey (customer key), and
skey (supplier key).

We designed 55 eRs all with empty pattern tuples. Since
the data was the result of joining eight tables on foreign keys,
we designed all eRs based on the foreign key attributes. We
selectively report four eRs in the following.

φ1 : (((okey, pkey), (okey, pkey)) → (num, num), tp1 = ());
φ2 : ((okey, okey) → (tprice, tprice), tp2 = ());
φ3 : ((ckey, ckey) → (name, name), tp3 = ());
φ4 : ((skey, skey) → (address, address), tp4 = ()).

Adding noise. In the attribute level experiments, we added
noises to the three datasets. The noise rate is defined as the
ratio of (# of dirty attributes)/(# of total attributes). For
each attribute that the noise was introduced, we kept the
edit distance between the dirty value and the clean value
less or equal than 3.

Algorithm IncRep. We implemented the incremental re-
pairing algorithm IncRep in [9] to compare with the method
proposed in this paper. Below we simply illustrate the algo-
rithm IncRep (please see [9] for more details).

Taking as input a clean database D, a set ∆D of (possibly
dirty) updates, a set Σ of cfds, and an ordering O on ∆D,
it works as follows. It first initializes the repair Repr with
the current clean database D. It then invokes a procedure
called TupleResolve to repair each tuple t in ∆D according
to the given order O, and adds the local repair Reprt of t to
Repr before moving to the next tuple. Once all the tuples
in ∆D are processed, the final repair is returned as Repr.
The key characteristics of IncRep are (i) the repair grows at
each step, providing in this way more information that can
be used when cleaning the next tuple, and (ii) the data in
D is not modified since it is assumed to be clean.

For IncRep, we adopted the cost model presented in [9]
based on the edit distance. For two values in the same do-
main, the cost model is defined as:

cost (v, v′) = w(t, A)· dis (v, v′)/max (|v|, |v′|), where
w(t, A) is a weight in the range [0, 1] associated with each
attribute A of each tuple t in the dataset D.

For the cost of changing a tuple from t to t′, we used the
sum of cost (t[A], t[A′]) for each A in the schema of R, i.e.,
cost (t, t′) = ΣA∈R cost (t[A], t′[A]).

More specifically, in these experiments, we designed the
cfds based on the eRs that we have. Since the Dm and R
have the same schemas in all datasets, we can easily design
the corresponding cfds from the eRs.

During the repair process, we enumerated one R tuple
a time as ∆D. We then enlarged D to Repr, and repeated
the process until all tuples were repaired. Because each time
there was only one tuple in ∆D, we did not need to deal with
the ordering O problem in IncRep.

184

